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1 Introduction 1 

Beef production systems have been implicated as the source of a significant proportion 2 

of global agricultural greenhouse gas (GHG) emissions, with methane (CH4) from 3 

ruminant enteric fermentation as the principal source (Gerssen-Gondelach et al., 4 

2017). However, net emissions vary greatly depending on the production system and 5 

levels of intensification, e.g., low input (extensive) versus feedlot finishing with high 6 

energy-dense diets. The rhetoric around sustainable intensification of agriculture has 7 

highlighted the advantages of feedlot systems to shorten the animal production cycle 8 

and increasing animal growth efficiency (Tilman et al., 2011). Feedlot systems and on-9 

pasture supplementation can also reduce net CH4 emission per kilogram of beef (de 10 

Oliveira Silva et al., 2015). In some regions, feedlots might decrease GHG emissions 11 

intensity by 25% compared with extensive pasture-based systems (Cortez-Arriola et 12 

al., 2016). In such systems, feed ingredients and diet formulation contribute 13 

significantly to GHG emissions (Tilman et al., 2011). However, the extent of any 14 

potential GHG reduction depends both on the impact of feed composition – on CH4 15 

emissions – and of manure decomposition – on CH4 and N2O emissions – from 16 

different management practices, and the environmental life cycle impacts of individual 17 

ingredients.  18 

 A potential cost-effective emissions mitigation strategy is to use proper diet 19 

formulation balancing economic and environmental objectives. The economic 20 

optimization of feed formulation is typically achieved through a least-cost linear 21 

programming diet model (Soto and Reinoso, 2012), which formulates the optimal diet 22 

minimizing feeding cost subject to a set of nutritional constraints. The environmental 23 

objective in feed formulation varies considerably across species with CH4 production 24 

from ruminants a more significant target compared to relatively negligible emissions 25 

from monogastrics. In this context, Jean dit Bailleul et al. (2001) developed a 26 

multiobjective model based on an least-cost model focusing solely on nitrogen (N) 27 

excretion in pigs. Similarly, Hadrich et al. (2005) and Pomar et al. (2007) examined 28 

reducing phosphorus (P) excretion based on an least-cost model using multiobjective 29 

optimization, focusing on cattle and pigs, respectively. Later models minimizing both 30 

nitrogen (N) and P production were introduced by Kikuhara et al. (2009) for dairy cattle, 31 

and by Dubeau et al. (2011) for pigs. Moraes et al. (2012) represented carbon cost 32 

equivalent from N and CH4 emission in the least-cost model objective function. 33 



However, their work overlooked the impact arising from the feedstuff life cycle in diet 34 

formulation, i.e., the accumulated emissions of feedstuff throughout the production 35 

cycle. Moraes et al. (2015) developed an efficiency frontier from a goal programming 36 

approach between diet costs and CH4 emissions, improving the representation of 37 

economic and environmental impact trade-offs. 38 

 With an improved understanding of livestock nutritional dynamics and better life 39 

cycle assessment (LCA) data, state-of-the-art environmental-economic diet 40 

formulation models can capture the interaction between multiple environmental 41 

impacts when optimizing animal diets. Integrating LCA with diet models was utilized 42 

by Mackenzie et al. (2016), reducing N and P excretion in pigs, along with LCA for 43 

non-renewable resource use, and combining acidification, eutrophication, and global 44 

warming potentials in a combined environmental impact score. However, Garcia-45 

Launay et al. (2018), noted that “they did not investigate trade-offs between economic 46 

and environmental objectives”, and proposed a multiobjective linear programming 47 

model to minimize a weighted sum of the least-cost diet and environmental impacts 48 

measured solely by the feedstuff LCA (Garcia-Launay et al. 2018). The approach 49 

generates an efficiency frontier representing the trade-offs between diet cost and 50 

environmental impacts. Their analysis explores multiple livestock species (pig, broiler, 51 

and bulls) and environmental impacts (phosphorus demand, non-renewable energy, 52 

climate change potential, and land use). 53 

 However, in the case of ruminants, and more specifically cattle, the Garcia-54 

Launay et al. (2018) methodology has two drawbacks. First, it does not account for 55 

emissions from enteric fermentation (CH4) and manure decomposition (N2O), which 56 

are significant in ruminants. Second, it does not tackle profit maximization in the feed 57 

formulation, a reasonable objective. One possible reason is that these factors can 58 

imply a hard-to-solve nonlinear programming model, which has recently been 59 

addressed by Marques et al. (2020) in relation to optimal cattle diet formulation. The 60 

latter highlighted significant differences between the use of a nonlinear profit-61 

maximizing diet (NLPMD) model versus least-cost for feed formulation.  The NLPMD 62 

model can be efficiently solved through parametric linear programming, i.e., by 63 

optimizing the least-cost model for the range of feasible shrunk weight gain (SWG), 64 

i.e., animal weight gain in terms of shrunk bodyweight, approximately 96% of live 65 

weight. By integrating the contributions from Marques et al. (2020) and Garcia-Launay 66 



et al. (2018) and computing CH4 and N2O production from enteric fermentation and 67 

manure decomposition, it is possible to derive a more comprehensive analysis of the 68 

environmental-economic trade-offs in feedlot beef production systems. 69 

 This paper uses a multiobjective method based on a nonlinear profit-70 

maximizing diet model to assess the economic and environmental trade-offs in diet 71 

formulation for feedlots in France. The analysis combines data from ingredients LCA 72 

– from the ECOALIM database (Wilfart et al., 2016) – and Tier 2 equations for direct 73 

cattle emissions derived by Escobar-Bahamondes et al. (2017) and the IPCC (2006).  74 

We also analyze the impacts of using a profit-maximizing objective function in contrast 75 

to using the least-cost diet, and the implications of weighting different environmental 76 

impacts in the multiobjective function. The model context (outlined in section 2) is an 77 

exploration of the emissions mitigation potential from French livestock production and 78 

its contribution to national mitigation ambitions. Section 3  details the methodology, 79 

comprising the multiobjective technique utilized to generate an efficiency frontier 80 

considering: (i)  feedstuff costs, (ii) revenue associated with animal SWG, (iii) 81 

environmental impacts measured by LCAs for each ingredient, (iv) CH4 emissions 82 

from enteric fermentation, and (v) N2O emissions from manure decomposition. In 83 

section 4, using a typical feedlot, we derive the efficiency frontier, the marginal GHG 84 

abatement cost curve, the emission intensity per kg of carcass, the diet composition, 85 

and animal performance. In section 5, we discuss the results, the environmental 86 

(impact) mitigation potential, and the farm-level economic implications within the 87 

French production context. We conclude our findings in section 6. 88 

2 Background and policy context  89 

Livestock is of significant importance in the European economy, accounting for roughly 90 

21.5% of the total € 41.6 billion in exports in 2019 (EUROSTAT, 2020a). European 91 

beef production has been constant, ranging from 86 to 89 million heads per year since 92 

2011 (EUROSTAT, 2020b). However, the average carcass weight has been 93 

increasing, e.g. additional 24 kg/head between 2000 and 2015, increasing total meat 94 

production over time (Hocquette et al., 2018). France is Europe’s largest beef producer 95 

and exporter, producing over 18 million head of cattle in 2019, which accounts for a 96 

little over 20% of Europe’s total (EUROSTAT, 2020a). Developments in the sector are 97 

being influenced by several factors, including shifting consumer behaviours, changing 98 



meat consumption per capita, and emerging environmental constraints (Hocquette et 99 

al., 2018). A significant driver of change is the growing concern over the livestock 100 

contribution to climate change. Many countries are therefore examining total GHG 101 

emissions mitigation strategies within more or less (sustainably) intensive systems i.e., 102 

seeking to reduce emissions per kg of product without compromising economic 103 

performance, what would lead to reducing total emissions for the same demand level 104 

of a baseline scenario. Ruminant emissions are particularly implicated in mitigation 105 

strategies, accounting for a significant share of sector emissions and around 31% of 106 

those arising from global food production (Ritchie, 2019), a contribution that varies 107 

between countries (Tedeschi and Fox, 2020, Chapter 3.1).  Many mitigation measures 108 

have been proposed, with significant effort made to identify those that are cost-109 

effective (Pellerin et al., 2017).  Less attention has been paid to the emerging ancillary 110 

effects of measures implemented alone or in combination and the issue of 111 

environmental impact transference, i.e. reducing one impact metric causes increase 112 

in other metrics.     113 

 In its National Low-Carbon Strategy (SNBC), France has set a target to reduce 114 

agricultural sector emissions by 18% by 2030 compared to a 2015 baseline (MTES, 115 

2020). Among other strategies, the SNBC highlights  N2O and CH4 emission reduction 116 

by “reducing excess protein intake in animal diets” and “limiting enteric fermentation 117 

through adjustments to animal feed…” (MTES, 2020). Given this ambition, our model 118 

aims to assess the emissions reduction potential (expressed in CO2 equivalent - 119 

CO2eq) from cattle feedlots while accounting for potential environmental impact 120 

transference and any trade-offs with productivity and profit. 121 

3 Material and methods 122 

We developed an ε-constrained multiobjective (MO) model – solved through ε-123 

constrained technique – defining two objectives in diet formulation: profit maximization 124 

and environmental impact minimization. The ε-constrained is a MO technique, which 125 

overcomes convexity issues in nonlinear programming, in contrast to the weighted 126 

sum technique (Bérubé et al., 2009). We use the nonlinear profit-maximizing diet 127 

model proposed by Marques et al. (2020), which is based on the predictive equations 128 

of nutrient requirements from NASEM (2016) and Tedeschi and Fox (2020). Using the 129 

NASEM (2016) system, the NLPMD was shown to be effectively solved through 130 



parametric linear programming, i.e., we can obtain the optimal solution by solving a 131 

finite number of linear programming models. Thus, our proposed nonlinear MO model 132 

can be solved by the same technique, from which we derive trade-offs and sensitivity 133 

analysis of emissions versus profit. Moreover, we integrated our optimization model 134 

with the data file generated by the “Ruminant Nutrition System” software (Tedeschi 135 

and Fox, 2020a, 2020b) to import all the animal requirement parameters. 136 

3.1 Feedstuff properties 137 

We obtained the nutritional properties of feedstuffs from NASEM (2016), which has a 138 

library with over 200 feeding ingredients. The mathematical model developed by 139 

Marques et al., (2020) requires the following properties to evaluate the nutritional 140 

requirements: metabolizable protein (MP), physically effective neutral detergent fiber 141 

(peNDF), fat content (FAT), ruminally degradable protein (RDP), crude protein (CP), 142 

net energy for maintenance and gain (CNEm and CNEg), and dry matter (DM) to “as 143 

fed” (AF) conversion for each ingredient. We obtained LCA information of each 144 

ingredient from the ECOALIM database (Wilfart et al., 2016). Analogous to Garcia-145 

Launay et al. (2018), we considered the following environmental impacts: phosphorus 146 

demand (PD, in kg P/kg of ingredient DM), non-renewable energy (NRE, MJ/kg of 147 

ingredient DM), climate change potential (CC, in kg CO2eq/kg of ingredient DM), 148 

acidification potential (AC, in mol H+-eq/kg of ingredient DM), eutrophication potential 149 

(EU, in kg PO4
3-eq/kg of ingredient DM) and land occupation (LO, m2 year/kg of 150 

ingredient DM). 151 

 The CH4 emission from enteric fermentation is calculated using a linear-152 

equivalent equation from Escobar-Bahamondes et al. (2017) and that from manure 153 

management uses the IPCC Tier 2 (IPCC, 2006). Both equations can be split into the 154 

contribution of each ingredient j, considering their partial nutritional composition, thus 155 

being integrated linearly into the model. For simplification, the CH4 equation had its fat 156 

factor adjusted to utilize the first rather than the third power, with R2 ≤ 0.99. Moreover, 157 

we consider the constraint that the feedlot-fed cattle diet typically has less than 65% 158 

DM forage content. We used the conversion factor of 34 kg CO2eq / kg CH4 (IPCC, 159 

2013). For the N2O emissions, we use the IPCC Tier 2, which also does not affect the 160 

structure of the mathematical model; i.e., it can still be solved using the same 161 

technique. For N2O, we consider the animal’s final weight in a dry lot system (0.02 kg 162 

N2O / kg Nitrogen excreted), Nretention_frac of 7% and conversion rates of  298 kg CO2eq 163 



/ kg N2O (IPCC, 2013), and 1.57 kg N2O-N / kg N2O (IPCC, 2006). The equations are 164 

shown in appendix Equations A.1. 165 

3.2 Multiobjective approach 166 

The NLPMD model  (Marques et al., 2020) has the advantage of being solved through 167 

linear parametric programming. This advantage derives from the fact that while the 168 

NLPMD is solved for a variable SWG and ingredient inclusions xj for each feed j ∈ J, 169 

fixing a value for SWG reduces the NLPMD to the least-cost model, which is a linear 170 

model. Thus, parameterizing SWG allows us to find the optimal NLPMD and the 171 

respective optimal SWG. The parametrically linearized objective function in (1) 172 

computes profit as a function of feeding time T (days), animal selling price S (€ / kg 173 

SW), dry matter intake DMI (kg of feed/day), initial shrunk bodyweight SBW0 (kg SW), 174 

purchase price p0 (€ / kg SW), the parametric variable shrunk weight gain SWG (kg 175 

SW / day), and for each feed j ∈ J their respective costs cj (€ / kg of feed DM), and 176 

inclusion in the diet xj (%DM). We can simplify equation (1) by considering that the 177 

purchase price p0 and selling price S are equal; thus, profit is given by growth minus 178 

the diet cost during the feeding period. 179 

𝑍(𝑆𝑊𝐺, 𝒙) =  𝑇 [𝑆 × 𝑆𝑊𝐺– 𝐷𝑀𝐼 ∑ 𝑐𝑗𝑥𝑗

𝑗∈𝐽

] − 𝑆𝐵𝑊0 × (𝑝0 − 𝑆) (1) 

We can assemble the objective function of the six environmental impacts k ∈ K={PD, 180 

NRE, CC, AC, EU, LO} into a single environmental impact metric (EI) as shown in (2). 181 

The LCAjk for each feed j ∈ J and environmental impact k ∈ K is weighted by a 182 

coefficient βk, such that ∑ 𝛽𝑘𝑘∈𝐾  = 1. This coefficient balances the relative “importance” 183 

of each LCA in the objective function. In practice, the weights must be chosen in a way 184 

that avoids environmental impact transference. That is, the propensity for reducing 185 

one impact at the cost of increasing others. The first part of equation (2) is identical to 186 

Garcia-Launay et al., (2018). The second includes the CH4 and N2O emission 187 

contribution from each ingredient converted to (kg CO2eq/kg of ingredient DM). Both 188 

are subject to the exact weighting for climate change potential (βCC). For mathematical 189 

purposes, we use normalized LCA values in (2) and convert them back to marginal 190 

values to present the results. This approach does not change the optimal solution in 191 

the model. 192 



𝐸𝐼(𝒙) =  𝑇 × 𝐷𝑀𝐼 (∑ 𝛽
𝑘

 (∑ 𝑥𝑗 𝐿𝐶𝐴𝑗𝑘

𝑗∈𝐽

)

𝑘∈𝐾

+ 𝛽
𝐶𝐶

( ∑ 𝑥𝑗 𝐶𝐻4𝑗

𝑗∈𝐽

+  𝑁2𝑂𝑗)) (2) 

The multiobjective function is the convex combination of functions (1) and (2):  193 

MO(λ, SWG, x) = λ × Z(SGW, x) - (1 - λ) × EI(x), such as λ ∈ [0; 1]. When λ = 1, we 194 

are maximizing only the profit function, for which we can compute the reference 195 

(maximum) environmental impact EIREF-ub, using (2). Conversely, for λ = 0, we can find 196 

the minimum environmental impact EIREF-lb. The functions (1) and (2) can have the 197 

time parameter T replaced by a target weight, and be written as a function of SWG, 198 

as T = (SBWf - SBW0) / SWG. We used the ε-constrained method instead of the 199 

weighted sum since the latter can skip solution points in the solution frontier of 200 

nonlinear problems (Bérubé et al., 2009). With the combined function, we can 201 

generate the complete solution frontier for the nonlinear MO problem using the ε-202 

constrained method. In Algorithm 1 we show how to obtain the efficient frontier 203 

defined by the nutritional constraints in the NLPMD. In Algorithm 1, line 2, by solving 204 

the NLPMD model we calculate the upper bound environmental impacts (EIREF-ub), i.e., 205 

the impacts when the objective is only to maximize profit. Alternatively, replacing the 206 

objective function of the NLPMD by minimizing (2), we compute the minimum possible 207 

environmental impact (EIREF-lb), i.e., the lower bound, in line 3. To generate a frontier 208 

with N points, in line 4 we compute the step value ε = (EIREF-ub - EIREF-lb)/N, and then 209 

solve the nonlinear model (NLPMD) N times with the additional constraint EI(x) = EIREF-210 

lb + ε × s, where s ∈ ℤ0
+ ≤ N (lines 5 to 7). 211 

Each step s requires solving the nonlinear profit-maximizing model, thus the 212 

value N is defined depending on the desired granularity of the efficiency frontier and 213 

the available computational power. Marques (2020) highlights that using the golden 214 

section search algorithm instead of brute force to solve the parametric linear 215 

programming model (NLPMD), reduces time complexity from O(n) to O(log n). Such 216 

reduction assumes a precision of 10-3 and N = 100, this choice reduces the resolution 217 

of 240,250 models to 1,465. 218 

Algorithm 1: Pseudo-code procedure to build the efficiency frontier. 

1 input: animal characteristics, Ingredients parameters, environmental impact 

LCAs, interval (N) 



2 EIREF-ub ← EI(x* | {Max: MO(λ = 1, SWG, x) }) 

3 EIREF-lb ← EI(x* | {Max: MO(λ = 0, SWG, x) }) 

4 ε = (EIREF-ub - EIREF-lb)/N 

5 for s = 0 to N do 

6         solve NLPMD:{ Max: MO(λ = 1, SWG, x), 

s.t.: EI(x) ≤ EIREF-lb + ε × s} 

7 end for 

 219 

3.3 Analysis and scenarios 220 

We use one typical feedlot input in the French production system: Charolais steers 221 

fattened from 350 kg to 620 kg (live weight) with body condition score 5, sold at €3.73 222 

(2015 reference) per kilogram of carcass weight equivalent (CWE), or €2.46 per kg 223 

SWG (IDELE, 2016) – note that CWE is approximate 0.66 × SWG (Tedeschi and Fox, 224 

2020a, 2020b). We use typical ingredients available in France to compose the diet, 225 

presented in Table 1. The table contains ingredient cost, minimum and maximum 226 

inclusion levels in the diet, and their respective LCA. Such values are the same as 227 

those used by Garcia-Launay et al. (2018), allowing us to compare the results. We 228 

extracted the properties of the ingredients used in the mathematical model from the 229 

RNS model (Tedeschi and Fox, 2020a, 2020b), generating the RData file used to run 230 

the model. The model and respective data used are available in Marques (2021). We 231 

estimate animal full-cycle GHGs and assume in both the scenarios that the animals 232 

bring an overhead emission (i.e. emissions accumulated prior to the current process 233 

of interest) of 14.3 kg CO2eq / kg LW (12.24 kg CO2eq / kg CWE, at the final live weight 234 

of 620kg) from birth and raise before being moved to the feedlot growing phase 235 

(Desjardins et al., 2012). 236 

Table 1 – Ingredients’ prices and nutritional properties used in the computational 237 

simulation. 238 

Feed 
Cost 

(€/kg DM) 
Forage 
(%DM) 

DM 
(%AF) 

CP 
(%DM) 

Fat 
(%DM) 

NDF 
(%DM) 

TDN 
(%DM) 

NEma 
(Mcal/kg) 

NEga 
(Mcal/kg) 

RUP 
(%CP) 

peNDF 
(%NDF) 

Urea 0.39 0 99.0 281.0 0 0 96.6 2.42 1.7 0 0 

Sugar beet pulp 
dehydrated 

0.23 0 91.0 9.8 1.43 44.6 71.8 1.69 1.07 52 60 

Corn gluten feed 0.23 0 89.6 24.0 4.2 34.64 74.5 1.77 1.15 24 40 

Corn gluten meal 
(gluten 60) 

0.78 0 92.7 65.5 2.6 11 84.2 2.06 1.4 47 40 



Molasses 0.23 0 75.0 8.5 1 0 79.4 1.92 1.28 0 0 

Rapeseed meal 0.27 0 90.1 41.5 4.77 27.66 73 1.73 1.11 31 40 

Rapeseed oil 0.92 0 99.0 0 100 0 193.5 5.3 3.94 0 0 

Sunflower meal 
without dehulling 

0.18 0 93.0 26.3 2.6 42 60.5 1.32 0.75 23 50 

Sunflower oil 
without dehulling 

0.89 0 99.0 0 100 0 193.5 5.3 3.94 0 0 

Wheat bran 0.13 0 88.7 17.0 4.5 44 71.5 1.68 1.06 23 45 

DDGS Wheat 0.31 0 92.6 29.0 8 50.1 74.4 1.77 1.14 54 40 

Wheat feed flour 0.22 0 95.0 10.0 1.3 6 86.1 2.12 1.45 17 5 

Wheat gluten 
feed 

0.20 0 88.5 20.1 4.09 27 81.2 1.98 1.32 15 10 

Wheat middlings 0.16 0 89.0 18.4 5 38 74.7 1.78 1.15 14 15 

Baled grass 0.09 100.0 89 10 3 67 59.5 1.29 0.72 34 95 

Sunflower meal 
low dehulling 

0.25 0 93.0 40.2 3 38 62.3 1.38 0.8 23 45 

Sunflower meal 
high dehulling 

0.30 0 93.0 48.9 3.3 35 65.9 1.5 0.91 23 40 

Maize silage 0.10 100.0 35.0 8.0 3.18 41 72.7 1.71 1.1 21 82 

Grass silage 0.11 100.0 35.0 14.7 5.4 57 62.8 1.4 0.82 24 80 

 239 

 We analyze two trade-off dynamic scenarios with different environmental 240 

impact weights β: “RCS” (reduced carbon scenario), and “BIS” (balanced impacts 241 

scenario). These scenarios offer alternative perspectives on sustainable intensification; 242 

the first focusing solely on GHG mitigation, the second targeting GHG mitigation that 243 

avoids impact transference. In the RCS, we run the multiobjective model with weights 244 

1 for βCC and 0 for the rest. This allows us to estimate maximum carbon abatement 245 

and respective costs in the context of a typical French feedlot. In the BIS we use the 246 

same arbitrary weights as Garcia-Launay et al., (2018): 0.4 for βCC, 0.2 for βPD, βNRE, 247 

and βLO, and 0 for βAC, βEU. In this scenario, we normalize the impact values before 248 

running the model. We run sensitivity analysis on each environmental output to 249 

analyze the environmental transference impacts based on the inputs βk, for k ∈ K, and 250 

the MO convex weight λ.  251 

4 Results 252 

The NLPMD solution frontier for the balanced impacts scenario (BIS) and the reduced 253 

carbon scenario (RCS) minimization are shown in Figure 1, which shows the relative 254 

change in environmental impacts related to change in profit, both using the maximum 255 

profit solution as baseline (EIREF-ub). At this point, the absolute environmental impact 256 



is the same for both scenarios since their objective function is essentially equal, given 257 

by equation (1). In contrast, EIREF-lb is given by equation (2); thus, the objective 258 

functions BIS and RCS differ in direction due to the differing weights of coefficient βk. 259 

The x-axis is expressed as a  percentage reduction of the maximum profit of €1139.00 260 

(GHG reduction = 0%), the minimum weighted environmental impact is obtained for 261 

the BIS and RCS on the right-hand side of the graph at (a) €992.05 (GHG reduction = 262 

44.7%, equivalent to 483 kg CO2eq) and (b) €1024.34 (GHG reduction = 36.4%, 263 

equivalent to 392 kg CO2eq), respectively. In the BIS the minimum impact scenario is 264 

not the minimum CO2eq emissions solution. Furthermore, the global minimum CO2eq 265 

solution is only found on the RCS for a high reduction in profit. 266 

 267 



 268 

Figure 1 – Efficient solution frontier for (a) reduced carbon scenario and (b) balanced 269 

impacts scenario. Each solution (mark) is associated with a  decrease in profit (x-axis) 270 

and was plotted with its associated percentage change in each of the environmental 271 

impacts (y-axis) calculated in relation to EIREF-ub, i.e., maximizing profit, which is the 272 

same for both scenarios. The percentage change is measured in relation to the feedlot 273 

baseline, not accounting for impacts generated prior to this feeding phase. 274 

 275 

Figure 2 shows the marginal GHG abatement cost (€ / kg CO2eq / kg CWE) for 276 

the balanced impacts scenario (BIS), and the reduced carbon scenario (RCS). The 277 

total emissions intensities –  i.e., pre-feedlot accumulated GHGs (14.3 kg CO2eq / kg 278 

LW, at 350 kg LW) plus feedlot phase GHGs – vary from the maximum 14.99 kg CO2eq 279 

/ kg CWE, in both scenarios, to a minimum of 13.98 kg CO2eq / kg CWE for the BIS, 280 



and 13.76 kg CO2eq / kg CWE in the RCS. The marginal abatement cost computes, 281 

in relation to the baseline (EIREF-ub), the marginal profit loss per unit reduction in CO2eq 282 

emissions. This cost solely reflects improvements in the feedlot operation, regardless 283 

of the initial carbon footprint associated with the animals. Hence, the reduction of 1.23 284 

kg CO2eq / kg CWE (RCS) represents the 44.7% GHG reduction shown in the far left 285 

of Figure 1 (a). The equivalent maximum reduction for the BIS is 1.20 kg CO2eq / kg 286 

CWE, achieved with a profit reduction of 5.7%. 287 

  288 

Figure 2 – The marginal abatement cost and its respective total emissions in the 289 

animal life cycle (including initial footprint) are shown for the RCS (reduced carbon 290 

scenario) and BIS (balanced impact scenario). Total emissions include overhead 291 

before the feedlot-optimized phase of 12.74 kg CO2eq / kg CWE. 292 

 293 



 294 

Figure 3 – Solution frontier of the climate change emission sources in the diet for the 295 

RCS (reduced carbon scenario). Along with the marginal contribution of each source 296 

(area graph), we also present the respective fraction of each source (lines) that 297 

contributes the total feedlot emission. The x-axis shows the respective marginal 298 

abatement obtained from the GHG reduction targets in the multiobjective model. 299 

 300 

The contribution of each climate change factor, i.e., indirect emissions (diet 301 

LCA), and direct animal emissions (CH4 and N2O) are shown in Figure 3 for the RCS 302 

(BIS results are included in supplementary material). Figure 3 shows that diet LCA, 303 

CH4, and N2O represent, 58%, 32%, and 11% of the total carbon footprint in the 304 

maximum profit solution. The RCS emissions start at a maximum of 1.57, 0.88, and 305 

0.30 kg CO2eq / kg CWE, for diet, CH4, and N2O contributions, respectively. In the 306 

minimum emissions solution, these values fall to 0.78, 0.50, and 0.25 kg CO2eq / kg 307 

CWE (reductions of 54%, 32%, and 17%, respectively). The sum of these individual 308 

contributions adds to the initial carbon footprint of 12.74 kg CO2eq / kg CWE, 309 

representing the emissions decrease shown in Figure 2. Hence, these values and 310 

behavior represent only the feedlot feeding phase. 311 



 312 

Figure 4 – Diet composition for each multiobjective model solution for the balanced 313 

impact scenario (BIS), showing solution respective shrunk weight gain (SWG) on the 314 

secondary axis (right-hand side). Each optimal diet composition in the multiobjective 315 

solution space is presented in relation to its consequential marginal CO2eq abatement. 316 

Only ingredients with inclusion greater than 0% in at least one multiobjective solution 317 

are displayed. 318 

 319 

Figure 4 presents the optimal diet composition for the efficient solution frontier. Each 320 

optimal solution in the figure is characterized by the respective profit reduction and 321 

marginal CO2eq abatement, which can be related to the results presented in Figure 3. 322 

The feedstuff not shown in Figure 4 (included in Appendix Table A2) have entry-level 323 

equals to zero throughout the whole MO solution space. Thus from the 19 ingredients 324 

available, only 7 are used in at least one optimal solution of the efficient frontier. The 325 

maximum and minimum values for SWG are 1.38 kg SW per day (at 1.23 kg CO2eq / 326 

kg CWE abatements) and 1.15 kg SW per day (at zero abatements), respectively. This 327 

change in daily weight gain is reflected on the feeding days until the animal is finished, 328 

lowering from 225 days in the maximum profit solution to a minimum of 187 days in 329 

the minimum GHG emissions solution. The resulting tables used to create all the 330 

graphs are included in the supplementary materials. 331 



 332 

Figure 5 – Sobol sensitivity analysis of the environmental impacts outputs as a 333 

function of the multiobjective function weights. While the outputs are the 334 

measurements of the total impact in the solutions, the legend represents the weights 335 

βk, for k ∈ K = {PD, NRE, CC, AC, EU, LO}, and the multiobjective weight (1 – λ) is 336 

represented by “EI”. The impacts are: AC, acidification potential; CC, climate change 337 

potential; EU, euthrophication potential; LO, land occupation; NRE, non-renewable 338 

energy usage; PC, phosphorus comsumption. 339 

 340 

Finally, Figure 5 shows the first and total order indices of the Sobol sensitivity analysis 341 

for each of the environmental impacts. The first order indices show the highest volatility 342 

of the NRE impact, highly associated with the βCC and βEU weights. In contrast, the AC 343 

impact has the least variability when varying the inputs. The total order indices shows 344 

that the relative variance with combined change of the weights is highest for the NRE 345 

and similar for all other outputs. Moreover, although βCC causes the least variability in 346 

the outputs (except for NRE) in the first order, the total order indices show that βPC 347 

and βNRE are the impacts with least influence on the variability of others when changing 348 

an arbitrary combination of weights. These results partially incorporate the behaviour 349 

shown in Figure 1, especially of the NRE impact, which does not follow the same rate 350 

of decrease as the other impacts in the MO efficient frontier.  351 

 352 



5 Discussion 353 

Feeding strategies to reduce GHG emissions observed in these results accord with 354 

other studies, namely reduction of forage in the diet (Koscheck et al., 2020), reduction 355 

of diet LCA (Garcia-Launay et al., 2018), and improved animal performance (Pashaei 356 

Kamali et al., 2016). Values obtained for SWG and the diet profiles are also consistent 357 

with the literature (IDELE, 2011). The environmental impact values we obtained are 358 

on average consistent with those reported by Garcia-Launay et al. (2018) and Wilfart 359 

et al. (2019). Any difference in impact values is expected and arises from a 360 

combination of choice of available ingredients and the use of the profit-maximizing 361 

objective function. Compared to the least-cost model, the NLPMD has a broader 362 

solution space, which allows for a greater variety of results regarding both diet cost, 363 

profit, and environmental impacts. 364 

Our results indicate that the optimal GHG mitigation strategy for the growing 365 

feedlot phase (350 kg LW to 620 kg LW) is a combination of three sub-strategies: (i) 366 

reducing diet footprint, (ii) reducing animal CH4 and N2O emissions, and (iii) increasing 367 

animal performance. For the RCS, Figure 1a shows that the mitigation strategy can 368 

be divided into three different groups, defined by the cost-effectiveness and maximum 369 

CO2eq reduction achievable. In the first group, high emission reduction is achieved 370 

(up to 0.62 kg CO2eq / kg CWE, for the RCS) mostly by reducing the diet LCA footprint, 371 

as seem in Figure 3. This is combined with a steady increase in animal performance, 372 

from 1.15 kg SW per day to 1.21 kg SW per day, shown in Figure 4. Note that this 373 

initial mitigation strategy is the cheapest, with a roughly constant cost of 22 € / (kg 374 

CO2eq / kg CWE), shown in Figure 2. This 24% emission reduction in the feedlot 375 

feeding phase – i.e. not accounting for overhead – in relation to the maximum profit 376 

baseline is consistent with the results of Garcia-Launay et al. (2018). However, to 377 

achieve higher marginal mitigation per kg CWE, the optimal solution is a combination 378 

of the sub-strategies, defining an intermediate group with emissions from 0.62 to 1.20 379 

kg CO2eq / kg CWE. Here, considering the CO2eq emissions reduction in the feeding 380 

phase (ΔERFP), the increase of animal performance, ΔSWG / ΔERFP = 0.27 (Figure 4), 381 

and constant reductions of CH4, ΔCH4 / ΔERFP = -0.37 and N2O, ΔN2O / ΔERFP = -0.05 382 

(Figure 3), result in a constant increase in marginal abatement cost, Δcost / ΔERFP = 383 

45.52. In the third group (reduction from 1.20 to 1.23 kg CO2eq / kg CWE), mitigation 384 

is considerably more expensive (Δcost / ΔERFP = 1465.56) mainly due to the use of more 385 



costly ingredients – replacing the maize silage (Figure 4) a considerably cheap 386 

ingredient. The cost-effectiveness grouping of the solution frontier is typical of MO 387 

models and is related to the intensity of divergence of the conflicting objectives. 388 

 Our model offers a more nuanced analysis of the environmental and economic 389 

trade-offs in feedlots by combining emissions factors with a maximum profit objective. 390 

Figure 3 shows that although the feedstuff LCA makes the largest contribution to total 391 

emissions, CH4 and N2O together account for about 50% of total emissions. Thus, 392 

accounting for the CH4 and N2O emissions from enteric fermentation and manure 393 

management in the optimization model has a significant impact on the CO2eq 394 

assessment, and thus, abatement levels. Furthermore, Figure 4 indicates a possibility 395 

to reduce environmental impacts by intensifying the production system, i.e., increasing 396 

SWG. These results show that both the choice of ingredients with lower impact 397 

footprint and less gaseous emissions yield, and shortening of the animal life cycle are 398 

a combined strategy in reducing CO2eq and other environmental impacts. This is 399 

notable in the minimum-impact solution, which is 38 days shorter than the maximum-400 

profit solution (supplementary material). Reducing emissions by increasing animal 401 

performance can only be captured in the analysis by the use of the NLPMD rather than 402 

the typical least-cost model. Our results show that – other things being equal – an 403 

increase in animal efficiency alone can reduce 17% of the total GHG emissions 404 

intensity in the maximum-profit solution in the feedlot phase. 405 

 In the French feedlot context our work shows that significant GHG intensity 406 

abatement (about 8% from total emission intensity, from Figure 2) can be achieved 407 

solely in the feedlot growing phase while simultaneously reducing other environmental 408 

impacts. The reduction in GHG emissions intensity – aligned with proposed 409 

sustainable intensification of agriculture (Tilman et al., 2011) – shows that beef 410 

production levels can be maintained while reducing total emissions. Hence, we can 411 

infer that net mitigation in beef feedlot systems is possible, although a quantitative 412 

result would require a thorough analysis considering different beef demand projections. 413 

Moreover, the reduction in GHG emissions in Figure 1a, are shown to be achieved 414 

alongside the reduction of other impacts, i.e. without causing environmental impact 415 

transference. The maximum theoretical GHG emission abatement of 44.7% is 416 

guaranteed to occur in the RCS. At this point, the RCS indicates a degree of impact 417 

transference – with a conspicuous slight decrease of GHG emissions at the expense 418 



of increasing NRE emissions – however without having any EI surpassing the 419 

reference values of the EIREF-ub solution. However, with the RCS we can assess the 420 

GHG mitigation gap required to avoid transference. The difference between the 421 

theoretical maximum reduction (RCS) and the BIS reduction on the feedlot growing 422 

phase is only 8.3%. Moreover, the maximum reduction in the BIS is achieved at similar 423 

costs in the RCS, as observed in Figure 2. Ultimately, our results show that cost-424 

effective GHG mitigation in beef feedlot can imply in overall environmental impact 425 

reduction, i.e. indirectly reducing land occupation, soil eutrophication, i.a. Hence, the 426 

reduction on CH4 and N2O direct and indirect emissions does not necessarily requires 427 

the usage of feedstuff that carries heavy environmental footprint, e.g. wheat DDGS or 428 

molasses, which accumulate great land occupation LCA. 429 

The sensitivity analysis in Figure 5 shows that the objective of minimizing 430 

CO2eq emissions is consistent with reduction in most impacts, although antagonistic 431 

with NRE. This result suggests the existence of correlation between NRE and CC LCA 432 

impacts in the ingredients. However, a thorough analysis of feedstuff production 433 

processes and LCA would be required to prove this hypothesis. Overall, the sensitivity 434 

analysis indicates that the complex dynamics between impacts will most certainly 435 

produce impact transference with extreme choices of the parameters β and λ, i.e. 436 

minimizing solely one impact. Moreover, comparing the sensitivity analysis with the 437 

results from Figure 1, we see that for intermediate solutions in the efficient frontier (0 438 

< λ ≤ 1), all impacts can be reduced simultaneously with minimal transference among 439 

them. Thus, an arbitrary – and relatively balanced – choice of weights β does not affect 440 

significantly the solutions of MO model within a certain range of λ, i.e., balancing profit 441 

and impacts. However, caution is required in the case of extreme solutions (such as 442 

the RCS at λ = 0, minimizing only CC), as those are much more likely to cause impact 443 

transference. 444 

Model limitations derive mainly from our choice of data and uncertainties in the 445 

ruminant nutrition system. Improving accuracy in enteric fermentation and manure 446 

management estimates is crucial to improve GHG mitigation analysis. Accordingly, the 447 

model incorporates uncertainties from the systems and equations used in estimating 448 

N2O and CH4 emissions, and global warming potential (GWP) factors for CH4 and N2O 449 

(IPCC, 2013). Moreover, these results neglect stochasticity both in animal and 450 

ingredient prices. By introducing stochasticity, one can derive more precise estimates 451 



of the expected GHG reduction under alternative policy and possible carbon tax 452 

assumptions. Future research can also explore the inclusion of agro-industrial by-453 

products in the animal diet as a strategy to reduce emissions. Figures 1 – 4 suggests 454 

that the inclusion of by-products – which usually carry lower LCA footprint – in the 455 

animal diet may further decrease all environmental impacts, as suggested by literature 456 

(Oishi et al., 2011). This is corroborated by Figure 3, which shows that the main source 457 

of CO2eq is LCA footprint. 458 

This work could be expanded to a broader, i.e., regional, analysis of feedlots 459 

with different operational conditions, providing more accurate predictions of abatement 460 

potential at a regional scale similar to that presented by Toorn et al. (2021). A complete 461 

analysis of beef systems would require multiple MO models representing each feeding 462 

phase to assess the optimal lifecycle strategy from growing to finishing. A significant 463 

proportion of the total GHGs arise from the grazing phase. Thus, optimal mitigation 464 

strategies would ideally combine the grazing phase (e.g., on-pasture supplementation) 465 

with feedlot finishing measures. Combining this work with other models, such as De 466 

Oliveira Silva et al. (2018), would help to  address GHG impact mitigation potential of 467 

mixed systems. Evaluating complete systems is a complex task that would still need 468 

to couple the calf-cow interaction, and to coherently assess the footprint of each 469 

animal. Methodologically, this model could theoretically be formulated by the means 470 

of dynamic programming coupled with this model. However, computational tractability 471 

is a challenge and will considerably increase the number of optimizations required. 472 

6 Conclusion 473 

This paper demonstrates the advantages of a multiobjective model to evaluate the full 474 

complexity of the environmental and economic trade-offs involved in cattle feeding 475 

decisions. Our methodology can efficiently solve the nonlinear profit-maximizing diet 476 

model in regard of CH4 and N2O emissions calculations, diet LCA and other 477 

environmental impacts. Results suggest that optimal mitigation is a combination of 478 

well-known strategies applied concurrently and that it is possible to avoid significant 479 

environmental impact transference. 480 

 In the French feedlot context, significant CO2eq abatement can be obtained 481 

solely from changing feeding practices, i.e., increasing animal performance, reducing 482 

diet life cycle, and reducing CH4 and N2O production from enteric fermentation and 483 



manure decomposition. This CO2eq abatement can be obtained simultaneously with 484 

overall lower environmental impacts. This share of abatement in French feedlots is 485 

seemingly consistent with government proposals in the SNBC to reduce agricultural 486 

GHG emissions by 18% by 2030. It is salient, however, that an in-depth analysis along 487 

the whole animal lifecycle must be conducted to determine the full extent to which 488 

environmental impacts, and especially CO2eq emissions, can be reduced through 489 

feeding strategies. Our model is the basis of a decision support system to guide 490 

farmers and policymakers towards more accurate metrics for evaluating the impacts 491 

of different feeding strategies on GHG emissions mitigation. 492 
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