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1 Introduction

Quantitative formal methods, such as stochastic process algebras, have been used for
the last twenty years to support modelling of dynamic systems in order to investigate
their performance. Application domains have ranged from computer and communica-
tion systems [1, 2], to intracellular signalling pathways in biological cells [3, 4]. Nev-
ertheless this modelling approach is challenged by the demands of modelling modern
collective adaptive systems, many of which have a strong spatial aspect, adding to the
complexity of both the modelling and the analysis tasks.

In this talk I gave an introduction to formal quantitative analysis and the challenges
of modelling collective adaptive systems, together with recent developments to address
those challenges using the modelling language CARMA.

2 Quantitative Analysis

Performance analysis has a long tradition in computer and communication engineer-
ing dating back to the 1960s, as the dynamic behaviour of systems can sometimes be
counter-intuitive and hard to predict without detailed mathematical models. Since many
aspects of the system must be abstracted in order to construct tractable models, proba-
bility distributions are used to represent the variability within the timing characteristics
of the system, for example, due to different data characteristics. Specifically continuous
time Markov chains (CTMCs) were found to offer a good compromise between faith-
fulness and tractability. Initially queueing networks [5] were the dominant approach to
capturing the conflict for resources which is often at the root of performance problems.
From such descriptions it is easy to build a CTMC, typically with a simple birth-death
process for each queue, but in many cases this is not even necessary as analytical so-
lutions are known, circumventing the need for the explicit construction and analysis of
the CTMC [6].

However, the advent of large distributed systems, in which multiple resources may
be needed by processes simultaneously, led to the use of more flexible modelling frame-
works such as stochastic Petri nets [7] and stochastic process algebras [8]. Stochastic
process algebras are small textual description languages which represent a system as
a number of interacting processes. At the basic level each process is a small CTMC
capturing the ordering and (stochastic) timing of activities that the process may under-
take. The construction of the model specifies how these processes are constrained to
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interact through shared activities. A large CTMC capturing the complete behaviour of
the system can be automatically constructed from the stochastic process algebra de-
scription, allowing the modeller to focus on the higher level behaviour of the system
rather than the underlying state space. Prime examples of stochastic process algebras
include PEPA [8], EMPA [9] and IMC [10]. Note, however, that the system descrip-
tion and the underlying mathematical model (CTMC) are inherently discrete and this
can pose significant challenges for representing large scale systems due to the problem
of state space explosion. In particular, numerical solution to find the probability dis-
tribution over the state space becomes intractable, and stochastic simulation becomes
computationally expensive, as the size of the system grows.

3 Challenges in Modelling Collective Adaptive Systems

Recent years have seen increasing interest in collective adaptive systems. Such sys-
tems, which appear in many natural scenarios such as the behaviour of social insects,
are increasingly forming a paradigm for the construction of the software systems of the
future. Collective adaptive systems (CAS) are seen to be comprised of a large num-
ber of interacting entities whose behaviour is based on their local perception, without
access to global control or knowledge. Moreover entities are typically replicated to es-
tablish robustness to failure of individual entities whilst adaptivity provides robustness
to changes at a higher level.

The global or emergent behaviour of such systems can be difficult to predict mak-
ing it paramount that we develop adequate modelling formalisms to capture and reason
about the behaviour at both local and global levels. The compositional nature of stochas-
tic process algebras make them strong candidates for developing models at the local
level, but the state space explosion problem places severe challenges on their analysis.

In the last decade there have been efforts to alleviate the problems of state space
explosion for very large systems by the use of fluid approximations [11]. In this ap-
proach an approximation of the underlying discrete CTMC is constructed as a set of
ordinary differential equations that capture the average behaviour of the system when a
large population of entities is involved. Analysis techniques, such as stochastic model
checking, have been adapted to work with this approximation [12].

Other significant challenges for stochastic process algebras when modelling CAS
stem from the spatially distributed nature of the entities and the adaptation. The spatial
aspect is important because entities are restricted to interact and communicate locally so
capturing the relative positions of entities is crucial. Similarly, the ability of an entity to
have a goal which guides changes in behaviour based on the information that it receives
has not previously been considered in stochastic process algebras. To address these
challenges we have developed a new process algebra-based language CARMA [13].

4 CARMA

CARMA has been designed specifically to represent systems developed according to the
CAS paradigm [14]. The language offers a rich set of communication primitives, and
permits exploiting attributes, captured in a store associated with each component, to



Quantitative Analysis of CAS 3

enable attribute-based communication. For most CAS systems we anticipate that one
of the attributes could be the location of the agent. Thus it is straightforward to model
those systems in which, for example, there is a limited scope of communication or there
is the restriction to only interact with components that are co-located, or where there is
spatial heterogeneity in the behaviour of agents. The use of a store to explicitly capture
a limited set of data associated with an entity is a compromise between full agent-based
modelling and the approach of data abstraction that has previously been adopted in
stochastic process algebra-based languages.

The rich set of communication primitives is one of the distinctive features of CARMA.
Specifically, CARMA supports both unicast and broadcast communication, and permits
locally synchronous, but globally asynchronous communication. This richness is im-
portant to take into account the spatially distributed nature of CAS, where agents may
have only local awareness of the system, yet the design objectives and adaptation goals
are often expressed in terms of global behaviour. Representing these patterns of com-
munication in classical process algebras or traditional stochastic process algebras would
be difficult, and would require the introduction of additional model components to rep-
resent buffers, queues and other communication structures.

Another key feature of CARMA is its distinct treatment of the environment. It should
be stressed that although this is an entity explicitly introduced within our models, it is
intended to represent something more pervasive and diffusive of the real system, which
is abstracted within the modelling to be an entity which exercises influence and imposes
constraints on the different agents in the system. For example, in a model of a smart
transport system, the environment may have responsibility for determining the rate at
which entities (buses, bikes, taxis etc) move through the city. However this should be
recognised as an abstraction of the presence of other vehicles causing congestion which
may impede the progress of the focus entities to a greater or lesser extent at different
times of the day. The presence of an environment in the model does not imply the
existence of centralised control in the system. The role of the environment is also related
to the spatially distributed nature of CAS — we expect that the location where an agent
is will have an effect on what an agent can do.

To summarise, in CARMA a system is composed of a collective of components that
exist in an environment. Each component consists of a process and a store where the
process captures the possible behaviours of the component in a similar manner to previ-
ous process algebras, whereas the store records the state of the component with respect
to a number of attributes. These attributes, which can be thought of as enumerated
types, allow the behaviour, including the communication partners, of a component to
be dependent on its current state.

5 Future Perspectives

CAS present an interesting and challenging class of systems to design and construct,
with many exciting prospects for future software systems as well as socio-technical
systems, in which users themselves become entities in the system. Example areas of
application include smart urban transport systems, smart energy networks and swarm
robotics. The role of CAS within infrastructure systems, such as within smart cities,
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make it essential that quantitive aspects of behaviour, in addition to functional correct-
ness, are taken into consideration during design, but the scale and complexity of these
systems pose challenges both for model construction and model analysis. CARMA aims
to address many of these challenges, supporting rich forms of interaction, using at-
tributes to capture explicit locations and the environment to allow adaptivity. Moreover
analysis techniques based on fluid approximation offer hope for scalable quantitative
analysis techniques. However, to tackle the full range of behaviours which can occur
within CAS extensions to classical fluid approximation techniques are needed. For ex-
ample, recent work by Bortolussi [15] proves convergence results in terms of hybrid
systems which take into account multi-scale behaviour with respect to time and/or pop-
ulations.
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