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In brief

Using oral microbiomes preserved in

dental calculus of wild brown bear

specimens from the last 180 years,

Brealey et al. track human-associated

antimicrobial resistance (AMR) in the

environment and show that it correlates

with human antibiotic use in Sweden.

Encouragingly, national control policies

to curb AMR show a positive effect.
.
ll

mailto:jaelle.brealey@ntnu.no
mailto:katerina.guschanski@ebc.uu.se
https://doi.org/10.1016/j.cub.2021.08.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cub.2021.08.010&domain=pdf


OPEN ACCESS

ll
Report

The oral microbiota of wild bears in Sweden
reflects the history of antibiotic use by humans
Jaelle C. Brealey,1,4,5,* Henrique G. Leitão,1 Thijs Hofstede,1 Daniela C. Kalthoff,2 and Katerina Guschanski1,3,6,7,*
1Department of Ecology and Genetics/Animal Ecology, Uppsala University, Norbyv€agen 18D, Uppsala 75236, Sweden
2Department of Zoology, Swedish Museum of Natural History, PO Box 50007, Stockholm 10405, Sweden
3Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, The Kings Buildings,

Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
4Present address: Department of Natural History, NTNU University Museum, Trondheim, Norway
5Twitter: @JaeBrealey
6Twitter: @kguschan
7Lead contact
*Correspondence: jaelle.brealey@ntnu.no (J.C.B.), katerina.guschanski@ebc.uu.se (K.G.)

https://doi.org/10.1016/j.cub.2021.08.010
SUMMARY
Following the advent of industrial-scale antibiotic production in the 1940s,1 antimicrobial resistance (AMR)
has been on the rise and now poses a major global health threat in terms of mortality, morbidity, and
economic burden.2,3 Because AMR can be exchanged between humans, livestock, and wildlife, wild animals
can be used as indicators of human-associated AMR contamination of the environment.4 However, AMR is a
normal function of natural environments and is present in host-associatedmicrobiomes, whichmakes it chal-
lenging to distinguish between anthropogenic and natural sources.4,5 One way to overcome this difficulty is
to use historical samples that span the period from before the mass production of antibiotics to today. We
used shotgun metagenomic sequencing of dental calculus, the calcified form of the oral microbial biofilm,
to determine the abundance and repertoire of AMR genes in the oral microbiome of Swedish brown bears
collected over the last 180 years. Our temporal metagenomics approach allowed us to establish a baseline
of natural AMR in the pre-antibiotics era and to quantify a significant increase in total AMR load and diversity
of AMR genes that is consistent with patterns of national human antibiotic use. We also demonstrated a sig-
nificant decrease in total AMR load in bears in the last two decades, which coincides with Swedish strategies
tomitigate AMR. Our study suggests that public health policies can be effective in limiting human-associated
AMR contamination of the environment and wildlife.
RESULTS

Animals and their associatedmicrobiomes are increasingly recog-

nized assourcesofpotential humanpathogens, includingbacteria

that carry antimicrobial resistance (AMR).6 Antibiotics and resis-

tant bacteria from human healthcare and agricultural settings

leak into the environment through waste production,7–10 where

wildlife can come into contact with contaminated soil, water, and

food sources.11 Evidence exists for transfer of resistant bacteria

between wildlife, domestic animals, and humans,12 for example,

via flies and wild birds co-inhabiting with livestock.13–15 Further-

more, AMR is ubiquitous in nature, either as defense against the

antibiotics naturally produced by some bacteria and fungi16 or

as a byproduct of general detoxifying functions.17 Accordingly,

antibiotic resistance genes (ARGs) have been found across the

globe, including in themostpristineenvironments free fromhuman

activities.18–20 It can therefore be difficult to establish a natural,

human-unaffected AMR baseline and to distinguish between

human-associated and natural sources of AMR.4,5

Historical samples that predate industrial-scale antibiotic

production offer an opportunity to characterize natural levels of
4650 Current Biology 31, 4650–4658, October 25, 2021 ª 2021 The A
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environmental AMR. Focusing on host microbiomes is particu-

larly important, as these microbial communities are associated

with eukaryotes and are therefore more relevant than free-living

environmental microbiomes for understanding AMR dynamics

with importance to humans. However, most host microbiomes

are not preserved after host death. One exception is dental

calculus, the calcified form of the dental plaque microbial biofilm

that forms on mammalian teeth.21 It is built up periodically

throughout an individual’s life and preserves DNA from the oral

microbiome within a calcified matrix, protected from invasion

by external microorganisms.22,23 Metagenomic sequencing of

dental calculus samples has detected ARGs in medieval

humans23 and 19th–20th century wild animals,24 thus suggest-

ing that this material can be used to trace AMR dynamics

through time.

We studied the temporal progression of AMR in host-associ-

ated microbiomes of wild brown bears (Ursus arctos) in Sweden,

by characterizing the abundance and repertoire of ARGs from

bear dental calculus (Figure 1). We have previously shown that

metagenomic sequences from dental calculus are a rich source

of information on the oral microbial community of non-human
uthor(s). Published by Elsevier Inc.
commons.org/licenses/by/4.0/).
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Figure 1. Total AMR load and ARG diversity in brown bear dental calculus reflect antibiotic use in Sweden

(A) Total historical antibiotic use in Sweden in humans (squares) and domesticated animals (circles), in kilograms of active substance used. Gray dashed lines

indicate the five time period bins in correspondence with (B) and (C). Data points are colored by time period bin.

(B) Total AMR load in bear dental calculus samples changes through time (n = 57; upper left shows the effect size and p value for the quadratic term of time period

from the generalized linear model, including median DNA fragment length as a co-variable; Table S1). Total AMR load was calculated as the number of reads

mapping to CARD divided by the total number of oral bacterial reads in a sample. Each point within a given time period represents a unique brown bear dental

calculus sample.

(C) Boxplots of the number of unique ARG families detected in each time period after subsampling to eight samples per time period (the lowest sample size

available for time period 1951–1970) with 1,000 independent repeats to control for differences in sample sizes between time periods. To control for differences in

the amount of data available between time periods, we also subsampled by number of reads sequenced (Figure S2).

(D) Heatmap of log-transformed ARG family loads (proportion of oral bacterial readsmapping to each ARG family) in samples pooled by time period. ARG families

that were not detected in a given time period are colored gray. ARG families that significantly increased in abundance over time (either in a linear or quadratic

manner) are indicated with asterisks (Table S1). ARG families are annotated by their main mechanism of resistance and the major antibiotic (abx) class to which

they confer resistance, as recorded in CARD.

(E) Photo of a Scandinavian brown bear and a Scandinavian brown bear skull specimenwith dental calculus (white arrow) sampled for this study (photos usedwith

permission from Mats Björklund and Katerina Guschanski, respectively).

rpoB, rifamycin-resistant beta-subunit of RNA polymerase; RND, resistance-nodulation-cell division antibiotic efflux pump; parY, aminocoumarin-resistant

topoisomerase IV; ABC-F, ATP-binding cassette ribosomal protection protein; pgpB, lipid A phosphatase; ileS, antibiotic-resistant isoleucyl-tRNA synthetase;

ABC, ATP-binding cassette antibiotic efflux pump;MATE,multidrug and toxic compound extrusion transporter; MFS,major facilitator superfamily antibiotic efflux

pump; APH(30 ), phosphorylation of aminoglycoside antibiotic on the hydroxyl group at position 30; MFS/RND, MFS and RND efflux pump; GBP, general bacterial

porin with reduced permeability to beta-lactams; APH(60), phosphorylation of aminoglycoside antibiotic on the hydroxyl group at position 6; ANT(30 0), nucleo-
tidylylation of aminoglycoside antibiotic at the hydroxyl group at position 30 0; SAT, streptothricin acetyltransferase; vanS, vanS/glycopeptide resistance gene

cluster; APH(30 0), phosphorylation of aminoglycoside antibiotic on the hydroxyl group at position 30 0; sul, sulfonamide-resistant sul; fos, fosfomycin thiol trans-

ferase; erm, Erm 23S ribosomal RNA methyltransferase; OXA, OXA beta-lactamase; MLS, macrolides, lincosamides, and streptogramins.

See also Figures S2 and S3 and Table S1.
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mammals, including potential pathogens and ARGs.24 As wide-

ranging omnivores and scavengers, brown bears have a diverse

diet and are exposed to potential sources of AMR from both prey

species and the environment.4,25,26 While they generally prefer

remote areas, Swedish brown bears do occasionally approach

human settlements and come into contact with humans and

domestic animals.25–27

Here, we sequenced 82 dental calculus samples collected

from museum-preserved Swedish brown bear specimens
(Figure 1) from across central and northern Sweden dating

between 1842 and 2016. After read processing and rigorous

quality control (Figure S1; STAR Methods), including the evalua-

tion and removal of potential environmental contaminants,28,29

57 calculus samples were retained. To minimize the possibility

that estimates of AMR may be confounded by the presence of

modern environmental resistant bacteria, we restricted our

analysis to the subset of bacteria that are known to colonize

oral cavities of humans and pets29–32 (Figure S1C).
Current Biology 31, 4650–4658, October 25, 2021 4651
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Total AMR load reflects antibiotic use in Sweden
Swedenhasawell-documentedhistory of antibiotic use andcon-

trol in both humans and animals. Detailed antibiotic usage data

are available from 1980, 2009, and 2012–2018 (Figure 1A),33,34

while qualitative records report increased use from 1950 to

1980.35 To determine how AMR prevalence has changed over

time in brown bear oral microbial communities, we divided the

sampling period into five time bins, based on qualitative and

quantitative records of historical antibiotic use in Sweden and

the individual’s year of death: (1) pre-1951, corresponding to

the pre-antibiotics era before commercial production began in

Sweden;36 (2) 1951–1970, when antibiotic production and use

was increasing, including use of antibiotic growth promoters in

livestock;35–37 (3) 1971–1985, when concerns about mounting

AMR were first voiced but no official measures put in place;38

(4) 1986-2000, when control measures were implemented,

including the ban of antibiotics as growth promoters in 198634

and the Swedish strategic program against antibiotic resistance

(Strama) in 1995, which regulates the sales of antibiotics for hu-

mans and animals and continuously monitors AMR;39 and (5)

post-2000, when the ongoing control measures in Sweden

have resulted in decreased sales of antibiotics for both outpatient

care and veterinary use33 and overall low AMR prevalence

compared to other European countries.40

Total AMR load was determined by aligning the oral bacterial

reads in each bear calculus sample against the Comprehensive

Antibiotic Resistance Database (CARD).41 The CARD sequence

with the best alignment score for each read was assigned to its

respective ARG family under the Antibiotic Resistance Ontology

(ARO). We detected ARGs in samples collected in the pre-antibi-

otics era (Figure 1B), in line with the expectation that AMR is a

natural function of microbial communities, independent of

contribution from human use. Our temporal analysis uncovered

significant changes in total AMR load in bear calculus that fol-

lowed the same general trajectory through time as inferred for

antibiotic use in humans in Sweden (Figures 1A and 1B). Total

AMR load increased from the 1950s through 1990s, mirroring

the reported increased use of antibiotics in Sweden, before

decreasing in the 2000s, following the implementation of national

control measures in 1986 and 1995 (Figures 1A and 1B). Both

changes in AMR load (increase and decrease) were statistically

significant (generalized linear model with a quasibinomial distri-

bution; Table S1; p = 0.035) and not affected by differences in

DNA degradation and low sequencing depth typical for historical

samples (Table S1; p = 0.007).

We observed a time lag of at least 15 years from the initiation of

Swedish antibiotic regulation policies in 1986 to the detection of

a significant decrease of AMR levels in the oral microbiome of

wild brown bears post-2000. This delay was likely caused by a

combination of factors, including the time required for the pol-

icies to have a measurable effect on AMR in the environment

and brown bear life expectancy. Age at death was on average

5.9 years (range 1–19 years) for the specimens for whom these

data were available (17 specimens, 30%), consistent with life ex-

pectancy estimates for the Swedish brown bear population (5–8

years for yearlings), which is low due to hunting.42 It is therefore

probable that it was not until the mid-2000s that bears in our

study population lived their entire lives under post-1995 Swedish

antibiotic regulations.
4652 Current Biology 31, 4650–4658, October 25, 2021
While the contamination of natural ecosystems with human-

produced antibiotics and resistant bacteria is well docu-

mented,7–9 our results suggest that this process may be revers-

ible. Sweden was one of the first countries to impose legislation

to control antibiotic use and today has a strong antibiotic

stewardship program with thorough monitoring of resistance in

human and animal populations.39 The observed decrease in total

AMR load in themicrobiome of wild brown bears since the 2000s

is mirrored by results from Swedish farm animal screening,

which shows low and generally stable or decreasing resistance

in Escherichia coli and Staphylococcus aureus isolates over the

last 10 years.33

Few other studies have investigated the temporal changes in

AMR throughout the history of human antibiotic use. Increasing

levels of AMR have been detected in archived soil samples

from the 1940s to the mid-2000s.43 Collections of human-asso-

ciated bacteria isolated prior to 1955 have been found to have

low levels of AMR,44,45 although other studies utilizing such col-

lections have reported similar AMR profiles in both pre-1950s

and modern strains.46 To our knowledge, only a single study

has investigated temporal changes in AMR levels in wildlife

across a multi-year period, reporting increasing AMR in bacteria

isolated from stranded marine mammals from 2004 to 2010.47

Our study thus represents the first systematic quantification of

AMR in wild animals over the entire history of industrial-scale

human antibiotic production.

ARG diversity increases over time
The development and mass use of new antibiotic classes over

the last 50 years1 may have diversified selective pressures on

naturally occurring resistant bacteria and led to a greater diversity

of ARGs in wildlife microbiomes in more recent times. Thus, we

characterized and quantified ARG families in bear samples

across the different time periods. The overall diversity of ARG

families increased from 1986 onward (Figure 1C), as reflected

by the detection of novel rare ARGs (Figure 1D). This observation

was not explained by differences in sample sizes (Figure 1C) or

amount of data available (Figure S2) across time periods.

The mechanism of resistance tended to differ between ARG

families that were consistently detected in all time periods,

including in the pre-antibiotics era, and rare ARG families that

were only detected in the last two time periods (Figure 1D).

ARG families detected since 1986 included aminoglycoside-

modifying enzymes (ANT, APH, and AAC) that target, e.g., strep-

tomycin, andbeta-lactamases (OXA) that target, e.g., penicillin.48

Such genes are frequently encoded on plasmids and other mo-

bile genetic elements and thus are readily transferred among

different bacteria. In contrast, ubiquitous ARG families contained

multidrug efflux pumps (e.g., RND), the ribosome-binding ABC-F

family, andARGsconveyingAMR through alterations in antibiotic

targets, such as rifamycin-resistant beta-unit of RNA polymerase

(rpoB) and aminocoumarin-resistant topoisomerase IV (parY)

(Figure 1D). Many of these ARGs are encoded on the chromo-

some and have been often co-opted for AMR as an extension

of general functions related to bacterial surivial.17,49 In support

of our findings, multidrug efflux pumps, resistant rpoB, and resis-

tant topoisomerase have been detected in microbiomes of pre-

historic humans,23,50 providing additional evidence that these

ARGs are ‘‘ancient.’’51



Figure 2. Changes in ARG family loads are associated with changes in abundance of oral bacterial genera over time
(A) Proportion of oral bacterial reads mapping to RND (resistance-nodulation-cell division) antibiotic efflux pump. Upper left shows the effect size and p value for

the linear term of time period from the generalized linear model, including median DNA fragment length as a co-variable (Table S1).

(B) Proportion of oral bacterial reads assigned by Bracken to Neisseria across the study time periods.

(C) Neisseria relative abundance is correlated with RND load. Similarity score (cor) and adjusted p value (padj) from CCREPE are shown in the upper left corner of

the plot. Examples of other correlations between ARG families and oral bacterial genera abundances are presented in Figure S3.

(D and E) NMDS of CLR-normalized abundances of oral bacteria in bear dental calculus samples, colored by specimen time period (D) and total AMR load (E).

NMDSwas performed with k = 2 on a Euclidean distance matrix. NMDS stress: 0.188. Time period accounted for 7.38% of the variation between samples (F4,52 =

1.04, p = 0.40) and total AMR load accounted for 0.95% of the variation (F1,55 = 0.53, p = 0.99). NMDS of presence/absence of oral bacteria in bear dental calculus

samples can be found in Figure S3.

See also Figure S3 and Table S1.
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We observed that ubiquitous ARG families changed in abun-

dance through time (Figures 2A and S3A–S3F; Table S1). Total

abundance of ABC-F and resistant rpoB reflected the pattern

of total AMR load, increasing from 1951 to 2000 and decreasing

post-2000 (Figures S3D and S3E). In contrast, the abundance of

RND efflux pump consistently increased over the study period

(Figure 2A). The other four most abundant ARG families (ileS,

ABC efflux pump, pgpB, and parY; Figures S3A–S3C and S3F)

showed varied abundance trajectories over time. The abun-

dance of some ARG families was correlated with the abundance

of specific oral bacterial genera (Figures S3G–S3M), e.g., RND

efflux pump and Neisseria (Figures 2A–2C; similarity score =

0.545, padjusted < 0.001). Neisseria has a well-characterized

RND system (mtrCDE) that exports a wide variety of antibiotics,

biocides, and detergents.52 However, these changes in the rela-

tive abundance of specific oral genera were not reflected in the

overall oral bacterial community composition at the species

level, which remained stable through time (Figures 2D, 2E,

S3O, and S3P). This suggests subtle responses of likely low-

abundance taxa with specific AMR profiles, akin to findings in
lichen microbiomes following experimental exposure to

antibiotics.53

Lack of association with proximity to humans suggests
widespread AMR contamination of natural
environments
We hypothesized that bears found in locations close to human

habitations would have higher total AMR loads, as they might

be more exposed to environmental contamination from antibi-

otics or human-associated resistant bacteria. Fifty bear speci-

mens had detailed information about the collection location (Fig-

ure 3A), whereas only municipality or county data were available

for the remaining seven specimens. To account for human pop-

ulation density in the year of death and specific location of each

bear, we used historical records from Swedish parishes. To es-

timate human impact, we used the 2009 Human Footprint Index,

which combines data on human population density, land use,

infrastructure, and transport networks into a singlemeasure (Fig-

ure 3A), as no such historical data were available for the majority

of specimen localities. We estimated the magnitude of human
Current Biology 31, 4650–4658, October 25, 2021 4653



Figure 3. Total AMR load is not associated

with proximity to humans or geography

(A) Geographic locations of Swedish brown bear

museum specimens included in this study (n = 57

following filtering andprocessing steps). Specimens

are coloredby the timeperiod inwhich theydied and

plotted according to their GPS coordinates, as ob-

tained from museum records. Circles represent

specimens without locality information, which were

assigned random coordinates within their counties

(seven specimens from pre-1951). No association

was found between total AMR load and geographic

region, including municipality and county location

(Table S2). The underlying terrain of Sweden is

shaded by the 2009 Human Footprint Index (higher

human activities/populations correspond to darker

shaded areas). The map of Sweden was obtained

from Lantm€ateriet (https://www.lantmateriet.se/

sv/Kartor-och-geografisk-information/geodataprodu

kter/produktlista/oversiktskartan) and the Human

Footprint Index data from NASA Socioeconomic

Data and Applications Center (https://doi.org/10.

7927/H46T0JQ4).

(BandC)TotalAMR loadcompared tohistoricalhumanpopulationdensityper km2within thespecimencollection locality (B) andmeanHumanFootprint Indexwithina

12.5 km radius (500 km2) around specimen collection location (C). Themajority of bear specimenswere collected fromareas of low humanpopulation density and low

Human Footprint Indices. Dashed blue line and upper limit of the x axis correspond to average and maximum human population density of Sweden in 2000 (B) and

average andmaximumHuman Footprint Index across Sweden (C). No associationwas observed between total AMR load and historical human population density or

modern Human Footprint Index for any given time period (Table S1).

See also Tables S1 and S2.
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impact for each of the 50 bears with known location by consid-

ering an area with 12.5 km radius, which corresponds to the

average brown bear home range size.54

In contrast to our expectations, we found no association be-

tween total AMR load and historical human population density

or modern Human Footprint Index (Figures 3B and 3C; Table

S1), nor with geographic regions, including municipality and

county location (Table S2). No association between geographic

location and AMR load was observed for any given time period

(Table S1). These results contrastwith the frequently reported as-

sociation between environmental AMRabundance and proximity

to humans or human settlements. For instance, rodents residing

close to livestock have been shown to have higher AMR levels

compared to rodents in natural areas.55–58 Associations between

AMRandproximity to humanshavealsobeen found in foxes,wild

boars, deer, and tapirs.59–61 However, in contrast to these

studies, the brown bear specimens considered here were gener-

ally collected from regions with low (historical) human population

densities and low Human Footprint indices (Figures 3B and 3C).

In addition, Swedish brown bears are solitary, were hunted

almost to extinction in the1930s,62 anddespite population recov-

ery, represent a low-densitywildlife populationwith infrequent in-

teractions with humans or livestock.25

The lack of a direct link between AMR and exposure to hu-

mans suggests that the observed temporal changes in total

AMR load and ARG diversity in wild bears reflect widespread

contamination of natural environments that goes beyond the im-

mediate vicinity of human habitation. Evidence exists for AMR

contamination far away from the source sites. AMR of a likely

anthropogenic origin has been detected in pristine environments

that are expected to be free from human activities, for example,

in High Arctic soils.63 Migratory birds, water, andwind-blown soil

particles have been suggested as important vectors for human-
4654 Current Biology 31, 4650–4658, October 25, 2021
associated AMR, possibly allowing for dissemination across

wide distances and to remote locations.64,65 For example, river

water and estuarine sediments contain ARGs, particularly down-

stream of wastewater treatment plants, livestock farms, and

other anthropogenic constructions.7–11 Furthermore, AMR has

been shown to persist in environments even in the absence of

selective pressures from antibiotics. Fitness costs for maintain-

ing AMR can be extremely variable and the strength of selection

for AMR can remain constant across a large range of antibiotic

concentrations, which may facilitate the maintenance of AMR

in environmental microbiomes.66,67

DISCUSSION

Using dental calculus, a host-associated microbiome that per-

sists through time, we were able to quantify temporal changes

in AMR load and ARG diversity from the pre-antibiotics era until

the present day. Our study exemplifies how the field of ancient

metagenomics can broaden our understanding of global envi-

ronmental trends, including those resulting from human actions,

helping us to evaluate and improve the effectiveness of environ-

mental policies for the control of AMR. Our case study suggests

that human actions, both negative and positive, can directly

impact diverse microbial communities, including those associ-

ated with wild animals, and provides evidence that large-scale

policies limiting the use of antimicrobials in humans and livestock

may be effective in curbing the dissemination of AMR through

environmentally mediated pathways.

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

https://www.lantmateriet.se/sv/Kartor-och-geografisk-information/geodataprodukter/produktlista/oversiktskartan
https://www.lantmateriet.se/sv/Kartor-och-geografisk-information/geodataprodukter/produktlista/oversiktskartan
https://www.lantmateriet.se/sv/Kartor-och-geografisk-information/geodataprodukter/produktlista/oversiktskartan
https://doi.org/10.7927/H46T0JQ4
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(2012). Comparison of antibiotic susceptibility of old and current

Serratia. Future Microbiol. 7, 781–786.

47. Wallace, C.C., Yund, P.O., Ford, T.E., Matassa, K.A., and Bass, A.L.

(2013). Increase in antimicrobial resistance in bacteria isolated from

stranded marine mammals of the Northwest Atlantic. EcoHealth 10,

201–210.

48. Alekshun, M.N., and Levy, S.B. (2007). Molecular mechanisms of antibac-

terial multidrug resistance. Cell 128, 1037–1050.

49. Sharkey, L.K.R., Edwards, T.A., and O’Neill, A.J. (2016). ABC-F proteins

mediate antibiotic resistance through ribosomal protection. MBio 7,

e01975.

50. Rifkin, R.F., Vikram, S., Ramond, J.B., Rey-Iglesia, A., Brand, T.B., Porraz,

G., Val, A., Hall, G., Woodborne, S., Le Bailly, M., et al. (2020). Multi-proxy

analyses of a mid-15th century Middle Iron Age Bantu-speaker palaeo-

faecal specimen elucidates the configuration of the ‘ancestral’ sub-

Saharan African intestinal microbiome. Microbiome 8, 62.

51. D’Costa, V.M., King, C.E., Kalan, L., Morar, M., Sung, W.W.L., Schwarz,

C., Froese, D., Zazula, G., Calmels, F., Debruyne, R., et al. (2011).

Antibiotic resistance is ancient. Nature 477, 457–461.

52. Chitsaz, M., Booth, L., Blyth, M.T., O’Mara, M.L., and Brown, M.H. (2019).

Multidrug resistance in Neisseria gonorrhoeae: identification of function-

ally important residues in the MtrD efflux protein. MBio 10, e02277.

53. Wicaksono, W.A., Kusstatscher, P., Erschen, S., Reisenhofer-Graber, T.,

Grube, M., Cernava, T., and Berg, G. (2021). Antimicrobial-specific

http://refhub.elsevier.com/S0960-9822(21)01112-X/sref18
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref18
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref18
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref18
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref19
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref19
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref19
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref20
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref20
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref20
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref21
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref21
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref22
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref22
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref22
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref22
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref22
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref23
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref23
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref23
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref23
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref24
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref24
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref24
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref24
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref25
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref25
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref25
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref25
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref25
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref26
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref26
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref26
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref26
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref27
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref27
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref27
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref27
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref27
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref27
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref28
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref28
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref28
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref28
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref29
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref29
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref29
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref29
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref30
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref30
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref30
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref30
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref31
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref31
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref31
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref32
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref32
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref32
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref32
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref33
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref33
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref33
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref33
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref33
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref34
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref34
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref34
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref34
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref35
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref35
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref35
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref35
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref36
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref36
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref36
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref36
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref37
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref37
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref37
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref38
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref38
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref38
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref38
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref38
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref39
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref39
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref39
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref40
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref40
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref40
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref40
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref40
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref40
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref40
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref41
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref41
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref41
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref41
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref42
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref42
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref42
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref43
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref43
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref43
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref44
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref44
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref45
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref45
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref46
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref46
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref46
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref46
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref47
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref47
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref47
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref47
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref48
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref48
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref49
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref49
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref49
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref50
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref50
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref50
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref50
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref50
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref51
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref51
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref51
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref52
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref52
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref52
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref53
http://refhub.elsevier.com/S0960-9822(21)01112-X/sref53


ll
OPEN ACCESSReport
response from resistance gene carriers studied in a natural, highly diverse

microbiome. Microbiome 9, 29.

54. Dahle, B., and Swenson, J.E. (2003). Home ranges in adult Scandinavian

brown bears (Ursus arctos): effect of mass, sex, reproductive category,

population density and habitat type. J. Zool. (Lond.) 260, 329–335.

55. Guenther, S., Grobbel, M., Heidemanns, K., Schlegel, M., Ulrich, R.G.,

Ewers, C., and Wieler, L.H. (2010). First insights into antimicrobial resis-

tance among faecal Escherichia coli isolates from small wild mammals

in rural areas. Sci. Total Environ. 408, 3519–3522.

56. Kozak, G.K., Boerlin, P., Janecko, N., Reid-Smith, R.J., and Jardine, C.

(2009). Antimicrobial resistance in Escherichia coli isolates from swine

and wild small mammals in the proximity of swine farms and in natural en-

vironments in Ontario, Canada. Appl. Environ. Microbiol. 75, 559–566.

57. Nhung, N.T., Cuong, N.V., Campbell, J., Hoa, N.T., Bryant, J.E., Truc,

V.N.T., Kiet, B.T., Jombart, T., Trung, N.V., Hien, V.B., et al. (2015). High

levels of antimicrobial resistance among escherichia coli isolates from live-

stock farms and synanthropic rats and shrews in the Mekong Delta of

Vietnam. Appl. Environ. Microbiol. 81, 812–820.

58. Grall, N., Barraud, O., Wieder, I., Hua, A., Perrier, M., Babosan, A.,

Gaschet, M., Clermont, O., Denamur, E., Catzeflis, F., et al. (2015). Lack

of dissemination of acquired resistance to b-lactams in small wild mam-

mals around an isolated village in the Amazonian forest. Environ.

Microbiol. Rep. 7, 698–708.

59. Skurnik, D., Ruimy, R., Andremont, A., Amorin, C., Rouquet, P., Picard, B.,

and Denamur, E. (2006). Effect of human vicinity on antimicrobial resis-

tance and integrons in animal faecal Escherichia coli. J. Antimicrob.

Chemother. 57, 1215–1219.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

ETDA Thermofisher Scientific Cat#: 15575020

Tris-HCl Thermofisher Scientific Cat#: AM9855G

Tween-20 Sigma Cat#: P9416-50ML

Proteinase K Sigma Cat#: P6556-25MG

Guanidine hydrochloride Sigma Cat#: G3272-500G

Isopropanol Sigma Cat#: I9516-500ML

Sodium acetate Sigma Cat#: S7899-500ML

PE buffer QIAGEN Cat#: 19065

EB buffer QIAGEN Cat#: 19086

Tango Buffer Thermofisher Scientific Cat#: BY5

ATP Thermofisher Scientific Cat#: R0441

T4 Polynucleotide Kinase Thermofisher Scientific Cat#: EK0032

T4 DNA Polymerase Thermofisher Scientific Cat#: EP0062

T4 DNA Ligase Thermofisher Scientific Cat#: EL0011

Bst 2.0 DNA polymerase New England Biolabs Cat#: M0537S

PfuTurbo Cx hotstart polymerase Agilent Genomics Cat#: 600410

dNTP mix Thermofisher Scientific Cat#: R1121

BSA Thermofisher Scientific Cat#: B14

Critical commercial assays

High Pure Viral Nucleic Acid Large

Volume Kit

Roche Cat#5114403001

MinElute PCR Purification Kit QIAGEN Cat#28006

AMPure XP Beads Beckman Coulter Cat#A63881

Maxima SYBR Green/ROX qPCR

Master Mix

Thermofisher Scientific Cat#K0221

Qubit dsDNA HS Assay kit Thermofisher Scientific Cat#Q32851

TapeStation High Sensitivity D1000

Reagents

Agilent Genomics Cat#5067-5585

TapeStation High Sensitivity D1000

ScreenTape

Agilent Genomics Cat#5067-5584

Deposited data

Raw data This study ENA: PRJEB42014

Analyzed data This study https://doi.org/10.5281/zenodo.5106420

Ursus arctos horribilis reference genome 68 RefSeq: GCF_003584765.1

Homo sapiens reference genome 69 RefSeq: GCF_000001405.38

phiX reference genome RefSeq: GCF_000819615.1

Soil metagenomes (n = 5) 70 ENA: ERR1017187, ERR1019366,

ERR1022687, ERR1034454, ERR1035437

Human skin metagenomes (n = 5) 71 SRA: SRS727524, SRS728264,

SRS728285, SRS728312, SRS728355

Human gut metagenomes (n = 5) 72,73 SRA: SRS011271, SRS018656,

SRS019397, SRS023526, SRS051031

Human supragingival plaque metagenomes

(n = 5)

72,73 SRA: SRR6877300, SRR6877340,

SRR6877350, SRR6877370, SRR6877399

Human medieval dental calculus

metagenomes (n = 5)

29 SRA: SRS015650, SRS018665,

SRS018975, SRS019387, SRS023538

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Laboratory reagent metagenomes (n = 4) 74 ENA: ERR584320, ERR584333,

ERR584341, ERR584348

Comprehensive Antibiotic Resistance

Database (CARD) v3.0.1

41 https://card.mcmaster.ca/download/0/

broadstreet-v3.0.1.tar.gz

Swedish parish boundaries 1976-1995 Lantm€ateriet https://www.lantmateriet.se/sv/

Kartor-och-geografisk-information/

geodataprodukter/produktlista/

socken-och-stad/

Human population data 1810-1990 N/A http://rystad.ddb.umu.se:8090/html#/main

Human population data 2000-2015 Statistics Sweden https://www.scb.se/vara-tjanster/

oppna-data/oppna-geodata/tatorter/;

https://www.scb.se/vara-tjanster/

oppna-data/oppna-geodata/smaorter/

Human population data per county 2000 Statistics Sweden https://www.statistikdatabasen.scb.se/

pxweb/en/ssd/

START__BE__BE0101__BE0101C/

BefArealTathetKon/

Human Footprint data 2009 75 https://doi.org/10.7927/H46T0JQ4

Experimental models: Organisms/strains

82 Ursus arctos arctos museum specimens

(dental calculus samples)

Swedish Museum of Natural History

(Stockholm, Sweden)

Museum accessions available at https://

doi.org/10.5281/zenodo.5106420

Oligonucleotides

Barcoded P5 forward adaptor: 50 / 30;
CTTTCCCTACACGACGCTCTTCC

GATCTxxxxxxx

CytoGene 76

Barcoded P7 forward adaptor: 50 / 30;
GTGACTGGAGTTCAGACGTGTGCTCT

TCCGATCTxxxxxxx

CytoGene 76

Barcoded P5/P7 reverse adaptor: 50 / 30;
xxxxxxxAGATCG

CytoGene 76

Indexed P5 adaptor primer: 50 / 30;
AATGATACGGCGACCACCGAGATC

TACACxxxxxxxACACTCTTTCCCTA

CACGACGCTCTT

CytoGene 77

Indexed P7 adaptor primer: 50 / 30;
CAAGCAGAAGACGGCATACGAGAT

xxxxxxxGTGACTGGAGTTCAGACGTGT

CytoGene 77

preHyb qPCR forward primer: 50 / 30;
CTTTCCCTACACGACGCTCTTC

CytoGene 76

preHyb qPCR reverse primer: 50 / 30;
GTGACTGGAGTTCAGACGTGTGCT

CytoGene 76

IS5 qPCR P5 primer: 50 / 30;
AATGATACGGCGACCACCGA

CytoGene 77

IS6 qPCR P7 primer: 50 / 30;
CAAGCAGAAGACGGCATACGA

CytoGene 77

Software and algorithms

In-house R analysis code This study https://doi.org/10.5281/zenodo.5106420

In-house demultiplexing and barcode

trimming scripts

This study https://doi.org/10.5281/zenodo.5106420

In-house duplicate read removal script This study https://doi.org/10.5281/zenodo.5106420

AdapterRemoval v2.2.2 78 https://github.com/MikkelSchubert/

adapterremoval; RRID: SCR_011834

PrinSeq-Lite v0.20.4 79 http://prinseq.sourceforge.net/; RRID:

SCR_005454

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

bwa mem v0.7.17 80,81 http://bio-bwa.sourceforge.net/; RRID:

SCR_010910

SAMTools v1.9 82 http://htslib.org/; RRID: SCR_002105

BEDTools v2.27.1 83 https://github.com/arq5x/bedtools2; RRID:

SCR_006646

Kraken2 v2.0.8 84 https://github.com/DerrickWood/kraken2

Bracken v2.0 85 https://github.com/jenniferlu717/Bracken

Kraken-biom N/A https://github.com/smdabdoub/

kraken-biom

SourceTracker v1.0 86 https://github.com/danknights/

sourcetracker/tree/v1.0

Blast v2.0.9+ 87,88 https://ftp.ncbi.nlm.nih.gov/blast/

executables/blast+/; RRID: SCR_004870

R v4.0.2 N/A http://www.r-project.org/; RRID:

SCR_001905

RStudio v1.3.959 N/A http://www.rstudio.com/; RRID:

SCR_000432

R package vegan 89 http://cran.r-project.org/web/packages/

vegan/index.html; RRID: SCR_011950

R package CCREPE N/A https://github.com/biobakery/ccrepe

QGIS v3.14.15 N/A https://qgis.org/en/site/; RRID:

SCR_018507
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Katerina

Guschanski (katerina.guschanski@ebc.uu.se).

Materials availability
This study did not generate new unique reagents.

Data and code availability
Shotgun metagenomic sequencing data have been deposited at the European Nucleotide Archive. The project accession number is

listed in the key resources table. All original code has been deposited at Zenodo and is publicly available. DOIs are listed in the key

resources table. Any additional information required to reanalyze the data reported in this paper is available from the lead contact

upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Dental calculus samples (n = 82) were collected from Swedish brown bear (Ursus arctos) specimens from the Swedish Museum of

Natural History (Stockholm, Sweden). Specimen collection date (date individual died or was found dead, or date specimen arrived at

the museum) ranged from 1842 to 2016. Of the 57 specimens retained for analysis, individuals were on average 5.9 years old at

approximate age of death (range 1-19 years; note only 17 specimens had age at death recorded), 14 were female, 28 were male

and 15 were of unknown sex.

METHOD DETAILS

Sample collection
Skulls were macroscopically examined for dental calculus deposits and evidence of oral diseases, such as caries, inflammation and

ante-mortem tooth loss.We have previously observed distinct microbial communities in dental calculus samples frombear teeth with

dental caries,24 thus we only processed calculus deposits from teeth without macroscopic signs of oral disease. Calculus was

removed from the surfaces of teeth with disposable sterile scalpel blades and deposited in sterile microcentrifuge tubes. For

each individual, calculus deposits from all healthy teeth were pooled and processed as one sample. However, three individuals
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were sampled twice and processed as separate samples, of which 5 samples were excluded due to low oral bacterial content. To

monitor museumenvironmental contamination, we used a sterilized cosmetic swab to rub an interior of one bear specimen drawer for

5 s, before depositing the swab tip in a sterile microcentrifuge tube. To characterize microbial communities that colonize the external

surface of museum specimens but are not oral in origin, we also swabbed the cranial surface of a bear specimen skull, keeping away

from the jaw to avoid potential carryover of endogenous oral microorganisms.

The year and location at death of each individual was obtained from museum records. For 14 specimens, year of death was un-

known, however we were able to confidently assign all to a time period based on museum records about the donation (e.g., year

specimen was found or donated to the museum, level of decomposition of the carcass, etc). Specimen location information included

county (or historical province), municipality, locality description and coordinates of where the individual was found. Coordinates were

available for the majority of specimens collected after 1995 and were provided in either the RUBIN (RUtin för Biolologiska INventer-

ingar) or Swedish Grid (RT-90) system. They were converted to standard World Geodetic System 84 (WGS84) coordinates using an

online converter (http://ormbunkar.se/koordinater/, accessed 10-10-2019). Specimens without location coordinates were assigned

WGS84 coordinates by searching for the locality described in the museum record on Google Maps (https://www.google.com/maps,

accessed 10-10-2019). Due to changing administrative boundaries over time, we then converted museum records of county/prov-

ince and municipality to the modern county and municipality based on specimen coordinates. Seven specimens had unknown

localities (beyond their county of origin) and were excluded from the geography and human impact analyses. However, for visuali-

zation, they are shown on the map within their known county (Figure 3A).

Sample processing and DNA extraction
All laboratory protocols were performed in a dedicated ancient DNA laboratory following stringent procedures to minimize contam-

ination.90 Samples were randomized to control for batch effects and extracted in batches of 16, including two blank negative controls

per batch that were taken forward to library preparation. Surface decontamination of dental calculus samples, ranging in weight

from < 5 mg and up to 20 mg, consisted of UV light exposure (10 min at 254 nm) followed by a wash in 500 ml of 0.5M ethylenedi-

aminetetraacetate (EDTA) for 1 min.24 After centrifugation at 18,000 x g for 1 min, the pellet was taken forward for DNA extraction

following a silica-based method91 adapted for non-human dental calculus, as previously described.24 We eluted purified DNA in

45 ml of EB buffer (10 mM tris-hydrochloride (pH 8.0) (QIAGEN, the Netherlands) supplemented with 0.05% (v/v) Tween-20.

Library preparation and sequencing
We used a double-indexing double-barcoding approach76,92 during double-stranded Illumina library preparation77 to guard against

index hopping and to retain certainty about sample of origin. All primer and adaptor sequences are listed in the key resources table

and sample-specific barcode-index combinations are provided at https://doi.org/10.5281/zenodo.5106420. We ligated adapters

containing inline 7 bp barcodes76 to both ends of the blunt-ended DNA and quantified the incomplete libraries using a quantitative

PCR assay (preHyb primers in the key resources table) to estimate the number of indexing PCR cycles needed for sequencing. All

extraction and library blanks were consistently lower in DNA content than the majority of samples, as measured by quantitative PCR.

Samples with adaptor-ligated library concentrations similar to the blanks were excluded. Libraries were double-indexed with unique

P5 and P7 indices so that each sample had a unique barcode-index combination. The first batch of indexing PCR reactions (22 sam-

ples and blanks) was performed with 18 ml of adaptor-ligated library, 1 ml PfuTurbo Cx hotstart polymerase (2.5 U/ml, Agilent Tech-

nologies, CA), 5 ml 10X PfuTurbo Cx reaction buffer, 0.5 ml dNTP mix (25 mM) and 1 ml of each indexing primer (10 mM) in 50 ml

reactions. Following optimization, the remaining indexing batches were performed with 3.2 ml 10X PfuTurbo Cx reaction buffer

and the addition of 0.09 ml 20 mg/mL BSA (Thermo Fisher Scientific, CA). For all batches, the PCR cycling conditions were: 2 min

at 95�C, 8 or 10 cycles of 30 s at 95�C, 30 s at 59�C and 1 min at 72�C, and a final step of 10 min at 72�C. Following purification

with MinElute, the indexed libraries were quantified using a quantitative PCR assay77 (IS5/IS6 primers, key resources table). We

pooled 1.5 ml of each indexed library (including blanks and swabs) and performed size selection for fragments approximately

100-500 bp in length with AMPure XP beads (Beckman Coulter, IN). The pooled library was sequenced by SciLifeLab Uppsala on

2 Illumina NovaSeq S2 flowcells using paired-end 100 bp read length v1 sequencing chemistry.

Data processing
Sequenced reads were demultiplexed and assigned to each sample with an in-house python script based on the unique combination

of barcodes and indices, discarding reads with wrong barcode combinations that could be the result of index hopping.92 Paired-end

reads that overlapped by at least 11 bp were merged, adapters and low quality terminal bases (phred scores % 30) were removed

and trimmed and merged reads with a length < 30 bp were filtered out with AdapterRemoval v2.2.2.78 Barcode sequences were

removed from the 50 and 30 ends of merged reads with an in-house python script. All reads for each sample (i.e., across the four lanes

from the two Illumina NovaSeq flowcells) were concatenated into a single file per sample. Reads with mean base quality < 30 were

filtered out with PrinSeq-Lite v0.20.4.79 Duplicate reads were removed by randomly keeping one read among those reads having an

identical sequence using an in-house python script. Reads resulting from the phage PhiX spiked in during Illumina sequencing, the

brown bear host and from human contamination were removed by mapping to PhiX, human69 and grizzly bear (U. arctos horribilis)

reference genomes68 with bwa mem v0.7.1780,81 (accessions in the key resources table). We retained the unmapped reads with

SAMTools v1.982 and BEDTools v2.27.183 for downstream analyses.
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Microbial source identification
The unmapped reads were assigned taxonomy using the k-mer based classifier Kraken2 v2.0.884 with the standard Kraken2 data-

base (all archaea, bacteria, viruses and the human genome in RefSeq; built 2019-05-01) and default parameters. We used Kraken-

biom to extract the summarized number of reads assigned at the genus and species levels. These assignments were used with

SourceTracker v1.086 in R, to estimate the potential contribution of source microbiomes to our samples. Source sequencing reads

were processed through the same pipeline as sample reads, and included soil,70 human skin,71 human gut,72,73 human supragingival

plaque,72,73 humanmedieval dental calculus29 and laboratory reagent74 microbiomes (accessions in the key resources table). Within

SourceTracker, sample rarefaction was set to the source with the lowest summed sequencing depth (-r 20809).

Oral bacteria identification
Weused Bracken v2.085 to estimate taxa abundances from the Kraken read assignments at the species level (-l S) using a read length

of 65 bp (-r 65), a k-mer length of 35 bp (-k 35) and without an abundance threshold (-t 0). The data were further processed in RStudio

v1.3.959 using R v4.0.2. We excluded bear calculus samples with low microbial taxa abundances (summed Bracken abun-

dance < 12,390, corresponding to the summed Bracken abundance of the most deeply sequenced extraction blank). To reduce

false-positive taxonomic assignments, we filtered out taxa present at < 0.05% relative abundance (Bracken abundance divided

by sum of Bracken abundance in a sample).93 We also excluded calculus samples with low proportions of taxa showing similarity

to human oral microbiomes (< 5% of a sample attributed to human calculus and plaque), as estimated by SourceTracker, to remove

potentially strongly contaminated samples (Figure S1). Since we were interested in endogenous AMR of the host-associated oral

microbiome, we subset the dataset to a list of oral bacteria, thus excluding environmental microorganisms that may contain

ARGs. To this end, we used criteria and classifications from previous dental calculus studies,24,29 taxa present in the Human Oral

Microbiome Database30 and those identified in dog and cat oral microbiota studies.31,32 Bracken relative abundances of oral taxa

were then summarized to the genus level for some downstream analyses.

Antimicrobial resistance profiling
AMR profiling was performed as previously described.24 Oral taxa reads were aligned against CARD v3.0.1 (modified 2019-02-19),41

a curated collection of resistance determinant sequences, with blast v2.0.9+87,88 using default parameters. Using RStudio, the DNA

and Protein accession numbers associated with each CARD sequence were mapped to their respective ARO accession number and

used to obtain the ARG family and resistancemechanismof each sequence. The best hit for a readwas identified based on highest bit

score. Where multiple hits had the same bit score, we compared the ARO terms and in all cases, the hits shared the same ARO in-

formation (ARG family and resistancemechanism). We therefore randomly chose one hit to carry forward. Total AMR load was calcu-

lated as the sumof all readswith hits in a sample, normalized by the number of sequenced oral bacteria reads. ARG family abundance

was calculated as the sum of reads assigned to each ARG family in a sample normalized by the number of sequenced oral bacteria

reads in that sample. We used the R package vegan,89 function ‘specnumber’, to calculate ARG diversity per sample as the number

of ARG families in a sample with at least one sequencing read. To obtain ARG family abundance across a time period, we calculated

the sum of reads with a best hit for each ARG family in a time period (i.e., combined across samples) normalized by the number of

extracted oral reads in all samples in that time period. Similarly, ARG diversity per time period was calculated as the number of ARG

families in a time period with at least one sequencing read (i.e., combined across samples).

Geographic and human impact data
Historical human population data was based on publicly available Swedish church parish (församling or socken in Swedish) records.

Parishes were both religious and territorial units until 1995, and recorded parish population numbers, among other details. The 50

specimens with known localities were plotted in QGIS v3.14.15 with a vector of Swedish parish boundaries as they were in the

1976-1995 Swedish property register, downloaded from Lantm€ateriet, the Swedish mapping, cadastral and land registration author-

ity (see key resources table, accessed 27-05-2020). The corresponding parish for each specimen and each parish area was deter-

mined in QGIS. Publicly available historical human population data was downloaded using the FOLKNET search tool (see key

resources table, accessed 08-06-2020). The FOLKNET database contains the human population from each town and parish,

collected every 10 years from 1810 to 1990.

Secular municipality divisions came into effect between 1971 and 1995 and the Swedish Tax Agency took over the population reg-

ister in 1991. Therefore, modern human population data (for specimens collected between 1995 and 2016) was based on publicly

available population statistics of Swedish towns from Statistics Sweden (SCB). ArcView GIS shape files for human population in

2000, 2010 and 2015were downloaded andmerged (see key resources table, accessed 09-06-2020). Eachmerged vector contained

the polygon boundaries and area of each town with its human population on 31st of December of the reference year. Because his-

torical parish boundaries tended to be larger than modern town boundaries, we chose to map the modern towns to the historical

parish boundaries. Thus, data frommultiple towns within a parish boundary were combined. The historical parishes and correspond-

ing modern town names, populations and areas were exported into RStudio and summed across historical parish for each reference

year.

In RStudio, specimens were assigned to their closest reference year (available for each decade, e.g., a specimen with a death,

found or arrival date in 1984 was assigned to the reference year 1980, while a specimen from 1985 was assigned to 1990), except

for specimens collected after 2014, which were assigned to the 2015 reference year. For specimens collected before 1995, human
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population was assigned as the FOLKNET historical population for the parish during the closest reference year, whereas specimens

collected from 1995 were assigned human population values based on the information from SCB. Human population density

(population per square kilometre) was then calculated using the area of each parish. For Figure 3B, human population density for

all of Sweden and for each county in the year 2000 was downloaded from SCB (see key resources table, accessed 14-12-2020).

Human activities data were not consistently available for historical time periods. We therefore used the Last of the Wild Project

(version 3) 2009 Human Footprint, 2018 Release, which is a global map of the cumulative human pressure on the terrestrial environ-

ment in 2009, using eight variables (built-up environments, population density, electric power infrastructure, crop lands, pasture

lands, roads, railways and navigable waterways) at a spatial resolution of approximately 1 km.75 The GeoTiff raster file for 2009

was downloaded from the NASA Socioeconomic Data and Applications Center (accessed 04-06-2020) and imported into QGIS

with the 50 specimens with assigned coordinates (visualized in Figure 3A). A 500 km2 buffer zone, corresponding to a 12.5 km radius,

was calculated around each specimen, corresponding to an approximate average of the home range size of adult brown bears in

Sweden (100-1000 km2, depending on sex and reproductive status).54 The average Human Footprint Index was calculated within

each specimen buffer zone and exported into RStudio. For Figure 3C, the average Human Footprint Indexwas also calculated across

all of Sweden.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses were performed in RStudio. Specimen time period was treated as a five-level ordered factor for all relevant

analysis. For ordination, Bracken abundance counts for all filtered taxa were normalized by the center-log ratio (CLR) transformation,

using a pseudocount of 1 added to all taxa in all samples to resolve the problem of zero values. Euclidean distance matrices were

calculated with the vegan89 function vegdist. Non-metric multidimensional scaling (NMDS) was performed on the distance matrices

with the vegan function metaMDS (Figures 2D, 2E, and S1C). NMDS was also performed for oral bacteria on a Jaccard distance ma-

trix calculated frombinary presence/absence data (Figures S3OandS3P). Stress values and k number for eachNMDSare reported in

the associated figure legend. PERMANOVA was performed on distance matrices using the vegan function adonis with 1000 permu-

tations. To evaluate changes in abundance (total AMR load and ARG family abundance) over time, and/or associations with historical

human population density and mean Human Footprint Index, generalized linear models (GMLs) were built with a quasibinomial dis-

tribution and a logit link function and total oral read count asweights (details and results in Table S1). To determinewhich potential co-

variables were associated with total AMR load, continuous explanatory variables (e.g., median length of oral reads, historical human

population density) were evaluated with a Spearman correlation test, while categorical variables (e.g., extraction batch, specimen

county location) were evaluated with a Kruskal rank sum test (Table S2). Significant variables were included as co-variables in the

generalized linear models.

ARG family diversity was calculated across specimens pooled by time period, as the number of unique ARG families detected in

that time period, using the vegan function specnumber. To control for different numbers of specimens between time periods, we sub-

sampled each time period to 8 specimens (the lowest number of specimens in any time period) without replacement, using the R base

function sample, before calculating ARG family diversity. This process was repeated 1000 times to generate a distribution of ARG

family diversity values for each time period (Figure 1C). To control for differences in sequencing depth between time periods, we

also subsampled each time period to 500 AMR-positive reads (the lowest number of pooled AMR-positive reads in a time period

was 553), independent of specimen ID, and calculated ARG family diversity 1000 times, as above (Figure S2).

To identify correlations between ARG family abundance and bacterial genus abundance, we used the R package CCREPE

(Compositionality Corrected by REnormalizaion and PErmutation), which aims to identify significant correlations between two

compositional datasets while accounting for multiple hypothesis testing. We compared the four most highly abundant ARG families

(ABC-F, ileS, RND and rpoB) with all oral bacterial genera, 20 bootstrap and permutation iterations and a minimum non-zero sample

(subject) number per ARG family/genus of 20. For the measure of similarity (or correlation) between samples, we used CCREPE’s in-

build nc.score function, which calculates species-level co-variation and co-exclusion patterns based on an extension of Diamond’s

checkerboard score to ordinal data. Significantly correlated ARG–genus pairs were identified as those with padjusted < 0.05 (p value

adjusted for multiple hypotheses with the Benjamin-Hochberg-Yekutieli procedure) and a positive correlation (i.e., nc.score > 0).
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