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Probabilistic Modelling of the Impact on Bus Punctuality of a Speed

Limit Proposal in Edinburgh (Extended Version)

Daniël Reijsbergen Rajeev Ratan

November 18, 2015

Abstract

We propose a data-driven methodology for evaluat-
ing the impact of the introduction of a speed limit on
the punctuality of bus services. In particular, we use
high-frequency Automatic Vehicle Location data to
parameterise a model that represents the movement
of a bus along predefined patches of the route. We
fit the probability distributions of the time spent in
each patch to two classes of probability distributions:
hyper-Erlang distributions, for which we use the tool
HyperStar, and a variation of the three-parameter
gamma distributions recommended by the Traffic En-
gineering Handbook. In both cases we obtain models
that can be expressed using the framework of Proba-
bilistic Timed Automata, allowing us to evaluate bus
punctuality using the model checking tool UPPAAL.
We conduct a case study involving a proposed speed
limit in Edinburgh. This is an extended version of a
paper presented at ValueTools 2015 [15].

1 Introduction

Anticipating the possible impact of changes in the op-
erating environment on mass transit timetables has
been a long-standing challenge for planners and op-
erators. A present manifestation of this situation is
seen in the City of Edinburgh, where the city coun-
cil has agreed to implement a new speed limit along
the majority of the city’s roads after years of cam-
paigning by road safety groups. The concerned roads
are heavily utilised by Lothian Buses, the main ur-
ban bus company that operates in the City of Edin-
burgh, who pride themselves on maintaining a high
level of service quality and reputation. Consequently,
the delays emanating from the introduction of these
speed limits have the possibility to adversely affect
timetable adherence, resulting in missed targets set
by regulating bodies, and an inconvenienced travel-
ling public. The proposed speed limits (see Figure
1) affect the majority of their routes currently oper-

ated. As such, quantifying the possible impacts of
these speed limits is of major concern.

In simulating the effects of changes to real world
systems, there are two basic approaches. The first
involves direct experimentation on the existing sys-
tem under the new conditions (or a close approxi-
mation thereof). This, if done correctly, produces a
realistic measure of the effect. However, many real
world systems do not lend themselves to such direct
experimentation as it is either costly or logistically
infeasible. As such, the second approach seeks to
create a model to mimic the relevant behaviour of
the system. This model can then be used to simulate
a variety of conditions or constraints. However, this
poses a challenge as real world bus systems are often
subject to stochastic behaviour, thus necessitating a
suitable model to reflect this.

In this paper we perform a case study on two bus
routes in Edinburgh and provide a quantitative an-
swer to the question of how the proposed speed limit
impacts bus punctuality. Our methodology for devel-
oping bus models involves an expanded and modified
implementation of the work done in [16] and [12].
Using this approach, we build a model that repre-
sents the continuous-time movement of buses as they
move along predefined segments of a route. The time
needed to move from one of the segments (referred
to as ‘patches’ throughout this paper) to the next
is modelled as a random variable whose distribution
is chosen to best fit high-frequency (approximately
every 5 seconds) GPS data provided to us by Loth-
ian Buses. In this paper, we compare two classes of
distributions used to model the time in each of the
patches. The first of these is the class of hyper-Erlang
distributions, a modelling class with good perfor-
mance in a broad range of settings and which is easily
parameterised using the user-friendly tool HyperStar
[18]. The second is a variation of the three-parameter
gamma distribution, which is an industry standard
recommended by the Traffic Engineering Handbook
[13]; its parameters are determined using a purpose-
built optimisation tool written in the language of the
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statistical package R [14]. The resulting distribu-
tions are then used to build probabilistic models in
the tool UPPAAL [4], which facilitates the modelling
formalism of Probabilistic Timed Automata and the
simulation-based verification framework of Statistical
Model Checking (SMC) [6].

We apply this modelling approach to a case study
involving two bus services. The first is the Airlink,
a popular bus route that connects Edinburgh’s city
centre to the airport. Big delays may cause disaf-
fection among passengers travelling to the airport.
However, we find that the proposed speed limit has a
small impact, namely between 7.61 and 24.3 seconds
depending on the time and the direction. The second
is the N11 night service, which is particularly affected
by the new speed limit seeing as 50% of its route is
affected by the speed limit, and because buses are
particularly able to speed up to over 20mph at night.
In this case, average delays are still only about 32 sec-
onds. Finally, we fully exploit the stochastic model
and the SMC engine of UPPAAL to compute ‘on-
time’ probabilities for the final stops of the Airlink,
namely the probability of the bus arriving at the stop
between at most one minute early and five minutes
late.

The structure of this paper is as follows. In Sec-
tion 2 we discuss the context of our work, describe the
dataset, and provide an overview of related research.
In Section 3 we give a formal description of the mod-
elling and parameter fitting techniques used in this
paper, and discuss the use of UPPAAL. In Section 4,
we use the presented methodology to quantify the
impact of the speed limit plan on the Airlink service.
Section 5 concludes the paper.

2 Model & Preliminaries

2.1 Motivation & Background

The speed limit plan discussed in this paper was ap-
proved by Edinburgh’s City Council on 13 January
2015, a decision which followed three years of re-
search and three months of public consultation on
the part of the council [7]. The speed limit will be
introduced gradually starting in April 2016 [2]. The
move has been hailed by campaign groups such as
Living Streets Edinburgh [11], 20’s Plenty For Us
and Friends of the Earth Scotland. The arguments
in favour of the speed limit include public support
for the speed limit witnessed across several opinion
polls, improved road safety, cycling and walking be-
ing encouraged leading to lower carbon emissions and
health benefits, and a nicer and more attractive city
overall.

Figure 1: Map of proposed 20mph streets, zoomed
in slightly to focus on Edinburgh’s city centre (blue
and dark-blue roads will be changed into having
20mph speed limits). An interactive version is
available at http://edinburghcouncilmaps.info/

LocalViewExt/Sites/20mphConsultation/

The move has not been entirely uncontroversial [8],
with a Facebook campaign called ‘Say no to 20mph’
being started and a related petition drawing 2700
signatories [20]. Opponents of the speed limit plan
are generally skeptical of the suggested benefits and
argue that the speed limit will encourage antisocial
behaviour (such as aggressive tailgating), that it will
be ineffective if it is not properly enforced, and that
journey times will be adversely affected. Longer jour-
ney times also have an impact on bus timetable ad-
herence, which is of specific interest to Lothian Buses
due to its effect on passenger satisfaction and the fact
that they have been fined £10,500 in the past for non-
compliance with punctuality targets [21]. The cause
of the fine was that the impact of road works was
overestimated, leading to buses running early with
high probability. Accordingly, there is a demand for
predictions of the impact of the speed limit to be as
accurate as possible.

As we demonstrate in this paper, the accuracy of
these predictions — particularly for timetable adher-
ence probabilities — can be affected by the mod-
elling choice. In previous work [16], the hyper-Erlang
distribution was chosen to model the time spent in
patches for several reasons, including its general ap-
plicability and the fact that the resulting models are
Continuous-Time Markov Chains, for which many
efficient analysis techniques exist. However, as we
discuss later on, an important alternative, namely
the probability distribution that is recommended for
traffic engineers, may not yield a Markov chain, but
the resulting model can still be expressed using the
framework of Probabilistic Timed Automata, allow-
ing us to use the tool UPPAAL [4] and its powerful
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stochastic simulation engine. We compare the two
in this paper, not just with the intent to make the
predictions of the speed limit impact as accurate as
possible, but also to inform the construction of more
general urban traffic models as part of the EU project
QUANTICOL.

2.2 Patch Structure

Although the Automatic Vehicle Location (AVL)
measurements supplied to us by Lothian Buses are
roughly done in continuous space, we discretise our
model by dividing the full route into ordered patches
and consider the travel time through each patch.
Since our case study does not require the same road-
level detail as in [16], the patches were chosen to be
relatively large, namely between 500m and 2.5km.

Our patches were designed to encapsulate areas be-
tween major bus stops as shown in Figure 2. Another
important criterion was to ensure that the road seg-
ments covered by a patch had to either remain unaf-
fected by the speed limit or be changed to 20mph, but
not both. This was done so that we could implement
the speed limit effects at a per-patch level. Finally,
specific patches were constructed for the end points
of the route, because buses tend to spend a large
amount of time there; these are the black patches in
Figure 2. We did not include the time spent in these
patches in the total journey times.

2.3 Description of Data

The dataset used in this paper was gathered using
the WiFi capabilities of some of the vehicles used
by Lothian Buses. These WiFi services are provided
via Long Term Evolution (LTE) 4G cellular modems
which allow for reliable high-frequency — once every
5 seconds — AVL measurements. It should be noted
that non-WiFi equipped buses also relay AVL data
as part of the MyBusTracker service that provides
information for arrival time prediction at stops and
web applications.1 However this is at a much lower
frequency, namely between 30 to 40 seconds. For
analysis of bus speeds, speed averages of over 40 sec-
onds are typically too imprecise for accurate model
parameterisation.

The data set used for the case study contains in-
formation for all buses operating the Airlink route
from Monday 20 July 2015 to Wednesday 22 July
2015. We also have access to data involving Route
31 and N11 night route vehicles from the same pe-
riod, although we will only briefly consider the latter

1An API for the low-frequency data is publicly available via
http://www.mybustracker.co.uk/.

in Section 4. The data was provided in the form of
files (in CSV format) containing all AVL measure-
ments logged per bus per day, starting at 3AM in
the morning and ending at 3AM the next day. Speed
measurements were included in the dataset, although
these could otherwise be calculated from the distance
travelled.

Since traffic conditions vary throughout the day,
we focus on two non-rush hour periods, namely the
period between 9AM and 3PM and the period be-
tween midnight and 5AM. The reasons are twofold:
even between individual hours in the rush hour pe-
riod there are still considerable differences, and the
impact of the speed limit is expected to be the largest
outside the rush hours. We also categorise measure-
ments based on the direction that is being travelled,
as this may have an impact; in fact, the distance
crossed in Patch 10 of Figure 2 is not the same in
both directions.

Routes are typically operated by several individual
buses per day. In order to comply with the timetable,
buses first leave the depot and then head towards the
starting points of the route. Buses then leave these
starting points in staggered intervals as per their
timetable. This allows buses to service stops along
the route in frequencies ranging from once per 5 to 15
minutes (60 minutes for the night bus). Within a sin-
gle day (or night), buses may change route. This can
be problematic, as patch crossing time measurements
are inaccurate if only portions of a patch were com-
pleted. For the Airlink service this is not the case,
because the vehicles of this service are painted in a
distinct livery and hence never service other routes.
For Route 31 it did occur frequently and for that
reason, in combination with the fact that there were
roadworks on the A772 during the observation pe-
riod, this route will not be further considered in this
paper.

In all datasets, some measurements appeared to be
erroneous or the result of extreme conditions. For ex-
ample, gaps have been observed in the dataset, pos-
sibly caused by temporary connection losses. This
could lead to extremely small measurements if the
connection was restored right before a patch was ex-
ited. Hence, a data cleaning operation was performed
in which measurements were discarded if they were
over the median plus three times the standard de-
viation in that patch, or if they were below 30 sec-
onds (the time needed to clear the smallest patch —
Patch 8 of Figure 2 — at 36mph). The impact was
limited: for example, 18 out of 742 measurements
across all patches were discarded in the east-west di-
rection between 9AM and 3PM.

3

http://www.mybustracker.co.uk/


Figure 2: Illustration of the patches used to partition the Airlink route. Patches 4, 8, 9, and 10 will be
affected by the new speed limit.

2.4 Related Work

This paper broadly follows the same approach as in
[16], in which a patch-based analysis was carried out
to evaluate the impact of the introduction of trams
to Edinburgh’s city centre, and [12], in which Erlang
distributions were used to model the time spent by
buses between major stops, and to suggest improve-
ments to bus timetables. The contributions of this
paper are the use of a probability distribution recom-
mended in the traffic engineering literature [13], the
use of the statistical model checking engine of UP-
PAAL [10] and the application to a new case study
that has received considerable media attention in Ed-
inburgh.

The literature on the impact of speed limits does
not appear to be very extensive. One approach would
be to use of a traffic simulation tool such as the mi-
croscopic tool SUMO [3] or the mesoscopic formalism
of [5]. Another approach would be the use of statis-
tical analysis of the impact of speed limits in other
cities; see [1] for a literature overview.

3 Probabilistic Modelling

In this section, we present the probabilistic models
used in the analysis section of this paper. The most
important probabilistic concept that we use is that
of the exponentially distributed phase. In particular,
the time spent in each patch will be modelled as a
function of several such phases. We begin with a for-
mal discussion of the above, then discuss parameter
fitting and the expression of these models using the
language of the model checking tool UPPAAL.

3.1 The Basic Distributions

Recall that the time T spent in a phase is exponen-
tially distributed with rate λ > 0 if its probability

density function (pdf) is given by

fT (t;λ) = λe−λt

for t ≥ 0 and by 0 otherwise. The expected amount
of time spent in a phase is given by 1

λ ; hence, large
values of λ mean that the time spent in a phase is
small on average. The pdf fT (t) of a random variable
T determines the probability of observing values from
a small interval around t, and will be used later in
this paper to measure how well a fitted probability
distribution corresponds to the data.

If T1, . . . , Tk are exponentially distributed random
variables with rate λ, then S = T1+. . .+Tk is Erlang-
distributed with rate λ and shape k. Its pdf equals

fS(s; k, λ) =
λksk−1e−λs

(k − 1)!
(1)

for s ≥ 0 and 0 otherwise.

As mentioned in Section 2.1, we will compare the
modelling accuracy of two probability distributions
used to model the time spent in a patch; both are
generalisations of the Erlang distribution. The first is
the hyper-Erlang distribution, which is constructed in
the following way. Given some m ∈ N, let α1, . . . , αm
be a probability distribution over {1, . . . ,m}, i.e., ∀i,
αi ∈ [0, 1] and

∑m
i=1 αi = 1. Furthermore, let Si,

i ∈ {1, . . . ,m}, be Erlang-distributed with rate λi
and shape ki — these random variables are called
the branches of the hyper-Erlang distribution. We
then say that a random variable Y is hyper-Erlang-
distributed with shapes ~k = k1, . . . , km, rates ~λ =
λ1, . . . , λm and branch probabilities ~α = α1, . . . , αm
if

fY (y;~k,~λ, ~α) =

m∑
i=1

αi
λkixki−1e−λix

(ki − 1)!
(2)

for y ≥ 0, where fY denotes the pdf of Y .

The second generalisation of the Erlang distribu-
tion is one where a real constant c > 0 is added. This
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gives rise to a random variable Z with pdf

fZ(z; k, λ, c) =
λk(z − c)k−1e−λ(z−c)

(k − 1)!
(3)

for z ≥ c. This is a variation of the probability
distribution recommended in the Traffic Engineering
Handbook [13]; in their version, the factorial in (3)
is replaced by a gamma function, thereby allowing
k to be any positive real value instead of a positive
integer. We require k to be an integer in order to be
able to express the distribution in UPPAAL. In the
following, we will call this distribution ‘Erlang+c’.

3.2 Parameter Fitting

Assuming that we have chosen either the hyper-
Erlang or the Erlang+c distribution for the time
spent in a patch, the next question is how to choose
the distribution parameters such that they corre-
spond to the data in the best possible way. There
are several methods for this; examples include the
method of moments and maximum likelihood esti-
mation. We use the latter, for which the idea is to
maximise the product of the densities in each indi-
vidual sample — or rather the logarithm thereof. To
make this more concrete, assume we have a sample
~x = (x1, . . . , xn) of observations of the time spent in
a patch. The total log-likelihood of observing ~x as
realisations of Y with parameters ~k,~λ, and ~α is then
given by

lY (~x;~k,~λ, ~α) =
n∑
i=1

log(fY (xi;~k,~λ, ~α))

with fY as in (2). The log-likelihood lZ of observ-
ing ~x as realisations of Z is defined analogously for
parameters k, λ, and c, and fZ as defined in (3).
The functions lY and lZ are then maximised over
the available parameters to obtain an optimal fit to
the data. For the hyper-Erlang distribution, this is
done using the tool HyperStar [18], which uses the ex-
pectation maximisation algorithm described in [22]
and [17]. For the Erlang+c distribution, we use a
purpose-built numerical optimisation routine based
on gradient/steepest ascent (see, for example, [9])
with golden section search. We discuss this in more
detail below.

We first assume that k is given and that we need
to find the values of λ and c on R2 that maximise lZ .
The (partial) derivatives ∂

∂λ lZ and ∂
∂c lZ are known in

closed form, and we use this knowledge to construct
an iterative procedure in which we move closer to the
nearest optimum in each step. First, we initialise λ
and c; with x̄ denoting the average of ~x and min(~x)

its minimum, we have found that c = 9
10 min(~x) and

λ = k
x̄−c are generally good choices for λ and c re-

spectively (the idea behind the factor 9
10 is that we

want c to start close to the smallest observation but
not exactly at it). Then, given the values of λ and c
in the current iteration, we define

h(u) = lZ(~x; k, λ+u
∂

∂λ
lZ(~x; k, λ, c), c+u

∂

∂c
lZ(~x; k, λ, c)).

(4)
This reduces each iteration to single-dimensional op-
timisation of h, as h is simply lZ defined on a line
in the direction of the steepest ascent. Note that
u = 0 corresponds to λ and c remaining the same
as in the previous iteration, so we search for a non-
zero value of u that maximises (or at least improves)
h(u). When this value has been found, the next
iteration’s values of λ and c can be computed as
λ + u ∂

∂λ lZ(~x; k, λ, c) and c + u ∂
∂c lZ(~x; k, λ, c) respec-

tively.

The function h equals −∞ in parts of R; this hap-
pens when the corresponding value of λ is negative
or when c becomes either negative or larger than the
smallest observed value. This proves problematic for
all of the general-purpose optimisation procedures
implemented in R through the function optim, in-
cluding Brent’s method which is specifically intended
for single-dimensional optimisation. Accordingly, we
have implemented our own algorithm which follows
the principles of golden section search. We search
for the local optimum of h on [−1, 1], which means
that in each iteration we move away from the old
values of λ and c by at most the gradient (to see
this, substitute −1 or 1 into (4)). Then, we fix an
integer l ∈ {2, 3, . . .} to be used throughout the en-
tire procedure, and compute the values of h in the
points −1,−1 + 1

l ,−1 + 2
l , . . . , 1. We then deter-

mine the smallest value i ∈ {2, 3, . . . , 2l} for which
h( i−1

l − 1) > h( il − 1). The reason is that we know
that the value of u that maximises h(u) must then
be on [ i−2

l − 1, il − 1] — after all, the derivative of h
can only change sign once if we assume that a global
maximum exists. We found that l = 2 does not
necessarily give the best run times; we used l = 7
throughout. We run the single-dimensional optimisa-
tion procedure several times (in our implementation,
we took ten steps), then choose u to be the centre
of the remaining interval and complete the iteration.
We continue until the changes in terms of λ and c
have dropped below a fixed threshold or if a fixed
number of iterations has been reached.

Since we now have a procedure for finding the op-
timal values of λ and c as a function of k and ~x, the
final challenge is to find the optimal k. We use the
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fact that k is discrete by starting with k = 1 and then
increasing k until lZ starts to decrease. In our exper-
iments, this appeared to return the global optimum.
As can be seen in the ‘Erlang+c’ column of Table 3,
the optimal values of k were typically not very large,
so it was not necessary from a computational point
of view to find a more efficient way of initialising this
procedure.

3.3 Probabilistic Timed Automata and
UPPAAL

UPPAAL [10] is a toolbox for the analysis of real-
time systems modelled as timed automata. Of partic-
ular interest to this paper is the UPPAAL Statistical
Model Checker (SMC) [6], which allows for the ver-
ification of Probabilistic Timed Automata (PTAs),
the stochastic extension of timed automata. We do
not give a full description of PTAs but discuss the
key language features used in the paper through a
discussion of the PTA models for the patch-based
model.

Figure 3: Illustration of a PTA representing a sys-
tem with two patches with two-branch Hyper-Erlang
distributed crossing times.

In Figure 3, we depict a sequence of two patches
for which the journey time is modelled using a two-
branch hyper-Erlang distribution. States (called ‘lo-
cations’ in PTA terminology) are represented using
circles, and edges (representing transitions between
states) using arrows. The system starts in the left-
most location (the double circle), which is exited
with a rate of 1 second (this transition would ide-
ally be immediate, but the 1-second delay is negligi-
ble). We need this state because the system requires
the specification of a unique initial state. When the
initial state is left, a probabilistic choice is made be-
tween the two branches of the next patch. The edge
weights, which determine the relative likelihood of
choosing an edge, are required to be integers. Hence,
the values of α1 and α2 — found to be 0.4938 and
0.5062 by the parameter-fitting algorithm — had to

be converted to the smallest pair of integers with the
same ratio, which in this case were 2469 and 2531.

If branch i has been chosen, the system then needs
to complete ki locations that each have rate λi. When
this has been completed, the system jumps to a so-
called branch point (the small circle) from which a
probabilistic choice is made between the branches of
the next patch. When the final patch has been com-
pleted, the system jumps to the final state labelled
‘end’.

Figure 4: Illustration of a PTA representing a system
with two patches with Erlang+c distributed crossing
times.

In Figure 4, we depict a similar model for the
Erlang+c distribution. In addition to the discrete
states, we now also use a real-valued clock, called x.
This clock is reset immediately after a patch is left.
We then impose a guard on the first (or only) edge
of the patch requiring that this edge cannot be com-
pleted before the clock x has reached a value greater
than c; in pratice, this adds a constant delay of c to
the global clock. Otherwise, the behaviour in each
patch is similar to that of a single Erlang branch in
Figure 3.

Whereas Figures 3 and 4 depict graphical repre-
sentations of the PTA models used in this paper, the
same models can also be expressed in XML format.
These XML files can be generated by R, taking as
input either a file with the hyper-Erlang parameters
obtained via HyperStar, or a matrix of the Erlang+c
distribution parameters obtained by another function
in R. Furthermore, the system property of interest is
also embedded in the XML file. We are interested in
two probabilities: the property of a bus reaching the
final location over one minute early or less than five
minutes late.2 For example, if the timetabled journey
duration to get from Waverley station in Edinburgh’s
city centre to the airport is 28 minutes (i.e., 1680 sec-
onds) then the property

Pr[¡=1620] (¡¿ Process.end)

2The notion of a bus being ‘on-time’ if it is at most N1 min-
utes early and at most N2 minutes late is a common notion,
and the particular choice of N1 = 1 and N2 = 5 is from the
Scottish Government’s Bus Punctuality Improvement Partner-
ships guiding document [19]. This notion of punctuality is less
relevant for the Airlink as it is a ‘frequent’ service during the
day, meaning that different standards apply; however, it is in-
frequent at night.
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hyper-Erlang
Patch Erlang+c Erlang 2-branch 3-branch

1 -338 -343 -340 -337
2 -346 -386 -296 -286
3 -336 -336 -336 -334
4 -357 -358 -357 -356
5 -396 -401 -396 -394
6 -333 -339 -336 -334
7 -358 -361 -356 -356
8 -409 -409 -409 -409
9 -388 -388 -387 -384
10 -447 -449 -442 -440

Table 1: Total log-likelihoods for the distributions fit-
ted to the patch journey times in each of the patches
for the Airlink, from Waverley Bridge to the airport
during midday, rounded to integers.

specifies the property of being over a minute early
(‘Process’ is the name of the system and ‘end’ the
name of the final state). The SMC engine of UP-
PAAL is then invoked to estimate the probability of
this property being satisfied. In particular, system
executions are repeatedly executed and the results
used to make statistically justified statements about
the relevant probabilities.

4 Analysis & Results

In this section, we present the results of applying the
methodology described above to the case study of the
proposed speed limit in Edinburgh. The section is di-
vided into two parts. In Section 4.1, we discuss the
results of the parameterisation and model construc-
tion steps, and discuss the impact of the modelling
choices. In Section 4.3 we discuss the actual impact
of the speed limit using the model built in the previ-
ous step.

4.1 Modelling Results

In order to best illustrate the impact of the mod-
elling choices, we focus on a specific dataset of GPS
measurements, namely the east-west direction of the
Airlink and the time window between 9AM and 3PM,
without the speed limit. This dataset consists of 724
measurements with 68-76 measurements per patch.
The differences between the numbers of observations
was due to the outlier removal; outliers occurred
more often in the patches near the two ends of the
route and less so in the centre.

In Table 1, we display for each patch and for
four choices of distributions (Erlang, 2-branch hyper-

Erlang, 3-branch hyper-Erlang, and Erlang+c) the
log-likelihood of observing the data under the distri-
bution with the parameters that were found to be
optimal. As can be seen form the table, the numbers
tend not to differ starkly.

In nearly all cases the 3-branch hyper-Erlang has
a higher log-likelihood than the Erlang+c. How-
ever, this comes at a price: the number of phases
tends to be much smaller for the Erlang+c than
for the other distributions. In Table 3, we display
the expected number of completed phases: this is
just k for the Erlang and Erlang+c, and

∑
i αiki for

the hyper-Erlangs. The differences are considerable,
sometimes even between the Erlang and Erlang+c
(see, for example, Patch 1). The consequences are
twofold. Firstly, since the time to draw a sample us-
ing the SMC engine of UPPAAL scales roughly lin-
early with the expected number of completed phases,
it takes less time to obtain accurate estimates of the
on-time probabilities using the Erlang+c. Secondly,
high phase counts can be a symptom of overfitting:
it could indicate that a sharp peak around a cluster
of observations has been created through an Erlang
branch with many phases and a rate such that the
branch mean is near the centre of the cluster.

hyper-Erlang
Patch Erlang+c Erlang 2-branch 3-branch

1 4 80 149.5 591.4
2 1 3 186.7 310.8
3 13 32 59.0 569.9
4 3 10 36.4 39.9
5 3 13 47.5 89.0
6 2 38 125.5 161.6
7 3 23 79.6 91.4
8 5 7 13.2 21.8
9 9 9 22.0 272.9
10 6 12 13.5 27.8

Table 3: The expected number of exponential phases
for each of the distributions.

The choice of distribution does have a big impact
on the tail of the distribution of the time needed to
complete the entire journey. This is displayed in Fig-
ure 5, in which it can be seen that the hyper-Erlang
distributions have a noticeably heavier tail on the
right. As mentioned earlier, the time needed to gen-
erate samples for the Erlang+c model is lower than
for the hyper-Erlang model; whereas Figure 5(a) is
based on 25,103 samples generated in 6 seconds, Fig-
ure 5(b) is based on 22,116 samples generated in 39
seconds. We found that the distribution of total jour-
ney times does seem to have a relatively heavy tail,
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Speed Limit
Route Period Direction Timetable Old New Difference Perc. Change

Airlink
9AM - 3PM

Waverley-Airport 1680 1886.34 1896.82 10.48 0.56%
Airport-Waverley 1800 2038.05 2045.66 7.61 0.37%

12AM - 5AM
Waverley-Airport 1260 1413.83 1429.01 15.18 1.07%
Airport-Waverley 1260 1208.13 1232.43 24.30 2.01%

N11 12AM - 5AM Ocean Terminal-Hyvots Bank 2460 2256.93 2289.27 32.34 1.43%

Table 2: We depict the average total journey times in seconds both with and without incorporation of the
the speed limit impact as per (5). This is done for two routes, the Airlink in both directions and during
two different time periods, and for the N11 from Ocean Terminal to Hyvots Bank (the N11 only goes in one
direction). Timetable predictions were obtained using the journey planner on http://lothianbuses.com/

getting-around/journey-planner.

which would support the use of the hyper-Erlang dis-
tribution.

Finally, we consider the impact of the modelling
choice on the computation of the on-time probabili-
ties, which we will discuss in more detail below. As
can be seen in Table 4, the choice of distribution can
have a big impact, in our case even more so than the
speed limit itself.

4.2 Patch Parameter Fitting Results

To better illustrate the results of fitting the hyper-
Erlang distribution to the individual patch sojourn
time datasets, we provide screen shots taken of the
HyperStar tool in Figures 6 and 7. These screen shots
depict the datasets of the time Airlink buses spent in
each of the ten patches of the Airlink route (see Fig-
ure 2), both in terms of an observation histogram
and the empirical Cumulative Distribution Function
(CDF). We only consider buses heading from Waver-
ley Bridge to the airport between 9AM and 3PM.
In the same figure as the histograms and empirical
CDFs, we depict the Probability Density Functions
(PDFs) and CDFs of the hyper-Erlang distributions
fitted to the data. For each dataset, we consider three
types of hyper-Erlang distributions: single-branch
(i.e., Erlang distributions), 2-branch, and 3-branch.
The coloured vertical lines in the graphs depict the
manually selected peaks which determine the max-
imum number of branches and inform the choice of
initial parameters for the implemented parameter op-
timisation procedure (the EM algorithm).

As can be seen in the figures, the dataset for which
the hyper-Erlang does best when compared the the
Erlang+c distribution is Patch 2, which appears to
contain quite a few outliers. We mention again here
that we do apply some form of outlier removal, but
the used criterion for removal — namely a large dis-
tance from the mean relative to the standard devia-
tion — does not lead to good results when the num-

ber of outliers is so high that the standard devia-
tion becomes too large. Something similar applies to
Patch 10, which has outliers in the tail on the left.
The improvement of Erlang+c over standard Erlang
is the biggest for Patches 5 and 6. In general, the
hyper-Erlang distributions have a tendency to over-
fit peaks in the data, which is particularly noticeable
for Patch 9 and 3 Erlang branches.

4.3 The Impact of the Speed Limit

To evaluate the impact of the speed limit, we create
a second dataset in the following way: we test for
each GPS measurement (corresponding to a 5-second
period) whether the recorded speed of the vehicle s
was over 20mph, and if so, we add the value

s− 20

20
· 5 (5)

to the total time spent in the corresponding patch.
This quantity represents the additional amount of
time needed to complete the same distance under the
speed limit. It allows us to parameterise the model
using both datasets and compare expected journey
times and on-time probabilities. Note that (5) of
course represents a rough approximation: if, for ex-
ample, the speed limit also changes the density of ve-
hicles on the road, then this could have an additional
impact on bus travel times. One way of investigating
this effect would be to use a microscopic road simula-
tion tool such as SUMO, which incorporates both the
buses and the other road traffic as individual vehicles
in the simulation. However, since we do not have ac-
cess to reliable non-bus traffic data, we are currently
unable to realistically parameterise such a model, so
this is left as a direction for future research.

As can be seen in Table 2, the impact of the speed
limit varies across time periods and routes. For the
Airlink, which is only impacted by the speed limit
on the segment between Waverley Station and Hay-
market (Patches 8, 9 and 10 of Figure 2), the im-
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Route Distribution Speed Limit Too Early Too Late

Airlink
Hyper-Erlang

old [0.091799, 0.092799] [0.193120, 0.194120]
new [0.088044, 0.089044] [0.210440, 0.211440]

Erlang+c
old [0.073240, 0.074240] [0.335775, 0.336775]
new [0.067363, 0.068363] [0.345214, 0.346214]

Table 4: 90% confidence intervals for the probability that a bus completes the Waverley-Airport journey
during the 9AM-3PM period over one minute too early (so before 1620 seconds) or over five minutes too
late (so after 1980 minutes). The hyper-Erlang distributions had two branches. All distributions were fully
parameterised again for the all patches, even those which would be unaffected by the speed limit.

pact on the timetable seems to be negligible, as buses
only rarely manage to go over 20mph in the city cen-
tre. As expected, the impact at night is larger than
during the day. The N11, which is impacted by the
speed limit on over half its route, is slowed down by
about 58.91 seconds, although the total impact is still
limited relative to the total route duration (namely
about 2.27%). We do note that we observed that
some N11 buses switched routes during the night,
and although this did not appear to have a substan-
tial impact the results are subject to this caveat.

The impact of the speed limit also does not seem
to have much of an effect on the probabilities of not
being on-time for the Airlink, as can be seen in Ta-
ble 4. However, for the N11, the full minute being
added on to the average route completion did have a
noteworthy impact. It should be noted that buses of
all routes typically spend a large amount of time sta-
tionary, particularly to allow passenger to board or
alight, which mitigates the effect of the speed limit.

5 Conclusions

In this paper we have presented a probabilistic model
that was able to quantify the impacts on bus timeta-
bles of the newly proposed 20mph speed limit plan in
Edinburgh. We considered two ways of incorporating
the stochastic nature of bus movement within route
segments (‘patches’), namely the use of hyper-Erlang
distributions and an Erlang distribution plus a con-
stant that is a variation of the distribution recom-
mended by the Traffic Engineering Handbook. The
tail behaviour of the former is better able to rep-
resent total journey durations, whereas the latter is
more efficient to simulate and its parametrisation is
more stable across repeated experiments. We com-
bined the patches into a single representative model
in UPPAAL which allowed us to compute interesting
punctuality metrics. The impact of the speed limit
was found to be limited.

Regarding future work, patch selection and dimen-
sioning is a time-consuming non-trivial task that eas-
ily becomes cumbersome when the number of patches

and routes is increased. Automated patch selection
would greatly enhance the efficiency of our method-
ology. We did try to find patch centres using the
k-means clustering algorithm, however one of the dis-
advantages is that there is no easy way to align patch
boundaries to the roads affected by the speed limit.
As such, we would need to find a way to automati-
cally incorporate the map data of the proposed speed
limit.

Also, the speed limit adjustment as given in Equa-
tion (5) is of course an approximation, and assumes
that traffic conditions remain the same. A micro-
scale simulation model could be constructed to vali-
date this assumption. However, since we do not have
access to full traffic data it would be a challenge to
realistically parameterise such a model.
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Patch 1, 1 branch. Patch 1, 2 branches. Patch 1, 3 branches.

Patch 2, 1 branch. Patch 2, 2 branches. Patch 2, 3 branches.

Patch 3, 1 branch. Patch 3, 2 branches. Patch 3, 3 branches.

Patch 4, 1 branch. Patch 4, 2 branches. Patch 4, 3 branches.

Patch 5, 1 branch. Patch 5, 2 branches. Patch 5, 3 branches.

Figure 6: Hyper-Erlang parameter fitting results for Patches 1-5 of the Airlink route.
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Patch 6, 1 branch. Patch 6, 2 branches. Patch 6, 3 branches.

Patch 7, 1 branch. Patch 7, 2 branches. Patch 7, 3 branches.

Patch 8, 1 branch. Patch 8, 2 branches. Patch 8, 3 branches.

Patch 9, 1 branch. Patch 9, 2 branches. Patch 9, 3 branches.

Patch 10, 1 branch. Patch 10, 2 branches. Patch 10, 3 branches.

Figure 7: Hyper-Erlang parameter fitting results for Patches 6-10 of the Airlink route.
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