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One Sentence Summary: Mutant Pik3ca gives rise to venous malformations in mouse and human 

 

Abstract 

Venous malformations (VMs) are painful and deforming vascular lesions composed of dilated 

veins, present from birth. Mutations in the tyrosine kinase receptor TIE2 have been found in 

approximately half of sporadic (non-familial) VMs, with the cause of the other cases unknown. 

Sclerotherapy, widely accepted as first-line treatment, is not fully efficient and targeted therapy for 

this disease remains underexplored. By mosaic expression in the embryonic mesoderm of 

Pik3caH1047R, a constitutively active mutant of the p110α isoform of PI 3-kinase (PI3K), we have 
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generated a genetically-engineered mouse model with vascular lesions present in newborn pups, 

which faithfully mirrors human VMs. In line with this, we (and Castel et al., in the accompanying 

paper) have found activating PIK3CA mutations in human VMs, mutually exclusive with TIE2 

mutations. Endothelial cell (EC)-specific expression of Pik3caH1047R in newborn mice resulted in 

EC hyperproliferation and impaired pericyte coverage, both of which could be normalized by PI3K 

pathway inhibition by rapamycin. Moreover, in vivo rapamycin therapy led to regression of 

mesodermally-induced Pik3caH1047R VMs. Our data demonstrate a causal relationship between 

activating Pik3ca mutation and the genesis of VMs, provide the first genetic model that faithfully 

mirrors the normal etiology and development of this human disease and establish proof-of-principle 

for the use of PI3K-targeted therapies in VMs. 

 

Introduction 

The PI3K family of enzymes signal downstream of a variety of cell surface receptors to regulate 

multiple cellular functions, including growth and proliferation (1). PIK3CA (OMIM171834), the 

gene that encodes the p110α isoform of phosphoinositide 3-kinase (PI3K), is frequently mutated in 

epithelial cancer (2). PIK3CA has recently been shown to undergo a similar range of activating 

mutations in non-cancerous disease conditions, such as in a spectrum of regional overgrowth 

disorders (3-6) (which have now been designated under the umbrella term PIK3CA-Related 

Overgrowth Spectrum (PROS) disease (7)) and in isolated (i.e. not-associated with overgrowth) 

lymphatic malformations (LMs) (8). The PIK3CA mutations present in PROS and LMs are similar 

to those in solid tumors, with the H1047R mutation in the catalytic domain being the most 

prevalent (8,9). In contrast to cancer, in which PIK3CA mutations are almost exclusively present in 

epithelial tissues, PIK3CA-mutant tissues in LMs and PROS are largely of mesodermal origin and 

mutations often present in a mosaic pattern. In this study, we report the presence of somatic 

PIK3CA mutations in another human disease condition of mesodermal origin, namely isolated 
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VMs. We also created a genetically-modified mouse model that displays mutant Pik3ca-driven 

congenital vascular malformations with features pathognomonic for human VMs, but has no other 

type of overgrowth or malformations. 

VMs are the most common vascular malformations, with an overall incidence of 1/5000 (10). 

VMs are usually congenital lesions that consist of dilated venous channels with scarce mural cell 

coverage. These VMs can be of different sizes and affect any tissue, such as subcutaneous tissue or 

internal organs. VMs are painful and disfiguring, many lead to bleeding and obstruction of organs, 

and in some cases to localized intravascular coagulopathy and pulmonary embolism (11,12). 

Treatment of VMs mainly consists of alleviation of symptoms using compression garments when 

possible, but curative treatment remains seldom possible. At present, sclerotherapy is the mainstay 

therapy to diminish the volume of VMs, but it causes several side effects and is not fully efficient 

(12).  

Mutations in the TEK gene, coding for the endothelial tyrosine kinase receptor TIE2, are known 

to cause about half of sporadic VMs (13), the other half remaining unknown. Here, in a small 

cohort of patients diagnosed with sporadic VMs, without any associated overgrowth or other 

vascular malformation component, we found a PIK3CA-activating mutation in a VM that is wild-

type for the TEK gene. This was corroborated by a larger study in the accompanying paper by 

Castel et al. in which PIK3CA mutations were found in 25% of the VMs analysed, in a mutually 

exclusive manner to previously identified mutations in TEK (14). The finding that mutation in 

PIK3CA plays a key role in the pathogenesis of VMs provides guidance for refined diagnosis for 

this disease and a possible targeted therapeutic avenue using PI3K pathway inhibitors. 
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Results 

Mosaic Pik3caH1047R expression in embryonic mesoderm leads to VMs in mice 

In this study, we set out to investigate the effects of Pik3ca mutation in mesodermal tissue in mice. 

Given that all known disease conditions of mesodermal origin currently associated with PIK3CA 

mutation are congenital or early childhood onset, we induced expression of mutant Pik3ca in the 

embryonic mesoderm. To further adequately model the human disease context, mutant Pik3ca 

expression was induced in a mosaic fashion, in the heterozygous state and from its endogenous 

promoter (15). We reasoned that such tissue-restricted mosaic induction could also avoid the 

detrimental effect of ubiquitous expression of mutant Pik3ca during embryonic mouse development 

(16). The mutant used for these experiments is Pik3caH1047R which encodes the H1047R hot-spot 

mutation found in cancer (2), LMs (8) and PROS (9). 

 For these studies, we generated the T-CreERT2 mouse line by introducing a transgene 

(Supplementary Fig. 1A) that drives the expression of a 4-hydroxytamoxifen (4-OHT)-inducible 

Cre recombinase under the control of the previously characterized promoter of the T gene (17). The 

T gene encodes the Brachyury transcription factor that is transiently expressed in the nascent 

embryonic mesoderm (18). To evaluate Cre activity, we crossed T-CreERT2 mice with Rosa26-lacZ 

reporter mice (19) that ubiquitously express the floxed lacZ gene expression cassette from the 

Rosa26 locus (Supplementary Fig. 1B), and stained for lacZ expression following treatment of 

mice with 4-OHT. We administered 4-OHT to pregnant females between embryonic day (E) 7.5 

and 10.5. Induction of Cre at E7.5 led to a widespread activity of Cre recombinase in the 

mesoderm, in a 4-OHT dose-dependent manner, which was mosaic except at the higher doses tested 

(Supplementary Fig. 1C, D).  

We next crossed T-CreERT2 mice to mice that are heterozygous for a Cre-inducible knock-in 

allele of Pik3caH1047R (Ref. (15)), followed by mosaic Pik3caH1047R induction at E7.5 using different 

doses of 4-OHT (Fig. 1A). Interestingly, several of these mice [hereafter referred to as MosMes-
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Pik3caH1047R (Mosaic Mesodermal-Pik3caH1047R) mice] were born with subcutaneous vascular 

malformations in different body sites, with no apparent overgrowth in other tissues (Fig. 1B), nor 

alterations in body weight, organ size or tissue histology (tested up to 6 months of age), compared 

to wild-type (WT) littermates that had also been treated with 4-OHT (Supplementary Fig. 2; 

Supplementary Table S1). This phenotype was not fully penetrant at lower 4-OHT doses, but 

increased in a dose-dependent manner (Supplementary Table S2). The lower doses of 4-OHT 

tested gave rise to localized vascular lesions, whereas the higher doses, possibly due to the higher 

probability of targeting multiple EC progenitors, induced multifocal, diffuse and more severe 

malformations (Fig. 1B). High 4-OHT doses also led to a lower than expected Mendelian 

distribution of mutant mice (Supplementary Table S3), with some of the mutant embryos 

displaying vascular developmental defects (Supplementary Fig. 3). Our observation on the 

lethality and vascular defects in Pik3caH1047R embryos are similar to the previously reported 

phenotypes of ubiquitous or EC-specific expression of Pik3caH1047R in the developing embryo (16).  

Computed Tomography Angiography (CT-A) analysis of adult MosMes-Pik3caH1047R mice 

confirmed the presence of subcutaneous vascular malformations and revealed additional internal 

vascular malformations in the mesentery (not shown) and urogenital area (Fig. 1C), similar to those 

observed in some patients. Some of these mice also displayed rectal bleeding, as observed also in 

the human condition. Mice with the most prominent vascular malformations also displayed 

phlebectasias of the portal vein and inferior vena cava (Fig. 1C), similar to those observed in 

patients with predominantly venous vascular malformations (reviewed in Ref. (20)). Additional 

scanning of blood flow in the vascular malformation by power Doppler ultrasound indicated that 

the contribution of flow was primarily venous in origin (slow flow) (Supplementary Fig. 4). This 

was corroborated by histological analysis which showed that the vascular lesions in MosMes-

Pik3caH1047R mice were poorly circumscribed, non-encapsulated lesions composed of blood-filled, 

predominantly thin-walled, irregular and variably sized vascular channels interposed between 
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normal tissues (Fig. 1D). Some channels contained organising fibrin thrombi, with focal interstitial 

haemorrhage present. Altogether, these observations point to a diagnosis of VMs in MosMes-

Pik3caH1047R mice, with a pathology and disease burden similar to those observed in humans with 

VMs.  

 

PIK3CA is mutated in human VMs 

Our findings in mice of a causative role of Pik3ca mutation in VM led us to explore the presence of 

PIK3CA mutations in human VMs. As a proof of principle, we analysed PIK3CA and TEK genes by 

deep sequencing (mean coverage of 2000x) in a small cohort of human sporadic VMs that had no 

associated overgrowth or other vascular malformation component. Among the VMs sequenced, one 

had a mutation in PIK3CA and other two were mutant for TEK, with an allelic frequency of 5-10% 

(Table 1). Interestingly, mutations in PIK3CA and TEK were mutually exclusive. The observed 

TEK mutations have already been described for VMs (21). The mutation found in PIK3CA 

(E545K), is a hot-spot mutation in cancer (2), PROS (9) and LMs (8). In line with our observations, 

Castel et al., (in the accompanying manuscript (14)) found, in a larger cohort of VMs, that PIK3CA 

was mutated in 25% of the samples. These PIK3CA mutations, of which the H1047R and E542K 

hot-spot mutations were the most frequent, were mutually exclusive with TEK mutations, present in 

35% of the VMs analysed. These findings suggest that PIK3CA might be a relevant diagnostic 

marker for human VMs. 

 

Endothelial activation of Pik3ca promotes hyperproliferation in ECs and inhibits pericyte 

coverage 

ECs, being the main cell type in blood vessels, are thought to be important in VM development. 

Given the important role for Pik3ca in EC biology (22-25), we decided to selectively test the 

impact of Pik3caH1047R expression in ECs. To this end, we generated EC-Pik3caH1047R mice by 
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crossing conditional heterozygous Pik3caWT/H1047R mice onto Pdgfb-iCreER mice that express 4-

OHT-inducible Cre specifically in ECs (Ref. (26)) (Supplementary Fig. 5). 4-OHT was 

administered to EC-Pik3caH1047R pups on postnatal day 1 (P1), and retinal angiogenesis was 

analyzed five days later (Fig. 2A). Staining of P6 retinas with isolectin-B4 (IB4; which binds to the 

EC plasma membrane) revealed that endothelial expression of Pik3caH1047R resulted in dramatic 

hyperplasia, with individual vessels no longer being discernible, correlating with increased numbers 

and proliferation of ECs (Fig. 2B, C). Radial expansion of the vascular bed was also decreased 

upon endothelial expression of Pik3caH1047R, possibly due to EC hyperplasia, (Fig. 2D, E) whereas 

sprouting angiogenesis was not affected (Fig. 2F). In addition, EC-Pik3caH1047R lungs showed 

reduced mRNA expression of Ephb4, Efnb2 and Nr2f2, key genes involved in arteriovenous 

specification (27), suggesting that oncogenic Pik3ca compromises arteriovenous identity (Fig. 2D). 

A distinctive feature of VMs is the poor presence, or even absence, of mural cells (28). Proper 

homeostasis of vessels requires a tight interplay between ECs and their supporting mural cells, 

which are perivascular cells represented by two cell types, vascular smooth muscle cells (vSMCs) 

and pericytes. Both cell types are differently distributed over the vasculature, with vSMCs typically 

present in large vessels whereas pericytes are mainly localized in the microvasculature (29). In EC-

Pik3caH1047R retinas, pericytes (NG2-positive cells) were conspicuously absent from the vascular 

front and very sparse in the plexus where they were poorly associated with the vessels, in contrast 

with Pik3caWT retinas that showed a typical attachment of pericytes to the EC surface with multiple 

extensions (Fig. 2G). Defective mural cell coverage was also observed in the VMs from MosMes-

Pik3caH1047R mice (Fig. 1D). Pdgfb, which is produced by ECs, is the major attractant for mural 

cells (30) and is expressed at lower levels in human TIE2-mutant VMs (31). The Foxo1 

transcription factor, which is negatively regulated by PI3K activity, stimulates Pdgfb expression. In 

line with this, analysis of total mRNA isolated from lungs, a tissue highly enriched in ECs, showed 

a decrease in Pdgfb expression in EC-Pik3caH1047R compared to Pik3caWT mice (Fig. 2H). The 
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pericyte phenotype observed in EC-Pik3caH1047R retinas is reminiscent of that observed in the so-

called Pdgfb-retention motif knock-out mice, in which pdgfb produced by the ECs is not retained at 

the surface (32). 

Taken together, Pik3caH1047R expression in ECs results in ECs hyperproliferation and vessel 

hyperplasia, loss of arteriovenous identity and defective pericyte coverage.  

 

Rapamycin reduces Pik3caH1047R-EC hyperproliferation, rescues pericyte coverage and 

induces regression of Pik3caH1047R-driven VMs in vivo 

At the moment, there are no targeted therapies for VMs. Rapamycin and its analogs are approved 

drugs for compassionate use in human therapy of vascular anomalies (33-39). Rapamycin interferes 

with signalling downstream of PI3K by inhibition of mTOR (40). To test the effect of rapamycin in 

Pik3caH1047R ECs in vivo, we treated EC-Pik3caH1047R pups with rapamycin (administered together 

with 4-OHT and 8 h prior to analysis of retinal angiogenesis; Fig. 3A). Rapamycin prevented 

retinal vascular hyperplasia, reducing the number of ECs and proliferation (Fig. 3B, C), and 

normalised pericyte coverage in both the vascular front and plexus of EC-Pik3caH1047R retinas (Fig. 

3D). Rapamycin also diminished vessel area and number of ECs in Pik3caWT retinas, in line with its 

previously documented anti-angiogenic effects (41), without affecting EC proliferation (Fig. 3B, 

C). 

 To take these observations closer to the disease context, we treated an adult MosMes-

Pik3caH1047R mouse with a large VM with rapamycin (Fig. 4A). The dose chosen for this study (4 

mg/kg every other day) was based on previous studies using long-term rapamycin treatment 

(42,43). Rapamycin treatment reduced the volume of the vascular lesion after two weeks of 

treatment, as assessed by CT-A (Fig. 4B). By the fourth week of treatment, the VM had largely 

regressed (Fig. 4B) and was no longer detectable upon necropsy that was performed immediately 

following the last imaging. A partial reduction of the phlebectasia in the portal vein and inferior 
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vena cava were also seen after rapamycin treatment (Fig. 4C; Supplementary Fig. 6). These data 

suggest that PI3K pathway intervention might be an effective therapeutic option for human 

PIK3CA-driven VMs. 

 

Discussion 

Here we report on a genetic mouse model for human VMs and demonstrate that somatic, mosaic 

expression of an activating mutation (H1047R) in Pik3ca in the embryonic mesoderm of mice can 

induce and maintain VMs. Previous mouse models of VM used transgenic expression of a murine 

viral oncogene (44) or xenotransplantation into nude mice of either human vascular endothelial 

cells (HUVECs) transduced with mutant TIE2 (39) or the MS1 immortalized endothelial cell line 

expressing mutant Akt1 (45). Xenograft models do not take into account the developmental origin 

and natural progression of the human disease. Yet, our mosaic mesodermal VM mouse model 

shows some limitations for use in standardized uniform cohort therapeutic experiments, namely 

some degree of embryo lethality, a variable penetrance of the VM phenotype and a wide 

heterogeneity of VMs in terms of size, localization and expansion. However, these limitations of 

our mouse model adequately reflect the characteristics of this human disease, with every patient 

showing a distinct disease pattern and progression, most likely due to the spatially and temporally 

distinct and mosaic acquisition of the mutation leading to the disease. Of note, activation of PI3K 

signalling in adult mice, either by ubiquitous expression of mutant Pik3ca (46) or EC-specific 

expression of transgenic activated Akt1 leads to increased blood vessel size and permeability, 

without inducing VMs (41).This underscores the concept that VMs arise as a result of genetic errors 

during embryonic development. 

Mechanistically, our data suggest that VMs are likely to develop as a result of Pik3caH1047R-

induced enhancement of EC proliferation. VMs might develop as errors in endothelial precursors 

during embryonic vasculogenesis. Indeed, EC hyperproliferation during vasculogenesis has 
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previously been shown to give rise to vessel hyperfusion, and to result in dilated, dysfunctional 

vessels, similar to those found in VMs (47,48). Another typical feature of VMs is poor mural cell 

coverage (28). Here, we also show that Pik3caH1047R expression in ECs inhibits pericyte attachment 

likely due to the decreased expression of Pdgfb, which is necessary for pericyte coverage (49). This 

might therefore also contribute to the genesis of VMs upon Pik3ca mutation. On top of reducing 

mural cell coverage, Pik3caH1047R might also contribute to the formation of VMs by preventing 

arteriovenous identity as seen by decreased expression of arteriovenous differentiation markers 

(50).  

At present, it is not clear why widespread mosaic induction of Pik3caH1047R in the mouse 

mesoderm gives rise to malformations solely in the vasculature and does not induce obvious 

overgrowth or malformation in other tissue compartments. This might be due to the chosen strategy 

(timing and tissue location) of Pik3caH1047R gene induction. However, Castel et al. (in the 

accompanying manuscript) have made similar observations in their models (3). One explanation 

could be the previously reported exceptional sensitivity of ECs to PI3K pathway deregulation (22-

25). Also intriguing is the dominant venous character of the vascular malformations observed in 

Pik3caH1047R mice. This could arise as a consequence of the known role of PI3K activation in 

driving venous over arterial signalling during vasculogenesis (51).  

 In addition, the human genetic data presented here and in the accompanying manuscript (14) 

reveal the presence of PIK3CA mutations in VMs, mutually exclusive with mutations in the TIE2 

tyrosine kinase receptor that were  discovered over 20 years ago (28). Our studies thus uncover and 

document the potential for a new targeted therapy in human VMs, and the potential for repurposing 

of p110α inhibitors currently being developed for cancer treatment. An important consideration is 

how diagnosis of TEK/TIE2 and PIK3CA mutations in VMs can influence the treatment of this 

disease using targeted agents. The wild-type TIE2 receptor tyrosine kinase is known to signal 

through both PI3K and MAPK signalling pathways in ECs (52,53). TIE2-mutant cells show chronic 
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activation of the MAPK pathway and respond very well to its inhibition (54) but, surprisingly, not 

to TIE2 kinase inhibitors (39). Our studies identify a subpopulation of patients with PIK3CA 

mutant VMs, which will most likely be non-responsive to TIE2 or MAPK kinase inhibitors. 

However, like the TIE2-mutant VMs (39), PIK3CA-mutant VMs are expected to respond to PI3K 

inhibitors or rapamycin. It is also likely that TIE2 mutant VMs will benefit from treatment with 

PI3K inhibitors in combination with MAPK inhibitors.  

In conclusion, our findings in mice have led us to discover the presence of PIK3CA mutations in 

a new human disease. VMs join the growing list of diseases where the presence of activating 

PIK3CA mutations, commonly associated with cancer, leads to tissue malformation, without 

leading to malignancy (8,9). Our finding that mutation in PIK3CA plays a key role in the 

pathogenesis and maintenance of VMs provides guidance for improved diagnosis for this disease 

and a possible new targeted therapeutic avenue using PI3K pathway inhibitors. 
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Materials and Methods 

Study design 

This study was designed to test the effect of Pik3caH1047R expression in the embryonic mesoderm of 

mice. We obtained sufficient data on mice to determine that this leads to VMs. To translate these 

findings to the human context, we tested PIK3CA mutation in human VMs and found that this gene 

is mutated in this disease. For this, well-characterized patients with confirmed VMs and without 

any associated overgrowth or malformation were recruited at Great Ormond Street Hospital, 

London, UK. All patients provided informed consent. In addition, to better understand the 

mechanisms underlying the role of Pik3caH1047R in ECs, we performed mouse retinal angiogenesis 

studies as a vascular biology read-out.  For these experiments, power analysis on preliminary data 

was performed, suggesting a minimal cohort size of n=4-6 to observe a medium difference with 

80% power, depending on the type of experiment. The sample size for each experiment is indicated 

in the corresponding figure legend. Given that n was <10, non-parametric tests were applied. All 

mechanistic studies were performed without randomization or blinding. Exclusion criteria were 

only applied to data shown in Fig. 4 (rapamycin treatment of mouse harbouring VMs): only mice 

that were deemed to be sufficiently fit to tolerate the treatment were included in the experiment. 

This is in line with UK Home Office regulations. 

 

Subjects 

This study was approved by the UK National Research Ethics Committee. Written informed 

consent was obtained from all participants or their parents. Tissues from individuals diagnosed as 

having sporadic VMs, not associated with other syndromes, were investigated. Genomic DNA was 

extracted from lesions using standard procedures. 
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Next generation sequencing with preceding target enrichment 

Sequencing of TEK and PIK3CA was performed using Next Generation Sequencing with preceding 

target enrichment. All equipment and materials were purchased from Life Technologies, Thermo-

Fisher Scientific. In brief, DNA was quantified using Qubit® and libraries were prepared using the 

Ion AmpliSeq Library 96 Kit 2.0 with 10 ng of genomic DNA in each reaction. This involved an 

initial PCR reaction to amplify genomic targets using a custom-designed primer pool which 

provides coverage of all coding regions of PIK3CA and TEK. Samples were then partially digested 

prior to ligation of barcode adaptors and emulsion PCR. Enrichment steps were carried out using 

the Ion OneTouch 200 Template Kit v2 and the amplicon libraries were sequenced on an Ion 

Torrent Personal Genome Machine system using 318 chips, and bar-coding was applied with an Ion 

Xpress Barcode Adapters 1–16 Kit. Ion Reporter® software was used to analyse data, or 

alternatively Bam files were uploaded and viewed in the Integrative Genomics Viewer, Broad 

Institute (http://www.broadinstitute.org/igv/). The mean depth of coverage for sequencing was 

2000X. 

 

Reagents 

Primary antibodies to the following proteins were used: Erg (ab92513; Abcam), NG2 (AB5320; 

Merck Millipore), endomucin (sc-65495; Santa Cruz Biotechnology). Secondary antibodies 

conjugated to Cy3, Cy5 or AlexaFluor 647 were from Jackson ImmunoResearch Laboratories. 

Isolectin GS-IB4 conjugated to AlexaFluor 488 (I21411) or AlexaFluor 568 (I21412) (further 

referred to as IB4) were from Life Technologies. Immu-Mount mounting media was from Thermo 

Scientific. AuroVist 15 nm gold nanoparticles were from Nanoprobes Inc. Rapamycin used for 

therapeutic studies was obtained from Merck Millipore. All chemicals, unless otherwise stated, 

were from Sigma-Aldrich. 
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Mice 

Mice were housed in individually-ventilated cages and cared according to UK Home Office 

guidelines and legislation, with procedures accepted by the Ethics Committees of University 

College London and Queen Mary University of London. All mice used were backcrossed on a 

C57BL/6 background for more than 12 generations. Pik3caWT/H1047R mice harbour a germline 

Pik3ca allele with a conditional H1047R mutation (15). In these mice, LoxP sites flank exon 20 of 

Pik3ca, which, upon Cre recombination, is replaced by a downstream copy of exon 20 containing a 

CAT to AGG change in codon 1047. Pdgfb-iCreER mice (26) express an inducible iCreER 

recombinase from the endogenous Pdgfb locus. 

 

Generation of the T-CreERT2 mouse line  

The pTcreERT2 vector Supplementary Fig. S1 comprising the T regulatory sequence from -1050 

bp to +140 bp (Ref.(17)) was inserted upstream of a CreERT2 sequence. To eliminate uninduced 

background activity of Cre in the absence of 4-OHT, the nls sequence at the 5’ of CreERT2 was 

removed. This plasmid was FspI-linearized and electroporated into E14TG2a ES cells as described 

previously (55). After 10 days of selection with Hygromycin (140 µg/ml), resistant clones were 

isolated, expanded and screened by Southern blot to verify integration of the transgene and to 

identify ES clones with single and multiple insertions of the transgene. Clones were tested in 

parallel by in situ hybridisation for Cre expression in differentiating ES cells. Four clones (three 

with a single integration and one with two integrations) that showed the characteristic spatial 

pattern of T expression in differentiating ES cell monolayers (as explained in Ref.(56)) were 

selected for further analysis. Absence of uninduced background recombination and 4-OHT-induced 

Cre recombination in these four clones were tested in vitro by transient transfection of a Cre-

conditional Egfp transgene (pPHCAG-C2-egfp, a gift from Austin G. Smith, Wellcome Trust - 

Medical Research Council Cambridge Stem Cell Institute, UK). Clones with single T-CreERT2 
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integration showed efficient recombination upon treatment with 0.2 M or 1 M of 4-OHT, with 

virtually no background of uninduced recombination. These clones were injected into C57BL/6 

host blastocysts and chimeric male offspring mated to C57BL/6 females. F1 heterozygotes were 

identified by coat colour and PCR amplification of the Cre sequence. Offspring were backcrossed 

for >5 generations to C57BL/6 mice before generating a homozygote T-CreERT2 line by 

intercrossing. Following further characterization by crosses with Rosa26-lacZ reporter mice(19), 

one T-CreERT2 mouse line (number 53) was maintained and established in the homozygote state. 

 

Mesoderm- and EC-specific Pik3caH1047R expression in mice 

Mesoderm-specific mosaic expression of Pik3caH1047R (MosMes-Pik3caH1047R mice) was achieved 

by crossing Pik3caWT/H1047R mice with T-CreERT2 mice. To induce mosaic Cre activation, pregnant 

females were given varying doses of 4-OHT (12.5 to 250 µg, from a stock solution of 10 mg/ml, 

diluted in 1:1 absolute ethanol-Kolliphor®EL) with 200 µl of PBS added for intraperitoneal 

injection at E7.5 (E0.5 relates to the female presence of a vaginal plug indicating that the mating 

occurred the night before). Progesterone (dissolved in Kolliphor®EL) was co-administered at half 

the total dose of 4-OHT given, in order to avoid undesirable oestrogen agonist effects of 4-OHT, 

which can result in late fetal abortions in pregnant mice. Postnatal EC-specific expression of 

Pik3caH1047R was achieved by crossing Pik3caWT/H1047R with Pdgfb-iCreER mice. To induce Cre 

activation, newborn pups (P1) were injected intragastrically with 5 μg 4-OHT (dissolved in 

absolute ethanol). 

 

Whole-mount embryo X-gal staining 

Freshly isolated E12.5 embryos were fixed in 4% paraformaldehyde on ice for 30 min, washed (3 x 

10 min) in PBT (PBS with 0.1% Tween) and stained for 48 h at 30ºC in X-gal staining solution (4 

mM potassium ferricyanide, 4 mM potassium ferrocyanide, and 2 mM MgCl2, 1 mg/ml X-gal in 
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PBT). After staining, embryos were washed (3 x 10 min) in PBS, post-fixed in 4% 

paraformaldehyde for ≥ 1 h and mounted. 

 

Whole-mount embryo immunofluorescence 

Freshly isolated E9.5 embryos were fixed in 4% paraformaldehyde overnight at 4°C. After washing 

in PBT, embryos were dehydrated in increasing concentrations of methanol (50%, 80% 

methanol/PBT, 100% methanol), rehydrated in decreasing concentrations of methanol, followed by 

a 30 min wash in Pblec buffer (0.2 mM CaCl2, 0.2 mM MgCl2, 0.2 mM MnCl2 and 2% Triton X-

100 in PBS) and overnight incubation at 4°C with antibody to endomucin, diluted 1:20 in Pblec. 

After five washes in PBT, embryos were incubated with Cy5-labeled secondary antibody diluted 

1:100 in PBS, 0.5% BSA, 0.25% Tween-20. Finally, embryos were washed three times in PBS, 

post-fixed for 1 min in 4% paraformaldehyde and mounted. 

 

Mouse imaging by CT-A 

Mice were anesthetized with an isoflurane/O2 mix and tail vein cannulated for the delivery of 

approximately 0.1 ml of gold nanoparticles per 25 g of mouse weight. Animal temperature was 

maintained at 37C and physiological monitoring was recorded. Whole body CT scans were 

acquired with mice placed in the supine position 4 h post injection of gold nanoparticles using a 

nanoScanPET/CT scanner (Mediso, Hungary) with a 50 kVP X-ray source, 300 ms exposure time 

in 720 projections with an acquisition time of 15 min. CT images were reconstructed in voxel size 

68 x 68 x 68 m using Nucline (Mediso, Hungary) software. Image analysis and 3D visualization 

was performed using VivoQuant (inviCRO version 1.23patch3) software. 
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Mouse imaging by Doppler ultrasound 

A Vevo 2100 imaging station (VisualSonics Inc., Toronto, ON, Canada) was used for ultrasound 

imaging. A VisualSonics MS-550D (central frequency 40 MHz, axial resolution 40 µm, lateral 

resolution 90 m, image depth 15 mm, image width 14 mm) was used for data acquisition. Mice 

were anesthetized with an isoflurane/O2 mix and placed on a heated imaging stage maintained at 

37C. The body temperature, heart rate and respiratory rate were closely monitored throughout each 

imaging session. Abdominal hair was removed using a depilatory cream (Veet, Reckitt Benckiser, 

UK) and rinsed with warm water. Pre-warmed ultrasound gel (UltrasoundGel.co.uk) was then 

placed on the abdomen. Flow velocity waveforms of vascular lesions were obtained by locating 

with color Doppler, power Doppler and then placing the pulsed wave Doppler sample gate within 

the vessels and at the appropriate angle relative to flow direction. 2D-guided M-mode images were 

obtained to measure maximum vessel diameter. Image analysis was performed using the 

VisualSonics Vevo 2100 software package.  

 

Retinal angiogenesis 

Newborn pups (P1) were injected intragastrically with 5 μg 4-OHT (dissolved in absolute ethanol). 

P6 eyes were harvested and fixed 1 h in 4% PFA at 4°C and washed in PBS. Retinas were 

dissected, stained with IB4 and flat-mounted, or processed for immunostaining(57). For 

immunostaining, fixed retinas were blocked and permeabilized using blocking buffer (1% BSA, 

0.3% Triton X-100 in PBS) for 4 h at 4°C, then incubated overnight at 4°C with the corresponding 

primary antibodies in blocking buffer and washed in PBT (3 x 10 min). After 30 min incubation in 

Pblec, retinas were incubated for 2 h with the corresponding labelled secondary antibody and IB4 in 

Pblec, washed with PBT (3 x 10 min), post-fixed with 4% paraformaldehyde for 1 min and flat-

mounted. 
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In vivo EC proliferation 

Pups were injected intraperitoneally with 50 μl of EdU (diluted to 2 mM in 1:1 DMSO-PBS) 2 h 

before harvesting of the eyes. Detection of EdU was done using Click IT® EdU Alexa Fluor®647 

(Life Technologies) according to the manufacturer’s instructions. Retinas were then labelled with 

the corresponding antibodies and IB4 as described above. Retinas were imaged with a Zeiss LSM 

700 confocal microscope. EdU-positive nuclei were counted as proliferating ECs in a 100 µm2 

region at the angiogenic front or plexus using the ImageJ software. 

 

RNA extraction and quantitative PCR 

Total RNA was extracted from control and EC-Pik3caH1047R P6 mouse lungs using the RNeasy Plus 

MiniKit (#74134, QIAGEN) according to the manufacturer’s protocol. Samples were quality-

controlled and quantified using a Nanodrop ND-100 spectrophotometer. Reverse transcription of 

total RNA was performed using a High-Capacity cDNA Reserve Transcription Kit (#4368814, 

Applied BiosystemsTM). Real-time quantitative PCR was performed using TaqMan Gene 

Expression Assays (Applied Biosystems) and the proprietary TaqMan Gene Expression assay 

FAM/TAMRA primers (Applied Biosystems) for Pdgfb (Mm00440678_m1), Ephb4 

(Mm00438750_m1), Efnb2 (Mm01215897_m1), Nr2f2 (Mm00772789_m1), and Hprt 

(Mm00446968_m1). Pdgfb, Ephb4, Efnb2 and Nr2f2 mRNA expression was normalized to the 

mRNA of the housekeeping gene Hprt.  

 

In vivo rapamycin treatment 

Rapamycin was dissolved at 10 mg/ml in absolute ethanol and used as such for intraperitoneal 

injection in pups at P1 and P6 at 4 mg per kg. For adult mice, the 10 mg/ml stock of rapamycin in 

absolute ethanol was dissolved further in 5% polyethylene glycol (PEG-400) and 5% Tween-80 in 

PBS to 0.5 mg/ml. Mice were dosed with 4 mg rapamycin per kg by intraperitoneal injection every 
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other day for a total of 28 days. This dose was based on previous studies using long-term rapamycin 

treatment (42,43). 

 

Statistics 

GraphPad Prism 6 was used for all statistical analysis. Means were compared between two groups 

using the nonparametric Mann–Whitney U test. All statistical tests and sample size have been 

indicated in the figure legends.  
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Figures 

Figure 1 

 

Figure 1. Mosaic expression of Pik3caH1047R in embryonic mouse mesoderm induces vascular 

malformations in offspring. (A) Genetic strategy for mosaic Pik3caH1047R induction in the 

embryonic mesoderm. T-CreERT2 mice were crossed with Pik3caWT/H1047R mice that have a 

germline Pik3ca allele with a conditional H1047R mutation in exon 20. Mosaic recombination in 

the mesoderm is induced by a single intra-peritoneal injection of a low dose of 4-OHT to pregnant 

mice at E7.5. (B) Left, E12.5 T-CreERT2;R26-lacZ mouse embryos from pregnant mice injected 

with the indicated dose of 4-OHT at E7.5 and stained for β-galactosidase (β-gal) activity. Right, 

Representative photographs of P1-P5 MosMes-Pik3caH1047R pups with congenital vascular 

malformations (arrowed in the top panel), born to pregnant mice injected with the indicated 4-OHT 

dose at E7.5. (C) CT-A scans of adult mice four hours after intravenous injection of gold 
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nanoparticles. The WT mouse (left) shows normal vascular anatomy, whereas MosMes-

Pik3caH1047R mice display dilatation of the left common iliac vein (arrow) and VM in the urogenital 

area (asterisk) (mouse #1); subcutaneous VM (asterisk) and dilatation of the inferior vena cava 

(arrow) (mouse #2); subcutaneous and urogenital VMs (asterisks) and dilatation of the inferior vena 

cava and portal vein (arrows) (mouse #3). (D) Representative haematoxylin and eosin (H&E)-

stained sections of a subcutaneous (left) and a deep, mesenteric (right) VMs in MosMes-

Pik3caH1047R mice, showing abnormal, enlarged and irregular vascular channels, most containing 

blood and organising fibrin thrombi (T), some with dysplastic muscular walls interposing between 

skeletal muscle (SM) and other tissue structures. No cytological atypia was observed. (Original 

magnifications x20-x200; P, pancreas). 
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Figure 2 

Figure 2. Activation of Pik3caH1047R in ECs promotes hyperproliferation and inhibits pericyte 

coverage in postnatal retinas. (A) Schematic of the 4-OHT and EdU administration regime used. 

(B) Representative flat-mounted Pik3caWT and EC-Pik3caH1047R P6 retinas stained with IB4 (red, 

revealing ECs), antibody to the Erg transcription factor (nuclear marker of ECs; green) and labelled 

with EdU (blue). (C) Quantitative analysis of the retina vessel area (assessed by IB4 staining), EC 

numbers (assessed by staining for Erg) and number of proliferating ECs (cells positive for both 

EdU and Erg). Data represent mean  SEM. (Mann-Whitney U test) **p  0.01. n=6/genotype. (D) 

Fold change of expression of Ephb4, Efnb2, and Nr2f2 mRNA in lung lysates of Pik3caWT and EC-

Pik3caH1047R P6 mice. Data represent mean  SEM. (Mann-Whitney U test) *p < 0.05. 

n=5/genotype. (E) Representative flat-mounted control and EC-Pik3caH1047R P6 retinas stained with 

IB4. (F) Quantification of the radial expansion of vasculature in retinas. Data represent mean  
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SEM. (Mann-Whitney U test) *p < 0.05. n=6/genotype. (G) Quantification of the number of sprouts 

at the vascular front per unit length. Data represent mean  SEM. n=6/genotype. (H) Flat-mounted 

Pik3caWT and EC-Pik3caH1047R retinas showing vasculature (IB4; red) and pericytes (stained for 

NG2, a membrane proteoglycan found in pericytes; green). Right, higher magnification of sections 

highlighted. (I) Fold-change of expression of Pdgfb mRNA in lung lysates of Pik3caWT and EC-

Pik3caH1047R P6 mice. Data represent mean  SEM. (Mann-Whitney U test) n=5/genotype.  
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Figure 3 

 

Figure 3. Rapamycin normalizes Pik3caH1047R-EC hyperproliferation and rescue pericyte coverage 

in postnatal retinas. (A) Schematic of the 4-OHT and rapamycin administration regime used for 

analysis of retinal angiogenesis. (B) Representative flat-mounted P6 retinas from vehicle and 

rapamycin-treated Pik3caWT and EC-Pik3caH1047R pups. Retinas are stained with IB4 (red), antibody 

to the Erg transcription factor (green) and labelled with EdU (blue). (C) Quantitative analysis of the 

retina vessel area (assessed by IB4 staining), EC numbers (assessed by staining for Erg) and 

number of proliferating ECs (cells positive for both EdU and Erg). Data represent mean  SEM. 

(Mann-Whitney U test) **p  0.01, *p < 0.05. n=6/genotype. (D) Representative flat-mounted P6 

retinas from untreated Pik3caWT and EC-Pik3caH1047R pups and rapamycin-treated EC-Pik3caH1047R 

pups showing vasculature (IB4; red) and pericytes (stained for NG2; green).  
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Figure 4 

 

Figure 4. Rapamycin regress Pik3caH1047R-driven VMs. (A) Schematic of the rapamycin therapy 

approach used for an adult MosMes-Pik3caH1047R mouse. (B) Measurement of the volume of the 

subcutaneous VM (circled in blue) from CT-A images. Indicated are the volumes of the VM. (H, 

heart; L, liver; S, spleen). (C) Measurement of the average diameter of the inferior vena cava and 

portal vein from CT-A images of an untreated WT mouse and a MosMes-Pik3caH1047R littermate 

mouse before and after 14 and 28 days of rapamycin treatment. IVC, inferior vena cava; PV, portal 

vein. 
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Table 1. PIK3CA and TEK/TIE2 mutations in human sporadic VMs 

Patient 1 2 3 4 5 6 

Age 4 years 20 years 3 years 15 years 3 years 10 years 

Sex M M M M F F 

Location of VM 

Upper lip 

(right) 

Sole of foot 

Left scapular 

area 

Right arm, 

chest, 

extensive 

Face (left) 

Left 

cheek 

PIK3CA WT 

E545K 

(c.1633G>A) 

WT WT WT WT 

Percent PIK3CA 

mutant allele 

NA 6% NA NA NA NA 

TEK 

G1115X 

(c.3343G>T) 

WT 

Y897C 

(c.2690A>G), 

R918H 

(c.2753C>T) 

WT WT WT 

Percent TEK 

mutant allele 

9% NA 5% NA NA NA 

 

NA: not applicable 
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Supplementary Material 

 

Figure S1 

 

Figure S1. Cre-mediated mosaic recombination in the T-CreERT2 mouse line. (A) Schematic 

representation of the pTcreERT2 transgene used for the generation of the T-CreERT2 mouse 

line. (B) Cre-mediated recombination of the Rosa26-lacZ reporter inducing β-gal activity. (C) 

Whole-mount images of E12.5 T-CreERT2;Rosa26-lacZ embryos, stained for β-gal after 4-

OHT administration at E7.5, E8.5 or E10.5. (D) same as in (C) but after 4-OHT 

administration at E7.5 with different doses of 4-OHT (5 to 500 µg). 
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Figure S2 

 

Figure S2. Body weight over time (A) and organ size at 6-month-old (B) of WT and 

MosMes-Pik3caH1047R mice. Data represent mean  SEM, n=30/genotype for (A), 

n=6/genotype for (B). 
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Figure S3 

 

Figure S3. Whole-mount endomucin-stained E9.5 embryos dosed with 170 g 4-OHT at 

E7.5. The MosMes-Pik3caH1047R embryo shows an overall less developed vasculature 

compared to the WT embryo. H, head; ov, otic vesicle; YS, yolk sac.  
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Figure S4 

 

Figure S4. MosMes-Pik3caH1047R mouse with a subcutaneous vascular malformation and 

dilated vein. (A,C) Ultrasound images with colour Doppler showing artery (red dotted line) 

and dilated vein (blue) of a Yellow markers indicate the region from which pulsed wave 

Doppler was acquired. (B,D) Pulsed wave Doppler measurement of blood flow demonstrates 

a high arterial flow velocity wave form within the artery (B), and a slow venous flow velocity 

wave form within the dilated vein (D). (E) Power Doppler ultrasound demonstrates slow flow 

signals in subcutaneous vascular malformation. 
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Figure S5 

 

Figure S5. Genetic strategy to activate Pik3caH1047R in ECs. Pdgfb-iCreER mice were crossed 

with Pik3caWT/H1047R mice.  
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Figure S6 

 

Figure S6. Diameter of the inferior vena cava in a MosMes-Pik3caH1047R mouse before (A,B) 

and after 28 days treatment with rapamycin (C,D), as revealed in 2D (A,C) and M mode 

(B,D) ultrasound images. 
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Supplementary Table 1. List of organs and tissues subjected to histological examination 

(H&E staining) in WT and MosMes-Pik3caH1047R mice 

 

Adrenals Ovaries/oviducts 

Aorta Pancreas 

Brain Parathyroids 

Caecum Prostate 

Cervix Rectum 

Colon Salivary gland 

Duodenum Seminal vesicles 

Epididymis Skeletal muscle 

Eyes Skin 

Perigenital fat pad Spleen 

Perirenal fat pad Sternum 

Femur Stomach 

Heart Submandibular lymph nodes 

Ileum Testes 

Jejunum Thymus 

Kidneys Thyroids 

Liver Tongue 

Lungs Trachea 

Mammary glands Urinary bladder 

Oesophagus Uterus/vagina 
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Supplementary Table 2. Percentage of MosMes-Pik3caH1047R mice with VMs after dosing 

pregnant females with different doses of 4-OHT 

 

µg 4-OHT 

administered per 

pregnant mouse 

MosMes-Pik3caH1047R mice 

with VMs 

12.5 12.5% 

50 15% 

250 100% 

  

 

Supplementary Table 3. Percentage of live WT and MosMes-Pik3caH1047R offspring 

obtained after administration of different doses of 4-OHT to pregnant females. The expected 

normal Mendelian distribution is 50% of each genotype. 

 

 observed frequency 

µg 4-OHT 

administered per pregnant 

mouse  

WT MosMes-Pik3caH1047R 

12.5 50.0% 50.0% 

50 48.7% 51.3% 

250 61.5% 38.5% 
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