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Abstract Interpretation of PEPA Models

Stephen Gilmore, Jane Hillston and Natalia Zoń

Laboratory for Foundations of Computer Science,
University of Edinburgh, Edinburgh, Scotland

Abstract. This paper relates the fluid-flow semantics of the stochastic
process algebra PEPA (Performance Evaluation Process Algebra) to the
static analysis technique of abstract interpretation. The explanation in
the paper is illustrated through the example of a distributed denial of
service (DDoS) attack which is being launched against a server. DDoS
attacks are mounted by a large population of attackers, who are coor-
dinating and working together in attacking a specific server. The scale
of the attack is crucial to its success, but the resulting large number of
states in the system makes it difficult to model and analyse using the
conventional discrete-state interpretation of PEPA.

1 Introduction

Discrete-state modelling of computer systems is the bedrock of our attempts
to gain intellectual control of informatic systems by building precise models of
their behaviour and reasoning about these models. For some types of reasoning,
such as identifying contention problems or finding deadlocks, it can be sufficient
to work with a model with a small number of components, and show that the
problem arises there. Resource-constrained networks [1] are an example of this,
where several processes compete for resources from a limited pool, as are the
so-called feature interaction problems which arise in telephony networks.

For other types of problems, such as distributed denial of service attacks
(DDoS), it is not possible to scale down the analysis: the problem only arises
when large-scale systems are involved. The case in point here is whether a service
endpoint providing a service can continue to maintain the robustness of that
service if larger and larger numbers of attackers threaten to overwhelm the server.
This sentiment has been expressed very well in [2] where the authors write: “We
believe that with quantitative information on the robustness, it will be possible
to better determine whether or not the software continues to deal appropriately
with risks and threats as their application environment changes.” To analyse
these problems in large-scale systems we need to use scalable modelling methods.

Concurrency in informatic systems effectively thwarts our attempts to reason
about large-scale systems using a concrete interpretation of our models because
the asynchronous interleaving of concurrent processes gives rise to state spaces
which are too large to be represented. With the scalable, virtualised services
which are in use today components are replicated to provide resilience and appli-
cation scalability to serve growing numbers of clients using the service. In order



to reason about systems with replicated components it is essential to move away
from discrete-state models and use representations which provide efficient rep-
resentations of populations of components [3].

The PEPA stochastic process algebra [4] supports such reasoning about large-
scale systems by providing a formal language which allows system behaviour to
be captured as a discrete-state model, and verification methods which scale to
allow the analysis of models which are composed of replicated components. This
is achieved through an abstract interpretation of PEPA models via a represen-
tation in terms of ordinary differential equations over a continuous-state space.
This is an over-approximation of the true discrete state-space, and this relaxation
of the strict small-step interleaving semantics of PEPA allows efficient analysis
of models which could not be contemplated by other means.

Structure of this paper: Our goal here is to describe a formal dynamic analysis
approach which is based on a continuous-space abstraction of discrete-space
systems. We illustrate the use of this analysis method in practice by developing
a PEPA model of a server system which is trying to withstand a distributed
denial of service attack. We use our continuous approximation of the model to
investigate effective ways to defend against such attacks. The rest of the paper
is organised as follows. In Section 2 we relate the subject matter of the present
paper to other research and give pointers to important work in this area. In
Section 3 we present the relevant technical background for this paper, with an
introduction to the PEPA stochastic process algebra and its concrete small-step
operational semantics. Section 4 explains the abstract interpretation of PEPA
models with reference to the scalable differential semantics of PEPA. Section 5
presents the case study of the paper, involving a PEPA model of a DDoS attack.
Finally, Section 6 concludes the paper.

2 Related work

Static analysis of PEPA models has first been presented in 2007, in [5], where the
author developed an approach based on data flow analysis. A transfer function
is defined and then the classical worklist algorithm is used to construct a finite
automaton capturing all possible interactions between components, on which
deadlock detection can be based. Here we take an alternative approach based
on abstract interpretation rather than data flow analysis [6]. The interpretation
of PEPA models as a set of ordinary differential equations was initiated in [7].
Similar work has been done for the Kappa modelling language [8].

Three recent papers are very directly relevant to our presentation here because
they also use process algebra and quantitative methods to model denial-of-service
attacks. They are [10], [11], and [12], as discussed next. Each builds on the
Quality Calculus [9], a process algebra in the family of CCS and the π-calculus,
intended to study the behaviour of software components in distributed systems
when the communication has vulnerabilities; similar to the type of system con-
sidered at the end of this paper. In particular, one motivation for the Quality
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Calculus is seeking to ensure that messages are correctly received, and denial
of service attacks are a major challenge in this context. In [10], the authors
introduce the Applied Quality Calculus which extends the Quality Calculus.
The Applied Quality Calculus is used in modelling secure systems which must
operate in the context of low computational power devices which communi-
cate by broadcast communication in a challenging computational context where
communication failures cannot be ignored. The Applied Quality Calculus has an
executable semantics which is implemented in the Maude term-rewriting system,
resulting in a simulation engine which can be used both directly for prototyp-
ing and for solving bounded reachability problems. Here, the notion of denial
of service centres on the distinction between data and optional data introduced
by the Quality Calculus. A rewrite rule-based mechanism is used to implement
both an input selection mechanism and cryptographic reasoning in addition to
designing quality guards which are more expressive than traditional predicates
which are used in propositions.

In [11], the authors extend the Hybrid CSP language of He Jifeng with the
notion of binders from the Quality Calculus. The modelling domain of interest
here is hybrid systems which bring together discrete-state computational con-
trollers and continuous-time physical systems into a dynamic assembly. A small-
step transition semantics is presented for the language, in a timed, discrete-event
context. The purpose of the modelling is to show that error configurations are
not reachable and that the (continuous) velocities of the moving objects in the
hybrid system cannot be degraded out of the safe range of operation. In [12],
the same authors place greater emphasis on the safety aspects of the problem.

In [13], Zeng et al. extend the Quality Calculus with quantitative informa-
tion capturing explicit timing and probability of actions. Unlike PEPA, where
the probability distributions governing the delays associated with actions are
restricted to follow an exponential distribution, the Stochastic Quality Calcu-
lus supports generally distributed delays but with the associated cost that the
semantics gives rise to a Generalised Semi-Markov Decision Process in general,
and a Generalised Semi-Markov Process when non-determinism can be elimi-
nated. Both these mathematical structures are very difficult to analyse.

PEPA has previously been used to analyse security in [14], but in that paper
the focus was on securing systems against timing attacks, where an attacker
gains information about the activity on secure channels through eavesdropping
on the timing characteristics of message exchanges. In the model developed in
this paper we are specifically considering the case of a denial of service attack,
where the strategy of the attacker is much more brute force, relying on scalability
vulnerabilities of the service under attack.

3 Background

3.1 PEPA

PEPA is a compact formal modelling language which provides the appropri-
ate abstract language constructs to represent many dynamic systems. It has

3



stochastically-timed activities which can be used to encode activities which take
time to complete, such as data processing and a probabilistic choice operator
to express the likelihood of different outcomes, for example in the presence of
communication failures. Different patterns of behaviour are encoded in recur-
sive process definitions. Features such as these are found in many modelling for-
malisms [15] but a distinctive strength of the PEPA language is that populations
of components, encoded as arrays of process instances, are both convenient to
express in the language and efficiently supported by the dynamic analysis which
reveals the collective behaviour which emerges from the interactions of the popu-
lations of components. The PEPA language has found application in many mod-
elling problems such as scalable and quantitative analysis of web-services [16–18],
software performance engineering with UML-based models [19, 20], secure key
distribution [21], internet worms [22], and peer-to-peer systems [23].

As a process calculus, PEPA has CSP-style multiway communication, and
actions in PEPA have durations. A PEPA model consists of a collection of com-
ponents (also known as processes) which undertake actions [4]. A component
may perform an action autonomously, independent actions, or in synchronisa-
tion with other components, shared actions. PEPA models are generated by the
following two-level grammar:

S ::= (α, r).S | S + S | AS ,AS
def
= S

C ::= S | C BC
L

C | C/L | AC ,AC
def
= C

The first production defines sequential components, i.e., processes which only
exhibit sequential or branching behaviour (by means of prefix, “.”, or choice,
“+”, respectively). The second production defines model components, in which
the interactions between the sequential components are expressed through the
cooperation (“ BC

L
”) and hiding (“/”) operators. Within a cooperation, the set

L specifies which action types must be shared; components can proceed inde-
pendently and concurrently on other action types. A system equation specifies
all the components within a system and how they must interact.

Typically, each sequential component corresponds to a component of the sys-
tem and the performance of the system is constrained by the interactions between
components as imposed by the cooperations. For example for a client-server sys-
tem, some number of clients may compete for access to a limited number of
servers. This may be written as the system equation

System
def
= Client [Nc] BC

{request}
Server [Ns]

where Client [Nc] is shorthand for Client BC
∅
· · · BC

∅
Client for a population of

Nc clients, and similarly for Server [Ns].

3.2 Concrete semantics

Stochastic process algebras, such as PEPA, are typically given a semantics in
terms of a labelled transition system, derived from small-step operational seman-
tics. In other words, a set of semantic rules, shown in Figure 1, detail the possible
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Prefix

S0 :
(α, r).E

(α,r)−−−→ E

Choice

S1 :
E

(α,r)−−−→ E ′

E + F
(α,r)−−−→ E ′ + F

S2 :
F

(α,r)−−−→ F ′

E + F
(α,r)−−−→ E + F ′

Cooperation

C0 :
E

(α,r)−−−→ E ′

E BC
L

F
(α,r)−−−→ E ′ BC

L
F
, α 6∈ L C1 :

F
(α,r)−−−→ F ′

E BC
L

F
(α,r)−−−→ E BC

L
F ′
, α 6∈ L

C2 :
E

(α,r1)−−−−→ E ′ F
(α,r2)−−−−→ F ′

E BC
L

F
(α,R)−−−→ E ′ BC

L
F ′

, α ∈ L

R =
r1

rα(E)

r2
rα(F )

min (rα(E), rα(F ))

Hiding

H0 :
E

(α,r)−−−→ E ′

E/L
(α,r)−−−→ E ′/L

, α 6∈ L H1 :
E

(α,r)−−−→ E ′

E/L
(τ,r)−−−→ E ′/L

, α ∈ L

Constant

A0 :
E

(α,r)−−−→ E ′

A
(α,r)−−−→ E ′

, A
def
= E

Fig. 1. Markovian semantics of PEPA.

evolutions of a term in the language based on the syntactical construction of the
term. The transitions which are derived are labelled by the activities and thus
contain information about the dynamic behaviour in terms of the expected rate
of the transition in addition to the type of activity performed. This inclusion of
information about the rates within the labelled transition system means that a
multi-transition system must be used in order to correctly reflect the dynam-
ics of the system, i.e., if there are multiple instances of the same transition the
resulting action will occur at a faster rate than if there is only a single instance,
because each instance contributes to the apparent rate of the action.

The rules in Figure 1 correspond to the operators of the language introduced
in the previous section. Most of the rules are straightforward, and presented here
without comment. Rule C2 is the fundamental inference for the characterisation
of the dynamic behaviour of a shared action. It implements the semantics of
bounded capacity : informally, the overall rate of execution of a shared activity is
the minimum between the rates of the synchronising components. The rule relies
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on the notion of apparent rate to compute the total capacity of a cooperating
component, according to the following definition.

The apparent rate of action α in process E , denoted by rα (E ), indicates
the overall rate at which α can be performed by E . It is recursively defined as
follows:

rα ((β, r) .E ) =

{
r if β = α

0 if β 6= α

rα (E + F ) = rα (E ) + rα (F )

rα

(
E BC

L
F
)

=

{
min (rα (E ) , rα (F )) if α ∈ L
rα (E ) + rα (F ) if α 6∈ L

rα (E/L) =

{
rα (E ) if α 6∈ L
0 if α ∈ L

According to this definition, for the array of sequential components Client [NC ],

where Client
def
= (comm, rd).Client ′, the apparent rate of comm is

rcomm (Client [NC ]) = NC rcomm (Client) = NC × rd. (1)

Similarly, for Server
def
= (comm, ru).Server ′,

rcomm (Server [NS ]) = NS rcomm (Server) = NS × ru. (2)

Once the labelled transition system, or derivation graph, corresponding to
a PEPA model has been constructed then it can be interpreted as the state
transition diagram of a continuous time Markov chain (CTMC). In this CTMC
each state corresponds to a distinct syntactic form of the PEPA expression,
as the model evolves according to the semantics. The CTMC is stored as an
infinitesimal generator matrix, a matrix which captures the rates of transitions
between states. From this the probability distribution over the states of the
model at any given time, or at steady state, can be readily derived using standard
linear algebra algorithms.

4 Abstract Interpretation of PEPA models

4.1 Overview

As we saw in the previous section the concrete semantics of a PEPA model gives
rise to a mathematical object, a continuous time Markov chain (CTMC). For
model analysis the CTMC is encoded as an infinitesimal generator matrix, Q.
If the model has N distinct states in the derivation graph, Q will be an N ×N
matrix, with each entry q(i, j) storing the rate of the exponential distribution
governing transitions from state si to state sj . The behaviour of the CTMC
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is captured in terms of its probability distribution, typically denoted π(t), the
N -dimensional vector in which the i-th entry denotes the probability to be in
state i at time t. For steady state properties of a system we are interested in
π(∞), usually denoted simply as π, which can be found by linear algebra as the
solution to the equations

πQ = 0
∑
i

πi = 1

where the equation on the left represents the global balance equations, ensuring
that at equilibrium the probability distribution is stable, and the equation on
the right represents the normalisation condition, capturing that π is indeed a
probability distribution.

Considering the operation of the modelled system, each possible behaviour
can be regarded as a possible trajectory through the state space. In contrast to
solving the CTMC, as described above, to find the probability distribution over
states, simulating the CTMC generates a single trajectory. Thus the CTMC itself
encodes all possible trajectories, and the state probability distribution gives the
relative likelihood of each one. This is a complete encapsulation of all possible
behaviours of the model of the system, and thus the concrete semantics can be
regarded as being exhaustive with respect to the possible executions. However,
this exhaustive view relies on being able to construct and manipulate the whole
CTMC, i.e., its infinitesimal generator matrix, something that is not possible
when the size of N grows too large (say > 108 states). The alternative, based on
simulation amounts to sampling trajectories/behaviours. This is computation-
ally costly especially as many repeated samples are needed in order to derive
statistically sound results.

A continuous space alternative has been proposed which makes an abstract
interpretation of the CTMC underlying a PEPA model [24]. Instead of a prob-
ability distribution over a set of possible trajectories, the model gives rise to
a single system of ordinary differential equations (ODEs). These ODEs can
be regarded as representing the expectation over the probability distribution
over possible trajectories, or as the single trajectory that captures the average
behaviour of the system. The seminal theorem by Kurtz [25], establishes that if
we consider a sequence of CTMCs, with increasing populations of components
interacting in the same proportions, then as the population increases, behaviour
of the CTMCs converges to this single ODE trajectory. This corresponds to a
functional form of the law of large numbers. Instead of a sequence of random
variables, i.e., the sample mean, converging to a deterministic value, i.e., the true
mean, here we have a sequence of CTMCs or trajectories for increasing popu-
lation size which converge to a deterministic trajectory, given by the ODEs.
Thus the ODE semantics provide an abstract semantics for PEPA, which can be
regarded as an over-approximation since it summarises all possible behaviours
obtained via the concrete semantics. Details of the abstract semantics are given
in the following subsection.
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4.2 Scalable differential semantics

In [26] the authors explain how the ODEs of the abstract semantics can be
inferred statically from the PEPA model. This is done via a more abstract rep-
resentation of the underlying CTMC in terms of generating functions, which are
then approximated from discrete functions, to functions over continuous vari-
ables, the ODEs. This approach allows the consistency between the concrete
semantics, now encoded in generating functions, and the abstract semantics, to
be readily proved. Moreover it is shown that the ODEs generated are indeed those
consistent with Kurtz’s theorem, implying correctness of the abstract semantics
as explained above. Furthermore in a subsequent paper it is shown how the
abstract semantics may be used to derive performance measures from PEPA
models, in addition to the evolution of population counts, giving the expecta-
tions of measures over trajectories rather than simply the expectation of the
trajectories themselves [27].

Construction of the abstraction semantics proceeds in three steps:

1. Context reduction: identifying the component types in operation in the
model and the local state space of each type, resulting in a reduced state
representation based on a counting abstraction;

2. Identify the jump multiset: characterising the effect of each type of action
in terms of a symbolic update on the reduced state representation;

3. Define generating functions: expressing the rate of transitions in the
state space as a function of the state.

Context reduction: The aim of context reduction is to statically reduce the state
representation of the PEPA model to its most compact form. Previous work [28],
Gilmore et al., showed how a static analysis could find lumpable partitions in the
underlying state space of a PEPA model and find a reduced state space based
on a canonical form of the PEPA model expressions. In [26] the syntax of the
PEPA expression is discarded in the state representation and a numerical vector
is used to capture the state of the model. The objective of the context reduc-
tion is to identify the entries which are needed for the representation. Roughly
speaking, two components are considered to have the same type if they have
the same derivation graph and they are subject to the same cooperation sets in
the expression of the model. For each component type there is one entry in the
numerical vector for each of the states in its derivation graph. For the definition
of the semantics the entries of the numerical vector are represented symbolically
ξ = (ξ1, . . . , ξn). Note that this is a list of the local states of each of the compo-
nent types considered in isolation, and consequently much smaller than a list of
all the possible global states that could be encountered through their interleaving.
This is an important distinction. A system of ODEs, the Chapman-Kolmogorov
equations, describing the evolution of the system based on the concrete interpre-
tation of the CTMC can also be constructed. In these equations the variables are
the probability mass associated with each global state, i.e., there is one equation
corresponding to every global state of the system. This system equation becomes
unmanageable for models of any reasonable size.
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The reduced context of a PEPA component P , denoted by red(P), is recur-
sively defined as follows:

red ((α, r) .P) = (α, r) .P

red (P + Q) = P + Q

red(A
def
= P) = red(P)

red(P BC
L

P ′) =


red(P), if L = ∅ ∧ P = P ′

∧P ,P ′ are sequential components

red(P) BC
L

red(P ′), otherwise

red(P/L) = red(P)/L

The jump multiset: Once we have the symbolic representation of a prototypical
state of the system we can consider the transitions induced on this state rep-
resentation by the actions in the PEPA model. For each action type, from the
model specification, we can identify the impact that completing the action will
have on the counts of component types involved in the action: if a component
enables an action, then completing the action will decrease the corresponding
count by 1; conversely if a component is a one-step derivative of the action, then
its corresponding count will be increased by one. Thus for each action type in the
model we can build an update vector which will make the appropriate change to
the symbolic state vector whenever the action is completed. For example if the
update vector or jump associated with an action α is uα, and a state ξ completes
an action α, then the resulting state will be ξ + uα.

Generating functions: Finally, in order to capture the dynamics of the process
we need to know the rate at which actions will be completed. In general this will
depend on the state of the system since, as remarked earlier, when an action
is enabled multiple times its apparent rate increases. However, the (symbolic)
state representation gives us the information needed to deduce the multiplicities
of actions enabled in any state and consequently the rates of actions can be
expressed symbolically too. For example, if (α, r) is an individual action of the
component Pj whose count is captured by the variable ξj , then the rate of α in
an arbitrary state will be ξj×r. The generating function would then be expressed
as fα(ξ,uα) = ξj × r.

These functions are parametrised by action types to keep track of the addi-
tional information about which action type is associated with a transition. Let
uα ∈ Zd be the transition jump. The generating functions are denoted by
fα(ξ,uα) : Rd → R and give the transition rate for a jump uα and an activity
of type α ∈ A. Thus, the entry in the generator matrix corresponding to the
transition from ξ to ξ + u, denoted by qξ,ξ+u, can be written as

qξ,ξ+u =
∑
α∈A

fα(ξ,uα).

The summation across A captures the fact that distinct action types may con-
tribute to a transition to the same target state, e.g., (α, r).P + (β, s).P . These
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transitions are kept distinct in the labelled transition system of PEPA, because
it records the action type as well as the transition rate, but they collapse onto
the same entry in the underlying generator matrix. We use the notation

f(ξ,u) ≡
∑
α∈A

fα(ξ,uα)

to indicate the overall contribution to the transition. The extraction of the gen-
erating functions from the PEPA model usually presents very little computa-
tional challenge because the environment collected via the inference rules in our
operational semantics abstracts away from the (potentially very large) actual
population levels of the system under study.

As stated above, when the generating functions are instantiated with a state
representation based on integer counts and updates of the component types,
they may be used to derive the state space of a CTMC corresponding to a
PEPA model instantiated with that many copies of each component type. This
is a template for all possible trajectories over the reduced state space. But when
the functions are treated as continuous functions (we replace ξ by a vector of
real values x, and allow them to evolve continuously) they give rise to a vector
field which defines the evolution of the expectation over the trajectories. Thus
from f(ξ,u) it is possible to construct a vector field F : Rd → Rd defined as

F (x) =
∑
u∈Zd

uf(x,u) (3)

and an associated ODE
dx(t)

dt
= F (x(t)). (4)

5 Modelling a Distributed Denial of Service attack

In this section, we turn to the case study of the paper: a Distributed Denial of Ser-
vice (DDoS) attack. Such attacks on server-based systems are particularly chal-
lenging because they are fundamentally different in nature from attacks which
exploit logical weaknesses in the design of communication protocols. Protocol
breaking-attacks are fundamentally qualitative in nature. In contrast, DDoS
attacks are fundamentally quantitative in nature. A Dolev-Yao attack requires
ingenuity and cunning; a DDoS attack simply requires a large enough pool of
attackers to take down the server by brute force.

We present the model in three instances, each of which builds on the model
which came before. In every model, components are replicated to form popula-
tions of components. There are multiple clients, multiple servers, multiple attack-
ers, and so forth. Populations are numerous. There are hundreds of instances
of each component, not just five or ten. The three versions of the model are
explained below.
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– In the first version of our DDoS model we present only the servers and the
clients. There are no attackers in the first model: the purpose of this first
model is only to show idealised optimal service, and thereby to serve as a
basis against which to compare sub-optimal service. We are mostly interested
in how connections are made and held, so we focus on the Servers on the
server side, and the process of connecting and disconnecting.

– In the second version of our model we add the attackers, showing how they
impede the use of the server, making it much more difficult for genuine clients
to get any service at all. Creating this form of unproductive interference is
the essence of a distributed denial of service attack.

– In the third version of our model we introduce new components: the defend-
ers try to impede the attackers, by monitoring each socket. As we will see,
the defenders are not able to restore the optimal level of service which was
enjoyed in the absence of the attackers but they lessen the effectiveness of
the DDoS attack by impeding the attackers. This is done by introducing a
delay which monitors the connection to the server and ejects a connection
if it appears to be taking too long. Unfortunately this means that genuine
clients may also be ejected sometimes but as we will see, although the attack-
ers continue to frequently connect to the server, the number of clients trying
unsuccessfully to connect is significantly reduced.

We encoded our model in PEPA and analysed it with the PEPA Eclipse Plug-
in [29], a modelling tool developed in the European project SENSORIA (Software
Engineering for Service-Oriented Overlay Computers) and subsequently used in
teaching and research internationally. It incorporates a custom editor for PEPA
models, model visualisation and static analysis tools, a model debugger, Markov
chain analysis tools, stochastic simulation and discrete analysis tools, a model
compiler which delivers a continuous representation of the system, efficient ODE-
based solvers, and plotting functions for analysis results.

5.1 Model parameters, for all models

PEPA models have both continuous variables and discrete variables. The contin-
uous variables are rate parameters which are used to model the exponentially-
distributed rate at which actions (more properly, activities) occur. The discrete
variables are population counts which count the number of copies of each PEPA
component in the model. Multiplicities are important in all models, but they
are important in DDoS models in particular. A DDoS attack which has been
launched by 10 hostile bots somewhere on the Internet is not anywhere near as
troubling as a DDoS attack which is being launched by 10,000,000 hostile bots.

5.2 First model: server and clients only

The basic model is formed as the cooperation of a population of servers with a
population of clients on some work to be done. There is a protocol of interaction
observed by both servers and clients, as shown in Figures 3 and 4.
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Model Rate Rate Variable Used by PEPA

number variable value description component(s)

1,2,3 rz 0.02 the client’s think rate Client

1,2,3 rc 1.0 the connect rate Client , Server

1,2,3 rh 10 handshake rate (if innocent) Client , Server

1,2,3 ra 0.001 handshake rate (if attackers) Client , Attacker

1,2,3 rs 0.1 the server’s serve rate Server

1,2,3 rd 5 the disconnect rate Client , Server

1,2,3 rt 0.01 a general timeout rate Client , Server

3 only rd 0.5 delay rate Defender

3 only ry 10 eject rate when under attack Defender

Fig. 2. Parameters of the model

Figure 3 is the Server process, which, if viewed from an automata-theoretic
perspective, would accept all and only the sentences of the formal language
(connect , handshake, (serve, disconnect) | timeout)∗ and that of course means that
the Server component can give rise to only two possible traces, which are

– (connect ; handshake; serve; disconnect); or
– (connect ; handshake; timeout).

Server free
def
= (connect , rc).Serverclaimed

Serverclaimed
def
= (handshake, rh).Server ready

Server ready
def
= (serve, rs).Server idle + (timeout , rt).Server free

Server idle
def
= (disconnect , rd).Server free

Fig. 3. The Server component of the PEPA model

Figure 4 shows the Client process, which, if viewed from an automata-
theoretic perspective, would accept all and only the sentences of the formal
language (think , connect , handshake, (serve, disconnect) | timeout)∗ and that of
course means that the Server component can give rise to only two possible
traces, which are

– (think ; connect ; handshake; serve; disconnect); or
– (think ; connect ; handshake; timeout).

In a normal interaction there is a two-stage connection, with the client first
connecting to the server, and the server then confirming the connection with a
handshake, before providing the required service. At the end of service the client
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Client idle
def
= (think , rz).Cliententer

Cliententer
def
= (connect , rc).Clientconnected

Clientconnected
def
= (handshake, rh).Clientwaiting

Clientwaiting
def
= (disconnect , rd).Client idle

+ (timeout , rt).Cliententer

Fig. 4. The Client component of the PEPA model

disconnects, freeing the server. Between service interactions the client operates
independently, indicated by the think action, appearing idle from the server’s
perspective. To guard against dropped connections and other communication
difficulties there is also the possibility for the server to timeout a connection
which seems inactive. The components are combined as:

System0
def
= Server free [200] BC

L
Client idle [1000]

where L = { connect , handshake, disconnect , timeout }.

The use of array notation syntax in PEPA (say, for example, P [2]) indicates
a PEPA component array, which is syntactic sugar for P ‖ P , which is itself
syntactic sugar for P BC

L
P when L, the cooperation set, is ∅ (meaning the empty

set, as usual).

The behaviour of System0, with the rate parameters given in Table 2, is
shown in Figure 5.

5.3 Second model: adding the attackers

The objective of the attackers is to occupy the server for as long as possible so
that it is unable to undertake any genuine service interactions. We might say
that the attackers are ‘tricking’ the server. In any case, the semantics are very
clear: the attacker initiates the protocol for requesting server-side computation
masquerading as a genuine client. Only the initial part of the protocol is exe-
cuted by the attacker: specifically, the sequential composition of actions which
is (connect ; handshake). The attacker has no intention of executing the second
part of the protocol which performs the server-side computation cleanly (serve;
disconnect). Moreover, in contrast to the brisk handshake of the genuine client,
the attacker uses a slow handshake at a slower rate, ra. Note that, any addi-
tional delay is of interest to the attacker because it impedes the progress of the
genuine clients, and that is the attacker’s priority. The behaviour of the attacker
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Fig. 5. The evolution of System0 with the rate parameters given in Table 2

Attacker idle
def
= (connect , rc).Attackerconnected

Attackerconnected
def
= (handshake, ra).Attackerhold

Attackerhold
def
= (timeout , rt).Attacker idle + (disconnect , rd).Attacker idle

Fig. 6. The Attacker component of the PEPA model

is shown in Figure 6. The revised system becomes:

System1
def
= Server free [200] BC

L
Client idle [1000]

where L = { connect , handshake, disconnect , timeout }.

The behaviour of System1, with the attackers incorporated and with the rate
parameters given in Table 2, is shown in Figure 7. In contrast to the behaviour
seen in Figure 5, we can see that the system does not reach a steady state
behaviour, as a growing number of clients are in the state waiting for connection
to the server. It can be seen that very quickly after the start of the attack, most
of the sockets are held by an attacker, leaving almost no capacity for the genuine
clients.
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Fig. 7. The evolution of System1 incorporating 250 attackers with the rate parameters
given in Table 2

5.4 Third model: adding the defenders

In order to defend against the DDoS attack we introduce a Defender which
monitors each socket. When a connection appears to be consuming too much
time it ejects the connection, allowing a fresh competition for connection between
attackers and clients. The new model is shown in Figure 8. Note that the delay
in the Defender is raced against the on-going socket connection and aborts the
interaction if the delay completes before either a disconnect or a timeout .

The results of analysis of the model are shown in Figure 9 with all parameters
values as shown in Table 2, i.e., the characteristics of the servers, users and
attackers are unchanged except for the addition of the rapid eject action. We can
see that the attackers are still successful in gaining access to the server, but there
is much more turnover meaning that clients are also able to gain connections.
This is evident because the number of clients in the Cliententer state, waiting
to form a connection, is significantly reduced compared to the growing value in
Figure 7.

6 Discussion and Conclusions

The phenomena studied and models presented here are intimately related to
the scale of the system. It simply would not be possible to study the model
with a numerical analysis of the CTMC derived from the discrete-state concrete
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Server free
def
= (connect , rc).Serverclaimed

Serverclaimed
def
= (handshake, rh).Server ready

Server ready
def
= (serve, rs).Server idle

+ (timeout , rt).Server free

+ (eject , re).Server free

Server idle
def
= (disconnect , rd).Server free

+ (eject , re).Server free

Defender
def
= (connect , rc).Defender1

Defender1

def
= (delay , ry).Defender2

+ (disconnect , rd).Defender

+ (timeout , rt).Defender

Defender2

def
= (eject , re).Defender

Client idle
def
= (think , rz).Cliententer

Cliententer
def
= (connect , rc).Clientconnected

Clientconnected
def
= (handshake, rh).Clientwaiting

Clientwaiting
def
= (disconnect , rd).Client idle

+ (timeout , rt).Cliententer

+ (eject , re).Client idle

Attacker idle
def
= (connect , rc).Attackerconnected

Attackerconnected
def
= (handshake, ra).Attackerhold

Attackerhold
def
= (timeout , rt).Attacker idle

+ (disconnect , rd).Attacker idle

+ (eject , re).Attacker idle

System2

def
= (Server free [200] BC

L1
Defender [200])

BC
L2

(Client idle [1000] ‖ Attacker idle)

where L1 = { connect , disconnect , timeout , eject }
and L2 = { connect , handshake, disconnect , timeout , eject }.

Fig. 8. Modified model containing the DDoS defence
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Fig. 9. The evolution of System2 incorporating defence mechanisms with the rate
parameters given in Table 2

semantics of the PEPA models because the state spaces generated by these mod-
els are prohibitively large. In contrast, stochastic simulation would be possible
but much more computationally expensive. For example, running a simulation
of System2 (1000 replications) takes several minutes whereas the ODE-based
analysis completes in a fraction of a second. This speed of solution makes the
ODE-approach very suitable for exploring parameter space, for example to find
the best value for the rate of the delay action in the Defender .

The abstract interpretation of PEPA models also makes it feasible to address
the problem of model synthesis. In [30] the authors present an extension to
the PEPA Eclipse Plug-in tool, which allows the user to specify a performance
requirement for a model, currently expressed in terms of response time or through-
put. From this specification the tool automatically searches parameter space to
find the “smallest” model which is able to satisfy the performance requirement.
Here “smallest” is essentially taken to mean the smallest number of components,
but a user-defined cost function allows the modeller to weight different types of
components differently (see [30] for details). The particle swarm optimisation
(PSO) meta-heuristic [31] is used to efficiently explore parameter space. Never-
theless this approach would not be tractable if based on the discrete-state space
representation of the PEPA models except for very small models.
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