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On the Inference of User Paths from Anonymized Mobility Data
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Abstract—Using the plethora of apps on smartphones and
tablets entails giving them access to different types of privacy
sensitive information, including the device’s location. This can
potentially compromise user privacy when app providers share
user data with third parties (e.g., advertisers) for monetization
purposes. In this paper, we focus on the interface for data
sharing between app providers and third parties, and devise
an attack that can break the strongest form of the commonly
used anonymization method for protecting the privacy of users.
More specifically, we develop a mechanism called Comber
that given completely anonymized mobility data (without any
pseudonyms) as input is able to identify different users and
their respective paths in the data. Comber exploits the obser-
vation that the distribution of speeds is typically similar among
different users and incorporates a generic, empirically derived
histogram of user speeds to identify the users and disentangle
their paths. Comber also benefits from two optimizations that
allow it to reduce the path inference time for large datasets. We
use two real datasets with mobile user location traces (Mobile
Data Challenge and GeoLife) for evaluating the effectiveness
of Comber and show that it can infer paths with greater than
90% accuracy with both these datasets.

1. Introduction

Besides the sophisticated sensing capabilities (location
etc.) and the ubiquitous connectivity they enable, one of the
most appealing aspects of smartphones and tablets is the
incredibly large number of apps they make available to the
users. As of February 2015 there are 1.4 million apps on the
Google Play Store for Android based mobile devices [1]. On
the flip side, device owners are requested to give consent to
the apps for accessing certain phone features (e.g., network,
location, device sensors), potentially risking their privacy.
Some apps such as Brightest Flashlight [2] seek access to
information they do not need, purely for collecting and
monetizing user data. Of relevance to this paper is the
device location which implicitly holds information about
user context and identification. The authors of [3] find that
a third of the most popular free Android apps request access
to location.

Sharing user location and other data to advertisers is
a popular form of app monetization [4]. While such data
collection and sharing is predominantly associated with free
apps, the practice is also widespread in paid apps [5].

(a) Completely anonymized mobility data

(b) Inferred paths

Figure 1: Illustration of user path inference with completely
anonymized mobility data. Input is shown in sub-figure (a)
in which paths of all users are jumbled up and indistin-
guishable. Result of path inference is shown in sub-figure
(b) in which each color and shape represents the path of a
different user.

A well-cited research study [6] showed that half of the
tested apps reported user location to advertisers. Especially
if we consider that most mobile apps come without any
privacy policies, such unscrupulous data sharing can have
serious privacy implications. Recently, there has been pres-
sure on app developers to publish their privacy policies [5].
While privacy policies lay out an explicit framework for
the use of collected data, they do not preclude data shar-
ing. Anonymization is a widely used method for preventing
identification of users and protecting their privacy when app
providers share data with third parties (including advertis-
ers) [7], [8], [9], [10].



In this paper, we investigate the robustness of
anonymization for protecting mobile user identification and
mobility patterns. As simple anonymization is proven to be
vulnerable [11], we consider a stronger form of anonymiza-
tion that we refer to as complete anonymization. In simple
anonymization user-identiyfing information is replaced by
random values (usually numerical) called pseudonyms. In
complete anonymization any user-identifying information
(including pseudonyms) are removed from the data. The
aim of this research is to infer the user paths from a
completely anonymized dataset consisting of location-time
pairs. Fig. 1 illustrates our problem on a map with mobility
data belonging to multiple users. Our input is a completely
anonymized dataset shown in Fig. 1 (a) while our objective
is to recover the user paths as shown in Fig. 1 (b). Fig. 2
shows a different illustration of our problem, treating the
mobility data of users as a database table.

Figure 2: Path inference problem illustrated from a database
viewpoint. Completely anonymized input data would essen-
tially be stored in a database without IDs. Location traces
(paths) in different rows belonging to different users would
then be indistinguishable. Our aim is to disentangle these
paths and, in effect, de-anonymize the data. In other words,
solving our problem entails separating the paths from the
given data and associating a different pseudonym for each
of them.

Towards this end, we develop a novel mechanism called
Comber. Comber exploits the observation that mobility pat-
terns of users are similar, in terms of distribution of speeds,
which allows for the use of a generic and empirically derived
mobility model. It then uses the mobility model to associate
a probability of moving from one location to another in
a time instant. To limit the computational overhead and
make the inference practical, Comber features two opti-
mizations: (i) the minimum probability threshold and (ii)
the early rejection. Using two real datasets (MDC [12] and
GeoLife [13]) with around 180 users in each, we evaluate
Comber focusing on its accuracy and computation time.
Our results show that Comber can infer paths with greater

than 90% accuracy and under 5 minutes (on a typical
workstation) for the datasets used.

To put Comber in the context of the wider location
privacy literature, it is an attack to infer different users and
their paths from completely anonymized mobility datasets.
Broadly speaking, location privacy attacks and defenses
can be divided into two categories: (i) user-side and (ii)
provider-side. The schematic in Fig. 3 helps clarify the
difference between these two categories. The majority of
the location privacy literature is focused on the user side,
whereas our focus is on the provider side. As mentioned
above, anonymization is a commonly used privacy pro-
tection method employed on the provider side for data
sharing with third parties. Through Comber, we show the
limitations of this method in the context of location privacy,
considering complete anonymization (the strongest form of
anonymization).

Figure 3: Schematic showing different interacting entities
from the perspective of privacy of a mobile user running
an app: users running the app on their devices, the app
provider, and the third parties (including advertisers). Our
focus is on the interface between the app provider and third
parties.

The rest of the paper is organized as follows. Section 2
outlines the two different datasets used in this research and
their characteristics. In Section 3 we provide a detailed
description of the Comber algorithm. Section 4 presents our
evaluation results along with their discussion in Section 5. In
Section 6, we review the related work. Section 7 concludes.

2. Datasets

For this research we use two well-known mobility
datasets with GPS traces of mobile phone users; Mobile
Data Challenge (MDC) [12] and GeoLife [13]. Both these
datasets provide pseudonymized location traces of people.
Please note that we require datasets that include pseudonyms
purely for evaluation purposes. Datasets that are shared in
practice are likely to be completely anonymized without any
pseudonyms included.

2.1. Mobile Data Challenge (MDC) Dataset

MDC dataset [12] includes movement and behavioral
information for 185 individuals in the area of Lake Geneva



in Switzerland. In this research we only use a part of the
MDC dataset. Specifically, we are interested in the location
information, provided by GPS. The GPS information is in
the form of <User ID, timestamp, latitude, longitude>, and
spans a period of a year and a half, from the 1st September
2009 until the 31st of March 2011. The total number of lo-
cation points is almost 12 million, however, not all users are
present on all days. The maximum number of users present
on the same day is 101. Moreover, the rate at which users
provide a new location point is not constant. The shortest
interval between two consecutive location points of the same
user is 10 seconds, and the longest is as large as several days.
The original dataset includes unique user IDs in the form
of pseudonyms, meaning that the identifiable information of
the users, such as the name, have been replaced by a random
numeric value. All pseudonyms were removed during testing
so that there is no information related to the points as to
which user they belong. The pseudonyms were only used
during evaluation. Further details about the dataset and its
collection process can be found in [14].

2.2. GeoLife Dataset

GeoLife dataset [13] is provided by Microsoft Research
Asia and includes GPS traces of 182 users. It spans a period
of over five years and the participants are mainly located
in Beijing. The GPS information includes timestamps and
location coordinates in the form latitude and longitude. The
spatial and temporal resolution is six decimal digits and
one second respectively. Although the data in the GeoLife
dataset are recorded over a longer period compared to the
MDC dataset, the total number of location points is smaller
than that of MDC.

While MDC dataset includes only walking traces of
people who contributed to the dataset, GeoLife includes
traces of people using additional transporation modes. For
consistency and simplicity, we focus on the walking traces
of the GeoLife dataset.

For our evaluations, we use a portion of MDC as training
data to derive user mobility model (discussed later), and we
evaluate Comber on the remainder of the MDC dataset as
well as the whole of GeoLife dataset.

3. Comber Path Inference Algorithm

In this section, we describe Comber, our proposed
path inference algorithm. The goal of Comber is to comb
through a completely anonymized mobility dataset in order
to identify and distinguish between underlying user paths
and give each of them a pseudonym. In other words, we
aim to convert a completely anonymized dataset into a
simply anonymized one with pseudonyms. Although our
algorithm does not attempt to reveal the users’ real identities,
there exists prior work [15], [16], [17], [18], [19] that can
determine the real user identities from simply anonymized
location traces.

Before we go into the details of Comber, we start with
a few useful definitions.

3.1. Definitions

Anonymized location point: We define an anonymized
location point as a triplet Ci = {ti, lati, loni}, where ti,
lati, loni are the timestamp, latitude and longitude of that
point respectively.

Users: We consider that n users exist in the dataset,
where n ≥ 1. We define the set of users as U = {u1, ..., un}.
The number n is unknown.

Inferred Path: An inferred path P of a user is the
sequence of anonymized location points C1, C2, ..., Cm such
that t1 < t2 < ... < tm, all of which have been inferred to
belong to the same user.

3.2. Overview

In terms of the above definitions, our problem is as
follows: Given a set of anonymized location points, we want
to identify the users and infer their respective paths.

Comber addresses this problem in two steps: (i) gener-
ating a user mobility model and (ii) reconstructing the paths
of the users based on the mobility model.

1) User Mobility Model: The purpose of the user
mobility model is to describe the typical user move-
ment. In our work, this model is generic that applies
to all users and is based only on the speeds; it gives
the probability of a user moving with some speed
v. We describe our approach to model user mobility
in section 3.3.

2) Path Reconstruction: Reconstructing the paths of
the users is the process of associating anonymized
location points with users by creating/extending
paths for each user. The sequence of points in-
creasing in time and associated with a given user
make up the path of that user. We use the mobility
model generated in the previous step to find the
most likely/probable association of location points
to users.

Our two-step approach stems from the observation that
movement of users is similar in terms of distribution of
speeds. To demonstrate that this is true, we consider the
MDC dataset and first generate a histogram of speeds for
each of the 185 users separately. We then perform a his-
togram intersection for each pair of users. The histogram
intersection [20] quantifies the similarity between two his-
tograms and can take values ranging from 0 to 1; value 0
indicates that the intersected histograms are totally different
while value 1 indicates that the histograms are identical.
Fig. 4 shows the CDF of the histogram intersection values
for each pair of users in the MDC dataset. We see that in
more than 90% of the cases, the histogram intersection value
is greater than 0.75, indicating a high degree of similarity.
The minimum value itself is 0.5419 which suggests that
speeds with which the users move are more similar than
different. This observation allows us to employ a common
mobility model to guide the path inference process.



Figure 4: CDF of histogram intersection values for each pair
of users in the MDC dataset. For each user, a histogram of
his speeds is used. Higher values of histogram intersection
indicate high degree of similarity. We can see that in more
than 90% of the cases, the histogram intersection value is
greater than 0.75.

3.3. User Mobility Model

We take an empirical approach to model user mobility
based on a histogram of user speeds. More specifically, we
assume the availability of a training set with a small number
of users, and use it to generate a histogram of speeds.
To obtain different speeds for each user in the training
set, we calculate the Haversine distance of the latitude and
longitude between two consecutive points of the same user.
The Haversine distance is the distance between the latitude
and longitude of two points on the Earth, and it is given by:

(1)
dij = 2r arcsin

((
sin2

(
latj − lati

2

)

+ cos(lati) cos(latj) sin2

(
lonj − loni

2

)) 1
2

)
where lati, latj and loni, lonj are the latitude and

longitude for two points Ci and Cj respectively and r is
the radius of the Earth.

The speed needed to move from point Ci to point Cj is
defined as:

vij =
dij

tj − ti
(2)

Therefore, the empirical histogram of speeds gives the
probability of a speed vij defined as p(vij).

The mobility model based on an empirical histogram is
shown in Fig. 5, using a training set of 20 users, randomly
chosen from the MDC dataset. In section 4, we show that
a training set with a limited number of users is sufficient,

because of the similarities between users in terms of their
distribution of speeds (subsection 3.2).

Figure 5: Empirical histogram based mobility model. The
x-axis shows the different speeds in m/s and the y-axis
indicates the corresponding frequencies of occurence, or
alternatively their probabilities.

3.4. Path Reconstruction

3.4.1. Time-based Grouping. Since the input dataset may
have a very large number of anonymized location points,
it may not be computationally feasible to naively associate
every pair of points to determine if they belong to the same
user. For example, the MDC dataset consists of almost 12
million points. Therefore, we first round the timestamps
down to the closest multiple of 10 and group together all
location points with the same timestamp: for example, times-
tamps that range from second 0 until second 9 have been
rounded down to the timestamp value of 0, timestamps that
range from second 10 until second 19 have been rounded
down to the timestamp value of 10, and so on. We call these
groups as into time-groups. Since the shortest time interval
that a user provided a trace is 10 seconds, the time-groups
of 10 seconds ensure that there will be no more than one
point of the same user in a time-group. The timestamps in
our datasets are in epoch time format, meaning that we have
accurate time information at the granularity of a second. T

Fig. 6 illustrates the time-based grouping. We assume
that a user’s state (position and velocity) obeys the Markov
property, i.e., the user’s next state depends only on his
current state. We use the time-groups as our states and
consequently, our inference algorithm attempts to find the
globally optimal path assignment by sequentially finding the
most probable assignment between consecutive time-groups;
the assignment that maximizes the speed probabilities be-
tween points, based on the mobility model.

The time-groups do not necessarily contain the same
number of points. Users may start or stop providing location



(a) Location points before
grouping

(b) Location points after group-
ing

Figure 6: Illustration of time-based grouping of location
points. Temporal dimension is shown with different types
of circles and the spatial relationship of the points is shown
in 2D space. Sub-figure 6a shows six location points prior to
time-grouping. Sub-figure 6b shows the same location points
after the time-grouping. Three different groups are created,
denoted by a continuous black circle (points C1 and C2),
a continuous grey circle (points C3 and C4), and a black
dashed circle (points C5 and C6)

points at any time; also a user device may not obtain a GPS
fix at some locations. A larger number of location points in
a time-group compared to its previous one indicates that a
new user has appeared. Similarly, a smaller number indicates
that a user stopped providing location information.

Moreover, even if two consecutive time-groups contain
the same number of location points does not necessarily
mean that the same users appear in these groups. It is
perfectly possible that a number of users stopped providing
location information in the first group and the same number
of new users appeared in the next group. Our path recon-
struction mechanism, takes all of these cases into account by
including an extra location point X in each time group. This
new location point X denotes the beginning of a new path.
Associating a point in the current time-group with the point
X of the next time-group indicates that a path terminates
in the current time-group and a new path starts in the next
time-group.

3.4.2. Association of Points to Users. At the start of the
path reconstruction process, after the time-based grouping,
we randomly assign IDs to the location points of the first
time-group. These user IDs are pseudonyms created by the
algorithm and do not have any explicit relationship with the
actual (true) user IDs. However, mapping to a different set of
IDs is straightforward after the execution of the algorithm.
A path can now be created by sequentially associating points
of consecutive time-groups. In Figure 7 we show how the
association between points of two consecutive time-groups

is done. The location points are associated based on the
mobility model, in such a way that the point associations
maximize the probability of the speed between those points.

Figure 7: Associations of points between time-groups. By
associating points C1, C3 and C5 together we denote that
they belong to the same user u1.

To find the most likely association between two consec-
utive time-groups, we first need to compute the individual
probabilities of all the possible associations between each
point of the first time-group to each point of the immediately
following one. The probability of an individual association
between two points Ci and Cj in two consecutive time-
groups t1 and t2 is obtained from the user mobility model,
i.e., the probability of the speed to move from Ci to Cj .

The individual associations and their probabilities are
represented as a probability matrix, an n×m matrix where
n is the number of anonymized location points in the current
time-group and m is the number of anonymized location
points in the next time-group. An example probability ma-
trix is shown in Table 1. We define the joint association
probability at time-group t as the product of the individual
probabilities.

C4 C5 C6 C7
C1 0.9870 8.75 ∗ 10−7 0.0031 0.0016

C2 0.0104 1.18 ∗ 10−5 0.9713 1.83 ∗ 10−5

C3 4.13 ∗ 10−4 2.62 ∗ 10−6 8.48 ∗ 10−5 0.6336

TABLE 1: Example probability matrix. Points C1, C2 and
C3 belong to the current time-group. Points C4, C5, C6 and
C7 belong to the next time-group. The probability of asso-
ciating C1 with C4 is 0.9870. In contrast, the probability of
associating C1 with C5 is 8.7530∗10−7. We can see that the
association with the maximum joint probability is C1 → C4,
C2 → C6 and C3 → C7. Point C5 cannot be associated with
any point in the current time-group, indicating the start of
a new path.

On each step we choose the association that results in the
maximum joint association probability (Fig. 8). The selected
joint association needs to satisfy certain criteria:

1) Each point in either group may only be associated
with at most one point in the other time-group.

2) There is a minimum probability threshold for the
individual associations. The probability of each
of the individual associations must be above that



threshold. The process of defining the minimum
probability threshold is described in section 3.5.1.

3) If a point in a given time-group cannot be associ-
ated with any points in the next time-group with
a probability greater than the minimum probability
threshold, we consider the path to which it belongs
as completed.

4) If the next time-group has more points than the cur-
rent one, then we consider the unassociated points
in the next time-group as the starting points of new
paths and assign a new user ID to each of them.

(a) A more likely association

(b) A less likely association

Figure 8: Association of location points across three differ-
ent time-groups: Two users (u1 denoted by continuous line,
u2 denoted by dashed line) move from points of the first
time-group (continuous black circle) to points of the second
time-group (continuous grey circle), and then to points of
the third time-group (dashed black circle). Sub-figure 8a
shows a more likely association while sub-figure 8b shows
an association that is less likely.

3.5. Optimizations

In this subsection, we present two optimizations, the
minimum probability threshold and the early rejection, that
allow for faster evaluation of joint association probabilities
while ensuring the calculation of the maximum joint asso-
ciation probability at each time step.

3.5.1. Minimum Probability Threshold (Θ). The mini-
mum probability threshold (Θ) indicates the minimum prob-
ability that a valid association may have. If an association
has a probability less than Θ, then it is unlikely that the two
location points belong to the same user. In other words, we
use the value of Θ as our “decision boundary” to classify
whether or not an association is valid. In machine learning
and data mining, the decision boundary is the plane that
separates the training samples belonging to two different
classes [21]. In our context, the decision boundary is the Θ
value that separates valid from invalid associations.

To decide on a suitable value of Θ, we first calculate
probabilities of valid associations (positive examples) as
well as invalid associations (negative examples)1. We obtain
both positive and negative examples from the training set.
We generate the positive examples by calculating the prob-
abilities of associations between points of the same user.
The negative examples are the probabilities of associating
location points of different users. The value of Θ is the one
that satisfies the equation (3) and separates the instances of
the two classes as clearly as possible.

arg max
Θ

|PΘ|+ |NΘ|

s.t. : PΘ : assoc. probabilty > Θ

NΘ : assoc. probabilty ≤ Θ

(3)

where PΘ is the set of positive examples whose asso-
ciation probability is greater than Θ, and NΘ is the set of
negative examples whose association probability is less than
or equal to Θ.

Figure 9 shows an example of positive and negative
examples and the probability threshold selected as the deci-
sion boundary. Positive examples are denoted with 1 while
negative examples are represented with -1. The selected
minimum probability threshold is denoted by the dashed
line. Please note that the presence of positive examples on
the left side of the decision boundary does not mean that the
probabilities of these examples are less than the probability
associated with the decision boundary (value Θ). The dashed
line simply indicates the point of separation between the
examples of the two classes.

Figure 9: Example of the minimum probability threshold.
The threshold is denoted by the dashed line. Valid as-
sociations are represented by the value 1, while invalid
associations are denoted by the value -1.

The minimum probability threshold is applied in the
probability matrix before evaluating possible joint associ-
ations and helps us reduce the number of required calcula-

1. By negative examples, we do not mean that the association proba-
bility is a negative value, this is not possible. Instead we represent valid
associations as instances of the positive class and invalid associations as
instances of the negative class.



C4 C5 C6 C7
C1 0.9870 0.0 0.0031 0.0016

C2 0.0104 0.0 0.9713 0.0

C3 0.0 0.0 0.0 0.6336

TABLE 2: Probability matrix after applying the minimum
probability threshold Θ. Associating any current point with
C5 results in a probability below that threshold, meaning
that this association is infeasible. Therefore, a new path is
created starting from point C5.

C1 0.9870 (C4) 0.0031 (C6) 0.0016 (C7) 0.0 (C5)

C2 0.9713 (C6) 0.0104 (C4) 0.0 (C5) 0.0 (C7)

C3 0.6336 (C7) 0.0 (C4) 0.0 (C5) 0.0 (C6)

TABLE 3: Probability matrix after sorting each row. The
parentheses indicate the point in the next time-group that
the probability corresponds to.

tions by treating some less likely associations as infeasible.
Any associations with probability equal to or below the
threshold are excluded from the path inference algorithm
and are not evaluated at all. Table 2 shows the resulting
probability matrix of Table 1 after applying the minimum
probability threshold. Any probabilities below the value Θ
are set to zero.

3.5.2. Early Rejection. In order to calculate possible as-
sociations between N points of a given time-group and N
points of the next time-group (supposing that both time-
groups have the same number of points), N ! calculations are
required. This is very computationally expensive. However,
we observe that some associations are more likely than oth-
ers while a lot of the associations are highly unlikely (e.g.,
they have a probability lower than the minimum probability
threshold). Therefore, if we could find a joint association
with a relatively high probability early on, we could then
discard associations with lower probabilities altogether and
thus save on the number of calculations made. The early
rejection feature is based on this observation and can quickly
find the set of associations with the maximum joint associ-
ation probability.

The idea behind this optimization is as follows. We first
sort each row of the probability matrix in descending order,
keeping an index of the location points of the next time-
group. The sorting ensures that for each location point in
the current time-group the available associations with the
higher probabilities will be evaluated first. The minimum
probability thresholds (if any) appear at the end of each
row. Table 3 shows the resulting probability matrix after the
sorting.

We then find the first possible joint association for all
the points in the current time-group and the equivalent joint
probability. We consider that as our maximum probability
found so far. Referring to Table 3, the first possible joint
association is C1 → C4, C2 → C6 and C3 → C7, with
an overall probability of 0.6074. We then start evaluating

the next possible association for all the points in the current
time-group. On each step we update the joint probability
accordingly and compare it with the maximum probability
found so far. The moment the joint probability of the asso-
ciation that we currently evaluate falls below the maximum
probability, we can discard the association and move to the
next one.

For example, referring again to Table 3, a possible
association (apart from the one discussed before) starts by
associating point C1 → C6. The probability of this associ-
ation is 0.0031, which is already lower than the maximum
probability found so far. At this point there is no reason to
attempt and associate any points to C2 as the probability of
this association cannot increase.

This optimization allows us to evaluate all possible
associations and quickly find the one with the highest proba-
bility. The initial sorting of the matrix increases the chances
that the joint association with the maximum probability
overall will be found early in the process and that all
joint associations with lower probabilities will be discarded
quickly. Depending on the probability matrix, the early
rejection implementation combined with the initial sorting
can reduce the required number of calculations by up to
90%. This allows the path inference algorithm to scale to
large numbers of concurrent users.

4. Evaluation

To assess the effectiveness of Comber and whether it is
possible to reconstruct the original paths of the users from
a completely anonymized dataset, we use three different
evaluation metrics:

1) accuracy of inferred paths
2) purity of inferred paths
3) time needed for the path inference algorithm to

complete

Accuracy of inferred paths: The accuracy of the in-
ferred paths shows how accurate the associations of the
location points are compared to the ground-truth. To evaluate
the accuracy of our path inference algorithm we need to
assess whether the anonymized location points were associ-
ated correctly. A correct association is one that the triplets
C = {t, lat, lon} of the anonymized location points that
have been associated with the same inferred user ID also
belong to the same user in the ground-truth dataset.

To assess the path accuracy we first split the paths
into edges. An edge is the association of two consecutive
anonymized location points. We start by evaluating whether
each of the inferred edges has been accurately associated.
Fig. 10 shows how we calculate the edge accuracy. Missed
edges, i.e., the edges that were not created at all by Comber,
are also counted as wrong edges. We can then combine the
correctly inferred edges to form longer paths.

Purity of inferred paths: Although the edge accuracy
shows whether the location points have been associated
correctly, it has a limitation; if a wrong edge is found along
a ground-truth path then that path is split in two (Fig. 11).



Figure 10: Illustration of edge accuracy measure calcula-
tion. The different shapes indicate different users in the
ground-truth. The lines indicate the results with the in-
ference algorithm. We consider an edge as correct if it
originates and terminates from location points that belong
to the same user in the ground truth.

The position of the missed edge plays an important role.
If the missed edge is one of the initial or last edges of
the path, then the result is an almost totally accurate path
(Fig. 11a). However, if the missed edge is found in the
middle of the path, then the original path is split into two
sub-paths (Fig. 11b). Therefore, we also need to evaluate the
purity of the inferred paths compared to the ground-truth.

(a) Example of missed edge near the start of the path.

(b) Example of missed edge in the middle of the path.

Figure 11: Illustration if the limitation of the edge accuracy
measure. The red dashed line indicates a missed edge. The
edge accuracy in both sub-figures is 80%. However, in sub-
figure (a) the original path is almost accurately inferred,
whereas in sub-figure (b) it is split into two sub-paths of
equal length.

If we consider each of our inferred paths as a different
cluster then the purity of a cluster [22] is the percentage
of correctly assigned points to a class (user) in the ground-
truth, and is given by:

purity(Ω, C) =
1

N

∑
k

max
j
|ωk ∩ cj | (4)

where Ω is the set of clusters (inferred paths) with Ω =
{ω1, ω2, ..., ωn}, C is the set of classes (user paths in the

ground-truth) with C = {c1, c2, ..., cn} and N is the total
number of points across all clusters.

We first find the most frequent class in each cluster
and we then calculate the purity by counting the number
of correctly assigned points (number of points of the most
frequent class) divided by the total number of points across
all clusters. We assume that each inferred path is mapped to
the user ID in the ground-truth with the greater number of
points in the inferred path (the user ID with the majority).
The purity of the inferred path then is calculated by taking
the ratio of the sum of points of a ground-truth path with the
user ID with the majority in each inferred path to the total
number of points in the inferred paths. Fig. 12 illustrates
the purity metric. Note that path purity is always less than
or equal to edge accuracy. This is because only the part
of the path that is mapped to the ground-truth user ID
with the majority is considered as pure , whereas each
corrected inferred edge is independently counted towards
edge accuracy.

Figure 12: Illustration of the path purity measure calcu-
lation. The different shapes indicate different users in the
ground-truth. The lines indicate the results of the inference
algorithm.

4.1. Edge Accuracy and Path Purity with MDC
Dataset

We first consider the MDC dataset to evaluate both the
accuracy and purity of the inferred paths. As mentioned be-
fore, we selected a number of users to be used as our training
set. However, the more users we select for training, the more
we reduce the testing set as we cannot use the same users
both for training and testing. We do not want to significantly
decrease the size of the testing set since the smaller it is
the easier the problem becomes, as the chances of having
intersections between user paths is decreased. Therefore, we
use only 20 users for training and the remaining 165 are used
for testing.

Having decided on the number of users in the training
set, we perform a variation of a commonly used method of
k-fold cross validation with k set to 10, in order to assess
the accuracy and purity of the inferred paths. Although in
a normal k-fold cross validation we would train on k − 1
parts of the dataset and test on the remaining part, this is not
appropriate in our case as we would significantly decrease
the size of the testing dataset. Therefore, we use a variation
of the standard k-fold cross validation by training on one
part and testing on the other k−1 parts. With this variation



of the k-fold cross validation, not only we assess whether
Comber is able to produce results of significant accuracy,
but we also assess whether it can be generalized by using
different training and testing sets.

With our variation of the 10-fold cross validation, we
perform 10 different iterations of Comber and in each of
them we train and test on different sets. Therefore, we limit
the chances of getting higher or lower accuracy due to cap-
turing specific moving patterns in our training set. Consistent
results across all iterations would suggest that Comber is not
biased by distinct moving patterns and provides an accurate
estimation of the expected accuracy and purity of Comber.

The training users of each fold were selected randomly.
Fig. 13 shows the edge accuracy and path purity of each of
the 10 different runs with the MDC dataset. The mean edge
accuracy is 98.7%, while the mean path purity is 91.6%. The
results present significant consistency across all iterations,
with very small variations. This behavior indicates that the
effectiveness of Comber is not affected by moving patterns
of specific users and can be generalized to different training
and testing sets.

Figure 13: Results of edge accuracy and path purity with
the variation of the 10-fold cross validation, using the MDC
dataset. The blue line with circles denotes the path purity
and the red line with stars shows the edge accuracy. We see
that results for both these measures remain almost the same
for all the runs, with very slight variations.

4.2. Path Inference Computation Time

The computation time of Comber is also an important
metric that needs to be evaluated. The time that Comber
needs to complete heavily depends on the number of con-
current users in a given time-group. The larger the number
of concurrent users the greater the number of possible asso-
ciations that need to be evaluated. To evaluate the elapsed
time of our algorithm, we consider the time needed for the
inference of the whole MDC dataset (almost 12 million

location points). Fig. 14 shows the minimum, maximum
and mean time needed to complete the path inference for
different numbers of concurrent users. We can see that the
computation time increases with the number of concurrent
users as expected, but even in the worst case Comber needs
less than 5 minutes to complete. With 22 concurrent users, a
naive implementation would require 22! calculations. These
results stress the benefits of using the minimum probability
threshold and early rejection features. Note that all our path
inference computations were carried out using a commodity
workstation with an Intel Core i5 3.20GHz processor and
8GB memory.

Figure 14: Time needed for the path inference to complete
for different numbers of concurrent users. In the MDC
dataset, there are 2 to 22 concurrent users. We can see that
the total time never exceeds 5 minutes. We only had one
case of 20 concurrent users, therefore only the exact value
of the time needed is shown in the plot. In addition, we did
not have any cases of 19 or 21 concurrent users, thus they
are missing from the plot.

4.3. Training Set Size Required

So far we considered a training set of 20 users. We
decided on this number somewhat arbitrarily in order not
to significantly decrease the size of the testing set and at
the same time gain as much information as possible from
the training set. However, it is perfectly possible that fewer
users would still be sufficient to build a user mobility model
with similar effectiveness. This is of great importance as in
a real-life scenario the number of users that can be used
for training may be limited. Therefore, we want to evaluate
the minimum number of users that are required to get the
desired accuracy and path purity.

For this evaluation, we use a slightly different method-
ology. We evaluate Comber using different training set sizes
ranging from 2 and up to 20 users. We do not use a training
set of 1 user as we cannot generate negative examples



to determine the minimum probability threshold. For each
different size of the training set, we perform 10 experiments.
The training set on each run is randomly selected from the
whole dataset, however we ensured that the training sets of
the same size differed in at least one user. Fig. 15 shows how
the edge accuracy and path purity vary with the different
training set sizes. The edge accuracy results are shown in
Fig. 15 (a) whereas the path purity results are shown in
Fig. 15 (b). In each of the sub-figures, the cases with few
number of users in the training set are magnified for better
clarity.

We can see from the figures that both the accuracy and
purity do not present significant differences regardless of
the number of users in the training set. This means that we
can achieve the same level of edge accuracy and path purity
using a smaller training set with fewer users. The variation
in edge accuracy with different training set sizes is quite
small, with a minimum accuracy of 98.63% and a maximum
99.23%. Concerning path purity, the minimum can be seen
to be 90.11% whereas the maximum is 92.30%.

4.4. Generality of Comber

The results presented so far were obtained using the
MDC dataset. To assess the generality of the Comber ap-
proach, we now consider the GeoLife dataset [13], for
which we are using the same user mobility model as before,
trained with up to 20 users from the MDC dataset. Recall
that GeoLife dataset also consists of location traces of
mobile users but in the Beijing area. The total number of
users in the GeoLife dataset is 182 (about the same as
MDC dataset). Similarly to MDC, we also removed the
pseudonyms from GeoLife and performed the same variation
of 10-fold cross validation described earlier. The total time
needed for Comber to complete all of the 10 experiments
was just around 2 minutes, which can be explained by the
relatively smaller number of location points.

We can see from Fig. 16 that both the accuracy and the
purity obtained with GeoLife dataset remain significantly
high. The minimum accuracy is 97.2% and the maximum
is 98%. The purity follows a similar pattern.

The above results show that although the mobility model
was created using a training set from a completely different
dataset, we can still infer the paths of different datasets
with high accuracy. The main reason behind these results
is the fact that human mobility patterns present significant
similarities which can be exploited to create a generic mo-
bility model as we do in this paper. According to [23], these
similarities can be used not only for path inference attacks
but also for other purposes including epidemic prevention,
emergency responses, urban planning and agent-based mod-
elling.

Given the very good accuracy and purity results, we
investigated further to see if the user paths in the GeoLife
intersected at all. If the paths of the users were isolated,
very few associations would be possible, which would sig-
nificantly decrease the complexity of the problem. We can
see from Fig. 17 that for those users in the area of Beijing,

(a) Edge accuracy of inferred paths.

(b) Path purity of inferred paths.

Figure 15: Edge accuracy and path purity of Comber using
different training set sizes, from 2 to 20. For this evaluation
we used the MDC dataset. Both the accuracy and the
purity do not present significant changes, indicating that
fewer users in the training set would be sufficient for path
inference to be reliable.

the path intersections are quite common so the excellent
results are not due to the lack of path intersections. This
behavior is similar to the users in MDC (Fig. 18), where
paths of users in the centre of Lausanne also intersect for
long periods.

4.5. Comber with Denser Datasets

We now study the impact of denser datasets on effec-
tiveness of Comber by merging data from different days.
More specifically, we randomly selected up to 5 different
days from the MDC dataset and altered the timestamps so
that they all belong to the same day (the hour, minute and



Figure 16: Results of edge accuracy and path purity with the
variation of the 10-fold cross validation, using the GeoLife
dataset. The blue line with circles denotes the path purity
and the red line with stars shows the edge accuracy. We can
see that both the accuracy and the purity remain very high
and almost identical.

Figure 17: Path intersections of users in the GeoLife dataset.
For clarity reason we present 6 users that are only a subset
og the spatially and temporally overlapping users in the
dataset. They have been chosen purely for visualisation
purposes. Each user is denoted by a different color and
shape. We can see that the paths intersect significantly.

second of each timestamp were left unchanged). Although
the days were selected randomly, we did make sure that the
number of users present in each day was above the average
number of users present in a day. We run Comber on each of
the generated datasets. Figure 19 shows the results of these
experiments.

We can see from the figure that both the edge accuracy
and the path purity drop to around 0.85, as expected with

Figure 18: Path intersections of users in the MDC dataset.
For clarity reasons we present 6 users, denoted with different
colors and shapes. We can see that despite some isolated
parts the paths mostly intersect.

Figure 19: Results of edge accuracy and path purity with
increasingly dense datasets. We can see that both the edge
accuracy and path purity drop to around 0.85, however the
results indicate that path inference is possible even in denser
datasets.

a denser dataset. However, this number is still significantly
high, indicating that path inference with Comber is possible
even with datasets denser than MDC and Geolife.

5. Discussion

In this work we focused on the strongest form of
anonymization, in which any user-identifying information
is completely removed from the dataset, and demonstrated
that complete anonymization alone is insufficient to preserve
location privacy of users. A natural next step is to improve



the robustness of complete anonymization via some form of
perturbation, a commonly used privacy preservation tech-
nique. Impact of different types of perturbation on path
inference with Comber and the utility of the perturbed
dataset is a key issue for future work.

In this work we have only considered the speeds of the
users, which we used to build the mobility model. Although
such information is shown to be sufficient, the mobility
model can be further improved by adding directionality
information of the inferred paths. Our intuition is that people
tend to move in the same direction with few abrupt changes
in their directionality (e.g. city blocks). Such information
can be exploited so that drastic changes in the directionality
of an inferred path are considered less likely than a smoother
change. We expect that combining such information with the
current mobility model can result in greater accuracy of the
inferred paths, even in very dense datasets.

We have also tested Comber using more challenging
datasets in which the density of the location points is
increased, by merging several, randomly chosen days. As
expected, the results of Comber decrease in these cases
however, both the edge accuracy and path purity still remain
fairly high. We do expect that the accuracy will drop as
the datasets become even denser. In such cases considering
further information in the mobility model, such as the direc-
tionality discussed above and user movement patterns, can
be useful.

Apart from the aforementioned, there are also other ways
in which Comber can be improved. For example the use
of real maps could provide better accuracy and faster path
inference algorithm execution. People in cities can follow
existing roads and paths. By incorporating real maps we
can exclude possible associations that are impossible (e.g.
travelling through buildings).

Finally, another interesting point is that our algorithm
uses a single mobility model to infer the paths of different
datasets. This is justified in view of previous work on human
mobility patterns [23] which shows that they are very similar
and can thus be predictable. However the mobility model
in Comber can be further extended to account for different
transportation modes beyond walking.

6. Related Work

Location privacy research is broadly divided into attacks
and defenses, with a large majority of papers focusing on the
latter, in contrast to this paper. We now briefly summarize
this research, and discuss its relation to ours.

6.1. Location Privacy Preservation Mechanisms
(LPPMs)

One way to categorize privacy mechanisms is based on
whether they reside at the device that produces the data
(user-centric or user-side mechanisms) or at an intermediate
or final collection point that acts as a trusted third party, e.g.
just before the data is made public (provider-side mecha-
nisms). See Fig. 3. The method of defense that we consider

in this paper, complete anonymization, makes sense when
many users are considered simultaneously, hence it applies
to the case of provider-side mechanisms.

Provider-side privacy research typically originates in the
database research community, with a popular example being
k-anonymity [24] and its descendants (l-diversity [25], t-
closeness [26]), while a more recent and even more pop-
ular example is differential privacy [27]. Both approaches
perturb/distort user data to protect privacy, hence they are
examples of obfuscation-based methods. As such, they are
orthogonal to the anonymization-based defense that we con-
sider in this paper.

As a brief summary of the state of the art in user-side
defenses, Shokri et al. [28] design an obfuscation mech-
anism that is provably optimal in the context of sporadic
Location-Based Services (LBSs), i.e. apps that only send
queries infrequently. The optimality arises naturally as the
authors design the mechanism via an optimization problem
whose variables are the parameters of the privacy mecha-
nism. Later, Bordenabe et al. [29] combine the optimization
approach with a novel privacy definition that is an extension
of differential privacy to location privacy, thus producing an
optimal mechanism that provides geo-indistinguishability.
Fawaz and Shin [30] describe a working prototype of a
location privacy mechanism, which they implement on An-
droid. Their prototype defends against a selection of threats
by using different mechanisms in each case, the most so-
phisticated of which resemble either differential privacy or
the aforementioned geo-indistinguishability.

6.2. Location and Path Inference Attacks

To the best of our knowledge there has been very lim-
ited research on privacy attacks on completely anonymized
mobility datasets. Gruteser and Hoh [31] use a multi-
target tracking technique to classify GPS points from three
anonymized users. They further extend the dataset to in-
clude two more users. However, the size of the dataset is
significantly limited. In this research we use much larger
datasets of around 180 users. Moreover, built into their
model is the assumption that the difference in position and
speed between two successive location samples of a user
follows a zero-mean Gaussian distribution. This and other
similar Gaussian assumptions necessarily follow from the
Kalman filtering approach that they take, which is rather
limiting. Instead, we make no such assumptions, but rather
estimate user mobility empirically, directly from a training
set involving small number of users.

6.2.1. Uniqueness of Human Mobility Traces. In a recent
study, de Montjoye et al. [32] performed a statistical analysis
on the uniqueness of human mobility traces. The authors
showed that any four points from a user’s path are enough
to unique distinguish it from any other path in the dataset,
with 95% accuracy. The experiments were conducted on a
dataset consisting of cellular tower associations and the user
ID of each association event was known.



[16] come up with a similar observation about the
uniqueness of mobility traces of individuals but using GPS
traces. More specifically, the authors of [16] present two
techniques that can be used to re-identify a user from his/her
mobility data. In that research the original user paths were
known from the start and the techniques focus on classifying
distinct location points to those paths. The goal of these
techniques is to reveal the real identity of the individuals by
exploiting the inherent uniqueness of the mobility trace of
person. This serves as the basis of our research. We exploit
this characteristic and attempt to reconstruct user paths with
very limited information.

Song et al. [33] perform experiments on human mobility
traces to assess their uniqueness. The dataset used includes
information about half a million users over a period of
a week and the mobility information is pseudonymized.
The research assesses the uniqueness of the trajectories
of different users assuming that an adversary has partial
knowledge of the path of a given user. The goal is to measure
the total number of trajectories that an adversary can find
with this partial knowledge. Their experiments are in line
with previously reported attacks, and show that user traces
are highly unique and that the locations of the users can be
retrieved using only a few points.

6.2.2. Inferring User Identities from Pseudonmyized
Mobility Data. In one of the first papers on location
privacy [34], it is already emphasized that just assigning
pseudonyms to the users of an LBS is problematic. In
the context of users in a workplace, the office of a given
pseudonymous user can be easily identified by keeping
track of the frequency of visits of the given pseudonym
to each office. Another location inference attack [19] is on
GPS traces provided by volunteers and tests four different
algorithms to infer the users’ home address. It also uses a
web search engine in order to reveal the real identities of
the subjects. The results show that it is possible to reveal a
small fraction of the real identities of the users and a large
fraction of the users’ home addresses. However, the authors
did not focus on reconstructing the paths. Each volunteer
was pseudonymized and the end-to-end path corresponding
to a given pseudonym was known from the start.

A similar attack was performed in [17] in which the
authors used GPS-based mobility traces to infer the real
identities of the users. In this work, the adversary is as-
sumed to have prior knowledge of an individuals’ paths
and attempts to reveal the identities by matching the new,
unknown paths to those he already knows. In a similar vein,
the attack presented in [18] uses side information to infer
the whereabouts of a victim. The attacker is assumed to
have access to a small amount of information (side informa-
tion) regarding a user that appears in an anonymous trace.
Using this information the authors are able to reveal the
whereabouts of the victim. Although this work is somewhat
similar to our attack, the authors assume prior knowledge
of a victim’s path, which we do not do.

Another attack [15] showed that an attacker can almost
always infer a user’s real identity (in 87% of cases studied)

with knowledge of the user’s home and work location to a
granularity of one city block. However, the authors assume
knowledge of the work and home places of the users. Shokri
et al. [35] provide a novel framework for analyzing various
LPPMs and perform a location attack that is based on user-
specific mobility models and the use of Markov chains to
infer a user’s path. The attack is performed on location traces
that are again assumed to be pseudonymized, rather than
completely anonymized as in our work.

In [36] the authors devised an attack that is based
on information collected from users’ personal devices to
identify train trips. The authors apply machine learning
techniques on the collected data to identify the activities of
users (e.g. walking, moving in a vehicle) and correlate the
results with information from different railway companies
to infer possible train routes of that user can take.

In the context of mobile telephony (3GPP), Arapinis et
al. [37] show that the periodic anonymization done with the
TMSI reallocation procedure in a mobile network can be
exploited to link back the TMSIs allocated to a given user,
thus successfully tracking the user. Periodic anonymization
is a middle ground between simple anonymization (assign-
ing a single pseudonym that does not change) and com-
plete anonymization (removing the username and assigning
no pseudonym). Complete anonymization is equivalent to
assigning a fresh pseudonym to every location sample,
independent of all other pseudonyms.

The above set of attacks highlight the sensitivity of a
dataset in which each user’s visited locations are linked
to each other through a pseudonym. In this light, one can
better appreciate our proposed attack, which shows the
feasibility of linking together a given set of independent
visited locations into a set of user paths.

Due to the high popularity of social networks, recent
research has also focused on the privacy risks of check-ins
in those social networks as well as on the importance of
peer location information to a user’s privacy. For example,
a user’s privacy is dramatically decreased even in the case
of an adversary considering only one peer’s location infor-
mation. A decrease in user privacy is also observed even
when the given user does not share any information about
his location [38].

Rossi et al. [39] assess the importance of social network
check-ins, such as Facebook and Foursquare, for user iden-
tification. They show that specific places that are present
create re-identification opportunities due to the frequency
that users check-in at these places (such as homes and
work places). Thus, an adversary that monitors such places
significantly facilitates the identification process. Also, due
to the nature of these places, it is easy to identify a user
even if his check-in frequency is relatively small.

7. Conclusions

In this paper we challenge the privacy protection that
complete anonymization provides for user location and mo-
bility data. We have introduced Comber, a novel attack
mechanism that exploits the similarity of human mobility



patterns in terms of distribution of speeds. Comber uses
a generic and empirically derived histogram of speeds to
reconstruct the original paths of the users. We have eval-
uated Comber with two different datasets, MDC [12] and
GeoLife [13], which consist of GPS based human mobil-
ity traces collected in Lausanne and Beijing, respectively.
Both datasets span more than a year and include location
information of around 180 users each.

We have evaluated the accuracy and purity of the in-
ferred paths and our results show that Comber is able to
infer the original paths of the users with more than 90%
accuracy. These results raise serious security concerns about
the privacy of mobile users using apps that access their
location. Due to the inherent complexity of the problem,
Comber includes two different optimization features which
decrease its run-time by up to 90%, making path inference
feasible even for large datasets.

Issues for future work include enhancing Comber to
consider multiple transportation modes and directionality
information, and studying its effectiveness with other/hybrid
location privacy protection mechanisms that involve some
form of perturbation.
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