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Pure and silica wrapped Fe(II)-triazole (FeHTrz) spin-crossover (SCO) nanoparticles have been prepared 10 

following a water-in-oil synthetic procedure. The size and shape can be tuned by controlling the Fe(II) 

and triazole concentrations in the aqueous phase. The magnetic properties of these nanoparticles are 

strongly affected by the presence of a silica shell embedding the nanostructured FeHTrz polymer. 

Whereas bare FeHTrz nanoparticles exhibit abrupt and cooperative spin transition with 24 – 35 K-wide 

thermal hysteresis loops, for the silica derivates the hysteresis width increases up to 37 – 42 K. This 15 

probes the efficiency of the silica shell to promote interparticle interactions and enhance cooperativity 

effects. Tomographic studies of the FeHTrz@SiO2 nanoparticles reveal a core/shell structure with the 

pure FeHTrz polymer wrapped into a thin shell of pure silica. Taking advantage of the chemical 

properties of the silica shell, these hybrid nanoparticles were coated with a dansyl derivate fluorophore 

whose luminescent properties can be adjusted by the spin state of the SCO polymer. Time-dependent 20 

luminescent studies reveal the existence of a non-radiative energy transfer (Förster type) between the 

organic fluorophore and the Fe(II)-low spin ions. These nanoparticles have also been functionalized with 

thiol groups allowing them to be deposited onto a gold surface in a controlled manner.      

1 Introduction 

One of the most beautiful examples of bistability at a molecular 25 

level is the spin crossover phenomenon (SCO) observed in some 

coordination materials based on octahedral 3d4 – 3d7 metallic 

complexes.1 In these systems, the electronic configuration of the 

metal can be conveniently switched from a low-spin (LS) ground 

state to a metastable high-spin (HS) state in response to external 30 

stimuli such as changes of temperature and/or pressure, 

irradiation with light (LIESST effect) or absorption/desorption 

processes.2 The switching between these two spin states induces 

significant changes in their magnetic and optical properties, so 

the use of these compounds as molecular switches, thermal and/or 35 

gas sensors or as display devices has been postulated. Moreover, 

long-range intermolecular interactions can appear making the 

spin transition cooperative. Then, large thermal hysteresis loops 

can be observed leading to true bistability and memory effects.3 

 In order to be integrated into functional devices, SCO 40 

materials have to be prepared at the nanometer scale, whilst 

preserving their magnetic and cooperative behaviour. Thus, 

significant advances in this field have been recently achieved by 

different groups that focus their research activity toward the 

synthesis and characterization of spin-crossover nanoparticles 45 

(SCONPs).4 Fe(II)-based coordination networks, such as the one-

dimensional [Fe(Trz)3]X2 (Trz = triazole derivate; X = counter-

ion) family of coordination polymers or the three-dimensional 

[Fe(L)2M(CN)4] [L = pyridine derivate; M = Ni(II), Pd(II), Pt(II)] 

Hoffman-like systems, have been mainly used to prepare these 50 

nanoparticles since these compounds exhibit SCO behaviour with 

well-defined thermal hysteresis loops at temperatures close to 

room temperature.5 Most of this research work has been devoted 

to the study of the effect of the nanoparticle size reduction on the 

collective behaviour responsible for the hysteresis loop, the 55 

ultimate goal being to determine the minimum size for which the 

nanoparticles still show thermal hysteresis. Size-controlled 

nanoparticles of the [Fe(pyrazine)Pt(CN)4] coordination network, 

prepared independently by the Real and Mallah groups, revealed 

a decrease of the magnetic hysteresis, abruptness of the transition 60 

and critical temperatures as the size of the nanoparticles 

decreased.6 Similar results were found for nanoparticles of the 

[Fe(NH2Trz)3]Br2 SCO polymer prepared by Létard et al.7 

Conversely, for the related system [Fe(HTrz)2(Trz)](BF4), 

nanoparticles with a diameter of 11 ± 5 nm showed an abrupt spin 65 

transition above room temperature with a 40 K-wide thermal 

hysteresis loop. When the diameter of the nanoparticles was 

reduced down to 6 ± 3 nm, a 29 K-wide hysteresis was still 

preserved.8 Besides size and shape, other factors such as the 

presence of surfactant molecules, or rigid matrices embedding the 70 
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nanoparticles, have been demonstrated to induce important 

modification of the magnetic behavior in these materials. For 

example, nanoparticles of the SCO material 

[Fe(pyrazine)Pt(CN)4] coated with a thin shell of silica show a 

strongly cooperative spin transition with a 15 K-wide thermal 5 

hysteresis loop, while softer coating agents such as calixarene-

based ligands, organic polymers or surfactants cancel the 

cooperativity.9 Similar behaviour has also been recognized 

recently for 3.2(5) nm nanoparticles of the SCO polymer 

[Fe(Htrz)2(Trz)](BF4) grown within the pores of mesoporous 10 

silica monoliths, which results in a room temperature bi-stable 

nanocomposite with a 65 K wide hysteresis loop.10 

 In this work, we describe the synthesis of both bare and silica 

wrapped [Fe(Htrz)2(Trz)](BF4) nanoparticles following a water-

in-oil synthetic procedure. The size and shape of the 15 

nanoparticles can be precisely tuned by controlling the Fe(II) and 

HTrz concentrations. Both types of nanoparticle show a strongly 

cooperative spin transition, although wider hysteresis loops are 

observed for the hybrid Fe(II)/SiO2 nanoparticles. These results 

confirm the important role of the surrounding silica matrix in 20 

favouring the propagation of long range elastic interactions that 

enhance cooperativity. 

 We have reported previously the use of silica to wrap 

nanoparticles of the SCO system [Fe0.5Zn0.5(HTrz)2(Trz)](BF4) to 

which a dansyl derivate luminophore (3-25 

(dansylamido)propyltrimethoxysilane) was attached leading to 

bifunctional SCO/luminescent materials. In these hybrid systems, 

the dansyl emission intensity appeared to be synchronized with 

the LS ↔ HS transition11, so that the dansyl emission is quenched 

by the Fe(II) low spin ions in the core of the nanoparticles since 30 

there exists a spectral overlap between the dansyl luminescence 

and the LS absorption band 1A1 → 1T1 of the Fe(II) ions. This 

was one of the several examples reported in the last few years in 

which bifunctional nanoparticles combining SCO and 

luminescence properties have been prepared.12 The modulation of 35 

a luminescent signal through a LS ↔ HS transition is a very 

interesting phenomenon that could find applications in several 

fields, such as thermometry, sensors, biomarkers or photonic 

switches. The SCO phenomenon could be registered easily 

through changes in the luminescent signal rather than using other 40 

techniques such as magnetometry. Bousseksou and co-workers 

prepared nanoparticles of the SCO [Fe(NH2Trz)3](OTs)2 (NH2Trz 

= 4-amino-1,2,4-triazole; OTs = tosyl) doped with the fluorescent 

agent Rhodamine 110. The emission spectrum to the fluorophore 

overlaps with the 1A1 → 1T1 absorption band of the Fe(II) 45 

polymer in the LS state and the emission is partially quenched. 

The authors suggested that this behaviour was due to a radiative 

(trivial) energy transfer mechanism between the Rhodamine and 

the Fe(II)-LS core.13 By replacing the Rh-110 fluorophore by 

acridine orange, a better spectral overlap between the emission 50 

spectrum and the 1A1→
1T1 absorption band of the Fe(II)-LS 

complex exists, leading to an increase in the efficiency of the 

energy transfer, which in this case was largely attributed to a non-

radiative mechanism (FRET).14 However, no experimental probes 

regarding the nature of the energy transfer process were 55 

presented. Indeed, the uncertainty of the fluorophore location in 

the nanoparticle introduces significant difficulties in 

understanding the mechanism governing the energy transfer 

process in these hybrid materials. We pursue this study further 

and time-dependent luminescence studies demonstrate that, in our 60 

systems, the quenching of the dansyl emission in the LS regime is 

due to a non-radiative energy transfer process (Förster type). We 

have also functionalized the surface of hybrid Fe(II)/SiO2 

nanoparticles with thiol groups which allows them to be 

homogeneously deposited onto a gold surface. 65 

2 Experimental 

2.1 Materials and chemicals 

All chemicals used were obtained from commercial sources and 

used without further purification. Bulk [Fe(Htrz)2(Trz)](BF4) was 

prepared as reported previously.15 Gold surfaces for Atomic 70 

Force Microscopy (AFM) studies were commercially purchased 

from the Arrandee Company. 

2.2 Instrumentation and characterization 

Nanoparticles were characterized by Transmission electron 

microscopy (TEM) using a Philips CM-20 HR electron 75 

microscope operating at 200 keV. 5 mg of the material was 

redispersed by sonication (30 min) in 1 mL of EtOH. Carbon 

reinforced copper grids (200 meshs) were submerged into de 

suspension 50 times and then allowed to dry on air for at least 48 

h. The size of the particles was determined by “manual counting” 80 

using ScionImage software (http://www.scioncorp.com). 

HAADF-STEM images were recorded on a JEOL2010 FEG 

instrument working at an accelerating voltage 200 KV in 

scanning mode with a probe diameter of 0.5 nm. Elemental 

analyses were carried out at the “Centro de Instrumentación 85 

Científica” (University of Granada) on a Fisons-Carlo Erba 

analyser model EA 1108. Magnetic measurements were obtained 

with the use of a Quantum Design SQUID magnetometer MPMS-

XL operating at a magnetic field of 10000 G in the 310 – 400 K 

range of temperature. The heating-cooling cycles were done with 90 

a rate of 10 Kmin-1. A long gas-driven pressure cell similar to the 

piston-cylinder pressure cell with helium gas as pressure-

transmitting medium,16 was used for measuring magnetic 

susceptibility at high-pressure. Photoluminescence spectra were 

measured by a Varian Cary Eclipse spectrofluorometer on solid 95 

samples by using a home-built setup that collected the emitted 

signal in the range 400-280 K. Lifetime data were obtained on a 

JobinYvon-Horiba Fluorolog spectrometer fitted with a JY TBX 

picoseconds photodetection module. The pulsed source was a 

Nano-LED configured for 295 nm output operating at 1 MHZ. 100 

The detector response was obtained using Ludox SiO2 as a 

scatterer. Luminescence lifetime profiles were obtained using the 

JobinYvon-Horiba FluoroHub single photon counting module 

and the data fits yielded the lifetime values using the provided 

DAS6 deconvolution software. Atomic Force Microscopy (AFM) 105 

images were acquired in dynamic mode using a Nanotec 

Electronica system (www.nanotec.es). Olympus cantilevers were 

used with a nominal force constant of 0.75 N/m. 

2.1 Synthesis of [Fe(Htrz)2(Trz)](BF4) nanoparticles (FeHTrz 
NPs) 110 

1. An aqueous solution of Fe(BF4)2·6H2O (337 mg, 1 mmol in 0.5 

mL of deionized H2O) was added to a solution containing Triton 

X-100 (1.8 mL), n-hexanol (1.8 mL) and cyclohexane (7.5 mL). 
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The resulting mixture was stirred until formation of a clear water-

in-oil microemulsion. A similar procedure was applied to 1,2,4-

1H-Triazole (Htrz) (210 mg, 3 mmol in 0.5 mL of  deionized 

H2O). Both microemulsions were quickly combined and the 

mixture stirred for 24 h into the dark, followed by addition of 5 

acetone to break the microemulsion. The precipitated 

nanoparticles were recovered by centrifugation washed several 

times with EtOH, then acetone and finally dried at 70 ºC for 12 h. 

In this case, the iron(II) concentration in water, c(FeII), was 1 M. 

2. The material was prepared following the same synthetic 10 

procedure as in sample 1, but using 0.75 mmol of Fe(BF4)2·6H2O 

(253 mg) and 2.25 mmol of Htrz (158 mg). In this case, c(FeII) = 

0.75 M. 

3. The material was prepared following the same synthetic 

procedure as in sample 1, but using 0.625 mmol of 15 

Fe(BF4)2·6H2O (211 mg) and 1.875 mmol of Htrz (131 mg). In 

this case, c(FeII) = 0.625 M. 

4. The material was prepared following the same synthetic 

procedure as in sample 1, but using 0.5 mmol of Fe(BF4)2·6H2O 

(169 mg) and 1.5 mmol of Htrz (105 mg). In this case, c(FeII) = 20 

0.5 M. 

2.2 Synthesis of hybrid {[Fe(Htrz)2(Trz)](BF4)}@SiO2 
nanoparticles (FeHTrz@SiO2NPs) 

1@SiO2. An aqueous  solution of Fe(BF4)2·6H2O (337 mg, 1 

mmol in 0.5 mL of deionized H2O) and 0,1 mL of TEOS were 25 

added to a solution containing Triton X-100 (1.8 mL), n-hexanol 

(1.8 mL) and cyclohexane (7.5 mL). The resulting mixture was 

stirred until formation of a clear water-in-oil microemulsion. A 

similar procedure was applied to 1,2,4-1H-Triazole (Htrz) (210 

mg, 3 mmol in 0.5 mL of  deionized H2O). Both microemulsions 30 

were quickly combined and the mixture stirred for 24 h into the 

dark, followed by addition of acetone to break the 

microemulsion. The precipitated nanoparticles were recovered by 

centrifugation, washed several times with EtOH, then acetone and 

finally dried at 70 ºC for 12 h. In this case, the iron(II) 35 

concentration in water, c(FeII), was 1 M. 

2@SiO2. The material was prepared following the same synthetic 

procedure as in sample 1@SiO2, but using 0.75 mmol of 

Fe(BF4)2·6H2O (253 mg) and 2.25 mmol of Htrz (158 mg). In 

this case, c(FeII) = 0.75 M. 40 

3@SiO2. The material was prepared following the same synthetic 

procedure as in sample 1@SiO2, but using 0.625 mmol of 

Fe(BF4)2·6H2O (211 mg) and 1.875 mmol of Htrz (131 mg). In 

this case, c(FeII) = 0.625 M. 

4@SiO2. The material was prepared following the same synthetic 45 

procedure as in sample 1@SiO2, but using 0.5 mmol of 

Fe(BF4)2·6H2O (169 mg) and 1.5 mmol of Htrz (105 mg). In this 

case, c(FeII) = 0.5 M. 

2.3 Surface functionalization of 1@SiO2 with dansyl-derivate 
fluorophores, 1@SiO2-Dansyl 50 

Decoration of the surface of 1@SiO2 with dansyl groups was 

achieved following the procedure previously reported by us.11 

Thus, 0.1 g of 1@SiO2 and 0.025 g (0.055 mmol) of 3-

(dansylamido)propyltrimethoxysilane were added to a mixture of 

dried acetonitrile/dichloromethane (1:1, 50 mL). The resulting 55 

mixture was heated at reflux for 48 h in an inert atmosphere. The 

solid nanoparticles were recovered by centrifugation and washed 

several times with acetonitrile, ethanol and acetone until the 

dansyl fluorescence had vanished in the solvent. The final solid 

was dried at 70 ºC for 12 h. 60 

2.4 Surface functionalization of 1@SiO2 with thiol groups, 
1@SiO2-SH 

200 µL (1 mmol) of 3-mercaptopropyltrimethoxysilane 

(MPTMS) were added to a suspension of 0.1 g of 1@SiO2 in 40 

mL of dry acetonitrile. The mixture was stirred at reflux for 48 h 65 

in an inert atmosphere. The solid nanoparticles were recovered by 

centrifugation and washed several times with acetonitrile, ethanol 

and acetone to remove any MPTMS molecules non grafted to the 

1@SiO2 surface. Finally, the solid was dried at 70 ºC for 12 h.  

2.5 Sample preparation of 1@SiO2-SH for AFM 70 

measurements 

Cleaning of the Gold Surfaces. In order to obtain reproducible 

results, gold substrates were treated just before the chemical 

deposition. They were immersed on a solution of H2SO4:H2O2 

(2:1) for 10 min., then washed with water, sonicated 5 min. (680 75 

w, 20 ºC) on water, and exposed to direct flame for 2 min. 

Dispersion Procedure of 1@SiO2-SH nanoparticles. 1 mg of 

1@SiO2-SH nanoparticles in 1 mL of ethanol was sonicated with 

an ultrasonication bath (Elma, 37 kHz, 380 W) for 30 min. 

Adsorption of 1@SiO2-SH on Gold surface. Gold surfaces were 80 

immersed in the 1@SiO2-SH ethanol suspension (1 mg/mL) for 

6-12 h, washed with ethanol and then dried with an argon flow. 

3 Results and discussion 

3.1 Synthesis and structural characterization 

Nanoparticles of the SCO polymer {[Fe(Htrz)2(Trz)](BF4)}n 1 – 4 85 

were prepared following a classical reverse micelle approach. The 

syntheses were performed at room temperature by mixing two 

separate microemulsions, both containing adequate amounts of a 

surfactant (Triton X-100), a co-surfactant (n-hexanol), and a 

hydrocarbon (cyclohexane) as organic phase. One of the 90 

microemulsions contained an aqueous solution of the iron salt 

whereas the other one contained the stoichiometric amount of 

HTrz ligand, dissolved in the same amount of water. A few 

minutes after the microemulsions were mixed and vigorously 

stirred, the color of the mixture turned purple confirming the 95 

formation of the coordination polymer {[Fe(HTrz)2(Trz)](BF4)}n 

via content exchange between the microdroplets of both 

microemulsions. The stirring was maintained for 24 h and then 

acetone was added to break down the emulsion leading to the 

precipitation of the Fe-Trz nanoparticles which were successfully 100 

recovered by centrifugation after several washing cycles. For the 

synthesis of the nanoparticles, all the synthetic parameters were 

kept constant except the Fe(II) and HTrz concentrations in water. 

Thus, syntheses at C[Fe(II) in water] = 1 , 0.75 , 0.625  and 0.5 M, 

respectively, yielded 1, 2, 3 and 4 as purple solids at room 105 

temperature. 

 HR-TEM and HR-SEM images for samples 1 - 4 are shown in 

Figure 1. In all cases, the nanoparticles are monodisperse, 

homogeneous and well defined. 1 is made of quasi-spherical 

nanoparticles with a mean diameter of 28.3 ± 2.9 nm. 110 

Nanoparticles of 2 show a roughly cubic-like topology with a side 

length of 38.4 ± 2.6 nm. Compound 3 shows a slightly 
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rectangular shape with an average length of 70.3 ± 6.5 nm and a 

width of 59.0 ± 4.3 nm. Complex 4 consists of rod-like 

nanoparticles with a side length of 321.2 ± 17.1 nm and a width 

of 194.9 ± 16.3 nm. These images show how as the CFe(II) 

decreases, the Fe-Trz nanoparticles increase significantly their 5 

size. The higher the concentration of the precursors, the smaller 

the size of the nanoparticles. This fact is in agreement with that 

expected for a nucleation-controlled process, where a higher 

concentration of precursors induces the formation of a larger 

amount of nuclei, thus leading to smaller particles. A similar size 10 

dependence on the concentration of the precursors has been 

previously observed for other SCONPs.17 Moreover, as the size 

of the nanoparticle increases, they tend to adopt a rod-like 

topology similar to that shown by the particles of the bulk 

material prepared in a classical manner (Figure S1 in ESI). 15 

 Hybrid FeHTrz@SiO2 nanoparticles were prepared following 

the same synthetic approach as for samples 1 – 4, but adding an 

hydrophilic precursor of silica, tetraethyl orthosilicate (TEOS), to 

the Fe(II) and HTrz microemulsions. Thus, in these cases, the 

FeHTrz NPs are embedded within a silica shell formed by the 20 

sluggish hydrolysis and polymerization of TEOS. As before, all 

the synthetic parameters were kept constant except the Fe(II) and 

HTrz concentrations in water. Thus, syntheses at C[Fe(II) in water] = 1 

, 0.75 , 0.625  and 0.5 M, respectively, yielded 1@SiO2, 2@SiO2, 

3@SiO2 and 4@SiO2 as purple solids at room temperature. 25 

 As observed for 1 - 4, the nanoparticles tend to both adopt a 

rod-like morphology and increase their dimensions as the 

reactants Fe(II) and HTrz concentration decreases (Figure 2). 

However, in this case the mean size of the nanoparticles 1 - 

4@SiO2 is significantly higher compared to the analogues 1 – 4 30 

prepared in absence of TEOS (Table 1). In order to fully 

characterize the composition, the structure and the distribution of 

silica and the Fe(II) polymer in these kind of nanoparticles, high-

angle annular dark-field scanning transmission electron 

microscopy (HAADF-STEM) tomography studies were 35 

performed on sample 3@SiO2. The tomographic reconstruction 

was achieved by tilting the specimen on one axis with respect to 

the electron beam and collecting a series of two-dimensional 

HAADF-STEM images at a range of tilts. Figure 3a shows a 

HAADF-STEM image acquired through the tomographic 40 

acquisition. Considering the atomic numbers of iron (ZFe = 26) 

and silicon (ZSi = 14), which are the main elements forming the 

Fe(II) polymer and the silica matrix respectively, it is clear that 

nanocomposite 3@SiO2 is made of an iron rich core (brighter) 

with dimensions of ca. 100 × 50 nm and surrounded by a thin 45 

shell (~ 12 nm in width) of pure silica. A surface-rendered 

tomographic reconstruction is shown in Figure 3b. These results 

confirms that nanoparticles 1 – 4@SiO2NPs are of the core-shell 

type with the Fe(II) polymer located at the core of the 

nanoparticles and surrounded by a narrow shell of pure silica. 50 

 3.2 Magnetic properties 

Figure 4 shows the thermal dependence of χMT for 1 – 4 and 1 – 

4@SiO2 (χM is the magnetic susceptibility and T is the 

temperature). For 1 – 4, the χMT values at 400 K range between 

3.53 – 3.62 cm3·K·mol-1, which fit well with the expected value 55 

for an Fe(II) ion with high-spin electronic configuration . In all 

the cases, the χMT values at 310 K reveal the existence of a 

residual HS population at low temperature. This HS fraction is 

attributed to Fe atoms located at the surface of the nanoparticle 

which are partially coordinated by water molecules [Fe(Trz)3-60 

x(H2O)2x with 0 < x > 3] and therefore remain at the HS state in 

all the temperature range. This fraction is much higher than that 

found in the bulk (10 %) and generally increases as the size of the 

nanoparticle decreases (Table 2). This increase is attributed to 

surface effects on the nanoparticles. Thus, as the nanoparticles are 65 

larger, their proportional surface area decreases and, 

consequently, the fraction of partially coordinated Fe(II) ions. In 

all cases the spin transition is abrupt and shows a well-shaped 

thermal hysteresis loop with critical temperatures located above 

room-temperature. In general, the hysteresis width is close to 25 70 

K except for sample 4, in which this width slightly rises up to 35 

K. In this last case, the hysteresis width is quite close to that 

shown by the bulk. Thus a correlation between the thermal 

hysteresis width and the size of the nanoparticle can be 

established: when the size of the nanoparticle is large, i.e. 321.2 75 

nm for 4, the values of the critical temperatures are similar to 

those of the bulk (microparticles), whereas for nanoparticles with 

size in the 70 - 28 nm range, the hysteresis width slightly 

decreases, although the spin transition is always abrupt and with 

hysteresis. This trend is similar to that observed by Létard7 in 80 

nanoparticles of the polymer [Fe(NH2-Trz)3]Br2·3H2O (NH2-Trz 

= 2-amino-1,2,4-triazole) where the magnetic properties of 

nanoparticles larger than 200 nm were very similar to those 

observed for the bulk. For particles of sizes between 160 – 80 nm, 

the spin transition becomes more gradual with the hysteresis 85 

width being less pronounced. However, in this example, the 

hysteresis vanishes completely when the particle size is reduced 

to 50 nm, whereas in our case, a ~ 25 K wide hysteresis loop is 

still observed.   

 Most of the previous comments apply also for 1 – 4@SiO2 90 

although two important differences are observed. Firstly, the 

percentage of remnant HS population at low temperature is 

significantly higher in these cases, up to an additional 3.9 % in 

the case of 4@SiO2 compared to 4. Secondly, the thermal 

hysteresis loops for these samples are significantly wider, being 95 

in all cases close to 40 K and very similar to that shown by the 

bulk sample, being almost independent of the particle size. Thus 

it appears evident that the cooperativity of the spin transition in 

these systems increases when they are enveloped within a silica 

shell to reach a maximum close to 40 K in width which is 100 

independent of the size of the particle. This behaviour confirms 

the ability of the silica shell of the nanoparticle to transmit the 

elastic vibrations generated from the LS - HS switch to other 

nanoparticles located in the vicinity, increasing the efficiency of 

the inter-particles interactions and thus the cooperativity. 105 

Nevertheless, the effect of the coating on the width of the thermal 

hysteresis is a complex phenomenon and other factors such as 

chemical pressure, viscosity, chemical interactions between core 

and shell can also play a significant role.18  

 In order to examine the effect of pressure on the SCO 110 

properties of the nanoparticles 1-4 and 1-4@SiO2 we have 

measured, as an example, the temperature dependence of χMT of 

the nanoparticles prepared with a 1 M iron(II) concentration (4 

and 4@SiO2) under hydrostatic pressures of 0.004, 0.008. 0.012 

and 0.016 GPa. 115 

 Both materials exhibit a slight pressure dependence of the 
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temperature dependence of χMT in the pressure range studied, 

their Tc↑ and Tc↓ being shifted to higher temperatures as the 

hydrostatic pressure increases. This behaviour is mainly due to 

the increase in the inter-particle interaction with increasing 

pressure, leading to shorter Fe-N distances and larger crystal field 5 

that favours the LS state. In fact, at 0.01 GPa the paramagnetic 

HS state is suppressed in both materials. The temperature 

dependences of Tc↑ and Tc↓ are not identical, the latter being 

larger than the former. It is worth mentioning that the hysteresis 

width is almost independent of the applied pressure in the 0.004-10 

0.016 GPa range. Nevertheless, the hysteresis for 4@SiO2 is 

higher than that for 4 (47. 0 K and 55.4 K, respectively), which 

agrees, as indicated above, with the effectiveness of the silica 

shell to transmit inter-particle interactions. SCO systems 

generally follow a linear dependence of Tc with pressure,19 which 15 

using the mean field theory of phase transitions in spin cross-over 

compounds is expressed by the Clasius-Clapeyron equation:20  

 Tc(p) = Tc + p(∆V/∆S) (1) 

in which ∆� ∆� = ���(	) �	⁄⁄  represents the average pressure 

dependence of Tc(p) and ∆V and ∆S are the change of volume and 20 

entropy  per mol of compound upon the SCO transition. The 

linear fitting of the pressure dependence of T1/2 (average of 

dT1/2↓/dp and dT1/2↑/dp) to the above equation leads to slopes of 

290(66) KGpa-1 (R2 = 0.91) and 230(21) KGpa-1 (R2 = 0.98) for 4 

and 4@SiO2, respectively, which demonstrate their large pressure 25 

efficiency on the transition temperature (Figure 6).  

  The extracted values are close to those observed for related 1D 

coordination polymers containing triazole derivatives bridges, 

such as [Fe(hyptrz)]3(4-chorophenylsulphonate)·H2O and 

[Fe(hyptrz)]3(4-chorophenylsulphonate)21 with dT1/2/dp values of 30 

240 and 230 KGpa-1, but higher than those for mononuclear 

complexes, such as [Fe(dpa)2(NCS)2] (dpa = 2,2-

dipyridylamine),22 [Fe(abpt)2(NCS)2] (abpt = 4-amino-3,5-

bis(pyridine-2-yl)-1,2,4-triazol)23 and [Fe(2-pic)3(NCS)2] (2-pic = 

2-aminomethylpyridine)24 with dT1/2/dp values 187.5, 176 and 35 

150 K, respectively.  

3.3 Surface decoration of 1@SiO2 with dansyl-fluorophore 
derivates  

As commented above, we have demonstrated that Fe/Zn-

Trz@SiO2 nanoparticles are an excellent platform to prepare 40 

bifunctional SCO-Luminescent materials by grafting 

alkoxysilane-derivate organic fluorophores to the surface of the 

nanoparticles. Thus, hybrid Fe/Zn-Trz@SiO2-danysl 

nanoparticles (with dansyl being 5-dimethylamino-1-

naphthalenesulfonamido chromophoric groups) were prepared 45 

and it was found that changes in the fluorescence intensity of the 

dansyl groups were synchronized with the thermally induced 

SCO transition. At 280 K, LS regime, after irradiation at 315 nm 

a broad fluorescence band with λmax = 495 nm typical of dansyl 

groups was observed. When the temperature rose up to 400 K 50 

(HS regime), conversely to the expected thermal quenching of the 

fluorescence, the emission intensity increased significantly. This 

odd behaviour was explained by considering the existence of a 

donor/acceptor energy transfer process from the dansyl groups to 

the Fe(II)-LS complex since a reasonable spectral overlap exists 55 

between the dansyl fluorescence band and the LS absorption band 

1A1 → 1T1 of the Fe(II) ion. The thermal variation of the emission 

intensity monitored at 495 nm of 

[Fe0.5Zn0.5(HTrz)2(Trz)](BF4)@SiO2 nanoparticles closely 

followed the SCO curve obtained from magnetic studies. To 60 

confirm if undiluted [Fe(HTrz)2(Trz)](BF4)@SiO2 nanoparticles 

showed a similar behaviour, the thermal variation of the magnetic 

and luminescent properties of 1-@SiO2-dansyl were studied. 

Compared to 1, the SCO transition of 1-@SiO2-dansyl displays a 

slightly wider thermal hysteresis loop (Tc↑ = 382 K, Tc↓ = 332 K, 65 

∆T = 50 K) which is probably due to the higher degree of 

agglomeration observed for these nanoparticles (Figures S2-S3, 

ESI). Room-temperature irradiation of 1-@SiO2-dansyl at λexc = 

315 nm, led to the appearance of a broad emission band centered 

at ca. 495 nm, typical of dansyl groups. When the temperature 70 

rose up to 400 K, the 4-fold increase of the emission intensity 

was observed. To confirm if, as observed for the diluted 

Fe0.5/Zn0.5 nanoparticles, the increase of the intensity was 

synchronized with the SCO transition, two cycles of the thermal 

variation of the fluorescence intensity at λem = 494 nm were 75 

measured (Figure 7). This variation described a thermal 

hysteresis loop which was quite similar to that observed for the 

thermal variation of χMT. For both cycles, the critical cooling and 

heating temperatures (cycle 1: Tc↑ = 393 K, Tc↓ = 336 K, ∆T = 57 

K; cycle 2: Tc↑ = 391 K, Tc↓ = 338 K, ∆T = 53 K) are similar to 80 

that reported from magnetic measurements. Nevertheless, above 

395 K an anomalous behaviour is observed for the emission 

intensity. In this study, the sample was first heated until 410 K 

and then the emission intensity at λem = 495 nm was recorded as 

the temperature decreased at a rate of 10 Kmin-1. Between 410 85 

and 395 K, the emission is slightly attenuated as the temperature 

decreases. Below 395 K, the intensity remains almost constant 

until Tc↓ = 336 K, when the emission intensity falls dramatically 

coinciding with the FeII(HS) → FeII(LS) transition. Below 330 K, 

the emission reached a minimum that remained constant until the 90 

cooling cycle finished at 315 K. Then, the temperature was raised 

at 10 Kmin-1 with no significant variance of the emission 

intensity until 390 K after which, the emission intensity increased 

sharply coinciding now with the FeII(LS) → FeII(HS) transition. 

Above 395 K, the emission intensity started to decrease again 95 

which prevented the hysteresis loop from being closed. For the 

second thermal cycle the same behaviour is observed although 

the emission in the HS and LS regimes was 20.5 % less intense. 

The decrease of intensity observed between both cycles is 

probably due to the fact that the danysl groups grafted to the 100 

surface of the nanoparticles decompose thermally when the 

temperature rises above 395 K. To confirm this hypothesis, a 

fresh sample was subdued to successive heating (400 K) – 

cooling (300 K) cycles and a gradual and irreversible decrease of 

the emission intensity was observed which confirmed the thermal 105 

decomposition of the dansyl groups at temperatures close to 400 

K. As stated above, in the last few years, several examples of 

bifunctional SCO/luminescent nanoparticles in which the spin 

transition tuned the emission intensity were reported. However, 

the energy transfer mechanism regulating this behavior remains 110 

unclear. In these hybrid nanomaterials, the uncertainty in the 

precise location of the donor (fluorophore)/acceptor (FeII(LS)) 

pairs renders great difficulty in the determination of the energy-

transfer mechanism. Two different quenching mechanisms have 
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been most commonly proposed: i) a radiative energy transfer 

process (inner filter effect) and ii) a Förster-type non-radiative 

energy transfer process (FRET). Both mechanisms require an 

overlap between the donor emission and the acceptor absorption 

spectra. For a radiative energy transfer, the donor absorbs energy 5 

and then emits a photon which is reabsorbed by the acceptor 

leading to a quenching of the donor emission. However, both 

entities are independent of each other so the emission lifetime of 

the donor is not affected by the presence of the acceptor. 

Conversely, a non-radiative energy transfer constitutes an 10 

additional pathway to deactivate the donor’s excited state and the 

emission lifetime is reduced.25 Thus, to determine the mechanism 

of the energy transfer process, it is necessary to determine how 

the emission lifetime of the dansyl groups are affected by the 

presence of the energy acceptors FeII(LS) centres. As the excited 15 

state lifetime of the dansyl groups are sensitive to the surrounding 

polarity and/or rigidity,26 pure amorphous Ludox AS-40 SiO2 

nanoparticles were prepared and their surface functionalized with 

dansyl groups following the same synthetic approach used to 

prepare 1-@SiO2-dansyl. In these nanoparticles, the environment 20 

of the dansyl moieties is similar to that found in the Fe-Trz@SiO2 

nanoparticles but the FeII(LS) quenchers are absent. Room-

temperature time-resolved luminescent experiments performed on 

these nanoparticles allowed to determine an excited state lifetime 

of 12.0 ns. For 1-@SiO2-dansyl, the lifetime measured under the 25 

same conditions (LS regime) was found to be significantly lower, 

7.4 ns. This result strongly supports the existence of a 

dansyl→FeII(LS) non-radiative energy transfer with a rate KEnT, 

of ca. 5.3·107 s-1 (on the basis of equation 5 where τq is the 

“quenched” dansyl lifetime in the presence of FeII(LS) centres 30 

and τu is the “unquenched” lifetime in this particular 

environment). The efficiency of the energy transfer can be 

estimated to be 38.8% by equation 7. 

 KEnT = 1/τq – τu (5) 

 Kin = 1/τu (6) 35 

 ηEnT = KEnT·(KEnT + Kin)
-1  (7) 

 Thus, the decrease of both, the dansyl excited-state emission 

intensity and lifetime in the LS regime suggests the existence of a 

Förster-type energy transfer from these groups localized at the 

outer shell of the nanoparticle to the FeII-(LS) moiety located at 40 

the core. This synergy has been previously observed by us in 

hybrid core/shel silica nanoparticles27 and demonstrates that SiO2 

nanoparticles are an excellent platform to prepare multimodal 

nanomaterials exhibiting synergy between core- and shell-active 

components. 45 

3.4 Surface decoration of 1@SiO2 with thiol groups and 
deposition onto a gold surface. Atomic Force Microscopy 
Characterisation 

The surface of silica nanoparticles can also be decorated with 

functional groups such as thiol, amino or carboxylic acid and then 50 

grafted onto substrates such as gold or silicon films through 

covalent bonds. To explore this possibility, sample 1@SiO2 has 

been functionalized with MPTMS and then deposited onto a gold 

surface. A clean gold surface was dip-coated into a suspension of 

1@SiO2-SH in ethanol for 12 h, washed with ethanol and dried 55 

under an Argon flow. The covered gold surface was imaged by 

AFM. As shown in Figure 8, the gold surface shows a high 

density of nanoparticles homogeneously distributed with few 

aggregates. The mean particle height, 52.2 ± 4.8 nm, is in good 

agreement with the size determined by TEM, and indicates that 60 

the gold surface is covered by a single monolayer of 

nanoparticles. 

 The attachment of 1@SiO2-SH to the gold surface can be 

controlled by the immersion-time of the surface into the ethanol 

suspension of 1@SiO2-SH. Thus a statistical analysis of the 65 

number of particles attached to the surface at different immersion 

times shows that at after 12 h of immersion the coverage is ca. 19 

± 1 particles/µm2, while shorter immersion times led to a less 

homogenous distribution and a density of ca. 13 ± 1 

particles/µm2. Shorter immersion times (1-3 h) show a significant 70 

reduction of particles attached to the surface, in fact we cannot 

properly estimate the density of particles because single particles 

were just eventually detected on the surfaces (Figure S4). 

Conclusions 

In conclusion, Fe(II)-triazole SCO nanoparticles have been 75 

prepared by a reverse micelle synthetic approach. We 

demonstrate how the Fe(II) and HTrz concentrations in the 

aqueous phase exert a fine control of the size and shape of the 

formed nanoparticles. For the materials with particle’s size in the 

28 – 70 nm range, the spin transition shows 25 K-wide thermal 80 

hysteresis loops, whereas for larger nanoparticles the hysteresis 

width increases up to 35 K. Adding a silica precursor to the 

microemulsion allows to obtain core/shell nanoparticles in which 

the FeTrz polymer is embedded within a thin shell of silica. The 

cooperativity of the spin transition in these core/shell 85 

nanoparticles is significantly enhanced and the thermal hysteresis 

width increases up to 40 K independently of the size of the 

nanoparticles, which demonstrate the ability of the rigid silica 

shell to promote interparticles interactions.  

 The magnetic properties of 4 and 4@SiO2, in the form of χMT 90 

vs T, show slight pressure dependence, which results in an 

increase of both Tc↑ and Tc↓ when the hydrostatic pressure is 

augmented in the 0.004-0.016 GPa range. This behavior is due to 

the increase of the interparticle interactions as the pressure is 

raised. At 0.01 GPa the Fe-N distances are shortened in such an 95 

extent that the crystal field around FeII atom is enough to 

suppress the paramagnetic HS state in both complexes. The 

pressure dependence of T1/2 follows the Clausius-Clapeyron 

equation with high dT1/2/dp values, thus demonstrating the large 

pressure efficiency on the transition temperature for these 100 

materials. 

 Additionally the silica shell in these nanoparticles allowed us 

to attach to their surface a dansyl derivate fluorophore leading to 

a bifunctional SCO-luminescent material in which the spin 

configuration of the FeTrz core controls the emission intensity of 105 

the fluorophore. Time-resolved luminescence studies demonstrate 

that in the LS state, the dansyl emission is partially quenched 

through a dansyl→Fe(II) non-radiative energy transfer process 

(Förster type). Similarly, thiol groups can be grafted to the 

surface of these nanoparticles which allow them to be attached to 110 

gold surfaces in a controlled manner by dip-coating. AFM 

analysis allows to determine the shape and dimension of the 
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nanoparticles. The control of immersion time of the gold surface 

in ethanol suspensions of the thiol-functionallized nanoparticles 

allows to modulate the density of particles anchored to the 

surface. This is an important aspect regarding potential devices 

fabrication.  5 
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Fig. 1 HR-TEM (left) and HR-SEM (right) images for samples 1 (a), 2 (b), 3 (c) and 4 (d). 

 

 5 

 
Fig. 2 HR-TEM (left) and HR-SEM (right) images for samples 1@SiO2 (a), 2@SiO2 (b), 3@SiO2 (c) and 4@SiO2 (d). 

 
 

 10 
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Fig. 3 a) A two-dimensional HAADF-STEM image collected through the tomographic acquisition showing the core/shell structure of the nanoparticle. b) 5 

A three-dimensional surface rendered tomographic reconstruction.  
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Fig. 4 Comparison of the thermal variation of the χMT product for the Fe-Trz (□) and Fe-Trz@SiO2 (○) nanoparticles studied in this work: a) 1 and 

1@SiO2; b) 2 and 2@SiO2; c) 3 and 3@SiO2; d) 4 and 4@SiO2.  
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Fig. 5 Temperature dependence of χMT under hydrostatic pressure for 4 

(a) and 4@SiO2 (b). 

 

 5 

 
Fig. 6 Pressure dependence of TC for 4 and 4@SiO2. 
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 20 

 

 

 

 

 25 

 

 

 

Fig. 7 a) Thermal variation of the emission intensity at λexc = 495 nm for sample 1-dansyl (open squares: cycle 1; open circles: cycle 2). 

b) Variation of the emission intensity for sample 1-dansyl after successive heating (400 K, full lines) and cooling (300 K, dotted lines) 30 

cycles. The gradual and irreversible decrease of emission intensity after each cycle confirms the thermal decomposition of the dansyl 

groups at 400 K.   
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Fig. 8 a) AFM image of an homogeneous distribution of 1@SiO2-SH nanoparticles deposited on a gold surface. The inset represents the size distribution 

of the nanoparticles. The data of the histogram were collected from 50 randomly picked particles. b) AFM zoomed image of a representative particle 5 

found with a height profile (the inset). 
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Table 1 Average particle size for samples described in this work.a 

 Length (nm) Width (nm) 

1 28.3 ± 2.9 ----- 

2 38.4 ± 2.6 ---- 

3 70.3 ± 6.5 59.0 ± 4.3 

4 321.2 ±17.1 194.9 ± 16.3 

1@SiO2 55.7 ± 3.9 ---- 

2@SiO2 87.4 ± 7.5 67.9 ± 9.2 

3@SiO2 147.7 ± 11.7 92.1 ± 12.1 

4@SiO2 422.4 ± 50.3 179.8 ± 42.1 

a At least 50 nanoparticles for each sample were evaluated to determine 

the average dimensions of the particles. 

 

 5 

Table 2 Physical parameters characteristic for the thermal induced spin 

transition of the materials studied in this work. 

 Tc↓ (K)a Tc↑ (K)a ∆Tc % HS320K
b 

1 347 373 26 17.6 

2 347 371 24 17.0 

3 348 376 28 15.1 

4 345 380 35 11.7 

1@SiO2 341 378 37 19.2 

2@SiO2 339 379 40 19.2 

3@SiO2 343 385 42 16.3 

4@SiO2 346 387 41 15.6 

a Tc↓ and Tc↑ are the critical temperatures for the HS → LS and LS → HS 

transitions in the cooling and warming mode respectively. b Percentage of 

residual Fe(II) ions that remain in the HS state below Tc↓.  10 
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The surface of SiO2-coated Fe-Triazole SCO nanoparticles has been functionalized with dansyl 

luminophores. When thiol groups are grafted, the nanoparticles can be deposited onto gold surfaces.    
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