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Key points 

Question: In adults with acute hypoxemic respiratory failure receiving mechanical 

ventilation, does further reduction in tidal volumes, facilitated by extracorporeal carbon 

dioxide removal, improve 90-day mortality when compared to conventional low tidal volume 

ventilation? 

Findings: In this randomized clinical trial that included 412 adults, 90-day mortality was 

41.5% in the extracorporeal carbon dioxide removal group and 39.5% for standard care, a 

difference that was not statistically significant. 

Meaning: Among patients with acute hypoxemic respiratory failure, the use of extracorporeal 

carbon dioxide removal to facilitate lower tidal volume ventilation, compared with 

conventional low tidal volume ventilation, did not significantly reduce 90-day mortality. 
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Abstract 

Importance: In patients who require mechanical ventilation for acute hypoxemic respiratory 

failure, further reduction in tidal volumes compared to conventional low tidal volume 

ventilation may improve outcomes. 

 

Objective: To determine whether lower tidal volume mechanical ventilation using 

extracorporeal carbon dioxide removal improves outcome in patients with acute hypoxemic 

respiratory failure. 

 

Design, Settings and Participants: The trial was a multicentre, randomized, allocation 

concealed, open-label, pragmatic clinical trial. 412 adult patients receiving mechanical 

ventilation for acute hypoxemic respiratory failure out of a planned sample size of 1120 

patients were enrolled between May 2016 and December 2019 from 51 intensive care units in 

the UK. Follow up continued until 11th March 2020. 

 

Interventions: Participants were randomly assigned to receive lower tidal volume ventilation 

facilitated by extracorporeal carbon dioxide removal for at least 48 hours (n=202) or standard 

care with conventional low tidal volume ventilation (n=210). 

 

Main Outcomes and Measures: The primary outcome was all cause mortality at 90 days 

after randomization. Prespecified secondary outcomes included ventilator-free days at 28 days 

and adverse event rates. 

 

Results: Among 412 patients who were randomized (mean age, 59 years; 143 (35%) women), 

405 (98%) completed the trial. The trial was stopped early because of futility and feasibility 

following recommendations from the Data Monitoring and Ethics Committee. The 90-day 
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mortality was 41.5% in the lower tidal volume ventilation with extracorporeal carbon dioxide 

removal group versus 39.5% in the standard care group (risk ratio 1.1; 95% confidence 

interval (CI) 0.8 to 1.3; difference 2.0%, 95% CI -7.6% to 11.5%; P=0.68). There were 

significantly fewer ventilator-free days in the extracorporeal carbon dioxide removal group 

compared with the standard care group (mean 7.1 95% CI 5.9 to 8.3 v 9.2 95% CI 7.9 to 10.4 

days, mean difference -2.1; 95% CI -3.8 to -0.3; P=0.02).  

Serious adverse events were reported for 62 (31%) patients in the extracorporeal carbon 

dioxide removal group and 18 (9%) in the standard care group, including intracranial 

hemorrhage in 9 (4.5%) vs 0 (0%) respectively, and bleeding at other sites in 6 (3.0%) vs 1 

(0.5%) respectively. Overall, 21 patients experienced 22 serious adverse events related to the 

study device. 

 

Conclusions and Relevance: Among patients with acute hypoxemic respiratory failure, the 

use of extracorporeal carbon dioxide removal to facilitate lower tidal volume mechanical 

ventilation, compared with conventional low tidal volume mechanical ventilation, did not 

significantly reduce 90-day mortality. However, due to the early termination the study may 

have been underpowered to detect a clinically important difference. 

Trial Registration: ClinicalTrials.gov identifier NCT02654327 
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Introduction 

Acute hypoxemic respiratory failure is a leading cause of admission to intensive care units 

(ICUs) and is associated with significant mortality and long-term morbidity for survivors, as 

well as considerable resource implications for healthcare systems.1 A significant proportion of 

affected patients by acute hypoxemic respiratory failure will meet the diagnostic criteria for 

acute respiratory distress syndrome (ARDS).2 Invasive mechanical ventilation following 

tracheal intubation is often used as a life-saving intervention to maintain adequate gas 

exchange but is known to contribute to the overall morbidity and mortality of this condition.3 

 

One of the few interventions shown to reduce mortality in patients with acute hypoxemic 

respiratory failure and ARDS is ventilation with a lung-protective strategy aiming for a tidal 

volume of 6 mL/kg predicted body weight and a plateau pressure less than or equal to 30 

cmH2O in patients4. However, even when using lung-protective invasive mechanical 

ventilation, lung hyperinflation and injury can still occur.5 Reducing tidal volumes further 

may result in respiratory acidosis which can cause further adverse effects such as pulmonary 

hypertension and altered cardiac function. Extracorporeal gas exchange, including 

extracorporeal carbon dioxide removal (ECCO2R), can facilitate mechanical ventilation with 

even lower tidal volumes, as it supports the removal of carbon dioxide that accumulates in 

this setting.6,7 The feasibility of ECCO2R in patients with acute hypoxemic respiratory failure 

due to ARDS has recently been demonstrated.8  

 

The primary objective of the REST trial was to determine whether lower tidal volume  

ventilation facilitated by ECCO2R compared with standard care in patients with acute 

hypoxemic respiratory failure decreased mortality 90 days after randomization.9  

 

Methods 
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Trial design and oversight 

This was a multicentre, randomized, allocation concealed, open-label, pragmatic clinical trial. 

After randomization, patients, clinical care clinicians, and researchers were unblinded due to 

the complex nature of the intervention. The trial was coordinated by the Northern Ireland 

Clinical Trials Unit and was sponsored by Belfast Health and Social Care Trust. The study 

design has been published,9 and the trial protocol and statistical analysis plan (SAP) are 

provided in supplement 1 and 2. The protocol was approved by research ethics committees in 

England, Wales and Northern Ireland (16/SC/089), and Scotland (16/SS/048). The National 

Institute for Health Research in the UK convened an independently chaired (and majority 

independent) Trial Steering Committee and an independent Data Monitoring and Ethics 

Committee (DMEC). The study was conducted in accordance with Good Clinical Practice 

guidelines, local regulations, and the ethical principles described in the Declaration of 

Helsinki. Written informed consent from patients or agreement from their surrogates was 

obtained in keeping with regional regulations. 

 

Sites and patients 

The trial was conducted in 51 adult, general ICUs within the National Health Service across 

the United Kingdom. Patients aged at least 16 years and admitted to a participating ICU were 

eligible for inclusion if: they had an acute and potentially reversible cause of moderate to 

severe hypoxemic respiratory; were receiving invasive mechanical ventilation using at least 5 

cmH2O of positive end-expiratory pressure (PEEP) and were within 48 hours of onset of 

hypoxemia defined as a ratio of the partial pressure of oxygen in arterial blood to the 

fractional inspired concentration of oxygen ratio (PaO2/FiO2) of less than 150 mmHg. 

Exclusion criteria included invasive mechanical ventilation greater than 7 days, 

contraindication to limited systemic anticoagulation with heparin, untreated pulmonary 

embolism, pleural effusion or pneumothorax or acute respiratory failure fully explained by 
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left ventricular failure or fluid overload. Other reasons for exclusion are detailed in the trial 

protocol in supplement 1.  

 

Randomization 

After obtaining consent eligible patients were randomized.  Allocation concealment was 

achieved by use of an automated online or telephone centralised 24-hour randomization 

facility. Patients were allocated to lower tidal volume ventilation with ECCO2R or lung 

protective ventilation alone in a 1:1 randomization ratio using a computer-generated schedule 

with a variable block size of 4, 6 and 8 stratified by recruitment centre. If allocated to 

ECCO2R, this was recommended to commence within 8 hours of randomization.  

 

Interventions 

In patients assigned to ECCO2R, a dual-lumen catheter was inserted percutaneously into a 

central vein using ultrasound guidance. Veno-venous ECCO2R was then commenced using 

intravenous heparin as systemic anticoagulation to prevent circuit thrombosis. The pump 

speed was increased to achieve the maximum possible blood flow (typically 350-450mL/min) 

and sweep gas flow was increased to 10 L/min to maximise carbon dioxide removal and 

concomitantly tidal volumes were reduced incrementally aiming for a tidal volume less than 

or equal to 3 mL/kg predicted body weight. The intervention was continued for at least 48 

hours after which patients were weaned off ECCO2R as per the trial manual, provided in 

supplement 3, when patients demonstrated signs of clinical improvement and improvement in 

the degree of hypoxemia. ECCO2R was to be used for a maximum of seven days as part of the 

study protocol. An online educational package for catheter insertion and device management 

was provided to all sites. 

For patients randomized to standard care, it was recommended that patients were 

mechanically ventilated using a tidal volume of 6 mL/kg predicted body weight with PEEP 
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set based on the ARDSNetwork trial.4 In addition, in keeping with UK guidelines,10 patients 

in both the intervention and control groups could receive neuromuscular blocking drugs 

(NMBD),11 prone positioning12 or referral for consideration of extracorporeal membrane 

oxygenation (ECMO).13  

 

Outcome measures 

The primary outcome was all-cause mortality at 90 days after randomization. Secondary 

clinical outcome measures were tidal volume at day 2 and day 3, ventilator-free days at 28 

days, duration of invasive mechanical ventilation in survivors, need for ECMO up to day 7, 

mortality at 28 days and adverse event rate. All outcomes were reported from time of 

randomization. Pre-specified clinical outcome measures are listed in Table S1. The additional 

outcomes not reported will be reported separately. A cost-effectiveness analysis is also 

planned as described in the protocol in supplement 1. Duration of critical care and hospital 

length of stay were defined as outcomes for the cost-effectiveness analysis. Data on 

physiological parameters by treatment group were also collected up to day 7.  

 

Statistical analysis 

A sample size of 1120 patients was determined to provide power of 90% to show an absolute 

difference of 9% in 90-day mortality assuming a control group mortality of 41%.14 This 

postulated effect size was estimated from a previous trial on the use of lung protective 

ventilation4 which demonstrated a 9% reduction in mortality in patients with hypoxaemic 

respiratory failure secondary to ARDS with a 50% reduction in tidal volume (from 12 to 6 

mL/kg predicted body weight).15 Therefore we hypothesised that a similar relative reduction 

in tidal volume would result in a 9% difference in mortality. The sample-size calculation did 

not take a group-sequential trial design into account. 
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Patients were analyzed according to their randomization group. For the primary outcome and 

other dichotomous outcomes, risk ratios and % point differences with 95% confidence 

intervals (CI) were calculated. The primary outcome of 90-day mortality was analyzed using a 

chi-square test and a secondary analysis using a log-binomial regression adjusted for age, 

sequential organ failure assessment (SOFA)16 score and baseline PaO2/FiO2 ratio was also 

carried out. Plateau pressure was planned to be included as a variable in the adjusted analysis, 

however as it was missing in a substantial number of patients this was not possible. A post 

hoc sensitivity analysis using generalized estimating equations was used to account for 

possible clustering of observations within participating centers. There was no imputation for 

missing data. Continuous outcomes were compared between the two groups using analysis of 

variance/analysis of covariance adjusting for other covariates where appropriate. Time-to-

event outcomes were analysed by survival methods and reported as hazard ratios with 95% 

CI. The proportionality assumption was tested using the Schoenfeld test. Length of stay 

outcomes were compared using the Wilcoxon rank sum test. A pre-specified sensitivity 

analysis was also performed for the primary outcome excluding the first two intervention 

group patients at each site in order to address potential learning effects. A per protocol 

analysis was carried out for the secondary outcome of tidal volume at days 2 and 3, i.e. 

including those who were receiving ECCO2R on day 2 and 3 in the intervention group. We 

performed pre-specified subgroup analyses using 99% confidence intervals. Log-binomial 

regression was used with interaction terms (treatment group by subgroup).  

One interim analysis for the primary outcome was planned before the recruitment of 560 

patients. A post hoc conditional power analysis was carried out estimating the power given 

the observed data up to termination and then assuming varying differences between 2% and 

10% for the remainder of the data that was to be observed. Because of the potential for type 1 

error due to multiple comparisons, findings for analyses of secondary endpoints should be 

interpreted as exploratory. Analysis was conducted using Stata®/SE Version 15.1 (StataCorp 
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LP, College Station, TX, USA). Statistical significance was defined using a 2-sided test with 

α = .05. 

 

Trial Termination 

During a recruitment pause for investigation of a serious adverse event (SAE) (fatal 

intracranial hemorrhage), the planned interim analysis was undertaken and the independent 

DMEC recommended that the trial be stopped due to futility (given that even under optimistic 

assumptions the trial was unlikely to demonstrate a significant benefit for the intervention) 

and subsequent feasibility to continue the trial. There were no formal stopping rules for 

futility and the decision to stop the study was not based on a formal calculation of futility. 

The decision to stop was based on the opinion of the DMEC based on all available 

information including data from the interim analysis, feasibility of future recruitment and a 

conditional power analysis. The conditional power analysis to detect a difference between the 

groups, assuming the patients remaining to be recruited to achieve the planned sample size 

met the assumptions of the original sample size, was 44%. Safety was not cited by the DMEC 

as a reason for stopping the trial. This decision was accepted by the Trial Steering Committee 

and agreed by the study sponsor and the trial was stopped on 11th February 2020. 

 

Results 

Patients 

From May 2016 to December 2019 a total of 7071 patients from 51 centres were screened for 

eligibility and after applying the exclusion criteria 412 (6%) participants were recruited 

(Table S2). The patients were followed up until 11th March 2020. One patient was 

randomized twice in error, 2 patients were lost to follow up and 4 withdrew consent for 

confirmation of vital status. As a result, 405 participants (200 intervention, 205 standard care) 

were included in the final analysis of the primary outcome. (Figure 1). The commonest 
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reasons for exclusion were contraindication to systemic anticoagulation, a “do not resuscitate” 

order in place, imminent treatment withdrawal, and invasive mechanical ventilation for more 

than 7 days. 28% of patients screened were excluded for “other reasons” for which the most 

common reason was either the patient’s clinical condition rapidly improved or it deteriorated.  

The baseline characteristics of the 2 groups were well balanced prior to randomization and 

typical of patients with moderate to severe acute hypoxemic respiratory failure requiring ICU 

care (Table 1). 

 

Primary Outcome 

There was no significant difference in mortality between the groups. The 90-day mortality 

was 41.5% (83/200) in the intervention group and 39.5% (81/205) in the standard care group 

(risk ratio (RR) 1.1, 95% CI 0.8 to 1.3; % point difference 2.0, 95% CI -7.6 to 11.5) (Table 2 

and Figure 2). The RR was similar after adjustment for age, SOFA score and PaO2/FiO2 ratio 

(RR 1.1, 95% CI 0.9 to 1.4) and in a per-protocol analysis for the primary outcome of the 

cohort who initiated ECCO2R (Table 2). In order to address a potential learning effect with 

the intervention, a sensitivity analysis was performed excluding the first 2 patients allocated 

to intervention at each site (Table 2). These findings were consistent with the primary 

analysis. Treatment-by-subgroup interactions were not significant with respect the presence of 

ARDS, requirement for vasopressors, severity of hypoxemia or hypercapnia, plateau and 

driving pressures, APACHE II score and volume of ECCO2R by site (Figure S1). The 

proportion of missing data for the primary analysis of the primary outcome was 1.7%. 

 

Secondary Outcomes 

The secondary outcomes are presented in Table 2. There were significantly fewer ventilator-

free days at 28 days in the intervention group (7.1 95% CI 5.9 to 8.3 v 9.2 95% CI 7.9 to 10.4 

days; mean difference -2.1 days (95% CI, -3.8 to -0.3); p = 0.02). There was no significant 
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between-group difference in duration of ventilation, need for ECMO at day 7, mortality at 28 

days or duration of ICU or hospital stay. 

 

Additional Secondary Outcomes and Intervention Fidelity 

 

Of the 202 patients allocated to the intervention, 186 patients (92%) received ECCO2R after 

randomization with a mean (standard deviation) duration of ECCO2R of 4 (2) days. One 

patient in the standard care group received non-protocol ECCO2R for 2 days. ECCO2R was 

successfully weaned in 50 (28%) patients and was stopped due to seven days treatment in 33 

(18%). It was discontinued for safety reasons in 14 (8%), need for ECMO in 12 (7%) and 

withdrawal of active medical treatment or death in 28 (16%) patients (Table S3). 

Patients randomized to receive ECCO2R had a lower tidal volume at day 2 (4.5 95% CI 4.3 to 

4.8 v 6.5 95% CI 6.3 to 6.7; mean difference 2.0 mL/kg (95% CI 1.7-2.3) and day 3 (4.4 95% 

CI 4.1 to 4.6 v 6.7 95% CI 6.4 to 7.0; mean difference 2.3 mL/kg (95% CI 2.0-2.7). In 

patients receiving ECCO2R on day 2 and 3, tidal volume was lower at day 2 (4.2 95% CI 4.0 

to 4.4 v 6.5 95% CI 6.3 to 6.7; mean difference 2.4 mL/kg (95% CI 2.0-2.7) and day 3 (3.8 

95% CI 3.6 to 4.0 v 6.7 95% CI 6.4 to 7.0; mean difference 2.9 mL/kg (95% CI 2.5-3.3) 

(Figure 3A and Table S4). 

 

During day 2 and 3 following randomization, patients in the intervention group had a lower 

PaO2/FiO2 ratio (147.8 95% CI 140.4 to 155.1 v 161.1 95% CI 153.3 to 169.0; mean 

difference on day 2 was 13.3 mmHg (95% CI 2.6-24.1) and on day 3 was 147.9 95% CI 140.9 

to 154.9 v 167.0 95% CI 158.6 to 175.4; mean difference 19.1 mmHg (95% CI 8.2-30.1), 

Figure S2A and Table S4). Patients in the intervention group had higher PEEP than patients 

in the control group (Figure 3B and Table S4). Plateau pressure was lower in the intervention 

group on days 2 and 4 following randomization, (23.5 95% CI 22.6 to 24.3 v 25.7 95% CI 

24.9 to 26.6; mean difference on day 2 was 2.3 cmH2O (95% CI 1.1-3.4) and on day 4 was 
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22.2 95% CI 21.2 to 23.1 v 23.7 95% CI 22.6 to 24.8; mean difference 1.6 cmH2O (95% CI 

0.1-3.0), Figure 3C and Table S4). Driving pressure was lower in the intervention group from 

day 2 to 5 following randomization (Figure 3D and Table S4). Total respiratory rate was 

higher in the intervention group from day 2 to 4 following randomization (26.6 95% CI 25.8 

to 27.3 v 24.6 95% CI 23.9 to 25.3; mean difference on day 2 was 2.0 breaths per minute 

(95% CI 0.9 - 3.0), on day 3 was 27.8 95% CI 26.9 to 28.7 v 24.4 95% CI 23.6 to 25.2; mean 

difference 3.4 breaths per minute (95% CI 2.2 – 4.6) and on day 4 was 27.0 95% CI 26.0 to 

28.1 v 24.4 95% CI 23.5 to 25.4; mean difference 2.6 breaths per minute (95% CI 1.2-4.0), 

Figure S2B and Table S4). Minute ventilation was lower in the intervention group from day 1 

following randomization (Figure S2C and Table S4). PaCO2 was higher from day 2 following 

randomization (Figure S2D and Table S4) and pH was lower in the intervention group 

following randomization (Figure S2E and Table S4). The rate of CO2 removal is shown in 

Table S4. 

Patients in the intervention group were more likely to be ventilated with a mandatory mode of 

ventilation to day 7 (59(39.1%) v 32(18.9%); % point difference 20.1(10.4 to 29.9) on day 7), 

received more neuromuscular blockade from day 2 following randomization (110(55.6%) v 

92(44.2%); % point difference 11.3(1.7 to 21.0) on day 2), and were ventilated less frequently 

in the prone position on days 1 and 2 following randomization (11(5.5%) v 29(13.9%); % 

point difference -8.4(-14.0 to -2.8) on day 1 and 18(9.1%) v 27(13.0%); % point difference -

3.9(-10.0 to 2.2) on day 2) (Table S5). 

 

Serious Adverse Events 

Adverse event rates are presented in Table 3. Adverse events were more common in the 

intervention group. Eighty patients experienced SAEs, with 62 (31%) patients in the 

intervention group and 18 (9%) in the standard care group. Twenty one patients experienced 

22 SAEs related to the study device (Table S6). There were 12 events defined as intracranial 
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haemorrhage, of which 9 were defined as SAEs, all of which occurred in the intervention 

group. Of these, 5 SAEs were considered by the site investigator to be at least possibly related 

to the intervention (3 patients suffered an intracerebral haemorrhage and 2 patients had a 

subarachnoid hemorrhage). An additional 4 SAEs were considered by the site investigator to 

be unlikely related to the intervention (1 patient suffered an intracerebral haemorrhage and 3 

had hemorrhagic changes on brain imaging). There were 21 events defined as bleeding at 

other sites, of which 7 were defined as SAEs with 6 occurring in the intervention group and 1 

in the control group. Of those in the intervention group, 4 SAEs were considered by the site 

investigator to be at least possibly related to the intervention (airway bleeding, hemothorax in 

a patient with chest trauma, bleeding from a venous haemodialysis catheter and a haematoma 

at an attempted vascular access site). The additional 2 SAEs were considered by the site 

investigator to be unlikely related to the intervention (upper gastrointestinal bleeding and 

pharyngeal bleeding following re-intubation). The event in the control group was an episode 

of rectal bleeding. 

 

Conditional Power Analysis 

Post hoc conditional power analysis for mortality showed a conditional power of 4% for an 

2% effect size, 8% for an 4% effect size, 17% for an 6% effect size, 31% for an 8% effect size 

and 48% for a 10% effect size. 

 

Discussion 

In this UK multi-centre randomized clinical trial that was stopped early due to futility, tidal 

volume reduction during invasive mechanical ventilation facilitated by ECCO2R, compared to 

standard care in patients with acute hypoxemic respiratory failure, did not reduce mortality at 
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90 days.  

 

The aim of supportive care with invasive mechanical ventilation in patients with acute 

hypoxemic respiratory failure during the last 20 years has moved away from targeting normal 

gas exchange to limiting ventilator-induced lung injury.3’
4 A secondary analysis of the ARMA 

trial suggested there may be no safe threshold for tidal volumes with in-vivo data providing 

biological plausibility for the benefit of further reduction in tidal volumes.15,17 In the study a 

reduction in mean tidal volumes of 2.0 and 2.3 mL/kg at day 2 and 3 were achieved 

respectively, from a pre-randomization tidal volume of 6.6 mL/kg with significant reduction 

in tidal volumes to day 7 which were associated with significant reductions in plateau and 

driving pressures.  It was mandated that the intervention was applied for at least 48 hours to 

ensure an effective “dose” of lower tidal volumes although it is possible that a longer duration 

of ECCO2R, with greater tidal volume reduction, may have been required to demonstrate an 

effect as higher intensities of invasive mechanical ventilation have been shown to be 

associated with increased risk of death in a time-dependent fashion.18 Duration of ECCO2R in 

the study was limited to less than 7 days due to regulations associated with use of the device 

and the intervention was discontinued in 33 patients for this reason. It is unknown if the 

results would have changed had these 18% of intervention patients received longer ECCO2R 

treatment. The primary aim of the trial was to lower tidal volumes facilitated by 

extracorporeal carbon dioxide removal. Permissive hypercapnia was tolerated to enable tidal 

volume reduction.19 There was a lower PaO2/FiO2 ratio, higher respiratory rate along with 

greater hypercapnia and respiratory acidosis in the intervention group, although these effects 

were modest. As a result, harmful effects associated with these physiological consequences 

could have contributed to the lack of clinical benefit. Furthermore, that the minute ventilation 

was reduced indicates that the increase in respiratory rate is unlikely to have offset the 

reduction in ventilator-induced lung injury achieved with tidal volume reduction. The effect 
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of a larger reduction in ventilator-induced lung injury on outcome remains unknown. Lung 

protective ventilation has also been demonstrated to improve outcomes in patients with acute 

hypoxemic respiratory failure without ARDS20 so the aim was to include a broad cohort that 

would reflect the general population of critically ill patients who may benefit. A systematic 

review concluded that although evidence was limited, ECCO2R was feasible and had been 

shown to facilitate further reduction in tidal volumes with the potential to mitigate ventilator-

induced lung injury and improve outcomes in more hypoxemic patients.21 This work informed 

the use of a PaO2/FiO2 ratio of less than 150 mmHg as the qualifying level of hypoxemia for 

this study population.22  

 

After adjustment for age, degree of hypoxia and organ dysfunction, the primary outcome was 

unchanged. Furthermore, subgroup analyses did not suggest that the effects of the 

intervention were modified by any of the variables investigated. Although sub-group analyses 

found other baseline characteristics associated with ventilator-induced lung injury did not 

have an effect on outcome, it remains unknown if a different population might benefit from 

ECCO2R. Enrichment strategies to identify a population which may be more likely to benefit 

are needed for future trials of ECCO2R.23 24 

 

Five patients were reported to have intracranial haemorrhage related to the intervention. This 

incidence is comparable to data from previous trials of ECMO in severe acute respiratory 

failure 13 25. A review of changes in PaCO2, presence of thrombocytopenia or coagulopathy as 

well as the degree of therapeutic anticoagulation and blood pressure was undertaken in these 

patients but unfortunately it was not possible to identify a clear mechanism for these events. 

Patients with severe hypoxemic respiratory failure have an increased risk of intracranial 

haemorrhage, with recent data reporting a background rate of intracranial haemorrhage in 

patients with severe hypoxemic respiratory failure to be approximately 8-10%, although this 
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was substantially increased in those patients receiving ECMO.26 27 

 

Limitations 

The study has several limitations. First, only 6% of screened patients were randomized to the 

study which may limit the generalizability of the results. Second, 17 patients (8.4%) did not 

receive the intervention as allocated which could have diluted the effect in the intervention 

group, although a per protocol analysis of patients who received the intervention did not 

change the outcome. Third, most of the sites were naïve to the intervention before the study 

commenced. Although an extensive educational package and training programme addressing 

catheter insertion and maintenance of the device was put in place at all sites, it is possible that 

practical inexperience with the intervention may have negatively affected the outcomes in the 

intervention group. Volume-outcome relationships have been previously reported with 

ECMO.28 In an attempt to address a potential learning effect, a sensitivity analysis excluding 

the first two intervention patients at each site was undertaken which showed no notable 

change to the primary outcome and additionally there was no significant difference in 

subgroup analysis between sites recruiting more or fewer than 10 patients to the trial. Fourth, 

other aspects of care were not standardized in each group as this was a pragmatic trial and 

clinicians were free to manage patients as they would normally. The use of the intervention 

was associated with longer use of neuromuscular blocking drugs and less prone positioning. 

Although the difference in the use of neuromuscular blocking drugs is unlikely to have 

modified outcome, the less frequent use of prone positioning could have affected the outcome 

in the intervention group, albeit the absolute difference in the use of prone positioning 

between the groups was relatively small.11,12 Fifth, it is possible that the trial was 

underpowered to detect a clinically important difference, particularly as the trial was stopped 

before recruitment of the planned sample size was achieved. Sixth, due to the complexity of 

the intervention blinding to the clinicians or patients was not possible which could have 
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resulted in performance bias. 

 

Conclusions 

In patients requiring mechanical ventilation for acute hypoxemic respiratory failure, lower 

tidal volume ventilation facilitated by extracorporeal carbon dioxide removal, compared to 

standard care, did not result in a reduction in mortality at 90 days. However, due to the early 

termination the study may have been underpowered to detect a clinically important difference. 
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 Figure 1. Enrollment, randomization, and flow of patients in a study of lower tidal 

volume facilitated by extracorporeal carbon dioxide removal in patients with acute hypoxemic 

respiratory failure. 

 
aPatients could meet more than 1 ineligibility criterion. 
b'Other' was used when the reason for a patient's exclusion was not among those pre-defined 

in the protocol; the most commonly specified free-text explanations included rapid 

improvement or deterioration in clinical status 
cChild Pugh >11 
dRandomization was stratified by site 
eThis patient was re-randomized in error and was allocated to the same group. 

 

Figure 2: Kaplan-Meier curve of the time to death by treatment group.  

Median time to death in the ECCO2R group was 6 (IQR, 4-14) days and in the ventilation 

alone group was 9 (IQR, 5-16) days.  The unadjusted hazard ratio for death at 90 days in the 

ECCO2R group was 1.1 (95%CI, 0.8, 1.5). The proportionality P = .40, suggesting that the 

proportionality assumption was met. 

 

Figure 3: Physiological parameters by treatment group to day 7; Tidal Volume (A), Positive 

End-Expiratory Pressure (PEEP) (B), Plateau Pressure (C), Driving Pressurea (D). 

 
aDriving Pressure = Plateau Pressure - PEEP 
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Table 1. Baseline characteristicsa 

 

 ECCO2R  

n = 202 (49%) 

Ventilation alone 

n = 210 (51%) 

Age (years) median[IQR] 60.2[50.6,69.0] 61.8[50.2,69.7] 

Gender-Male 138 (68%) 131 (62%) 

Female 64 (32%) 79 (38%) 

Dependency prior to hospital 

admission 

  

Able to live without 

assistance in daily activities 

152 (87%) 160 (88%) 

Minor assistance with some 

daily activities 

19 (11%) 19 (10%) 

Major assistance with 

majority of/all daily activities 

2 (1%) 3 (2%) 

Total assistance with all daily 

activities 

1 (1%) 0 (0%) 

Predicted body weight (kg) 

median[IQR]b 

66.1[57.0,73.3] 66.0[56.9,71.5] 

ICU admission diagnostic 

categoryc 

  

Respiratory  175 (88%) 178 (85%) 

Sepsis 86 (43%) 102 (49%) 

Cardiovascular  45 (23%) 49 (23%) 

Kidney 39 (20%) 42 (20%) 

Gastrointestinal 27 (14%) 31 (15%) 

Central Nervous System 17 (9%) 14 (7%) 

Other 14 (7%) 10 (5%) 

Toxicology 10 (5%) 10 (5%) 

Hematology 7 (4%) 10 (5%) 

Orthopedic 4 (2%) 8 (4%) 

ARDS present at enrollmentd  118/199 (59%) 130/207 (63%) 

Aetiology of ARDSc n=118 n=130 

Pneumonia 96 (81%) 103 (80%) 

Sepsis 54 (46%) 66 (51%) 

Gastric content aspiration 8 (7%) 14 (11%) 

Other 8 (7%) 10 (8%) 

Pancreatitis 5 (4%) 5 (4%) 

Thoracic trauma 2 (2%) 3 (2%) 

Smoke/toxin inhalation 2 (2%) 2 (2%) 

APACHE II score at ICU 

Admission median[IQR]e 

19[15,23] 20[16,23] 

SOFA Score median[IQR]f 10[7,12] n=195 10[7,12] n=198 

Mode of Ventilation   

Mandatory 158 (78%) 163 (78%) 

Mandatory and spontaneous 

breaths 
37 (18%) 31 (15%) 

Spontaneous 6 (3%) 15 (7%) 

Adjunctive ventilatory 

therapies 
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Neuro-Muscular Blocking 

Drugs  
103 (51%) 102 (49%) 

Prone Positioning 22 (11%) 23 (11%) 

Inhaled Nitric Oxide 6 (3%) 4 (2%) 

Nebulized Epoprostenol 3 (1%) 5 (2%) 

Tidal volume mL/kg PBW 

median[IQR] 

6.3[5.8,7.0] n=201 6.4[5.8,7.1] n=208 

Respiratory rate breaths/min 

median[IQR] 

24[20,28] n=201 24[20,28] n=209 

PEEP cmH2O median[IQR] 10[8,12] n=200 10[8,12] n=208 

Plateau pressure cmH2O 

median[IQR] 

26[23.5,30] n=160 26[23,30] n=163 

Plateau pressure>28cmH2O 50(31.3%) 58(35.6%) 

Driving pressure cmH2O 

median[IQR]g 

15[12,19] n=159 16[12.5,19] n=163 

Driving pressure<15 cmH2O  79(49.7%) 69(42.3%) 

PaO2/FiO2 ratio mmHg 

median[IQR]h 

118.1[96.0,134.3] 

n=198 

115.5[93.8,132.8] 

n=203 

PaCO2 mmHg median[IQR] 53.8[47.3,62.7] n=198 54.6[48.0,62.3] n=203 

pH median[IQR] 7.30[7.25,7.37] n=198 7.30[7.24,7.37] n=202 

Abbreviations: ARDS, Acute Respiratory Distress Syndrome; APACHE, Acute Physiology 

and Chronic Health Evaluation; SOFA, Sequential Organ Failure Assessment; PEEP, positive 

end-expiratory pressure; FiO2, fraction of inspired oxygen; PaO2, partial pressure of arterial 

oxygen; PaCO2, partial pressure of arterial carbon dioxide. 
aBaseline clinical data were collected in the 24 hours prior to randomization unless stated 

otherwise. If more than one value was available for this 24-hour period, the value closest but 

prior to the time of randomization was recorded. 
bThe predicted body weight of male patients was calculated as equal to 50+0.91 (centimeters 

of height-152.4); that of female patients was calculated as equal to 45.5+0.91 (centimeters of 

height-152.4) 
cPatients may have had more than one admission diagnostic category or cause of ARDS 

identified. 
dThe presence of ARDS was assessed by the treating physician.  
eScores on the Acute Physiology and Chronic Health Evaluation (APACHE) II range from 0 

to 71, with higher scores indicating greater severity of illness. 
fScores on the Sequential Organ Failure Assessment (SOFA) scale range from 0 to 24, with 

higher scores indicating greater severity of disease. 
gDriving Pressure = Plateau Pressure - PEEP 
hSecond qualifying PaO2/FiO2 ratio. 
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Table 2. Primary, secondary and other clinical outcomes 

 ECCO2R Ventilation 

alone 

% Point or 

Mean 

Difference 

(95% CI)  

Risk ratio 

(95% CI) 

P-value 

Primary Outcome      

90 day mortality n(%) 83(41.5)n=200 81(39.5)n=205 2.0 (-7.6, 11.5) 1.1 (0.8, 1.3) 0.68 

Adjusted analysisa    1.1 (0.9, 1.4) 0.29 

Sensitivity analysis to 

adjust for site effectb 

  1.8 (-7.7, 11.3) 1.0 (0.8, 1.3) 0.72 

90 day mortality in 

cohort who initiated 
ECCO2R

c n(%) 

80(43.5)n=184 80(39.2)n=204 4.3(-5.5, 14.1) 1.1 (0.9, 1.4) 0.39 

90 day mortality 

excluding the first 2 

patients at each site 

who initiated 
ECCO2R

d n(%) 

48(37.8)n=127 81(39.5)n=205 -1.7(-12.5, 9.0) 1.0 (0.7, 1.3) 0.76 

Secondary Outcomes      

Ventilator-free days, 

randomization 

to day 28e 

7.1(8.8) n=199 9.2(9.3) n=206 -2.1(-3.8, 0.3)  0.02 

Duration of ventilation 

in survivors (days)fg 

18.0(13.6) 

n=121 

17.4(31.3) 

n=137 

0.7(-5.4, 6.7)  0.83 

Need for ECMO to 

day 7 n(%) 

12(6)n=202 6(3)n=210 3.1(-0.9, 7.0) 2.1 (0.8,5.4) 0.13 

28 day mortality n(%) 76(38)n=200 74(36)n=207 2.3(-7.1, 11.6) 1.1(0.8,1.4) 0.64 

ICU length of stay to 

death or discharge 

(days)hi 

14[7,26] n=202 13[7,22]n=210   0.67 

Hospital length of stay 

to death or discharge 

(days)hi 

22[8,39] n=193 18[9,35]n=201   0.65 

 

Abbreviations: ECMO, extracorporeal membrane oxygenation 
aAdjusted for age, qualifying PaO2/FiO2 ratio and baseline SOFA (RR estimated from a log-binomial 

regression; model to estimate % point difference would not converge. 
bGeneralized estimating equations (GEE) used to account for possible clustering of observations 

within participating centers  
cPer protocol analysis excludes the 17 patients who did not commence ECCO2R and the 1 patient who 

received ECCO2R in the standard care arm.  
dSensitivity analysis performed for the primary outcome excluding the first two intervention arm 

patients at each site in order to address potential learning effects.  
eVentilator-free days were defined as the number of days from the time of initiating unassisted 

breathing to day 28 after randomization (see the study protocol). Patients who died before day 28 were 

assigned 0 ventilator-free days. 
fMean (SD) for treatment arms and mean difference and 95% CI presented. 
g Survivors were defined as patients who achieved unassisted breathing but could have subsequently 

died prior to day 90. 
hMedian[IQR] with P-value from Wilcoxon rank sum presented. 

iLength of stay in ICU and hospital were not secondary outcomes. 
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Table 3. Adverse Events by treatment group 

  
ECCO2R  

 

no. events 

ECCO2R  

 

no. (%) 

patients 

n=202 

Ventilation 

alone  

no. events 

Ventilation 

alone  

no. (%) 

patients 

n=210 

AEsa 168 106(52.5%) 61 48(22.9%) 

AEs related to study interventionb 65 51(25.3%) 0 0(0.0%) 

SAEsc,d 70 62(30.7%) 20 18(8.6%) 

SAEs related to study interventionb 22 21(10.4%) 0 0(0.0%) 

AEs of specific interest     

Bleeding at other site (excluding intracranial hemorrhage)  18 17(8.4%) 3 3(1.4%) 

Intracranial haemorrhage  10 10(5.0%) 2 2(1.0%) 

Device failure causing AE  9 9(4.5%) 0 0(0.0%) 

Bleeding at cannula site  8 8(4.0%) 0 0(0.0%) 

Infectious complicationse 7 7(3.5%) 1 1(0.5%) 

Heparin induced thrombocytopenia  4 4(2.0%) 0 0(0.0%) 

Haemolysis 3 3(1.5%) 0 0(0.0%) 

Ischaemic stroke  1 1(0.5%) 3 3(1.4%) 

SAEs of specific interest
f     

Bleeding at other site (excluding intracranial hemorrhage)  6 6(3.0%) 1 1(0.5%) 

Intracranial haemorrhage  9 9(4.5%) 0 0(0%) 

Infectious complicationse 5 5(2.5%) 0 0(0.0%) 

Device failure causing SAE 2 2(1.0%) 0 0(0.0%) 

Heparin induced thrombocytopenia  1 1(0.5%) 0 0(0.0%) 

Ischaemic stroke  1 1(0.5%) 3 3(1.4%) 

 
aAEs totals includes SAEs 

 
bA list of AEs which were defined as related to the study intervention was provided in the 

study protocol. Events which were possibly, probably or definitely related to the study 

intervention (or were not assessable) were defined as related. 

 
cSAEs defined by System Organ Class can be found in Table S7. 

 
dA serious adverse event was defined as any adverse event that led to death or resulted in, a 

life threatening illness or injury, permanent impairment of a body structure or a body 

function, patient hospitalization or prolongation of existing hospitalization, medical or 

surgical intervention to prevent life threatening illness or injury or permanent impairment to a 

body structure or function, fetal distress, fetal death or a congenital abnormality or birth 

defect. 

 
eInfectious complications were determined by the site investigator. 

 
fThere were no episodes of haemolysis or bleeding at canula site reported as serious adverse 

events. 

 

 


