
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mosaic Activating Mutations in GNA11 and GNAQ Are
Associated with Phakomatosis Pigmentovascularis and
Extensive Dermal Melanocytosis
Citation for published version:
Thomas, AC, Zeng, Z, Rivière, J-B, O'Shaughnessy, R, Al-Olabi, L, St.-Onge, J, Atherton, DJ, Aubert, H,
Bagazgoitia, L, Barbarot, S, Bourrat, E, Chiaverini, C, Chong, WK, Duffourd, Y, Glover, M, Groesser, L,
Hadj-Rabia, S, Hamm, H, Happle, R, Mushtaq, I, Lacour, J-P, Waelchli, R, Wobser, M, Vabres, P, Patton,
EE & Kinsler, VA 2016, 'Mosaic Activating Mutations in GNA11 and GNAQ Are Associated with
Phakomatosis Pigmentovascularis and Extensive Dermal Melanocytosis', Journal of Investigative
Dermatology, vol. 136, no. 4, pp. 770-778. https://doi.org/10.1016/j.jid.2015.11.027

Digital Object Identifier (DOI):
10.1016/j.jid.2015.11.027

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Journal of Investigative Dermatology

Publisher Rights Statement:
    Open Access funded by Wellcome Trust
    Under a Creative Commons license

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 23. Apr. 2024

https://doi.org/10.1016/j.jid.2015.11.027
https://doi.org/10.1016/j.jid.2015.11.027
https://www.research.ed.ac.uk/en/publications/63d055c6-c22b-48f9-be65-12c3e2fd8bf6


Accepted Manuscript

Mosaic activating mutations in GNA11 and GNAQ are associated with Phakomatosis
Pigmentovascularis and Extensive Dermal Melanocytosis

Anna C. Thomas, Zhiqiang Zeng, Jean-Baptiste Rivière, Ryan O’Shaughnessy,
Lara Al-Olabi, Judith St-Onge, David J. Atherton, Hélène Aubert, Lorea Bagazgoitia,
Sébastien Barbarot, Emmanuelle Bourrat, Christine Chiaverini, W Kling Chong,
Yannis Duffourd, Mary Glover, Leopold Groesser, Smail Hadj-Rabia, Henning Hamm,
Rudolf Happle, Imran Mushtaq, Jean-Philippe Lacour, Regula Waelchli, Marion
Wobser, Pierre Vabres, E. Elizabeth Patton, Veronica A. Kinsler

PII: S0022-202X(16)00332-8

DOI: 10.1016/j.jid.2015.11.027

Reference: JID 128

To appear in: The Journal of Investigative Dermatology

Received Date: 29 June 2015

Revised Date: 31 October 2015

Accepted Date: 2 November 2015

Please cite this article as: Thomas AC, Zeng Z, Rivière J-B, O’Shaughnessy R, Al-Olabi L, St-Onge
J, Atherton DJ, Aubert H, Bagazgoitia L, Barbarot S, Bourrat E, Chiaverini C, Chong WK, Duffourd
Y, Glover M, Groesser L, Hadj-Rabia S, Hamm H, Happle R, Mushtaq I, Lacour J-P, Waelchli R,
Wobser M, Vabres P, Patton EE, Kinsler VA, Mosaic activating mutations in GNA11 and GNAQ are
associated with Phakomatosis Pigmentovascularis and Extensive Dermal Melanocytosis, The Journal of
Investigative Dermatology (2016), doi: 10.1016/j.jid.2015.11.027.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.jid.2015.11.027


M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

1 

 

Title 
 
Mosaic activating mutations in GNA11 and GNAQ are associated with Phakomatosis 

Pigmentovascularis and Extensive Dermal Melanocytosis 

 

Authors 

Anna C. Thomas1*, Zhiqiang Zeng2*, Jean-Baptiste Rivière3*, Ryan O’Shaughnessy4, Lara 

Al-Olabi1, Judith St-Onge3, David J. Atherton5, Hélène Aubert6, Lorea Bagazgoitia7, 

Sébastien Barbarot6, Emmanuelle Bourrat8,9, Christine Chiaverini10, W Kling Chong11, 

Yannis Duffourd3, Mary Glover5, Leopold Groesser12, Smail Hadj-Rabia13, Henning 

Hamm14, Rudolf Happle15, Imran Mushtaq16, Jean-Philippe Lacour10, Regula Waelchli5, 

Marion Wobser14, Pierre Vabres3,17§, E. Elizabeth Patton2§ and Veronica A. Kinsler1,5§  

 

Affiliations 

1. Genetics and Genomic Medicine, UCL Institute of Child Health, London, UK 

2. MRC Institute of Genetics and Molecular Medicine, MRC Human Genetics Unit & 

Edinburgh Cancer Research UK Centre, Edinburgh, UK 

3. Equipe d’Accueil 4271, Génétique des Anomalies du Développement, University of 

Burgundy, Dijon, France 

4. Livingstone Skin Research Unit, UCL Institute of Child Health, London, UK 

5. Paediatric Dermatology, Great Ormond Street Hospital for Children, London, UK 

6. Department of Dermatology, Nantes University Hospital, Nantes, France.  

7. Dermatology, Hospital Universitario Ramón y Cajal, Madrid, Spain 

8. Dermatology, Saint-Louis Hospital, Paris, France 

9. General Paediatrics, Robert-Debré Hospital, Paris, France 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

2 

 

10. Dermatology, University Hospital of Nice, Nice, France 

11. Neuroradiology, Great Ormond St Hospital for Children, London, UK 

12. Dermatology, Regensburg University Clinic, Regensburg, Germany 

13. Paediatric Dermatology, Necker Enfants-Malades Hospital, Paris, France 

14. Dermatology, University Hospital Wuerzburg, Wuerzburg, Germany 

15. Dermatology, Freiburg University Medical Center, University of Freiburg, Germany  

16. Paediatric Urology, Great Ormond Street Hospital for Children, London, UK 

17. Dermatology, Dijon University Hospital, Dijon, France 

 

*These authors contributed equally to this work 

§ These authors contributed equally to this work 

 

Corresponding authors 

 

Veronica Kinsler, Genetics and Genomic Medicine, UCL Institute of Child Health, 30 

Guilford Street, London WC1N 1EH, UK.  

Phone: +44 (0)207 242 9789.  

Email: v.kinsler@ucl.ac.uk 

 

Elizabeth Patton, MRC Institute of Genetics and Molecular Medicine, MRC Human 

Genetics Unit & Edinburgh Cancer Research UK Centre, Edinburgh, UK 

Phone: +44 (0)131 651 8500 

Email: e.patton@igmm.ed.ac.uk 

 

Location of work 
 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

3 

 

The laboratory work was carried out in London, UK, Edinburgh, UK, and Dijon, France 
 
 
Short title 
 
GNA11 and GNAQ mosaicism 
 
 
Abbreviations 
 
PPV – phakomatosis pigmentovascularis 
  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

4 

 

Abstract 

Common birthmarks can be an indicator of underlying genetic disease, but are often 

overlooked.  Mongolian Blue Spots (dermal melanocytosis) are usually localized and 

transient, but can be extensive, permanent and associated with extra-cutaneous 

abnormalities.  Co-occurrence with vascular birthmarks defines a subtype of Phakomatosis 

Pigmentovascularis (PPV), a group of syndromes associated with neuro-vascular, 

ophthalmological, overgrowth and malignant complications. Here, we discover that 

extensive dermal melanocytosis and PPV are associated with activating mutations in 

GNA11 and GNAQ, genes that encode Gα subunits of heterotrimeric G-proteins.  The 

mutations were detected at very low level in affected tissues but were undetectable in the 

blood, indicating that these conditions are post-zygotic mosaic disorders.  In vitro 

expression of mutant GNA11R183C and GNA11Q209L in human cell lines demonstrated 

activation of the downstream p38 MAPK signalling pathway, and the p38, JNK and ERK 

pathways respectively.  Transgenic mosaic zebrafish models expressing mutant GNA11R183C 

under promoter mitfa developed extensive dermal melanocytosis recapitulating the human 

phenotype. PPV and extensive dermal melanocytosis are therefore diagnoses in the group of 

mosaic heterotrimeric G-protein disorders, joining McCune-Albright and Sturge-Weber 

syndromes. These findings will allow accurate clinical and molecular diagnosis of this 

subset of common birthmarks, thereby identifying infants at risk of serious complications, 

and will provide novel therapeutic opportunities.  
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Introduction 

 

Mongolian Blue Spots (or more appropriately dermal melanocytosis) are very common 

birthmarks, seen in up to 95% of African neonates, and approximately 10% of white 

Caucasians (1).  As a result they are easily overlooked as a possible sign of underlying 

genetic disease.  Classically they are flat, dark-blue lesions with indistinct edges overlying 

the buttocks and lower back, which undergo spontaneous resolution over a period of years.  

However, the appearances and behavior are not always classical (2), with some dermal 

melanocytosis involving unusual sites, covering large areas of the body surface, being more 

deeply pigmented and better-defined, and persisting rather than resolving.  These more 

atypical patterns of dermal melanocytosis can be associated with anomalies such as co-

localised cleft lip (3), ocular melanocytosis (4), ocular melanoma (5), lysosomal storage 

disorders (6), or vascular birthmarks.  This latter association then falls under the diagnostic 

group of Phakomatosis pigmentovascularis (PPV) (for clinical examples see Figure 1).  PPV 

is a group of sporadic disorders of unknown frequency, defined by the co-occurrence of 

pigmentary and vascular birthmarks, and sub-classified clinically by the exact cutaneous 

phenotypes (supplementary table 1)(7-9).  It has not been clear if the subtypes are distinct 

disorders or variable expressions of a single disorder, as the molecular and developmental 

pathogenesis of PPV has been unknown. The hypothesis of ‘non-allelic twin-spotting’ was 

previously expounded to explain the co-occurrence of two disparate birthmarks (10), 

however this has recently been retracted by the author due to lack of supporting molecular 

evidence (11).  Extra-cutaneous associations of PPV can be severe, including scleral or 

intraocular melanocytosis (12), glaucoma (13-15), intracerebral vascular or other 

malformations leading to seizures and cognitive delay (12, 16-18), overgrowth of soft 

tissues or limbs (18-20), and melanoma.  The latter can arise in choroid or conjunctiva, with 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

6 

 

melanocytoma of the optic disc also described (12, 13, 21, 22).  Without an understanding 

of the genetic pathogenesis of the disease targeted therapies for the congenital and 

neoplastic aspects of the disease have been impossible. 

 

When considering the genetic basis of extensive dermal melanocytosis and of PPV, we 

hypothesized that these conditions could be the result of a post-zygotic mutation in a 

member of the G-protein nucleotide binding protein alpha subunit family.  This hypothesis 

was generated by the rare concurrent description of PPV with Sturge-Weber syndrome 

(SWS)(15, 19), a vascular disorder with no pigmentary phenotype, recently found to be due 

to post-zygotic mosaicism for activating muatations in GNAQ (23).  We also hypothesized 

that the same mutation could be present in both types of birthmarks in PPV secondary to a 

single mutation in a pluripotent progenitor cell. 
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Results 
 
 
Missense GNA11 or GNAQ mutations were found in 8/11 patients tested.  In each case these 

mutations were detected in affected skin (and in one case ocular tissue) at very low levels, 

and were undetectable in blood, indicating post-zygotic mosaicism (Table 1).  Where levels 

of mutant allele of <1% were detected in blood these were not able to be distinguished from 

background noise, despite the great depth of coverage (supplementary table 3), and are 

therefore called as wild-type.   In the three patients with extensive dermal melanocytosis we 

identified mutations in GNAQ in two, one c.548G>A, p.R183Q, and one c.626A>C, Q209P.  

In the eight patients with PPV we identified somatic GNA11 mutations in four - three at 

position c.547C>T, p.R183C, and one novel mutation in the same codon c.547C>A, 

p.R183S - and GNAQ mutations in two, both at position c.548G>A, p.R183Q (Fig. 2).  

Importantly there was conservation of mutation between pigmentary and vascular lesions in 

each patient where more than one skin biopsy was available (table 1 and supplementary 

table 3).  Measured percentage of mosaicism in skin samples was at lowest 1.5%, using next 

generation sequencing mutant allele count as a percentage of the total number of reads 

(supplementary table 3).  None of these mutations in GNA11 and GNAQ are described in the 

largest current population database (24). 

 

In in vitro transfection experiments HEK293 cells were transfected with vector, wild type 

GNA11 or mutant GNA11 constructs encoding R183C and Q209L.  Figure 3 shows results 

of Western blots for Flag, total GNA11 and the phosphorylated and total p38, JNK, ERK 

and AKT in total protein lysates from these cells.  Analysis of the ratio of phosphorylated to 

total p38, JNK, ERK and AKT normalized by the actin loading control (from two replicates, 

pooled results of WT compared to those of mutant) demonstrated increased phosphorylation 
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and therefore activation of the p38 MAPK pathway by the R183C mutant, and of ERK, p38 

MAPK and JNK pathways by Q209L, in keeping with previous results for Q209L (25).  

These results were significant at 0.05 level using a one-tailed t-test. 

 

GNA11R183C- and GNA11Q209L-expressing zebrafish exhibited dark cutaneous patches of 

melanocytes by one month.  When the mutant transgenic zebrafish reached adulthood at 3 

months, nearly all injected fish (n=17/18 for R183C and n=16/16 for Q209L) developed 

large and clearly visible pigmentary lesions (Fig. 4a,b), recapitulating the human phenotype 

of dermal melanocytosis.  Wild type GNA11 expression in melanocytes also produced 

mosaic animals with some pigmentary lesions (n=10/27), however these were usually 

smaller and less dark, suggesting that the melanocyte lineage is highly sensitive to GNA11-

coupled receptor signaling.  Histopathology revealed many extra melanocytes in both the 

epidermis (over the scales, not shown) and the dermis in the pigmentary lesion of mutant 

GNA11R183C injected fish, with occasional involvement of the underlying muscle (Fig. 4c). 
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Discussion 

 

We have sought to differentiate a subgroup of the common birthmark dermal melanocytosis 

where infants are at risk of extracutaneous complications, by elucidating the underlying 

genetic cause. We show here that extensive dermal melanocytosis and PPV are genetic 

conditions associated with post-zygotic mutations in genes encoding Gα subunits of 

heterotrimeric G proteins.  Specifically, post-zygotic mutations in GNAQ have been found 

in extensive dermal melanocytosis, and mutations in GNA11 or GNAQ have been found in 

PPV types I, II (cesioflammea), IV and V (cesiomarmorata), as well as the unclassifiable 

achromico-melano-marmorata type.  Type IV is considered to be exceptionally rare and was 

not tested as no samples were available.  Type III (spilorosea) is distinguished clinically 

from all other types of PPV by the absence of dermal melanocytosis, and as only one patient 

from this group was tested (and was wild-type) we cannot yet conclude anything about the 

genetic aetiology of this type.  Of note the percentage mosaicism was often very low, the 

result of very few mutant cells within a skin biopsy of a completely macular birthmark, 

emphasizing the need for adequately sensitive detection techniques in this type of genetic 

disease.  A possible alternative explanation for our findings is that these patients are 

somehow genetically predisposed to somatic mutations in the same genes, and this is 

particularly relevant for those in whom we have only been able to obtain one sample.  

Although this explanation cannot be entirely excluded it is much less convincing than post-

zygotic mosaisicm, as we have found different mutations in different patients, and the same 

mutation present in more than location where two samples were obtained from one 

individual.  As candidate gene sequencing was performed in this study we cannot exclude 

the presence of further mutation in other genes.  Further exome sequencing could be done to 

look for secondary mutations. 
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True embryonic mosaicism has not hitherto been described for GNA11 mutations. Isolated 

somatic GNA11 mutations have been found in uveal melanoma and single blue naevi (26) (a 

lesion distinct from dermal melanocytosis both clinically and histologically), and in contrast 

to our findings in PPV the prevalence of codon 183 mutations in the single melanomas and 

blue naevi was very much lower than in codon 209 (26).   Post-zygotic mosaicism for 

GNAQ mutations has been described as the major cause of Sturge-Weber syndrome (SWS), 

a purely vascular disorder with no pigmentary phenotype.  Somatic mutations in GNAQ are 

frequent in uveal melanoma and single blue naevi(27).  Our findings therefore not only 

describe GNA11 mosaicism, but also extend the phenotype of human GNAQ mosaicism 

from SWS (vascular only), through to PPV (vascular and pigmentary), to extensive dermal 

melanocytosis (pigmentary only).  Exactly how the same mutation can generate these three 

distinct phenotypes is not yet clear. 

 

Codon 183 in both GNA11 and GNAQ is located within the GTP binding region of the 

human G-alpha subunit, a region required for hydrolysis of GTP to GDP and an essential 

step for inactivation of G-protein coupled receptor signaling.  These mutations therefore 

lead to a decrease in function of the GTPase, and to constitutive activation of downstream 

effector pathways.  We have shown that the commonest mutation at codon 183 of GNA11 

activates the downstream p38 MAPK pathway in human cells, whereas the codon 209 

mutant (not found in this cohort in GNA11, but in one patient in GNAQ) activates p38 

MAPK, JNK and ERK pathways, broadly supporting previous findings of effects of 

mutations in both GNA11 (25, 26) and GNAQ (26).   
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Interestingly different mutations in GNA11 in the germline leading to altered sensitivity of 

cells to extra-cellular calcium concentrations have been described in autosomal dominant 

hypoparathyroidism and hypocalculric hypercalcaemia respectively (28).  One of these 

mutations (GNA11R60L) has been characterised as less activating than GNA11Q209L (25).  

This pattern of less severe mutations being supportable in the germline, whereas more 

severe mutations can survive only by mosaicism, once again confirms Happle’s established 

theory (23).  Patients with PPV and Sturge-Weber syndrome have not been documented to 

have abnormalities of calcium homeostasis, however intravascular calcification can be a 

feature of neurological abnormalities in PPV, which could hypothetically involve localized 

mosaic calcium imbalances.  This is an area that merits future careful research. 

 

A causal link between our genetic findings and mechanism is strongly supported by the 

mosaic zebrafish models demonstrated here, where expression of GNA11R183C or 

GNA11Q209L leads to ectopic and increased numbers of melanocytes in the epidermal and 

dermal layers, recapitulating the human phenotype of dermal melanocytosis.  Over-

expression of wild-type GNA11 in melanocytes also leads to a low level of pigmentary 

mosaicism in zebrafish, underscoring the importance of close regulation of G-protein 

coupled receptor signaling in the melanocyte lineage.  No other mosaic animal models of 

GNA11 gain-of-function mutations exist, however further conformation of our findings 

comes from germline hypermorphic alleles of GNA11 which lead to increased cutaneous 

pigmentation in the murine Dsk phenotype (29). 

 

We have found no evidence for the now-retracted theory of twin-spotting or didymosis. 

Rather we have shown that a single somatic mutation in GNA11 or GNAQ is responsible for 
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both types of cutaneous lesion in PPV, mirroring closely the pathogenesis of the disparate 

birthmarks seen in HRAS mosaicism (30).  We propose that extensive dermal melanocytosis 

and PPV are members of an expanding group of heterotrimeric G-protein alpha subunit 

gene mosaic conditions, joining McCune-Albright syndrome (31), caused by mosaicism for 

gain-of-function mutations in GNAS, and Sturge-Weber syndrome, caused by mosaic gain-

of-function mutations in GNAQ (23).  We also propose that GNAQ mosaicism forms a 

spectrum from Sturge-Weber syndrome, through PPV, to extensive dermal melanocytosis.  

This knowledge will allow accurate clinical molecular diagnosis of a subset of extensive 

dermal melanocytosis and of PPV, leading to identification of neonates at risk of serious 

complications associated with these birthmarks.  Importantly, it will also pave the way for 

therapeutic options in these children. 
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Materials and Methods 

 

All human and animal studies were approved by the authors' research ethics review boards. 

Declaration of Helsinki protocols were followed, and all patients gave written informed 

consent.  Eleven patients from four international centres were recruited with written consent 

for genetic research, approved by the local Research Ethics Committees.  Patients were 

classified by clinical phenotype, three having extensive or atypical dermal melanocytosis, 

and eight having PPV, with representatives of subtypes I, II (cesioflammea), III (spilorosea), 

V (cesiomarmorata) (supplementary table 1, Fig. 1), and also the unclassifiable achromico-

melano-marmorata type (32). Blood samples and skin biopsies were taken from each 

patient, and in those with PPV skin was biopsied from both the vascular and pigmentary 

birthmarks where possible.  

 

Selective Amplification of Mutant Alleles of candidate genes GNA11 and GNAQ for Sanger 

sequencing 

DNA was extracted from whole blood and directly from fresh skin lesion samples using the 

DNeasy Blood and Tissue Kit (Qiagen) and from paraffin embedded tissue using the 

RecoverAll total nucleic acid extraction kit for FFPE (Life Technologies). To maximize 

detection of mutant alleles at low percentage mosaicism we designed restriction enzyme 

digests of the normal allele at hotspots codons 183 and 209 of GNA11 and 183 of GNAQ 

using validated methods (33) and Sanger sequencing.  Primer sequences and restriction 

enzymes for each hotspot are shown in supplementary table 2.  Touchdown PCR 

programmes were used throughout, with 35 cycles for the first PCR, and 25 for the second.   
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Targeted deep sequencing of GNA11 and GNAQ and data analysis 

We performed targeted deep sequencing of the regions spanning mutations previously 

identified by selective amplification of mutant alleles in all samples where DNA quality was 

sufficient (as determined by the presence of a band above 10 kb size on agarose gel). In 

subjects with no identified mutation, all coding regions of GNAQ and GNA11 were screened 

using the same method. Targeted regions were amplified using custom intronic primers and 

standard long-range PCR protocols. PCR products were purified and libraries were prepared 

using the Nextera XT DNA Sample Preparation kit (Illumina). Samples were then pooled 

and sequenced on a MiSeq instrument (Illumina) according to the manufacturer’s 

recommendations for paired-end 150-bp reads. In-depth sequencing was performed to 

achieve a sequencing depth of at least 1,000 reads for all targeted coding bases and splice 

junctions. Identification of candidate variants was performed as described previously(34).  

Briefly, all targeted bases were systematically screened to count all sites with at least one 

read not matching the reference sequence, using a base-quality threshold of 30. Candidate 

post-zygotic variants were confirmed by at least one independent experiment in all DNA 

samples available from the patient. 

 

Zebrafish model 

To test the causality and model the effects of the mutation, we injected zebrafish embryos 

with wild-type human GNA11, GNA11R183C or GNA11Q209L expressed from the melanocyte 

mitfa promoter, and grew the genetically mosaic animals to adulthood.  All zebrafish work 

was done in accordance with United Kingdom Home Office Animals (Scientific 

Procedures) Act (1986) and approved by the University of Edinburgh Ethical Review 

Committee.  
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The human GNA11 cDNA clone was purchased from Origene, UK (purchased from 

NM_002067.1 precloned into an untagged pCMV6-XL4 vector, cat. number SC303115).  

Mutant GNA11Q209L(626a> t) was generated by site-directed genesis PCR with primers 

(forward: 5’- GATGTGGGGGGCCTGCGGTCGGAGCGGAGG -3’, reverse: 5’-

CCTCCGCTCCGACCGCAGGCCCCCCACATC-3’).  Mutant GNA11R183C (547c>t) 

was also generated with primers (forward: 5’-

CGTGCTGCGGGTCTGCGTGCCCACCACCG-3’, reverse: 5’-

CGGTGGTGGGCACGCAGACCCGCAGCACG-3’). The wildtype and mutant GNA11 

cDNAs were cloned together with the zebrafish mitfa gene promoter into the pDestTol2CG2 

expression vector using the Tol2kit gateway cloning method(35), resulting mitfa-GNA11, 

mitfa-GNA11Q209L and mitfa-GNA11R183C constructs.  For selection purposes, these 

constructs contain an additional GFP gene expressed from the heart cml promoter. Two nl 

of mixed mitfa-GNA11 plasmid DNA and Tol2 mRNA (62.5ng/µl and 70ng/µl 

respectively) was injected into 1-cell stage zebrafish embryos. Zebrafish embryos with GFP 

transgenic marker in the heart were selected and grown to adulthood. 

Adult zebrafish were anesthetized in 50mg/L tricaine solution and 1x images from both 

sides of the fish were taken under a stereomicroscope. Dark patches of melanocyte lesions 

with area larger than that of one scale were counted. Adult zebrafish were sacrificed by 

immersion in tricaine solution as directed by Home Office Schedule 1 methods. Zebrafish 

were then dissected in half transversely to increase penetration of the fixative, and fixed in 

4% freshly prepared paraformaldehyde (Electron Microscopy Sciences, USA) at 4ºC for 3 

days. Samples were then washed in PBS, and decalcified in 0.5M EDTA pH8 for 5 days 

before storage in 70% ethanol. Samples were embedded in paraffin wax and sectioned at 

5µm thickness. For Haematoxylin and Eosin (H&E) staining slides were deparaffinised in 

xylene twice for 5 min, and then were rehydrated through graded alcohol solutions (100%, 
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90%, 70%, 50% and 30%; 3 min each) and stopped in water. Slides were stained with 

Mayer's Hematoxylin and Eosin following the standard H&E staining procedure. 

 

Analysis of downstream effectors of GNA11in human cell line in culture 

To characterize the functional effect of mutations on downstream signaling pathways 

HEK293T cells were transfected with vector, wild type GNA11 or mutant GNA11 constructs 

encoding R183C and Q209L.  Q209L was used as a positive comparator as it is a more 

studied mutation in GNA11.  Flag-tagged GNA11 WT, R183C and Q209L constructs and 

vector alone control (pDEST26, Invitrogen) were transfected into HEK293 cells using 

lipofectamine 2000 (Invitrogen), according to manufacturer’s instructions. Cells were 

cultured for a further 24 hours and protein lysates were prepared by boiling in a denaturing 

SDS buffer (2% 2-mercaptoethanol, 2% SDS, 10mM Tris pH 7.5) for 10 minutes. Levels of 

GNA11 effector activation were assessed by western blot with the following antibodies at 

the following concentrations: Rabbit anti pSerine473 Akt (Cell Signalling Technologies, 

1/500), Rabbit anti-Total Akt (1/1000, Cell signalling technologies) , Rabbit anti-phospho 

T180/Y182 p38 MAPK (1/500, Cell Signalling technologies), Rabbit anti-Total p38 MAPK 

(1/500, Cell signaling technologies), Mouse anti-phospho T183/Y185 SAPK/JNK (1/500, 

Cell signaling technologies), Rabbit anti-total SAPK/JNK (1/500, Cell Signalling 

Technologies), pT202/Y204 ERK (Cell Signalling technologies 1/500) and Rabbit anti-

Total ERK 1,2 (1/1000, Cell Signalling technologies), Mouse anti-Flag (DYKDDDDK tag) 

(1/500, Cell Signalling technologies), Rabbit anti-GNA11 (Genetax, 1/500), and Mouse anti 

GAPDH (1/2000, Millipore). 

 

Primary antibody incubations were in TBST (100mM Tris HCl, 0.2M NaCl, 0.1% Tween-

20 (v/v) containing 5% bovine serum albumin (Sigma, Gillingham, UK) or 5% skimmed 
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milk powder either overnight at 4oC or for 1-2 h at room temperature, while secondary 

antibody incubations were in 5% skimmed milk powder for 1 h at room temperature. The 

following concentrations were used; swine anti rabbit-HRP (DakoCytomation) 1:3000; 

rabbit anti mouse HRP (DakoCytomation) 1:2000. Protein was visualized using luminol 

reagent (Santa Cruz Biotechnologies). Densitometry of bands was performed using 

thresholded images in the ImageJ suite (http://imagej.nih.gov/ij/)  
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Table 1 
 
Clinical phenotype and GNA11 and GNAQ genotypes with percentage mosaicism (where available) of different samples from eight patients with 

PPV (patients 1-8), and three patients with extensive dermal melanocytosis with no vascular phenotype (patients 9-11), showing post-zygotic 

mosaicism. For coordinates and exact wild-type and mutant allele numbers please see supplementary table 3.  Where mutant allele detection is 

less than 1% we cannot confidently distinguish this from background noise despite the depth of coverage, and therefore these samples are 

assigned as wildtype.  WT = wild-type; N/A = not applicable.   

 
Patient Diagnosis  Pigmentary 

skin lesion 
Vascular 

skin lesion 
Blood Other 

samples 
Result 

1 PPV unclassifiable (I) type, capillary malformation on face 
(including forehead) and trunk, pigmentary lesions on limbs 
and trunk, linear sebaceous naevus on scalp, linear woolly 
hair; glaucoma; no overgrowth or neurological abnormalities 

 GNA11 
p.R183C 

5.3% 

WT 

0.0% 

 GNA11 
p.R183C 
mosaic 

2 PPV cesioflammea (II) type, capillary malformation on face 
(including forehead), scleral melanocytosis (no dermal 
melanocytosis); no overgrowth, ophthalmological or 
neurological abnormalities 

 GNA11 p. 
R183S 
(novel) 

 

 Buccal swab 
GNA11 
p.R183S 

7.9%; 

Normal skin 
WT 

GNA11 
p.R183S 
mosaic 

3 PPV cesioflammea (II) type, capillary malformation on face 
(including forehead), trunk, limbs; naevus anaemicus; 
dermal melanocytosis on trunk, scleral melanocytosis; 
bilateral glaucoma; renal vascular hypertension; 

 GNAQ 
p.R183Q 

6.4% 

WT 

0.0% 

Pigmented 
ocular tissue 

GNAQ 
p.R183Q 

GNAQ 
p.R183Q 
mosaic 
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hemihypertrophy; macrocephaly; CNS MRI - enlarged 
supratentorial subarachnoid space, enlarged lateral 
ventricles, increased arachnoid vascular network, 
asymmetrical venous flow, absence of pial angioma 

11.0% 

4 PPV cesioflammea (II) type, capillary malformation face 
(including forehead), trunk, limb; dermal melanocytosis 
trunk and limb; growth delay, small teeth, developmental 
delay; no overgrowth, ophthalmological or radiological 
neurological abnormalities 

 GNAQ 
p.R183Q 

5.0% 

WT 

0.0% 

 GNAQ 
p.R183Q 
mosaic 

5 PPV cesioflammea (II) type, capillary malformation on face 
(including forehead), trunk, foot, dermal melanocytosis on 
face (including forehead), trunk, limbs; seizures, moderate 
global developmental delay, overgrowth, bilateral glaucoma, 
SWS-like pial angioma on MRI CNS 

WT 

0.0% 

WT 

0.0% 

WT 

0.0% 

 Wild type 

6 PPV achromico-melano-marmorata type (unclassifiable in 
both classifications), pigmentary and vascular lesions 
affecting trunk and limbs; undergrowth of one leg (both 
affected by vascular lesions), no ophthalmological or 
neurological abnormalities 

 GNA11 
p.R183C 

WT  GNA11 
p.R183C 
mosaic 

7 PPV spilo-rosea type (III), pigmentary and vascular lesions 
affecting trunk and limbs, not face; no overgrowth, 
ophthalmological or neurological abnormalities 

WT 

0.0% 

WT 

0.0% 

WT 

0.0% 

 WT 

8 PPV cesiomarmorata type (V), pigmentary lesions on trunk, 
vascular lesions on face (including forehead), trunk, limbs; 
mild developmental delay however MRI CNS showed 
periventricular leukomalacia consistent with premature 
delivery; no overgrowth, or ophthalmological abnormalities 

GNA11 
p.R183C 

15.5% 

 

GNA11 
p.R183C 

9.6% 

 

WT 

0.3% 
same 

mutation 

 GNA11 
p.R183C 
mosaic 

9 Extensive and multiple dermal melanocytosis affecting trunk GNAQ N/A WT  GNAQ 
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and limbs; no overgrowth, ophthalmological or neurological 
abnormalities 

p.R183Q 

2% 

0.1% 
same 

mutation 

 

p.R183Q 
mosaic 

10 One large (>20cm) dark, well-defined and persistant R flank 
dermal melanocytosis; no overgrowth, ophthalmological or 
neurological abnormalities 

GNAQ 
p.Q209P 

5.7% 

N/A WT 

0.1% 
same 

mutation 

 GNAQ 
p.Q209P 
mosaic 

11 Extensive and multiple dermal melanocytosis affecting 
trunk; no overgrowth, ophthalmological or neurological 
abnormalities 

WT 

0.0% 

N/A WT 

0.0% 

 WT 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

27 

 

Figure legends 
 
 
Figure 1 
 
Clinical examples of dermatological, ophthalmological and neurological aspects of 

PPV. Written consent for publication was obtained in all cases. 

a-c) dermal melanocytosis and capillary malformation (port wine stain type) on the 

face, extensive dermal melanocytosis on the back and legs, capillary malformation on 

the sole of the right foot; 

d) bilateral scleral melanocytosis with bilateral glaucoma, with capillary 

malformation and hemihypertrophy just visible on right face; 

e) axial T1-weighed MR image of the brain the level of the lateral ventricles, after 

administration of intravenous Gadolinium contrast agent, showing bilateral and 

asymmetrical thickening and enhancement of the pia mater.  

 

Figure 2 
 
Sequencing results demonstrating mosaic GNA11 and GNAQ mutations 

a) Sanger sequencing of skin biopsy showing a very low peak in GNA11 at 

position c.547C>T (p.Arg183Cys) (asterisk) 

b) Sanger sequencing of the same skin biopsy DNA after restriction enzyme 

digest of the normal allele, and hemi-nested amplification, revealing the 

mutation (asterisk) 

c)  Targeted next generation sequencing showing low allele percentage mutations 

in skin but undetectable in blood, GNA11 c.547C>T (p.Arg183Cys) in 5% of 

reads  
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d)  GNAQ c.548G>A (p.Arg183Gln) in 6% of reads from skin but undetectable 

in blood 

 

Figure 3  

Mutant GNA11 leads to activation of downstream signaling pathways 

a) Western blot for Flag, Total GNA11 and the phosphorylated and total p38, 

JNK, ERK and AKT in total protein lysates from HEK293T cells transfected 

with either vector, wildtype GNA11  (WT) or one of two mutants R183C or 

Q209L mutant GNA11.   

b) Graph shows the ratio of phosphorylated to total p38, JNK, ERK and AKT 

normalized by the actin loading control. Bars indicate one standard deviation.  

 

 Figure 4  

 
Mosaic expression of GNA11 promotes ectopic pigmentary lesions in zebrafish.  

a) Images of adult zebrafish mosaic for GNA11, GNA11R183C or GNA11Q209L 

expression.  Large, ectopic pigmentary lesions are indicated next to white arrows. 

Dashed box indicates zoomed areas that show detail of pigmentary lesions  

 b) Numbers of pigmentary lesions per fish expressing GNA11, GNA11R183C or 

GNA11Q209L. Dark circles indicate ectopic pigmentary lesions; white circles 

indicate fish without pigmentary lesions. 

c) Histology H&E staining of a wild type and GNA11R183C zebrafish skin at 100x 

and 400x magnification.  Melanocytes are clearly visible in the dermis by the 
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black melanin (blue arrows), frequently also in the epidermis (not shown) and in a 

few cases within underlying muscle (yellow arrow). 
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