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Abstract 12 

Radical depolymerisation is the method of choice for the depolymerisation of glycosaminoglycans 13 

(GAGs), especially when enzymatic depolymerisation cannot be performed due to the lack of suitable 14 

enzymes. The established Fenton type free radical depolymerisation generates radicals from a solution 15 

of H2O2 in the presence of Cu2+ or Fe2+. When applied to dermatan sulfate (DS), the Fenton type 16 

depolymerisation of DS (Panagos, Thomson, Bavington & Uhrin, 2012)produced exclusively 17 

oligosaccharides with reducing end GalNAc , which was partially oxidized to acetylgalactosaminic acid. 18 

We report here the results of the TiO2 catalyzed photochemical depolymerisation of DS. NMR analysis of 19 

these DS oligosaccharides revealed the presence of reducing end IdoA, observed for the first time. The 20 

reducing end acetylgalactosaminic acid was also detected. The photochemical depolymerisation method 21 

thus enables preparation of new types of GAG oligosaccharides suitable for further biochemical and 22 

biological investigation.  23 

 24 

Highlights 25 

 Free radical photochemical depolymerisation generates GAG oligosaccharides. 26 

 The structures of DS oligosaccharides were studied by NMR. 27 

 Oligosaccharides with uronic acid as the reducing end monosaccharides were found. 28 

 Acetylgalactosaminic reducing end monosaccharides were also generated. 29 

 No desulfation of the generated oligosaccharides was found. 30 

 31 

Keywords  32 

NMR; glycosaminoglycans; dermatan sulfate; photochemical depolymerisation. 33 

 34 

 35 
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Chemical compounds studied in this article  36 

Phosphate-buffered saline (PubChem CID: 24978514); Titanium dioxide (PubChem CID: 26042), 37 

Ethylenediaminetetraacetic acid (PubChem CID: 6049), Trimethylsilyl propionate (PubChem CID: 38 

519321), Dermatan sulfate (Pubchem CID:32756). 39 

Abbreviations 40 

GAGs, glycosaminoglycans; LMWH, low molecular weight heparin; DS, dermatan sulfate; GalNAc, N-41 

acetylgalactosamine; IdoA, iduronic Acid; HSQC, Heteronuclear single quantum coherence; TOCSY, Total 42 

correlation spectroscopy; HMBC, Heteronuclear multiple bond coherence;  43 

 44 

1. Introduction 45 

 46 

Glycosaminoglycans (GAGs) are a biologically important class of carbohydrates usually found on cell 47 

surfaces in the form of proteoglycans (Dietrich, Sampaio, Montesdeoca & Nader, 1980; Mathews, 1975; 48 

Medeiros, Mendes, Castro, Baú, Nader & Dietrich, 2000). They are essential for a variety of cell-cell 49 

signaling events, such as cell growth and cell adhesion (Singer, 1992). As long unbranched 50 

polysaccharides, GAGs also participate in the construction of connective tissues (Comper & Laurent, 51 

1978; Mathews, 1975), such as cartilage. The ability of GAGs to be involved in such a variety of 52 

biochemical processes is underpinned by their inherent structural heterogeneity. 53 

GAGs are built from repeating disaccharide units, which typically consist of an uronic acid (iduronic 54 

acid or glucuronic acid) and a hexosamine (galactosamine or glucosamine). Furthermore, these 55 

disaccharide units can be sulfated at different sites and the position and type of the glycosidic linkage 56 

also varies between GAG types. These attributes lead to structural variety within the GAG family. 57 

Although not random, the epimerization and sulfation events are not regular, creating large 58 

heterogeneity within a single GAG type. For example, during the processing of heparan, the precursor of 59 

heparan sulfate (HS), various enzymes including N-deacetylases/N-sulfotransferases, as well as 6-O- and 60 

3-O sulfotransferases and C-5 epimerases, modify its structure, though these modifications are neither 61 

random or complete (Vreys & David, 2007). The resulting macroscopic organization of HS shows a typical 62 

‘block structure’ containing extensive structural heterogeneity (Gallagher, 2006). 63 

In order to study the biology and pharmacology of these heterogeneous polysaccharides it is 64 

necessary to identify specific structures within their chains,  which are responsible for their distinct 65 

biological properties (Toida, Sato, Sakamoto, Sakai, Hosoyama & Linhardt, 2009). For example, the study 66 

of heparin oligosaccharides revealed the existence of a specific pentasaccharide sequence responsible 67 

for the binding of heparin to antithrombin (Munoz & Linhardt, 2004). GAG oligosaccharides are also 68 

important in their own right, e.g. low molecular weight heparin (LMWH) (Choay, Lormeau, Petitou, Sinaÿ 69 

& Fareed, 1981), has almost completely replaced unfractionated heparin as a pharmaceutical (Hileman, 70 

Smith, Toida & Linhardt, 1997). Low molecular weight dermatan sulfates (DS) also show increased 71 

bioavailability without the loss of bioactivity (Dol et al., 1990; Legnani et al., 1994).  72 
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Smaller GAG oligosaccharides can lead to a reduction in the adverse effects sometimes associated 73 

with full-length polysaccharides. For example, LMWH  decreases the occurrence of heparin induced 74 

thrombocytopenia due to less efficient interaction with platelet factor 4 (Gray, Mulloy & Barrowcliffel, 75 

2008). LMWH also reduces the risk of osteoporosis, another side effect of heparin (Matzsch, Bergqvist, 76 

Hedner, Nilsson & Ostergaard, 1990; Monreal, Vinas, Monreal, Lavin, Lafoz & Angles, 1990). Another 77 

example is the depolymerisation of fucosylated chondroitin sulfate, fCS, from sea cucumber (Panagos et 78 

al., 2014; Suzuki, Kitazato, Takamatsu & Saito, 1991; Wu, Xua, Zhao, Kang & Ding, 2010; Wu et al., 2013; 79 

Yang, Wang, Jiang, Lv, Zhang & Lv, 2015), which is critical for antithrombotic applications, due to an 80 

undesired platelet aggregation associated with long polysaccharide chains (Wu, Xu, Zhao, Kang & Ding, 81 

2010b).  82 

Depolymerisation of GAGs and the production of fully characterised oligosaccharides is therefore 83 

an essential process in evaluation of the biological potential of these molecules. A variety of different 84 

depolymerisation methods, characterized by specific advantages and limitations, have therefore been 85 

developed to date. The most widely used is enzymatic depolymerisation, although this method also has 86 

its limitations. For example, highly sulfated GAGs, which are typical for marine species, are resistant to 87 

enzymatic depolymerisation (Vieira, Mulloy & Mourao, 1991). Moreover, oligosaccharides generated by 88 

heparanases and chondroitinases contain an unsaturated uronate residue as the non-reducing end 89 

monosaccharide and a hexosamine as the reducing end monosaccharide (Pervin, Gallo, Jandik, Han & 90 

Linhardt, 1995). Finally, depolymerisation enzymes can be very expensive, e.g. one mg of chondroitinase 91 

ABC lyase, which can deliver between 50 to 250 units, can cost much more than £ 1000. 92 

Other depolymerisation methods include acid hydrolysis, solvolysis and ultrasonication. Acid 93 

hydrolysis is a chemically based approach which involves both the depolymerisation and the desulfation 94 

of the polysaccharide (Mourao et al., 1996) and for that reason it is not widely used on sulfated GAGs. 95 

Solvolytic depolymerisation has also been shown to be effective on GAGs but it also involves 96 

desulfonation of the polysaccharide chains and is also known to structurally modify the oligosaccharide 97 

products (Toida, Sato, Sakamoto, Sakai, Hosoyama & Linhardt, 2009). Ultrasonic depolymerisation is 98 

unique among the depolymerisation methods, as it is a mechanical method, which has been employed 99 

for the depolymerisation of hyaluronic acid (Miyazaki, Yomota & Okada, 2001). Although this technique 100 

generates lower molecular weight GAGs with unmodified chains, its application is limited because of the 101 

size of produced species (MW>105 Da), which are much bigger than those generated by other methods. 102 

One of the more widely used chemical depolymerisation methods suitable for GAGs is the free 103 

radical Fenton-type depolymerisation. It has been used not only to generate oligosaccharides from 104 

heparin (Nagasawa, Uchiyama, Sato & Hatano, 1992), chondroitin and dermatan sulfate (Ofman, Slim, 105 

Watt & Yorke, 1997), and hyaluronate (Uchiyama, Dobashi, Ohkouchi & Nagasawa, 1990), but also 106 

marine GAGs (Wu, Xu, Zhao, Kang & Ding, 2010a). However, Fenton-type depolymerisation reaction is 107 

known to preferentially degrade unsulfated IdoA in heparin (Nagasawa, Uchiyama, Sato & Hatano, 1992) 108 

and DS (Ofman, Slim, Watt & Yorke, 1997; Panagos, Thomson, Bavington & Uhrin, 2012), thus creating 109 

oligosaccharides that have hexosamine at the reducing end, similar to enzymatic depolymerisation. In 110 

addition, this reducing end hexosamine can sometimes be oxidized, as seen in heparin and DS, forming 111 

acetylglucosaminic acid and acetylgalactosaminic acid, respectively (Panagos, Thomson, Bavington & 112 

Uhrin, 2012; Vismara, Pierini, Guglieri, Liverani, Mascellani & Torri, 2007; Vismara et al., 2010). 113 
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In this work we present a structural analysis of oligosaccharides obtained by a photochemical 114 

depolymerisation of a model GAG, DS, and compare them with DS oligosaccharides obtained previously 115 

by the Fenton-type depolymerisation (Panagos, Thomson, Bavington & Uhrin, 2012), as both methods 116 

use free radicals to cleave the glycosidic bonds. The photochemical depolymerisation has been used 117 

recently to depolymerise alginate (Burana-osot, Hosoyama, Nagamoto, Suzuki, Linhardt & Toida, 2009), 118 

pectin (Burana-osot, Soonthornchareonnon, Hosoyama, Linhardt & Toida, 2010), K5 heparosan (Higashi 119 

et al., 2011) and heparin (Higashi et al., 2012). While the Fenton type depolymerisation generates free 120 

radicals from hydrogen peroxide using an iron or copper catalyst, photochemical depolymerisation uses 121 

UV light and titanium dioxide to generate radicals in an aqueous environment, making it a very 122 

inexpensive technique. 123 

 124 

 125 

 126 

2.  Materials and methods 127 

 128 

2.1 Materials 129 

 130 

Titanium(IV) oxide (TiO2) anatase powder was purchased from Acros Organics. Porcine DS, 131 

containing more than 95% of the repeating disaccharide [-β-D-GalNAc4S-(1 → 4)-α-L-IdoA-(1 → 3)]n was 132 

obtained from Celsus Laboratories. Ethylenediaminetetraacetic acid (EDTA) and trimethylsilyl 133 

propionate (TSP) were purchased from Goss Scientific Instruments Ltd. and Aldrich, respectively. 134 

 135 

2.2 Depolymerisation of polysaccharides by photochemical reaction 136 

Samples (300 mg) were dissolved in 30 ml of deionised water in a shallow open crystallising dish to 137 

a final concentration of 10 mg/ml. 30 mg (1:10) of titanium(IV) oxide (TiO2) anatase powder (Acros 138 

Organics) was added. A magnetic stirrer was added to the sample to ensure the dissolution of 139 

atmospheric oxygen in the solution and to prevent settling of TiO2. The receptacle was placed under a 140 

UV light source (125 W low pressure mercury lamp from Photochemical Reactors Ltd). In order to 141 

maximise UV absorbance by the TiO2 the lamp was placed 10 cm from the receptacle at approximately a 142 

70° angle. The reaction was carried out at room temperature and was stopped after 34 h, when the 143 

reaction progress was deemed to be satisfactory. 100 μl samples were taken at regular intervals (8-10 144 

hours) and the progress of the reaction was monitored by HPLC, following the method described below. 145 

The samples were centrifuged at 16,100 × g for 5 minutes at room temperature. The supernatant was 146 

passed through a 0.22 μm membrane filter for complete removal of the TiO2 particles. The samples were 147 

separated by size exclusion chromatography (SEC) at room temperature for 45 minutes at a flow rate of 148 

0.5 ml/min. A Superdex Peptide 10/300 GL size exclusion column attached to a Waters 600 LCD HPLC 149 

equipped with a 486 Tunable Absorbance Detector was deployed. PBS (Phosphate Buffered Saline 150 

tablets, Fisher Scientific) was used as mobile phase and the UV absorbance was recorded at 218 nm, as 151 

the absence of a double bond generated from enzymatic depolymerisation, prevents the use of the 152 

absorbance at 232nm. The total reaction mixture after the end of the reaction was centrifuged for 30 153 

min at 2,742 × g and the supernatant was passed through a 0.22 μm membrane and freeze-dried. 154 
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2.3 Fractionation and isolation of the oligosaccharides 155 

The freeze-dried material obtained from the depolymerisation reaction was redissolved in 2.5 ml 156 

deionised water and fractionated by SECon a BioCAD 700E Workstation FPLC system equipped with a 157 

Waters Fraction Collector. Two XK26/100 columns preceded by a XK26/20 guard column (GE healthcare) 158 

were packed with Bio-Gel P-10 Fine resin (Bio-Rad Laboratories) and connected in series. Enzymatically 159 

cleaved DS tetrasaccharides and hexasaccharides were used as standards. The sample was loaded on a 5 160 

ml loop and was run at a flow rate of 0.4 ml/min for a total of 62.5 h, with PBS as the mobile phase. The 161 

UV absorbance was recorded at 218 nm and the fractions containing oligosaccharides were collected, 162 

pooled and freeze dried. 163 

Prior to NMR experiments, the lyophilized samples were desalted using the BioCad 700E system 164 

equipped with a XK16/40 column packed with Sephadex G25 superfine (Sigma-Aldrich). Each run was 165 

carried out with an injection volume of 5 ml and dH2O as mobile phase. For each run, the injection loop 166 

was first flushed for 6 minutes at 2.5 ml/min and then the flow rate was increased to 4 ml/min for 21 167 

minutes and 3 ml fractions were collected. The UV absorbance was recorded at 218 nm. Four to five 168 

fractions were pooled together, yielding desalted oligosaccharides in 12-15 ml of solution. The samples 169 

were subsequently freeze-dried. 170 

2.4 Structural analysis of the fractions by NMR 171 

After lyophilisation the samples were dissolved in 99.9% D2O, (Aldrich, 540 μl) containing deuterated 172 

NaH2PO4 + HNa2HPO4 buffer (10 mM, pH 7.2). A stock solution (20 μl) of EDTA and TSP was added. The 173 

stock solution was prepared by dissolving EDTA (4 mg) and TSP (9 mg) in the phosphate buffer (200 μl). 174 

The pH was adjusted to 7.2 by adding few drops of a concentrated solution of NaOH in D2O. All spectra 175 

were acquired at 50 ◦C on an 800 MHz Avance I Bruker NMR spectrometer equipped with a z-gradient 176 

triple-resonance TCI cryoprobe. The spectra were referenced (0 ppm) using the 1H and 13C signals of TSP. 177 

1D 1Η NMR spectra were acquired using relaxation and acquisition times of 1.5 and 0.4999 s, 178 

respectively; 32 scans per spectrum were accumulated. 1D 13C NMR spectra with 1H GARP decoupling 179 

were acquired using relaxation and acquisition times of 4 and 0.6816 s, respectively; 31504 scans per 180 

spectrum were accumulated in 41 h. The FIDs were zero filled once and a 2 Hz exponential line 181 

broadening was applied prior to Fourier transformation. 2D 1H, 13C HSQC spectra were acquired using a 182 

modified HSQC sequence. This pulse sequence employs DEPT editing sequence, which ensured that the 183 

CH2 signals appear as negative peaks. This was invaluable for the identification of C6 atoms of GAGs. The 184 

polarization transfer was optimised for 1JCH = 150 Hz for all the experiments and 13C adiabatic decoupling 185 

was used to decouple the carbon-proton couplings. Spectra were acquired using t1 and t2 acquisition 186 

times of 0.011 and 0.1069 s, respectively; 4 scans were acquired into each of 512 F1 complex data points 187 

resulting in the total experimental times of 1.5 h per sample.  188 

2.5 Fractionation of fucosylated chondroitin sulfate.  189 

The samples of fCS was depolymerized and purified as described previously (Panagos et al., 2014).  190 
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 191 

3. Results 192 

 193 

3.1 Fractionation of DS and isolation of the DS oligosaccharides 194 

  Samples taken from the reaction mixture containing DS and TiO2 in water as described in detail in 2.2, 195 

were analysed periodically to monitor the progress of the reaction. Monitoring by HPLC showed that the 196 

photochemical depolymerisation of DS does not progress at a constant rate under the conditions used. 197 

As indicated by the chromatogram of Figure 1a, the peak eluting with the column void volume, 198 

containing oligosaccharides with Mw>7000 Da is almost intact after the first 24 h. The reaction seems to 199 

progressively accelerate and after 34 h the peak eluting with the void volume has decreased 200 

significantly. At the same time the presence of smaller oligosaccharides is clearly visible (Figure 1b). The 201 

reaction was therefore stopped at this point and the reaction mixture was separated using a SEC 202 

column. The SEC chromatogram (Figure 1c) shows separation of fragments; the fraction labelled I, 203 

composed from fractions 77-83 (total volume 70 ml) was chosen for structural analysis, since its elution 204 

time was similar to that of a DS tetrasaccharide standard, run previously during the column calibration 205 

(data not shown). A shoulder visible on the right hand side of peak I is most likely due to co-elution 206 

trisaccharide species as discussed later, while the peak eluting at approximately 1500 minutes belongs 207 

to the disaccharides fractions The peaks eluting later contained fragments that when analysed by NMR, 208 

were identified as smaller than the disaccharide, potentially monosaccharides or even smaller entities. 209 

 210 

Figure 1: Chromatograms of the depolymerized DS (a) and (b) show HPLC traces after 24 and 34 hours, respectively. (c) 211 
Screenshot of the final 1500 minutes of the size exclusion chromatogram of the final reaction mixture obtained after 34 h of 212 
depolymerisation. The UV absorbance was monitored at 218 nm and the fraction brought forward for the analysis is 213 
indicated.  214 

 215 

 216 
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3.2 NMR analysis of fraction I 217 

Fraction I was analyzed by 1D and 2D NMR methods and the structures of the constituting 218 

oligosaccharides were determined. This process was facilitated by a comparison with a previously 219 

analyzed tetrasaccharide fraction generated by the Fenton type free radical depolymerisation of DS, 220 

which used H2O2 to generate radicals and Cu2+ as the catalyst (Panagos, Thomson, Bavington & Uhrin, 221 

2012). This also gave us the opportunity to compare the outcomes of the Fenton type and 222 

photochemical depolymerisation. It became immediately obvious that the spectra of fraction I contain 223 

some additional strong signals. Although the anomeric region of the 13C spectrum containing the non-224 

reducing rings signals was practically identical for samples generated by both methods, new strong 225 

signals  (95.12 and 97.50 ppm) were found in the anomeric region of the reducing rings for the 226 

photochemically depolymerized fraction I (Figure 2).  227 

These new strong signals belong to the reducing end α- and β-IdoA and their integral intensities have 228 

almost the same total intensity as the reducing end GalNAc signals (Figure 2a, b). For comparison, in the 229 

case of Fenton type depolymerisation the IdoA signals contained less than 10% of the total reducing end 230 

signals. This means that the photochemical depolymerisation does not proceed to fully oxidise the 231 

released reducing end IdoA, as was the case with the Fenton type depolymerisation.  232 

 233 

 234 

Figure 2: Comparison of the reducing end anomeric regions of NMR spectra. 1D 
13

C spectra of tetrasaccharides obtained by 235 
(a) photochemical (fraction I) and (b) Fenton type depolymerisation. (c) A partial 2D 

1
H, 

13
C HSQC spectrum of fraction I 236 

tetrasaccharides obtained by photochemical depolymerisation. 237 

It is now well established, that Fenton type depolymerisation proceeds to partially oxidise the released 238 

reducing end HexNAc as seen in heparin and DS, forming acetylglucosaminic acid and 239 

acetylgalactosaminic acid, respectively (Panagos, Thomson, Bavington & Uhrin, 2012; Vismara, Pierini, 240 

Guglieri, Liverani, Mascellani & Torri, 2007; Vismara et al., 2010) Focusing on the most prominent C2 241 

acetylgalactosaminic acid signal at 58.23 ppm, it is evident (Figure 3) that this signal is stronger in the 242 

photochemically depolymerized sample. Here the acetylgalactosaminic acid accounts for ~22% of the 243 

total reducing end GalNAc signals, whereas in case of Fenton type depolymerisation it was less than 244 
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13%. It is notable that the analysis of the 2D 1H 13C HSQC spectrum of the sample showed that there 245 

were no signals corresponding to the open chain reducing end IdoA, which indicates that opening of the 246 

IdoA monosaccharide leads to its complete degradation. 247 

 248 
Figure 3: Comparison of the GalNAc C2 region of the NMR spectra of tetrasaccharides obtained by (a) photochemical and (b) 249 
Fenton type depolymerisation. (c) A partial 2D 

1
H, 

13
C HSQC spectrum of the H2/C2 region of fraction I.  250 

 251 
 252 
Finally, a comparison of the integrals of the reducing and non-reducing anomeric 13C signals of fraction I 253 

showed ratio of 1:2.7. If this fraction contained purely tetrasaccharides this should be 1:3. Since the 254 

anomeric carbon of the terminal acetylgalactosaminic acid is oxidised and does not resonate in the 255 

integrated anomeric region, this ratio should be even larger, reflecting the presence of 20% of the open 256 

chain species in fraction I. This apparent discrepancy can be explained by the presence of trisaccharides 257 

in fraction I, as additionally confirmed by the analysis of the MS data (data not shown). At the same time 258 

the IdoA and GalNAc reducing-end signals show intensity ratio of 1:1.  It is therefore logical to assume 259 

that both IdoA-GalNAc-IdoA and GalNAc-IdoA-GalNAc trisaccharides are present in fraction I. 260 

Photochemical depolymerisation was also performed on fucosylated chondroitin sulfate from H. forskali 261 

(fCS) as described previously (Panagos, Thomson, Bavington & Uhrin, 2012). The repeating trisaccharide 262 

unit of this fCS, →3)GalNAc4,6S(1β→4)[FucαX1→3]GlcA(1β→, contains branching fucose. The X in this 263 

formula signifies different sulfation patterns of fucose and stands for sulfation at positions 3,4 or 2,4 or 264 

4, which were present at levels of 46%, 39% and 15%, respectively. Other sea cucumber species produce 265 

similar polysaccharides that differ only in the level of sulfation (Vieira & Mourao, 1988; Wu et al., 2013; 266 

Yoshida, Minami, Nemoto, Numata & Yamanaka, 1992).  As this polysaccharide is resistant to enzymatic 267 

depolymerisation, it is therefore a good candidate for photochemical depolymerisation. The branched 268 

structure and heterogeneity of the sulfation predisposes the fCS polysaccharide to yield a more complex 269 

mixture of oligosaccharides than the one generated from DS, which prevented their full 270 

characterization. Nevertheless, similar features were observed as for the DS. In particular, the amount of 271 

the N-acetylgalactosaminic acid was significantly increased in smaller fractions, exceeding 60% of the 272 

total reducing end content of GalNAc (data not shown). The oligosaccharides fractions (dp3-dp10) were 273 

used in microarray binding assays and were shown to bind to L- and P-selectins (Panagos et al., 2014). 274 

Since fCS-selectin binding is dependent on the presence of sulfated fucosylated branches, these results 275 
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indicate that photochemical depolymerisation neither cleaved the fucose branches nor caused 276 

desulfation of the polysaccharide. 277 

 278 

4. Discussion and conclusions 279 

Catalytic photochemical depolymerisation of DS was achieved by titanium dioxide in the presence of UV 280 

light. In this study we have modified the controlled depolymerisation reaction reported previously 281 

(Burana-osot, Hosoyama, Nagamoto, Suzuki, Linhardt & Toida, 2009; Burana-osot, 282 

Soonthornchareonnon, Hosoyama, Linhardt & Toida, 2010; Higashi et al., 2012; Higashi et al., 2011), in 283 

order to achieve a larger scale (x30 times) and without the use of specialized equipment. A wide range 284 

of oligosaccharides, from dp2 to dp22 as shown by SEC, was obtained for DS. These oligosaccharides 285 

contained both odd and even numbered species with no desulfation observed. 286 

The tetrasaccharide fractions generated by the Fenton type and photochemical depolymerisation of DS 287 

were compared (Panagos, Thomson, Bavington & Uhrin, 2012). Despite the fact that both of techniques 288 

are based on oxygen free radicals creating random scissions of mainly glycosidic linkages, important 289 

structural differences between the two tetrasaccharides were observed. These differences could be 290 

caused by possible differences in the free radicals generated through the two techniques. Fenton-type 291 

reaction depolymerisation generates almost exclusively hydroxyl radicals, which are known as the most 292 

reactive species of the oxygen radical family (Vismara, Pierini, Guglieri, Liverani, Mascellani & Torri, 293 

2007). On the other hand excitement of TiO2 by UV leads to the generation of superoxide radicals. At the 294 

same time, the more reactive hydroxyl radicals are produced (Xiang, Yu & Wong, 2011).   295 

The most notable difference between the two depolymerisation methods was that the photochemical 296 

depolymerisation did not degrade unsulfated IdoA as reported for heparin (Nagasawa, Uchiyama, Sato & 297 

Hatano, 1992) and DS (Ofman, Slim, Watt & Yorke, 1997; Panagos, Thomson, Bavington & Uhrin, 2012) 298 

depolymerised by Fenton type reaction. Photochemical depolymerisation is, up to now, the only 299 

depolymerisation method that preserves reducing end unsulfated IdoA (Figure 4). This opens the 300 

possibility of creating a wider range of oligosaccharides that could have novel biological activities. 301 
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 302 

Figure 4: Free radical depolymerisation of a DS polysaccharide, produced oligosaccharides with a) reducing end GalNAc, b) 303 
reducing end IdoA and c) reducing end acetylgalactosaminic acid. The non-reducing end terminal monosaccharide can be 304 
either IdoA or GalNAc 4S, as indicated. NMR analysis showed no evidence of changes in the structure of non-reducing end 305 
monosaccharides after photochemical depolymerisation. 306 

While the photochemical depolymerisation has a milder effect on the reducing end IdoA than the 307 

Fenton type depolymerisation, this is not the case for the reducing end GalNAc. The NMR analysis 308 

showed that the percentage of reducing end GalNAc oxidised to N-acetylgalactosaminic acid increased 309 

compared to the Fenton type depolymerisation. These differences cannot therefore be fully justified by 310 

stating that the photochemical depolymerisation is milder; they rather imply subtle differences in 311 

molecular mechanism between the two methods, possibly due to the differences in the radicals 312 

produced. 313 

Since photochemical depolymerisation did not degrade reducing end IdoA, and assuming that it also 314 

cleaves glycosidic linkages randomly, the existence of a trisaccharide in the DS fractions was to be 315 

expected. This was verified by NMR and MS (Panagos, Thomson, Bavington & Uhrin, 2012) and DS 316 

trisaccharides (MW 653.5 or 760.6 g/mol) were shown to be co-eluted with the tetrasaccharide (MW 317 

936.7 g/mol)  fraction.  318 

In summary, this study describes a larger scale photochemical depolymerisation of a simple (DS), which 319 

did not require pH monitoring or specialized equipment. This method generated a range of 320 

oligosaccharides with both odd and even numbers of sugar residues, as previously reported for heparin 321 

(Higashi et al., 2012). Additionally, structural differences were uncovered, by 1D and 2D NMR, between 322 

the oligosaccharides generated by photochemical depolymerisation and Fenton type depolymerisation. 323 

These results indicate that photochemical depolymerisation should be classified as a distinct 324 

depolymerisation technique that enables production of oligosaccharides containing unsulfated reducing-325 
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end uronic ucid and saturated non-reducing end monosaccharides rings. The photochemical 326 

depolymerisation method thus enables preparation of new class of GAG derived oligosaccharides that 327 

now can be investigated for their biochemical/biological properties.  328 
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