Geomorphology and 10Be chronology of the Last Glacial Maximum and deglaciation in northeastern Patagonia, 43°S-71°W

Tancrède P. M. Leger¹, Andrew S. Hein¹, Robert G. Bingham¹, Ángel Rodés², Derek Fabel², Rachel K. Smedley³

¹ School of GeoSciences, University of Edinburgh, Drummond Street, Edinburgh, EH8 9XP, Scotland, UK
² Scottish Universities Environmental Research Centre, Scottish Enterprise Technology Park, East Kilbride, G75 OQF, Glasgow, Scotland, UK
³ University of Liverpool, Department of Geography and Planning, Chatham Street, Liverpool, L69 7ZT, UK

Lead Author contact details:

Tancrède P.M. Leger, PhD student, University of Edinburgh, School of GeoSciences,
Address: Institute of Geography, Drummond Street, Edinburgh EH8 9XP, United Kingdom
Email: Tancrede.leger@ed.ac.uk

ORCID IDs

T.P.M. Leger: https://orcid.org/0000-0001-9098-8312
A.S. Hein: https://orcid.org/0000-0003-3397-3813
R.G. Bingham: https://orcid.org/0000-0002-0630-2021
A. Rodés: https://orcid.org/0000-0001-8488-7689
D. Fabel: https://orcid.org/0000-0003-2859-3293
R. K. Smedley: https://orcid.org/0000-0001-7773-5193

ResearchGate profile pages:

T.P.M. Leger: https://www.researchgate.net/profile/Tancrede_Leger2
A.S. Hein: https://www.researchgate.net/profile/Andrew_Hein
A. Rodés: https://www.researchgate.net/profile/Angel_Rodés
D. Fabel: https://www.researchgate.net/profile/Derek_Fabel
Abstract

In southern South America, well-dated glacial geomorphological records constrain the last glacial cycle across much of the former Patagonian Ice Sheet, but its northeastern sector remains comparatively understudied and unconstrained. This knowledge gap inhibits our understanding of the timing of maximum glacier extent, the duration of the glacial maximum, the onset of deglaciation, and whether asynchronies exist in the behaviour of the former ice sheet with latitude, or with location (east or west) relative to the ice divide. Robust glacial reconstructions from this region are thus required to comprehend the mechanisms driving Quaternary glaciations at the southern mid-latitudes.

We here present \(^{10}\)Be surface exposure ages from five moraine sets along with Bayesian age modelling to reconstruct a detailed chronology of Last Glacial Maximum expansions of the Río Corcovado glacier, a major former ice conduit of northern Patagonia. We find that the outlet glacier reached maximum expansion of the last glacial cycle during the global Last Glacial Maximum at ~26.5-26 ka, and that at least four subsequent advances/stillstands occurred over a 2-3 ka period, at ~22.5-22 ka, ~22-21.5 ka, ~21-20.5 ka and 20-19.5 ka. The onset of local ice sheet deglaciation likely occurred between 20 and 19 ka. Contrary to several other Patagonian outlet glaciers, including from similar latitudes on the western side of the Andes, we find no evidence for MIS 3/4 advances.

Exposure dating of palaeo-shoreline cobbles reconstructing the timing of proglacial lake formation and drainage shifts in the studied region indicate three glaciolacustrine phases characterised by Atlantic-directed drainage. Phase one occurred from 26.4 ± 1.4 ka, phase two between ~21 and ~19 ka and phase three between ~19 ka and ~16.3 ka. Exposure dating of ice-moulded bedrock in the interior of the cordillera indicates local disintegration of the Patagonian Ice Sheet and the Atlantic-Pacific drainage reversal had occurred by ~16.3 ka. We find that local Last Glacial Maximum glacier expansions were coeval with Antarctic and southern mid-latitude atmospheric and oceanic cooling signals, but out of phase with local summer insolation intensity. Our results indicate that local Patagonian Ice Sheet deglaciation occurred 1-2 ka earlier than northwestern, central eastern and
southeastern Patagonian outlet glaciers, which could indicate high regional Patagonian Ice Sheet sensitivity to warming and drying during the Varas interstade (~22.5-19.5 ka).

Keywords

South America, Patagonian Ice Sheet, Quaternary, Last Glacial Maximum, Marine Isotope Stage 2, Cosmogenic isotopes, Geomorphology (glacial), Glaciology, Paleoclimatology, Patagonia

1. Introduction

Patagonia, the southernmost region of South America, is ideally located to further our understanding of Quaternary cryospheric and climatic change in the southern mid-latitudes (Mercer, 1976). The formerly heavily-glaciated Patagonian Andes are part of the only continental landmass that fully intersects the circum-hemispheric Southern Westerly Winds (SWW) and its coupled Antarctic Circumpolar Current (ACC) (Clapperton, 1993; Figure 1). The mountains span a large latitudinal range and thereby provide the unique opportunity to better understand former migration patterns of key atmospheric- and oceanic-energy re-distributing mechanisms during palaeoclimate transitional phases (Davies et al., 2020).

The once ~2000 km-long (N-S) Patagonian Ice Sheet (PIS) largely terminated off-shore on its western margin, but was land-terminating north of ~43° S (Glasser et al., 2008; Figure 1), enabling geomorphological records to be preserved and accessible (Figure 1b). Detailed geochronological reconstructions utilising radiocarbon dating have been produced for this land-terminating northwestern sector of the former ice sheet (e.g. Denton et al., 1999; Moreno et al., 2015). Over the
past decades, several investigations have moreover produced palaeo-glacier chronologies focusing
on the central eastern and southeastern regions of Patagonia (Davies et al., 2020), using mainly
terrestrial cosmogenic nuclide (TCN) exposure dating of glacial deposits. However, to date, the ~800
km-extensive (N-S) northeastern sector of the former ice sheet remains less studied (García et al.,
2019), although it offers a unique opportunity to compare palaeo-glacier behaviour on both sides of
the former ice sheet. This region is currently diagnosed by a lack of knowledge on the characteristics
of local PIS development during the last glacial cycle, such as the timing, number and extent of outlet
glacier expansion events and their associated meltwater drainage patterns. In this sector, thereby, the
precise timing of the local Last Glacial Maximum (LGM) and the last glacial termination are not well
constrained.

Numerous investigations from central eastern, southeastern and northwestern Patagonia have
reported pre-global LGM maximum outlet glacier expansions occurring for instance during Marine
Isotope Stage (MIS) 3 (e.g. Darvill et al., 2015), MIS 4 (e.g. Peltier et al., 2021) and even MIS 5
(Mendelová et al., 2020), but with variable relative magnitude compared to their global LGM (MIS
2) extent. Hence, a latitudinal asynchrony in the magnitude of pre-global LGM advances, with more
extensive ice in southeastern Patagonia, has been proposed. Such asynchrony is also thought to
characterise the timing of the onset of local deglaciation (García et al., 2019). Therefore, as well as
addressing a geographical knowledge gap, establishing robust glacial chronologies from the
understudied northeastern region of the former PIS is required to resolve uncertainties concerning
latitudinal asynchronies in the precise timing of the local LGM and onset of deglaciation across
Patagonia (Darvill et al., 2016). Such information can help to determine the drivers of Quaternary
glaciations in the southern mid-latitudes (Kaplan et al., 2008; Kelley et al., 2014; Darvill et al., 2016).
Additionally, detailed reconstructions of glaciolacustrine histories during local deglaciation have
implications for understanding PIS retreat rates (Bendle et al., 2017a) and events of continental-scale
drainage reversal, which can abruptly introduce significant freshwater volumes to coastal
environments and force local changes in marine ecosystems and circulation (Glasser et al., 2016; Thorndycraft et al., 2019).

The primary objective of this investigation is to produce a robust chronology of local LGM and deglacial events in a valley system of northeastern Patagonia formerly host to a major PIS outlet glacier; the Río Corcovado (RC) valley system, 43°S, Argentina (Figure 1). To establish such geochronological reconstruction, we here focus on the remarkably well-preserved record of terminal moraine complexes and associated glaciogenic deposits left by this land-terminating eastern outlet glacier of the PIS, which spans several Quaternary glacial cycles (Caldenius, 1932). While local semi-arid conditions make radiocarbon dating challenging, these moraine records are highly suitable for TCN dating, a method successfully employed in several Patagonian valleys to produce LGM glacial chronologies hitherto (e.g., Kaplan et al., 2004; 2007; 2008; Douglass et al., 2006; Hein et al., 2010; Murray et al., 2012; García et al., 2018; Mendelová et al., 2020). Here, by combining interpretations of detailed glacial geomorphological mapping (Leger et al., 2020) and a novel 10Be TCN chronology further constrained with Bayesian age modelling, we provide the first reconstruction of the extent and timing of PIS outlet glacier advances in the RC and neighbouring valleys during the LGM (Figure 1). In so doing, we also provide insights into the location, elevation and timing of former proglacial lake formation and drainage events associated with retreat patterns of the studied outlet glaciers following the last glacial termination. In addition, our geomorphological and geochronological reconstruction provides an empirical benchmarking framework for tracking the former regional ice-flow direction, palaeolake dynamics, subglacial thermal conditions, and the timing of ice-free environments, all of which are important for improved calibration of numerical ice-sheet models (e.g., Hulton et al., 2002; Hubbard et al., 2005).
Figure 1. (2-column fitting image). Location maps of study area. (A) Map of Southern Hemisphere highlighting the approximate contemporary positions of the Southern Westerly Winds (SWW: after Sime et al., 2013) belt (light blue), the Polar Front (PF: green), the Sub-Antarctic Front (SAF: orange), and the Sub-Tropical-Front (STF: red), adapted from Darvill et al. (2016) and based on Orsi et al. (1995) and Carter et al. (2008). The map also highlights the location of our northern Patagonia study site (purple star). The locations of key marine and ice core palaeoclimate records mentioned in the text are illustrated with white dots. Background imagery is from DigitalGlobe (GeoEye, IKONOS, 2000-2011). (B) Adapted from Leger et al. (2020). Approximate former extent of the Patagonian Ice Sheet (PIS) during the Last Glacial Maximum (LGM), modified from Glasser et al. (2008) and Glasser & Jansson (2008). Modern extents of the North Patagonian (NPI), South Patagonian (SPI), and Cordillera Darwin (CDI) icefields are displayed in white. Major former outlet glaciers of the PIS are designated: BI: Bahía Inútil, EM: Estrecho de Magallanes, SS: Seno Skrying, BV: Bella Vista, TDP & UE: Torres del Paine & Última Esperanza, LA: Lago Argentino, LV: Lago Videma, LC/P: Lago Cochrane/Pueyrredón, LBA: Lago Buenos Aires, LL: Lago Llanquihue. Bathymetric data were acquired from the General Bathymetric Chart of the Oceans (GEBCO) and are here shown in greyscale. A -125 m contour roughly simulating former coastline locations at the LGM is displayed (Lambeck et al., 2014). The Chile/Argentina border is shown in red. (C) Adapted from Leger et al. (2020). Digital Elevation Model (DEM) of northern Patagonian Andes extrapolated from the ALOS WORLD 3D missions (version 2.2; JAXA; https://www.Eorc.jaxa.jp/ALOS/en/aw3d30/) with a shaded relief background (light azimuth: 315°, incline: 45°) and a sea-level contour (black line) indicating modern coastlines. White arrows designate ice-flow direction of major former PIS outlet glaciers. The pink line delineates the contemporary Atlantic (East) / Pacific (West) drainage divide. Main lake bodies and river channels were manually digitised and are displayed in blue, and labelled when mentioned in the text. Locations of sampling for TCN dating are symbolised by the green star (moraine boulders), the green triangle (shoreline cobbles) and the yellow asterisk (bedrock samples). (D) Glacial geomorphological map adapted from Leger et al. (2020) focused on the RC valley moraine and outwash record. Black dashed lines represent our interpretation of the different moraine limits preserved (RCI – RCVII) and their connectivity throughout the field site.

2. Study location and physical setting

2.1. Geographical setting

Our study focuses on a major palaeo-outlet glacier of the northern PIS (Figure 1), the Palena outlet glacier, which flowed east-northeast from the centre of the former ice sheet, near Macizo Nevada, along the Río Palena (RP) valley. Upon reaching the eastern mountain front, the Palena outlet glacier diverged (43.3°S, 71.3°W) into three branches occupying the Río Frío (RF) valley to...
the north, the Río Huemul (RH) valley to the east, and the RC valley to the south, where we focus our moraine chronology. The RH and RC outlet glaciers extended up to 60 kilometres to the east/southeast of the Argentinian town of Corcovado (43°54'S; 71°46'W) (Caldenius, 1932; Haller et al., 2003; Martínez et al., 2011). The semi-arid southeastern sectors of the RH and RC valleys (570 mm a⁻¹ of precipitation: Fick & Hijmans, 2017), which belong to the Patagonian steppe climate zone, host a series of well-preserved lateral and frontal moraine complexes, along with associated glaciofluvial and glaciolacustrine sediment-landform assemblages (Haller et al., 2003; Martínez et al., 2011; Leger et al., 2020). The RC valley exhibits preservation of at least seven distinct moraine complexes, here termed RC I-VII moraines, from oldest to youngest (Figure 1d).

The Palena outlet glacier and its RC, RH and RF branches advanced up reverse-graded slopes from a valley floor elevation of ~150 m a.s.l. near the former ice divide, to the elevation of the major terminal moraine ridges nested between 800 and 1100 m a.s.l. east of the mountain front. Therefore, the modern hydrographic drainage of the Río Palena catchment is reversed relative to the flow direction of the former glaciers, with the modern drainage divide located ~70-80 km east of the central spine of the Andes (Davies et al., 2020). Geomorphological mapping of glacial lineations and ice-moulded bedrock outcrops (Leger et al., 2020) indicates that the westward dipping RP, RC and RH valleys were subglacially eroded by warm-based ice. This suggests in turn that the valleys were former conduits for fast-flowing, topographically-controlled outlet glaciers capable of generating significant valley over-deepening during Quaternary glaciations. Such valley over-deepening, greater toward the western margins of the former PIS relative to its eastern margins, is characteristic of the topography for much of Patagonia (e.g. Clapperton, 1993; Singer et al., 2004; Kaplan et al., 2009). The topographic setting helps to explain the preservation of multiple moraine sequences over the Argentinian foreland (Clapperton, 1993; Kaplan et al., 2009), as well as the formation of proglacial lakes during episodes of deglaciation.
2.2. Geologic setting

The field site is located 300 km to the northeast of the Chile triple junction (Hervé et al., 2017), where the Nazca and Antarctic plates subduct in a north-easterly direction beneath the South American plate (~66 mm a⁻¹; Rosenau et al., 2006). The site lies directly east of the Liquiñe-Ofqui Fault Zone (LOFZ), a dextral intra-arc transform fault formed during the late Miocene (10-5 Ma) which extends ~1200 km in a NNE-SSW orientation (from 43°S to 38°S) and has experienced periods of substantial pluton emplacement (Thomson & Hervé, 2002; Lange et al., 2008). The geology of the Palena outlet glacier catchment is dominated by the North Patagonian batholith, formed during the Mesozoic due to local subduction beneath the continental margin and exposed more recently during late-Miocene uplift (Hervé et al., 2017). The batholith in this region is characterised by quartz-bearing pink leuco-monzonite, giving way to darker diorite/tonalite and white granodiorite toward the west (Pankhurst et al., 1992). East of Palena and along the RC and RH valleys, the batholith gives way to four main formations of volcanic and sedimentary assemblages (Pankhurst et al., 1992; Haller et al., 2003). These are characterised by: 1) The prevailing Jurassic Lago La Plata formation, composed of Andesites, andesitic tuffs, dacites and rhyolites, 2) the lower-cretaceous Divisadero formation of lavas, basic to andesitic breccia and andesitic to rhyolitic pyroclastic deposits, interspersed with sedimentary units, 3) the upper cretaceous Morro Serrano formation of basic-stock intrusives, veins and dykes, and 4) the rarer mid-cretaceous Río Hielo formation of granites with vein and dyke intrusions (Haller et al., 2003). Consequently, glaciogenic deposits in the field site are characterised by a wide variety of lithologies.
2.3. Climatic setting

The climate of Patagonia is strongly influenced by the Southern Westerly Winds (SWW). The SWW deliver precipitation to the Patagonian Andes, which act as a potent orographic barrier, resulting in a strong west-east rain-shadow effect (Garreaud et al., 2013). At the core of the modern wind-belt, located around central Patagonia (between ~45°S and ~50°S), precipitation on the Pacific coast ranges between 5,000 and 10,000 mm a\(^{-1}\), while it diminishes to less than 300 mm a\(^{-1}\) east of the mountain front (Garreaud et al., 2013; Lenaerts et al., 2014). In north Patagonia, the SWW are thought to migrate northward and weaken during austral winters, thus causing lower precipitation levels relative to austral summers (Aravena & Luckman, 2009). Annual precipitation near Macizo Nevado, the approximate former ice divide, averages ~1850 mm a\(^{-1}\) according to WorldClim 2 data (Fick & Hijmans, 2017). Near the terminal margins of the former RC and RH glaciers, which are in the Patagonian steppe climate zone, annual precipitation decreases by 70% to ~570 mm a\(^{-1}\), while modelled mean annual temperature at 1000 m a.s.l is around 7 °C (ibid). The SWW are also an important driver of the Antarctic Circumpolar current (ACC), which after separating into two branches near the Chilean Pacific coast at 45°S, generates the northward-directed Peru-Chile current, bringing cold Subantarctic waters to the Pacific coast of northern Patagonia (Kaiser et al., 2007).

2.4 Previous work in study area

The glacial geomorphology in the study site was first examined and mapped by Caldenius (1932), and later by Lapido (1990), Martínez (2002) and Martínez et al. (2011). Three main glacial sequences were also included in ice-sheet-wide geomorphological investigations by Glasser & Jansson (2008) and Davies et al. (2020) as well as a regional geological map by Haller et al. (2003). While no direct
chronology exists, the innermost and youngest preserved moraine sequences were assumed to relate to the local LGM based on morpho-stratigraphic observations and comparisons with other dated moraine records in Patagonia. The first detailed, large-scale geomorphological mapping of ice-contact glaciogenic, glaciofluvial and glaciolacustrine deposits was published recently by Leger et al. (2020).

3. Methods

3.1. Geomorphological mapping

Initial identification of major landforms and topographic features was carried out using the freely available ALOS WORLD 3D - 30 m resolution (AW3D30: Japan Aerospace Exploration Agency) Digital Elevation Model (DEM). All mapped landforms were digitized manually in the WGS84 geographic reference coordinate system using the ESRI™ World Imagery layer, characterized by 1.0 m resolution images from DigitalGlobe (GeoEye, IKONOS, 2000-2011) at the study site. In areas with high vegetation and/or cloud cover, different colour-rendering comparisons were made using 10 m resolution Sentinel 2A true colour (TCI) and false colour (bands 8,4,3) products (available from https://scihub.copernicus.eu/).

Ground-truthing and/or corrections of preliminary landform interpretations were conducted during two separate field seasons (8 weeks in total) during the 2019 and 2020 austral summers. Geomorphological mapping criteria along with the complete geomorphological map of the area are presented by Leger et al. (2020).
Figure 2. (2-column fitting image). Geomorphological map (A) DEM hillshade (AW3D30 DEM, light azimuth: 315°, incline: 45°) and glacial geomorphological map (adapted from Leger et al., 2020) of the RC and RH valleys and their glaciogenic, glaciofluvial and glaciolacustrine landform-sediment assemblages. The location of moraine boulders and former proglacial lake shoreline surface cobbles sampled for TCN dating are indicated by green star and green triangle symbols, respectively. Camera symbols highlight the location of photographs taken on the field and shown in Figures 3-5. *SSB: RC southern sub-basin, NSB: RC northern sub-basin.*
3.2. Moraine morphology/sedimentology analyses

In order to obtain empirical information on glaciogenic sediment deposition history, moraine ridge preservation and its variability across the studied sequence, characteristics of moraine morphology and surface sediments were analysed in the field. We produced topographic profiles for each of the moraine ridges that were sampled for TCN dating using handheld GPS (spatial accuracy: 3-5 m). Where possible, between two and four transects were measured per moraine at >200 m intervals to assess variability along individual ridges. For each transect, we calculated the mean ice-proximal and ice-distal slopes and width-to-height ratios. RC IV-VII moraine clast sediments were investigated on ridge-crest surfaces using a 16 m² quadrangle over an area deemed undisturbed and representative of surface sediments. For each quadrangle, surface clast-shape and roundness data were collected (n = 30 clasts), and clast lithology was recorded. Clast-shape data were plotted on a ternary diagram scaled using $b:a$ and $c:a$ ratios (Sneed & Folk, 1958; Benn & Ballantyne, 1993) and displaying C_{40} indices (% of $c:a$ ratios ≤ 0.4). Clast-roundness data were plotted as histograms and statistically assessed using RWR and RA indices (Evans & Benn, 2004; Martin et al., 2019).

3.3. Dating approach and sampling

The wider, highly subdued and less sharp-crested geomorphology of the RC I-II moraines along with a set of twenty-five preliminary (yet unpublished) exposure ages is suggestive of a pre-last glacial cycle age for these outer margins (Leger et al., 2020). The chronology presented here thus focuses exclusively on the younger RC III-VII moraines. To establish a detailed TCN chronology of glacial advances/stillstands and deglacial events in the field area, we measured 10Be concentrations in thirty moraine boulders, six palaeo-shoreline cobbles, and two ice-moulded bedrock surfaces
across the study site (Figures 1c, 2). All sample sites were assessed for topographic shielding using a
compass and clinometer.

To establish the timing of the RC III-VII advances/stillstands, we sampled moraine boulders for
surface exposure dating (e.g. Gosse & Phillips, 2001; Hein et al., 2010; Heyman et al., 2011). Due to
road-access conditions and moraine preservation, we chose the western lateral-frontal environment
of the RC basin for sampling of the five most prominent ridges, each belonging to a separate moraine
complex (Figure 2). We targeted large granodiorite boulders (50-190 cm tall) resting directly on the
moraine crest that exhibited glacial polish and, in some cases, preserved striations, indicating minimal
surface erosion. We collected 1-2 kg samples by hammer, chisel and angle grinder from the top 2-5
cm of the centre of the boulders (Figure 3). For each target moraine, we sampled six boulders along
a single continuous ridge (Figure 2). This sampling strategy aims to reduce potential uncertainties
resulting from geological scatter due to post-depositional processes (Putkonen & Swanson, 2003;
Applegate et al., 2010; Heyman et al., 2011). We interpret the exposure ages as dating moraine
stabilisation following ice-front retreat, hence providing a minimum age for the glacier
advance/stillstand.

Two preserved palaeo-shorelines in the RC and RH valleys represent proglacial lake phases
during deglaciation. To date the palaeo-shorelines, we sampled three rounded to subrounded, smooth
(i.e., unweathered) surface cobbles from wave-cut platforms etched into sediments draping the valley
sides. The cobbles were collected from the flattest sections of the palaeo-shoreline platform, and care
was taken to sample away from the backing slope to reduce the risk of post-depositional surface
disturbance and contamination from debris-fall. The formation of lake shorelines in sediment deposits
is an erosive process mostly conducted by wave action and sediment liquefaction (Sissons, 1978).
Our sampling approach thus considers a shoreline wave-cut platform as continuously disturbed by
wave action throughout the time of lake residence at its elevation. Such an interpretation is supported
by the general presence of more prominent and discernible palaeo-shorelines on the downwind, more wave-exposed eastern valley slopes of the field area (Leger et al., 2020; Figures 2, 4). We targeted surface cobbles rather than boulders because they are more easily disturbed by wave action, and are thus less likely to start accumulating cosmogenic radionuclides during lake residence. We therefore suggest the granitic palaeo-shoreline surface cobbles sampled started accumulating 10Be only following shoreline abandonment/stabilisation, and thus interpret their exposure ages as minimum ages for the timing of lake lowering (Fabel et al., 2010; Lifton et al., 2001; 2015; Mendelová et al., 2020b).

To date the final drainage of the proglacial lake, and reconstruct the approximate timing of PIS disintegration in the region, we sampled two ice-moulded (striated/polished) granite bedrock surfaces within the mountain interior and near to the RP valley floor (Figures 1, 5). The sample sites are separated by 4.8 km along the valley and differ in elevation by 90 m. We do not expect the bedrock surfaces to have been shielded following the palaeolake drainage and suggest the two bedrock samples date the final lake-level drop below their respective elevations of 254 and 343 m a.s.l.

To provide further chronological constraints on the palaeolake history of the RC valley, we attempted to date the deposition of laminated glaciolacustrine sediments in three different locations using single-grain optically-stimulated luminescence (OSL) dating. The samples were collected using opaque tubes following the methodology described by Smedley et al. (2016) (detailed methodology in supplementary materials).
Figure 3. (2-column fitting image). Field photographs of moraines and sampled boulders. (A) Southeast-facing photograph of an erratic granite boulder (sample 19RCS15) deposited on the crest of a RC IV moraine ridge and sampled for TCN dating with hammer and chisel. (B) Northwest-facing photograph of a RC VI moraine ridge crest and a granite boulder (19RCS34) sampled for TCN dating. (C) Eastward view of the RC V moraine complex, with the most prominent moraine ridge (targeted for sampling) in the foreground, and preserved, smaller recessional ridges in the background (camera location: 43°47'3.67"S). (D) Southeastward view from the RC IV moraine complex depicting the terminal environment of the RC V moraine complex, which demonstrate a curved lobate shape (camera location: 43°48'0.14"S, 71°23'28.52"W). (E) Photograph captured from the southern mountain ridge of the El Loro valley (camera location: 43°44'38.01"S, 71°27'21.58"W) and looking southeasterwards towards the RC V and RC IV moraine complexes in the RC southern sub-basin, which are crossed by the visible RP 44 road. (F) Close-up photograph of a granite moraine boulder (19RCS16) sampled for TCN dating from a RC IV moraine ridge, indicating the rounded and preserved nature of its surface.
3.4. Sample preparation and wet chemistry

Samples were prepared at two cosmogenic nuclide laboratories: the University of Edinburgh's Cosmogenic Nuclide Laboratory for sample crushing/sieving and the Natural Environment Research Council's Cosmogenic Isotope Analysis Facility (NERC-CIAF) for the wet chemistry. The samples were crushed and sieved to isolate the 250-500 μm and 125-250 μm grain fractions. To avoid the impact of ^{10}Be concentration decrease with depth on resulting cobbles exposure ages, the exposed top 3-5 cm of cobbles with thicknesses greater than 10 cm (n=2) were cut, crushed and selected for cosmogenic isotope analysis. Smaller (<10 cm) cobbles (n=4) were crushed whole, however. All $^{10}\text{Be}/^{9}\text{Be}$ ratios were measured at the Scottish Universities Environmental Research Centre (SUERC) Accelerator Mass Spectrometry (AMS) facility. Further details of the wet chemistry methodology are described in the supplementary materials.

3.5. Age calculations

To ease the comparison of our data with existing regional data (e.g. Davies et al., 2020), ^{10}Be ages were calculated using the online exposure age calculator formerly known as the CRONUS-Earth online calculator (version 3, Balco et al., 2008), and calibrated using the Patagonia (50°S) production rate (Kaplan et al., 2011) obtained from the ICE-D online database (http://calibration.ice-d.org/). In this study, we report ages (including recalculated ages from other studies) using the LSDn-time-dependent scaling scheme of Lifton et al. (2014). Our exposure ages are up to 5.8% and 1.5% older relative to calculations made using the global ^{10}Be production rate (Borchers et al., 2016) and the New Zealand production rate (Putnam et al., 2010), respectively. The contribution of geological scatter on the spread of exposure ages from individual moraines is assessed based on the mean square weighted deviation (MSWD), also referred to as reduced chi-squared (Wendt & Carl, 1991), and
whether it is inferior (low scatter) or superior (increasing scatter) to one (Jones et al., 2019).

Moreover, we display the MSWD’s inferior/superior relationship to the criterion \(k \) indicating whether the MSWD value falls within a \(2\sigma \) envelope, thus testing how well the data represent a single landform (Spencer et al., 2017; Jones et al., 2019). Topographic shielding is negligible, ranging between 0.99 and 1 (Table 1). Exposure ages presented here are interpreted as minimum ages, as we do not include a correction for rock surface erosion, nor for shielding by snow, vegetation or soil. However, applying the erosion rate of 0.2 mm ka\(^{-1}\) estimated for semi-arid central Patagonia (46°S; Douglass et al., 2007; Hein et al., 2017) increases our ages by less than 1%, which is within 1\(\sigma \) analytical uncertainties. The semi-arid steppe vegetation of the Argentinian foreland, diagnostic of our field site, allows for sparse vegetation and/or soil cover. According to proxy and modelled palaeoclimate data, seasonal precipitation was 40-50% lower than present at the LGM east of the Patagonian Andes (Berman et al., 2016). Moreover, strong and persistent westerly winds (annual mean speed of ~5.3 m \(\text{s}^{-1} \) at RC moraines location; WorldClim 2 data; Fick & Hijmans., 2017) are locally responsible for minimal annual snow cover on protruding landforms, such as moraine crests (Hein et al., 2010; Mendelová et al., 2020a; 2020b).

We employ a Bayesian age model to facilitate interpretation of the moraine chronology because our chronology presents instances of age reversals relative to the stratigraphic order of events. The Bayesian age model independently integrates sample ages and the relative order of events based on landform stratigraphy to refine probability distributions and produce a stratigraphically consistent chronology. Bayesian models have been widely applied to establish chronologies of lake/marine sediment cores (e.g., Bronk Ramsey, 2008; Bendle et al., 2017a), and is increasingly used for TCN chronologies exhibiting closely spaced landform ages (e.g. Chiverrell et al., 2013, Small et al., 2019).

Our Bayesian age model uses the same statistical framework as \(OxCal \) v4.3 (Bronk Ramsey, 2017) to produce a probability distribution (also termed a posterior density estimate) for each landform, by employing a Markov Chain Monte Carlo sampling approach (model code provided in supplementary
The age model was tested with and without prior stratigraphic outlier removal. Such tests only modified modelled mean moraine ages by \(\leq 0.8\% \), thus remaining lower than 1\(\sigma \) analytical uncertainties. Best Gaussian fit statistics were also calculated for each landform and were found to vary by less than 0.1\% relative to arithmetic means.

Figure 4. (2-column fitting image). Field photographs of palaeo-shorelines and surface cobbles sampled (A) Southeast-facing photograph of the RC valley trough’s eastern mountain slopes showing two well-preserved former proglacial lake shorelines, nested at elevations of ~680 and ~790 m (camera location: 43°36’15.23”S, 71°25’33.20”W). Inset diagram displays a topographic elevation profile from DEM of the lower 680 m palaeo-shoreline photographed, at location of sampling for TCN dating. (B) Example of a ~1 kg, well-rounded cobble sampled whole from the RC\(_{680}\) former proglacial lake shoreline for TCN dating (19RCS05). This granite cobble was selected for its stable, well-grounded position and because it displayed surface polishing and little evidence of erosion. (C) Southeast-facing view of the RH valley’s southern/western mountain slope, characterised by...
numerous outcrops of ice-moulded bedrock and, in some locations, by the preservation of a clear former proglacial lake shoreline (RH\textsubscript{790}), notched at the elevation of \~790 m (camera location: 43°29′43.45″S, 71°16′31.65″W). (D) Northwest-facing photograph captured from the wave-cut platform associated with the RH\textsubscript{790} former proglacial lake shoreline (highlighted in yellow), and which is notched on the ice-proximal slope of the RH valley’s innermost preserved moraine complex (highlighted in orange). The 19RHS02-04 samples were taken from near this location (camera location: 43°31′6.09″S, 71°13′8.59″W). The panel inset is a zoomed-in photograph of this same notched platform, along with the moraine ridge, as seen from the RP 17 road, 3.5 km to the north. (E) Photograph of a surface cobble, along with its imprint location, sampled from the RH\textsubscript{790} former proglacial lake shoreline, which one can observe is mostly composed of sands and well-rounded pebbles and cobbles.

Figure 5. (2-column fitting image). Ice-moulded bedrock surfaces sampled and geomorphological context. (A) DEM and hillshade (AW3D30 DEM, light azimuth: 315°, incline: 45°) of the RP valley, host to the former RP outlet glacier, which fed the former RC, RF and RH outlet glaciers. The map also features the Macizo Nevada mountain massif, which marks the approximate location of the former PIS ice divide during the LGM. The two yellow asterisks demarcate the locations of the two ice-moulded bedrock surfaces sampled for TCN dating (19RPS01-02). Black arrows indicate the approximate former ice-flow direction as suggested by the orientation of mapped lineations. (B) Eastward-facing, hence along-former-ice-flow, view of the lower (254 m a.s.l), rounded and smooth, ice-moulded bedrock surface sampled (19RPS01). (C) Photograph captured
from the road of the higher (343 m) ice-moulded bedrock surface sampled (19RPS02: camera location: 43°37’30.8”S, 71°54’51.8”W).

4. Results

4.1. Geomorphology/Sedimentology

4.1.1. The RC III-VII moraines geomorphology

The RC III-VII moraines are located at the southern margin of the former RC outlet glacier (Figure 6a; 43°46’S, 71°23’W). Geomorphological mapping highlighted five distinct moraine complexes composed of over 40 individual ridges reflecting numerous stillstands of the RC glacier front. The moraines range from m-scale, hardly perceptible ridges, to prominent, high relief (10-40 m), arcuate and sharp-crested ridges with steep slopes (9-19°), thus indicating a more prolonged period of ice-front stability. The most pronounced ridges appear unbroken and can be traced as continuous ridges over tens of km. They exhibit a double-lobate outline indicative of two former piedmont lobes across the width of the RC valley; caused by a valley-central 300 m-high bedrock step acting as an obstacle to ice flow (Figure 2). In certain ice-front configurations (RC III – RC V), geomorphological mapping therefore suggests a RC glacier terminus branching off into two piedmont outlets occupying two respective sub-basins of the RC valley (Figure 2). The northern sub-basin exhibits a low slope gradient, and the moraine complexes are more widely separated than in the steeper southern sub-basin.

The innermost (RC VII) and outermost (RC III) moraines lie 10.2 km from each other and range in elevation (at the location of sampling) from ~820 m a.s.l to ~1100 m a.s.l, respectively (Figure 6a).
The five sampled moraines exhibit mean height-to-width ratios of between 6.6 and 11.4, and range in ice-proximal and ice-distal slope gradients from 9° to 19° (Figure 7). Clast-shape analyses from the RC IV-VII moraine surfaces (n = 30 per moraine) indicate a clear dominance of blocky clasts, with a uniform C_{40} percentage of 13.3%. All RC IV-VII moraines have a greater percentage of rounded to sub-rounded surface clasts (Figure 7). However, the RC VII moraine surface presents a comparatively higher percentage of angular clasts (30%) relative to the RC IV-VI average (12%).

Although analogous to other RC moraines in orientation, size, slope gradients and surface clast-shape-and-size, the RC VII moraine is not as sharp-crested, and has a flatter, wider and more subdued crest surface with little variation in crest-line elevation. Contrary to the RC III-VI moraines, the RC VII moraine is not part of a complex including numerous superimposed recessional ridges, instead comprising a single, prominent ridge.

Along with other igneous extrusive lithologies (andesites, andesitic tuffs, dacites and rhyolites), the RC III-VII moraines contain an abundance of quartz-bearing granodiorite boulders (Figure 3).

Moraine boulder erosion is variable and not correlated with the relative age of the moraine. For example, on each sampled moraine we found some boulders with polished, striated, and well-rounded surfaces, while others displayed minor erosion by granular disintegration (depth < 2cm), and still others displayed significant (depth 2-4 cm) surface weathering pits. All surfaces sampled for TCN dating, however, demonstrated evidence of smooth polish, in some cases emerging from more weathered adjacent surfaces, and indicative of limited surface erosion where sampled.
Figure 6. (2-column fitting image). TCN dating chronology and geomorphological context of moraine boulder and palaeo-shoreline surface cobble samples (A) DEM hillshade (AW3D30 DEM, light azimuth: 315°, incline: 45°) and glacial geomorphological map (adapted from Leger et al., 2020) enhanced on the RC LGM moraine sequence sampled. Individual 10Be exposure ages (prior to Bayesian age model correction) and analytical internal uncertainties (n=6 per moraine) are indicated, along with identified outliers (in red). (C) and (D) maps focusing on the location and exposure ages of surface cobbles sampled from the RH$_{790}$ and RC$_{680}$ former proglacial lake shorelines, respectively.
4.1.2 The RH and RC former glaciolacustrine phases

Our geomorphological mapping revealed an abundance of glaciolacustrine sediment-landform assemblages in the RC and RH valleys, such as palaeo-shorelines, laminated clay-to-sand-sized sediment accumulations, raised deltas and spillway openings (Leger et al., 2020; Figure 4). We interpret these assemblages as associated with proglacial lakes and as indicative of ice damming the westward, Pacific-directed drainage of the Corcovado, Huemul and Frío rivers following initial ice retreat from local LGM margins. We reconstructed former palaeolake elevations by matching the elevations of palaeo-shorelines, raised deltas, glaciolacustrine sediment deposits and major spillways indicative of the lowest drainage route through terminal glaciogenic deposits (Clapperton et al., 1993; Turner et al., 2005). Indeed, such geomorphological markers can procure evidence for lake-level falls following ice-front retreat and spillway shifts (Turner et al., 2005; Bell, 2008; Hein et al., 2010; Glasser et al., 2016; Thorndycraft et al., 2019). All geomorphological observations interpreted as markers of former proglacial lake levels are compiled in supplementary table 1, while our interpretation of the strongest sources of lake-level evidence are described in the discussion section of this manuscript. Our mapping and field interpretations suggest at least three main glaciolacustrine phases in the study region during and following local LGM glacial expansions. Phase one describes a proglacial lake formed at the elevation of 990 ± 5 m when the RC glacier ice-front was positioned at the RC III moraine while phase two is associated with a proglacial lake initially formed in the RC northern sub-basin, at the elevation of ~790 m, and following RC ice-front retreat from its RC V margin. OSL samples from exposures of rippled sands and varves elevated at 709 m and 686 m, thought to be deposits associated with proglacial lake phase two, yielded burial ages of 34.9 ± 2.9 ka and 52.1 ± 4.4 ka, respectively (Supplementary materials). The third phase is characterised by the formation of a larger lake system elevated at ~680 m and connecting all valleys of the field site during local deglaciation of outlet glaciers. Our geomorphological interpretations based on field
investigations of former proglacial lake geographic extent, timing, drainage directions, spillway locations and residence time for each reconstructed phase is described further in the discussion section of this paper as well as in the supplementary materials.

Figure 7. (2-column fitting image). Geomorphological and sedimentological data for the RC III – RC VII moraines near the TCN dating locations. (A-D) Two-dimensional cross elevation profiles of the RC IV – RC VII moraines, measured from hand-held GPS transects (3-5 m vertical/spatial accuracy), along with ternary diagrams (scaled using $b:a$ and $c:a$ ratios) depicting moraine clast shape data from surface 16 m² quadrangles ($n = 30$ clasts per quadrangle). Clast-roundness histograms are also displayed for each of these moraines (WR = Well-rounded; VA = Very angular). *RWR* and *RA* indices indicate, respectively, the percentages of rounded and well-rounded clasts and the percentages of angular and very angular clasts for each sampled population.
(Evans & Benn, 2004; Martin et al., 2019). (GR*) in each panel notes the percentage of granitic clasts sampled per population. (E) Elevation profile of the entire RC LGM moraine sequence, with GPS transects displayed for each moraine. The GPS transects, along with moraine absolute and relative elevations, are displayed to scale. The horizontal distance separating moraines, however, is displayed at a 1:2.5 scale (dotted black lines). Also annotated against each moraine are ice-proximal (Ice-P) and ice-distal (Ice-D) slope gradients, and width-to-height (W/H) ratios.

4.2. Dating results

4.2.1 Cosmogenic 10Be exposure ages

The 10Be data ($n = 38$) are summarised in Tables 1 and 2 while kernel density estimates (1σ ranges) per individual sample and landform along with Bayesian age modelling probability distributions are presented in Figure 8.

The outermost RC III moraine yielded ages ranging from 23.9 ± 0.7 ka to 27.4 ± 0.9 ka ($n = 6$). The youngest age was interpreted as an outlier as it lies outside the remaining population’s 95% confidence (2σ) envelope and was statistically rejected on the basis of a χ^2 test at 95% confidence (Ward & Wilson., 1978). The remaining exposure ages range from 25.9 ± 0.8 ka to 27.4 ± 0.9 ka, display a well-clustered age distribution, with a low MSWD value of 0.53, and yield an arithmetic mean of 26.6 ± 0.6 ka.

The six boulders from the RC IV moraine range in age from 21.1 ± 0.6 ka to 30.4 ± 1.0 ka. The oldest age, being significantly older than the older RC III moraine, is discarded as a stratigraphic outlier. The remaining dataset ($n = 5$) ranges from 21.1 ± 0.6 ka to 22.9 ± 0.7 ka, yielding a mean exposure age of 21.7 ± 0.7 ka, and representing a clustered dataset (MSWD = 1.08).

The six boulders from the RC V moraine range in age from 19.8 ± 0.6 ka to 23.3 ± 0.8 ka. We consider the youngest age an outlier because it lies outside the remaining population’s 95%
confidence (2σ) envelope, is younger than the mean age of the adjacent younger RC VI moraine (see below), and was taken from a comparatively short boulder (45 cm in height). Moreover, this younger age was statistically rejected on the basis of a χ^2 test at 95% confidence. We therefore consider it likely that this boulder was exhumed post-deposition and underestimates the age of the moraine. The remaining population (n=5) ranges from 21.7 ± 0.7 ka to 23.3 ± 0.8 ka, yields a mean exposure age of 22.3 ± 0.7 ka, and demonstrates a well-clustered dataset (MSWD = 0.76) (Table 2, Figure 8).
Table 1. Sample details and nuclide concentrations.

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Latitude (DD)</th>
<th>Longitude (DD)</th>
<th>Elevation (m a.s.l)</th>
<th>Boulder height (m)</th>
<th>Thickness (cm)</th>
<th>Shielding correction</th>
<th>Qtz mass dissolved (g)</th>
<th>(^{10}\text{Be}) atoms g(^{-1}) (SiO(_2))</th>
<th>±1σ atoms g(^{-1}) (SiO(_2))</th>
<th>(^{10}\text{Be} / ^{9}\text{Be}) ratio</th>
<th>±1σ</th>
<th>AMS ID - Laboratory facility</th>
</tr>
</thead>
<tbody>
<tr>
<td>RC20-29</td>
<td>-43.72755</td>
<td>-71.40289</td>
<td>824</td>
<td>0.86</td>
<td>1.0</td>
<td>0.997521</td>
<td>11.7200</td>
<td>2.2185E+05</td>
<td>5.834E+03</td>
<td>3.948E-13</td>
<td>5.951E-15</td>
<td>b11901 CIAF</td>
</tr>
<tr>
<td>RC33</td>
<td>-43.76167</td>
<td>-71.39467</td>
<td>902</td>
<td>0.65</td>
<td>2.0</td>
<td>0.99720</td>
<td>20.4102</td>
<td>1.651E+05</td>
<td>5.434E+03</td>
<td>2.129E-13</td>
<td>6.105E-15</td>
<td>b11806 CIAF</td>
</tr>
<tr>
<td>RC34</td>
<td>-43.76119</td>
<td>-71.39819</td>
<td>903</td>
<td>1.35</td>
<td>1.5</td>
<td>0.99330</td>
<td>20.6444</td>
<td>1.76E+05</td>
<td>5.945E+03</td>
<td>2.260E-13</td>
<td>6.633E-15</td>
<td>b11807 CIAF</td>
</tr>
<tr>
<td>RC36</td>
<td>-43.76125</td>
<td>-71.39806</td>
<td>902</td>
<td>0.35</td>
<td>2.0</td>
<td>0.99330</td>
<td>20.6444</td>
<td>1.76E+05</td>
<td>5.965E+03</td>
<td>2.251E-13</td>
<td>6.668E-15</td>
<td>b11810 CIAF</td>
</tr>
<tr>
<td>RC37</td>
<td>-43.72744</td>
<td>-71.40378</td>
<td>832</td>
<td>1.90</td>
<td>1.5</td>
<td>0.987187</td>
<td>19.1640</td>
<td>1.325E+05</td>
<td>4.112E+03</td>
<td>1.689E-13</td>
<td>4.458E-15</td>
<td>b11772 CIAF</td>
</tr>
<tr>
<td>RC38</td>
<td>-43.72985</td>
<td>-71.36314</td>
<td>824</td>
<td>1.15</td>
<td>0.4</td>
<td>0.98614</td>
<td>19.5762</td>
<td>1.585E+05</td>
<td>5.614E+03</td>
<td>1.979E-13</td>
<td>6.186E-15</td>
<td>b11792 CIAF</td>
</tr>
<tr>
<td>RC39</td>
<td>-43.72889</td>
<td>-71.39619</td>
<td>824</td>
<td>0.70</td>
<td>0.8</td>
<td>0.98605</td>
<td>20.2413</td>
<td>2.185E+05</td>
<td>5.834E+03</td>
<td>2.771E-13</td>
<td>6.073E-15</td>
<td>b11793 CIAF</td>
</tr>
<tr>
<td>RC40</td>
<td>-43.72803</td>
<td>-71.39725</td>
<td>829</td>
<td>0.70</td>
<td>3.5</td>
<td>0.98826</td>
<td>20.0857</td>
<td>1.435E+05</td>
<td>4.678E+03</td>
<td>1.821E-13</td>
<td>5.106E-15</td>
<td>b11794 CIAF</td>
</tr>
<tr>
<td>RC41</td>
<td>-43.72733</td>
<td>-71.40350</td>
<td>835</td>
<td>1.12</td>
<td>3.5</td>
<td>0.987187</td>
<td>20.5940</td>
<td>1.771E+05</td>
<td>5.074E+03</td>
<td>2.397E-13</td>
<td>5.790E-15</td>
<td>b11773 CIAF</td>
</tr>
<tr>
<td>RC42</td>
<td>-43.72755</td>
<td>-71.40289</td>
<td>832</td>
<td>0.86</td>
<td>1.0</td>
<td>0.997521</td>
<td>11.7200</td>
<td>1.850E+05</td>
<td>5.500E+03</td>
<td>4.434E-13</td>
<td>3.493E-15</td>
<td>b11909 CIAF</td>
</tr>
<tr>
<td>RC43</td>
<td>-43.72755</td>
<td>-71.40289</td>
<td>832</td>
<td>0.86</td>
<td>1.0</td>
<td>0.997521</td>
<td>11.7200</td>
<td>1.850E+05</td>
<td>5.500E+03</td>
<td>4.434E-13</td>
<td>3.493E-15</td>
<td>b11909 CIAF</td>
</tr>
</tbody>
</table>

RC III - VII moraine boulders
RC and RH palaeo-shoreline surface cobbles

<table>
<thead>
<tr>
<th>Sample Code</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Size</th>
<th>Age</th>
<th>Density</th>
<th>Thickness</th>
<th>Concentration</th>
<th>Uncertainty</th>
<th>Facility</th>
</tr>
</thead>
<tbody>
<tr>
<td>19RHS02</td>
<td>-43.52400</td>
<td>-71.21931</td>
<td>792</td>
<td>3.5</td>
<td>0.999062</td>
<td>14.9340</td>
<td>1.365E+05</td>
<td>4.729E+03</td>
<td>b11787 CIAF</td>
</tr>
<tr>
<td>19RHS03</td>
<td>-43.52631</td>
<td>-71.22264</td>
<td>788</td>
<td>4.0*</td>
<td>0.999010</td>
<td>20.3670</td>
<td>1.399E+05</td>
<td>4.480E+03</td>
<td>b11788 CIAF</td>
</tr>
<tr>
<td>19RHS04</td>
<td>-43.52631</td>
<td>-71.22264</td>
<td>788</td>
<td>4.8*</td>
<td>0.999010</td>
<td>20.0991</td>
<td>1.427E+05</td>
<td>4.815E+03</td>
<td>b11814 CIAF</td>
</tr>
<tr>
<td>19RCS05</td>
<td>-43.57639</td>
<td>-71.40939</td>
<td>673</td>
<td>3.0</td>
<td>0.996840</td>
<td>20.7050</td>
<td>1.102E+05</td>
<td>4.215E+03</td>
<td>b11771 CIAF</td>
</tr>
<tr>
<td>19RCS04</td>
<td>-43.57617</td>
<td>-71.40958</td>
<td>671</td>
<td>2.9</td>
<td>0.996840</td>
<td>14.2900</td>
<td>1.082E+05</td>
<td>3.300E+03</td>
<td>b11907 CIAF</td>
</tr>
<tr>
<td>19RCS03</td>
<td>-43.57617</td>
<td>-71.40958</td>
<td>671</td>
<td>2.8</td>
<td>0.996840</td>
<td>14.7000</td>
<td>9.980E+04</td>
<td>3.200E+03</td>
<td>b11905 CIAF</td>
</tr>
</tbody>
</table>

Rio Palena valley surface bedrock samples

<table>
<thead>
<tr>
<th>Sample Code</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Size</th>
<th>Age</th>
<th>Density</th>
<th>Thickness</th>
<th>Concentration</th>
<th>Uncertainty</th>
<th>Facility</th>
</tr>
</thead>
<tbody>
<tr>
<td>19RPS01</td>
<td>-43.61828</td>
<td>-71.96400</td>
<td>343</td>
<td>3.5</td>
<td>0.985559</td>
<td>19.9158</td>
<td>7.616E+04</td>
<td>3.554E+03</td>
<td>b11813 CIAF</td>
</tr>
<tr>
<td>19RPS02</td>
<td>-43.62458</td>
<td>-71.91403</td>
<td>254</td>
<td>1.5</td>
<td>0.979415</td>
<td>23.5850</td>
<td>7.310E+04</td>
<td>2.400E+03</td>
<td>b11790 CIAF</td>
</tr>
</tbody>
</table>

Footnotes.

- Rock density is assumed to be 2.65 g cm\(^{-3}\).
- Samples that were cut prior to crushing, reported thickness relates to top, exposed surfaces selected for analysis after cutting.
- Concentrations were corrected for process blanks; blank corrections ranged between ~ 1.4 and 4.6% of the sample \(^{10}\)Be/\(^{9}\)Be ratios. The uncertainty of the blank correction is included in the stated one-sigma uncertainties. Measurements were normalised to NIST SRM4325 with nominal \(^{10}\)Be/\(^{9}\)Be ratios of 2.79 x 10\(^{-11}\), corresponding to a \(^{10}\)Be half-life of 1.36 Ma (Nishiizumi et al., 2007). CIAF: Cosmogenic Isotope Analysis Facility, all measurements were made at the AMS facility at the Scottish Universities Environmental Research Centre (SUERC), East Kilbride, Scotland.
The six boulders from the RC VI moraine range in age from 17.8 ± 0.6 ka to 21.5 ± 0.7 ka. We consider the youngest age an outlier because it is 1 ka younger than the mean age of the younger adjacent RC VII moraine (see below). Moreover, it was statistically rejected on the basis of a χ^2 test at 95% confidence and was also sampled from a comparatively short (50 cm in height) boulder that may have been exhumed post moraine deposition. The remaining sample ages ($n = 5$) range from 19.1 ± 0.6 ka to 21.5 ± 0.7 ka, yield a mean exposure age of 20.6 ± 1.0 ka, and demonstrate a high and >1 MSWD value of 2.33, thus suggestive of greater age scatter than predicted solely by analytical uncertainties.

The six boulders from the RC VII moraine range in age from 17.5 ± 0.5 ka to 27.6 ± 0.7 ka. Based on stratigraphy, we interpret the three oldest exposure ages of 23.2 ± 0.7 ka, 23.5 ± 0.7 ka and 27.6 ± 0.7 ka as outliers yielding inheritance as their ages are greater than the older, adjacent RC VI-IV moraines and lie outside of the 2σ envelope. The remaining population ($n = 3$) ranges from 17.5 ± 0.5 ka to 20.4 ± 0.7 ka, yields a mean exposure age of 19.00 ± 1.5 ka, and exhibits a high and >1 MSWD value of 5.34, indicating greater age scatter than can be predicted by analytical uncertainties only.

The three cobbles sampled from the RH palaeo-shoreline range in age from 18.7 ± 0.6 ka to 19.8 ± 0.7 ka. The distribution of ages is well-clustered, with a MSWD value of 0.62. The population’s mean exposure age is 19.3 ± 0.5 ka.

The three cobbles sampled from the RC palaeo-shoreline range in age from 15.4 ± 0.5 ka to 16.9 ± 0.6 ka, and exhibit a reasonably clustered dataset, with a MSWD value of 2.24, which is inferior to k (3.0). The MSWD value is greater than 1, however, and is diagnostic of some geologic scatter in the age distribution. The three samples yield a mean exposure age of 16.3 ± 0.8 ka.
The two RP ice-moulded bedrock surfaces provide ages of 16.0 ± 0.7 ka and 16.5 ± 0.5 ka. The ages are well-clustered, with a MSWD value of 0.24. The mean exposure age for the two samples is 16.3 ± 0.3 ka.
Table 2
Exposure ages and summary statistics.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RC III moraine boulders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19RCS21</td>
<td>26075 877 2310 27149 914 2419 26157 880 2329</td>
<td>19RCS23</td>
<td>26845 846 2357 27992 882 2473 26943 849 2378</td>
</tr>
<tr>
<td>19RCS24</td>
<td>23907 709 2082 24721 733 2166 23932 710 2096</td>
<td>19RCS25</td>
<td>26981 810 2355 28138 845 2471 27081 813 2376</td>
</tr>
<tr>
<td>19RCS27</td>
<td>25887 855 2287 26933 890 2393 25961 857 2305</td>
<td>19RCS28</td>
<td>27365 873 2407 28553 911 2526 27468 876 2429</td>
</tr>
<tr>
<td>Mean (n = 6): 26.18 ka; 1σ std: 1.24 ka</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (n = 5): 26.63 ka; 1σ internal: 1.91 ka; 1σ internal + PR%: 2.90 ka</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bayesian age model (n = 5): 26.43 ka; 1σ std: 1.39 ka; model correction: -0.7 %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uncertainty weighted mean (n = 5): 26.63 ka; 1σ std: 0.56 ka</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSWD: 0.53 < k : 2.41 (n=5); Peak age (n=5): 26.70 ka</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kaplan et al. (2011) production rate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RC IV moraine boulders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19RCS13</td>
<td>30447 1029 2701 31800 1076 2838 30485 1031 2719</td>
<td>19RCS15</td>
<td>21074 610 1829 21434 621 1872 20942 606 1828</td>
</tr>
<tr>
<td>19RCS16</td>
<td>21575 629 1874 22031 642 1925 21480 626 1876</td>
<td>19RCS17</td>
<td>21525 727 1906 21970 742 1957 21426 724 1907</td>
</tr>
<tr>
<td>19RCS51</td>
<td>22895 717 2007 23497 736 2072 22809 714 2010</td>
<td>19RCS52</td>
<td>21254 626 1849 21662 638 1895 21148 623 1849</td>
</tr>
<tr>
<td>Mean (n = 6): 23.13 ka; 1σ std: 3.64 ka</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (n = 5): 21.66 ka; 1σ internal: 1.48 ka; 1σ internal + PR%: 2.31 ka</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bayesian age model (n = 5): 22.41 ka; 1σ std: 1.15 ka; model correction: +3.5 %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uncertainty weighted mean (n = 5): 21.63 ka; 1σ std: 0.56 ka</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSWD: 1.08 < k : 2.41 (n=5); Peak age (n=5): 21.97 ka</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RC V moraine boulders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19RCS38</td>
<td>22650 981 2098 23142 1002 2155 22486 974 2092</td>
<td>19RCS40</td>
<td>21936 641 1907 22349 653 1954 21767 636 1902</td>
</tr>
<tr>
<td>19RCS41</td>
<td>21745 744 1929 22136 758 1975 21576 738 1924</td>
<td>19RCS42</td>
<td>19803 562 1715 19956 566 1738 19586 556 1705</td>
</tr>
<tr>
<td>19RCS43</td>
<td>21747 680 1906 22143 693 1952 21582 675 1901</td>
<td>19RCS44</td>
<td>23272 796 2065 23835 815 2127 23126 791 2063</td>
</tr>
<tr>
<td>Mean (n = 6): 21.86 ka; 1σ std: 1.17 ka</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (n = 5): 22.27 ka; 1σ internal: 1.74 ka; 1σ internal + PR%: 2.52 ka</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bayesian age model (n = 5): 21.67 ka; 1σ std: 0.91 ka; model correction: -2.7 %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uncertainty weighted mean (n = 5): 22.22 ka; 1σ std: 0.59 ka</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSWD: 0.76 < k : 2.41 (n=5); Peak age (n=5): 21.97 ka</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
RC VI moraine boulders

19RCS30	21060	704	1862	21280	711	1892	20804	695	1849
19RCS31	19124	620	1683	19152	621	1695	18839	611	1666
19RCS33	20151	667	1778	20287	671	1801	19891	658	1765
19RCS34	21451	722	1898	21740	732	1935	21221	714	1888
19RCS32	17825	591	1573	17753	588	1575	17526	581	1554
19RCS36	21462	728	1901	21750	738	1938	21231	720	1891

Mean (n = 6): 20.18 ka; 1σ std: 1.46 ka
Mean (n = 5): 20.65 ka; 1σ std: 1.01 ka; 1σ internal: 1.54 ka; 1σ internal + PR%: 2.29 ka
Bayesian age model (n = 5): 20.75 ka; 1σ std: 1.05 ka; model correction: +0.5%
Uncertainty weighted mean (n = 5): 20.59 ka; 1σ std: 0.92 ka
MSWD: 2.33 < k: 2.41 (n=5); Peak age (n=5): 21.18 ka

RC VII moraine boulders

19RCS07	17532	547	1534	17382	542	1530	17177	535	1511
19RCS08	20443	728	1824	20526	731	1842	20111	716	1804
19RCS09	27654	743	2386	28454	765	2470	27412	737	2378
19RCS11	19015	623	1675	18971	621	1681	18608	611	1653
19RCS12	23192	668	2013	23600	680	2016	22914	660	2000
RC20-29	23535	704	2052	23968	717	2102	23257	695	2038

Mean (n = 6): 21.90 ka; 1σ std: 3.66 ka
Mean (n = 3): 19.00 ka; 1σ std: 1.46 ka; 1σ internal: 1.10 ka; 1σ internal + PR%: 1.91 ka
Bayesian age model (n = 3): 19.88 ka; 1σ std: 1.07 ka; model correction: +4.6%
Uncertainty weighted mean (n = 3): 18.86 ka; 1σ std: 1.18 ka
MSWD: 5.34 > k: 3.0 (n=3); Peak age (n=3): 19.19 ka

Río Huemul 795 m palaeo-shoreline surface cobbles

19RHS02	18790	654	1670	18660	649	1668	18381	640	1642
19RHS03	19355	623	1701	19268	620	1703	18949	610	1674
19RHS04	19834	672	1757	19791	671	1762	19435	659	1730

Mean (n = 3): 19.33 ka; 1σ std: 0.52 ka; 1σ internal: 1.13 ka; 1σ internal + PR%: 1.94 ka
Bayesian age model (n = 3): 18.99 ka; 1σ std: 0.95 ka; model correction: -1.8%
Uncertainty weighted mean (n = 3): 19.32 ka; 1σ std: 0.42 ka
MSWD: 0.62 < k: 3.0 (n=3); Peak age (n=3): 19.34 ka
Rio Corcovado 680 m palaeo-shoreline surface cobbles

<table>
<thead>
<tr>
<th>Sample</th>
<th>Age (ka)</th>
<th>Error (ka)</th>
<th>Error (ka)</th>
<th>Error (ka)</th>
<th>Error (ka)</th>
</tr>
</thead>
<tbody>
<tr>
<td>19RCS05</td>
<td>16917</td>
<td>650</td>
<td>1528</td>
<td>16576</td>
<td>637</td>
</tr>
<tr>
<td>19RCS04</td>
<td>16640</td>
<td>510</td>
<td>1453</td>
<td>16291</td>
<td>499</td>
</tr>
<tr>
<td>19RCS03</td>
<td>15416</td>
<td>496</td>
<td>1354</td>
<td>15099</td>
<td>483</td>
</tr>
</tbody>
</table>

Mean (n = 3): **16.32** ka; 1σ std: **0.80** ka; 1σ internal: 0.96 ka; 1σ internal + PR%: 1.65 ka

Uncertainty weighted mean (n = 3): 16.27 ka; 1σ std: 0.66 ka

MSWD: 2.24 < k : 3.0 (n=3); Peak age: 16.69 ka

Rio Palena valley surface bedrock samples (Atlantic/Pacific drainage reversal)

<table>
<thead>
<tr>
<th>Sample</th>
<th>Age (ka)</th>
<th>Error (ka)</th>
<th>Error (ka)</th>
<th>Error (ka)</th>
<th>Error (ka)</th>
</tr>
</thead>
<tbody>
<tr>
<td>19RPS01</td>
<td>16023</td>
<td>751</td>
<td>1510</td>
<td>15473</td>
<td>725</td>
</tr>
<tr>
<td>19RPS02</td>
<td>16474</td>
<td>543</td>
<td>1452</td>
<td>15925</td>
<td>525</td>
</tr>
</tbody>
</table>

Mean (n = 2): **16.25** ka; 1σ std: **0.32** ka; 1σ internal: 0.93 ka; 1σ internal + PR%: 1.62 ka

Uncertainty weighted mean (n = 2): 16.28 ka; 1σ std: 0.22 ka

MSWD: 0.24 < k : 3.83 (n=2); Peak age (n=2): 16.36 ka

Footnotes:

Ages were calculated using the online calculator formerly known as the CRONUS-Earth online calculator version 3 (Balco et al., 2008) with the Patagonian production rate (Kaplan et al., 2011) obtained from the ICE-D online database (http://calibration.ice-d.org). Scaling schemes: St-time-independent version of Lal (1991) and Stone (2000), Lm is the time dependent version of Lal (1991) and Stone (2000), and LSDn-time-dependent scheme of Lifton et al. (2014). In the text, we report ages calculated using the LSDn scaling scheme within internal uncertainties. Ages are reported with 1σ internal and external uncertainties, the latter including production rate and scaling uncertainties. These ages assume zero erosion and no correction for shielding by snow, soil and/or vegetation. Elevation flag is std. Summary statistics were calculated for each dated landform. This includes arithmetic means with 1σ standard deviations (std), 1σ propagated (from individual ages) internal uncertainties, and propagated 1σ internal plus production rate uncertainty (PR%). It also includes uncertainty weighted mean and 1σ standard deviation, MSWD and Peak age statistics; calculated using equations described in the iceTEA tools for exposure ages online calculator (Jones et al., 2019). For the RC III – RC VII moraines and the RH700 palaeo-shoreline, summary statistics also display Bayesian age model outputs, which include arithmetic means, 1σ standard deviations, and model correction percentages relative to original landforms arithmetic means. Ages in bold represent the ones used throughout the paper for discussion.
4.2.2 Bayesian age modelling results

Bayesian age model probability distributions were produced for the RCIII-RCVII moraine and the RH\textsubscript{790} palaeo-shoreline age populations to resolve age-inconsistencies when compared to the relative order of events based on our geomorphological interpretations. For instance, the RC IV moraine is \~{}1.1 km further from the ice source than the RC V moraine and thus is morphostratigraphically older (Figures 2, 6a), yet the exposure ages from both moraines exhibit overlapping age distributions and reversed mean ages (i.e., RC V is older than RC IV). This suggests the two moraine ages are indistinguishable within analytical dating uncertainties. Moreover, our morphostratigraphic interpretation suggests the RC VII advance/stillstand should be older than the proglacial lake abandonment of the RH\textsubscript{790} palaeo-shoreline (proglacial lake phase 2/3 transition).

Mean exposure ages indicate the opposite (RH\textsubscript{790} \~{}0.3 ka older than RC VII); a mismatch that we attribute to analytical surface exposure dating uncertainties and the significant scatter in RC VII moraine boulder ages. Consequently, Bayesian age modelling was employed to produce more realistic age probability distributions that follow the relative order of events based on our geomorphological reconstruction. Discussions regarding the age of the RC\textsubscript{680} palaeo-shoreline and the ice-moulded bedrock samples (19RPS01-02), however, are based on the arithmetic mean and 1σ analytical uncertainty associated with the original exposure ages, as they did not display any age-inconsistencies in the relative order of events, and because including them in the Bayesian age model would add a mathematical bias resulting in slightly older, less-realistic mean ages relative to original exposure ages. Therefore, exposure ages from these two landforms were not included in the Bayesian age model.

The Bayesian age model probability distributions resulted in mean output ages of 26.4 ± 1.4 ka (-0.7% correction), 22.4 ± 1.15 ka (+3.5% correction), 21.7 ± 0.9 ka. (-2.7% correction), 20.7 ± 1.0
ka (+0.5% correction), 19.9 ± 1.1 ka (+4.6% correction) and 19.0 ± 0.9 ka (-1.8% correction) for the RC III, IV, V, VI, VII and RH790 landforms, respectively (Table 2, Figure 8).
Figure 8. (2-column fitting image). Probability density diagrams for each of the landforms dated with TCN dating. Thick blue curves represent the summed probability distribution for each sampled landform, excluding outliers. Thin blue curves depict the 1 σ Gaussian curves for individual exposure ages. Black dotted curves represent outliers. Thick red curves illustrate the summed probability distribution after Bayesian age model correction (RC III – RH790 only). Black dots describe the arithmetic means (excluding outliers) while red/blue horizontal error bars indicate the standard deviation of the exposure ages. Vertical, black dotted lines denote the 2 σ confidence interval associated with exposure-age populations prior to Bayesian age model corrections. Mm stands for “Modelled mean” and indicates the Bayesian age model arithmetic mean, while m stands for “mean” and displays the arithmetic mean prior to Bayesian age model correction. Std stands for “standard deviation”.

5. Discussion

5.1. Style of glaciation

Our geomorphological and sedimentological analyses of the sampled LGM RC moraines highlight relatively steep moraine slopes, sharp ridges, and exceptional ridge continuity throughout the field site (Figures 2, 7). The continuity of moraine ridges suggests progressive ice recession without re-advances that could partially dismantle or over-print older moraines, in part due to the westward-dipping nature of bed topography, which might play a role in preventing moraine over-printing and glaciofluvial erosion of older moraines. The sampled ridges (~10-15 m in mean height) are part of relatively wide moraine complexes composed of numerous smaller ridges, interspersed by narrow, confined glaciofluvial deposits (Leger et al., 2020; Figures 2, 7). Such characteristics are indicative of significant sediment volume delivery to the ablation zone during LGM advances/stillstands of the RC glacier. Along with widespread geomorphological evidence of efficient subglacial erosion through mapping of lineations and ice-moulded bedrock surfaces (ibid), the evidence indicates the RC outlet glacier was highly erosive and warm-based in nature.
5.2. Chronological and geomorphological results interpretation

Our results indicate at least five (RC III-VII) distinct advances/stillstands of the RC glacier during the LGM. Bayesian age modelling of boulder exposure ages suggests that the RC III-VII moraines were deposited over a 6-7 ka period, with major advances/stillstands occurring at 26.4 ± 1.4 ka, 22.4 ± 1.15 ka, 21.7 ± 0.9 ka, 20.7 ± 1.0 ka and 19.9 ± 1.1 ka (Figure 8). Our \(^{10}\)Be chronology therefore suggests that all dated RC moraines were formed during the global LGM (ca. 26.5-19 ka; Clark et al., 2009), and that maximum local LGM ice-extent was reached at ~26.5 ka. We argue that the RC glacier remained close (within 15 km) to its outermost LGM extent until 19.5-20 ka. The timing of these advances/stillstands is in good agreement with LGM records from other Patagonian regions (e.g. Denton et al., 1999; Kaplan et al., 2004; Hein et al., 2010; Boex et al., 2013; Moreno et al., 2015; Stern et al., 2015; Smedley et al., 2016; García et al., 2019). Our analysis also revealed three phases of proglacial lake formation. Exposure ages from the RH790 palaeo-shoreline surface cobbles, interpreted as representing the timing of shoreline abandonment and phase two proglacial lake-level drop (19.0 ± 0.9 ka; Table 2, Figure 8), enable us to constrain the onset of local deglaciation and understand former glaciolacustrine drainage shifts. Finally, exposure ages from the RP valley ice-moulded bedrock surfaces (16.3 ± 0.3 ka) provide geochronological insights into the timing of local PIS disintegration and Atlantic/Pacific drainage reversal, coeval with the age of glaciolacustrine phase three shoreline-abandonment (16.3 ± 0.8 ka). In this section, and with reference to the schematic Figure 9, we present our interpretation of local LGM and deglacial events supported by the geomorphological and geochronological evidence.
Figure 9. (2-column fitting image). Palaeoglacial and palaeolake reconstructions for the RC, RH, RF and Lago Palena/General Vintter valleys, for each LGM advances/stillstands and deglacial events interpreted in this investigation. Ice-sheet and mountain glacier models were digitised manually in ArcGIS. Apart from when delineated by confidently mapped moraine limits (e.g. the RC, RH and LP/LGV LGM moraine sequences), the position of ice margins are inferred. (A–E) Ice extents associated with the RC III to RC VII moraine
complexes. This includes the formation of glaciolacustrine phase one and two (here termed PL1 and PL2, respectively). There are no previously published chronologies in the RH, RF and LP/LGV valleys. The relative ice extent in those neighbouring valleys is thus inferred based on our RC chronology and cross-valley comparisons of moraine numbers, preservation and morphostratigraphy. Hence, these inferences yield some uncertainties. (F) Reconstruction of the opening of the RF valley scenario and the subsequent RC proglacial lake lowering to 680 m (dated with surface cobbles from the RH790 shoreline), marking the onset of glaciolacustrine phase 3 (here denoted: PL3), according to our geomorphic interpretation. (G) Reconstruction of the westward retreat of the RP outlet glacier towards the core of the Andes and the associated expansion of the 680 m proglacial lake. (H) Reconstruction of the onset of PIS disintegration, enabling ice-dam collapse and the Pacific-directed, final drainage of the 680 m proglacial lake (PL3). Proglacial lake volume estimates were computed from DEM data (AW3D30). Panel H question marks relate to the uncertainty regarding the former drainage pathway(s) employed during the local Atlantic/Pacific drainage reversal event. Location of ice fronts for panels F-H are hypothetical as not correlated to specific geomorphic limits, but are aimed at representing specific events/scenarios.

5.2.1 The local LGM (RC III) and proglacial lake phase one (Figure 9a)

We interpret the RC III moraine, dated to 26.4 ± 1.4 ka, as representing the maximum extent of the local LGM for the RC outlet glacier. Our geomorphological reconstruction suggests this advance coincided with the formation of the first proglacial lake, located in the RC southern sub-basin (Figure 9a). The geomorphology suggests the lake was dammed in the northwest by the RC glacier ice-front when positioned at the RC III moraine, in the south and east by the older RC II moraine complex, and in the southwest by the Lago Palena/General Vintter ice-front. This relatively small proglacial lake (Figure 9a), was fed by meltwater from both the RC and Lago Palena/General Vintter outlet glaciers into a 100 m deep basin, now host to the modern Río Corcovado and its floodplain (Figure 2). Preserved palaeo-shorelines indicate a maximum former lake elevation of 990 ± 5 m and a main spillway (43°50′59″S, 71°11′13″W) suggestive of southeast-directed drainage towards the contemporary Ñirihuau O Seco river. Using a DEM we estimate a maximum lake area of 139 km2 and volume of 8.2 km3 (Figure 9a).
The RC III advance is coeval with a glacial expansion event documented on the western side of the Patagonian Andes at similar latitudes to this study (Isla de Chiloé; 42-43°S; García et al., 2012), and more recently dated to 26.0 ± 2.9 ka through OSL dating (García et al., 2021). Moreover, several advances at about 26 ka have been reported across the entire latitudinal extent of the former PIS (Supplementary Figure 2). For instance, moraine and glaciofluvial outwash deposits dating to 28-26 ka were discovered for the Bahía Inútil-San Sebastián glacier (53-54°S: Río Cullen drift: Kaplan et al., 2007; 2008; Darvill et al., 2015), the Magellan glacier (52°S: Primera Angostura and B limits: Kaplan et al., 2007; 2008), the Lago Cochrane/Pueyrredón glacier (47.5°S: Río Blanco I moraine: Hein et al., 2010), the Lago General Carrera/Buenos Aires glacier (46.5°S: Fenix IV, V moraines: Kaplan et al., 2004; Douglass et al., 2006), and for several outlet glaciers of the Chilean Lake District (Denton et al., 1999; Moreno et al., 2015). Moreover, numerous synchronous glacial advances were also recorded in the New Zealand Southern Alps at around 26.5 ka (the Otira 5 advance: Shulmeister et al., 2019). Such synchronous glacial response implies that potent cooling and/or increased precipitation occurred at 28-26 ka throughout Patagonia and across the southern mid-latitudes.

Several other Patagonian and southern hemisphere investigations reconstructing detailed glacier geochronologies have reported maximum ice extents of the last glacial cycle occurring before the global LGM, during MIS 3 (e.g. Denton et al., 1999; Darvill et al., 2015; Moreno et al., 2015; García et al., 2018; 2021), MIS 4 (Schaefer et al., 2015; De Deckker et al., 2019; Hall et al., 2020; Peltier et al., 2021; García et al., 2021), and even MIS 5 (Mendelová et al., 2020). Evidence of MIS 3 glacial activity was detected as far north as the Chilean Lake District (40°S; Denton et al., 1999), where outlet glaciers reached a similar extent at ~33 ka to that during the global LGM (MIS 2). Furthermore, a new study from Isla de Chiloé (42-43°S; García et al., 2021), located on the western side of the Andes at an equivalent latitude to our study site, suggest that local maximum glaciation occurred earlier in the last glacial cycle, at 57.8 ± 4.7 ka, and this advance was approximately 4 km more extensive than the local MIS 2 advance. In southern Patagonia, these early advances were far more
extensive than during the global LGM, in some cases (Torres del Paine glacier: 51°S, Última Esperanza glacier: 51.4°S, and the Bahía Inútil–San Sebastián glacier: 53.5°S) extending twice as far as during MIS 2 (García et al., 2018; Darvill et al., 2015). The MIS 3 local maximum appears to fade out toward central Patagonia where there is evidence for MIS 3 glacial activity of similar magnitude to the global LGM at Lago Pueyrredón (47.5°S; Hein et al., 2010) and Lago Buenos Aires (46.5°S; Smedley et al., 2016). In northeastern Patagonia, however, our new TCN reconstruction reveals the first assessment of the local maximum glaciation on both sides of the former ice sheet. In contrast to the west, we find the local maximum glaciation on the eastern side occurred during the global LGM. This suggests that any MIS 3 glacial activity in the RC valley was comparatively restricted and subsequently overridden by the RC III advance (MIS 2: 26.0 ± 2.9 ka). Hence, in addition to supporting a latitudinal disparity across Patagonia, our results also suggest a West/East disparity in the relative magnitude and extent of PIS expansions during MIS 3. The precise mechanisms causing such zonal disparity remain unknown and represent an area of future research. However, one could hypothesise that the PIS was potentially less sensitive to relatively short-lived, millennial-scale stadials characteristic of MIS 3 in its central eastern and northeastern sector, due to locally-specific conditions of upward-sloping valley floors, a strong rain-shadow effect causing lower moisture availability and the widespread occurrence of large proglacial lakes amongst other environmental factors (García et al., 2021). Combined, these factors may delay ice build-up in northeastern and central eastern Patagonia, a region where PIS outlet glaciers may require more stable and long-lived stadials to advance up reversed slopes.

5.2.2 The RC IV-RC VII advances and proglacial lake phase two (Figure 9b-e)

Bayesian age modelling of RC moraine boulder exposure ages indicates that the second oldest LGM advance occurred at 22.4 ± 1.15 ka (RC IV moraine, Figure 9b). Our chronology displays a ~4 ka period between age model outputs from the RC III and RC IV sampled ridges during which time
the stability and location of the RC glacier front is unknown. Indeed, the RC III moraine boulders were sampled on the outermost of five distinct, more subtle moraine ridges within this complex (Leger *et al.*, 2020; Figure 2). These smaller ridges are indicative of periods of ice-front stability following the deposition of the RC III moraine. Further dating on these ridges could resolve whether the ice margin terminated within this intermediate zone at this time, or whether it is more likely the glacier retreated within the basin and then readvanced to deposit the RC IV moraine. Within either scenario, topographic analyses and detailed mapping of meltwater channels and glaciofluvial deposits suggest that subsequent retreat of the RC glacier from its RC III margin caused a complex re-arrangement of local meltwater drainage pathways. By opening a lower, northeast-directed drainage pathway, meltwater from the Lago Palena/General Vintter glacier and the RC southern sub-basin shifted from draining southward towards Río Ñirihuau O Seco (and Río Senguer) to a network of channels flowing northeasterwards towards Río Tecka (and Río Chubut). We suggest this event also led to the end of proglacial lake phase one (Figure 9a,b). In both cases, meltwater drained eastward into the Atlantic but via different routes (Martínez *et al.*, 2011).

The RC V moraine (modelled age: 21.7 ± 0.9 ka, Figure 9c) was deposited close to the RC IV moraine, just 0.9 km inboard at the location of sampling, compared with a separation of 2.25 km between RC III and IV. Despite this proximity, we consider the RC IV and V moraine complexes to represent distinct deposits because they are interspersed by a narrow yet distinct glaciofluvial outwash plain near their terminal environment (Leger *et al.*, 2020; Figure 2). However, exposure ages from the two moraines overlap and display means that are reversed with their relative stratigraphic age. In other words, the mean age of the two moraines are indistinguishable within analytical uncertainties. The geographical and chronological proximity of these two moraines and the significant sediment volume they represent suggests a relatively long period of ice-front stability for the RC glacier at around 22 ka (Figure 9b, c).
The RC VI moraine (modelled age: 20.7 ± 1.0 ka) was deposited ~2 km further inboard, ~50 m lower in elevation (at location of sampling) and approximately 1 ka after the RC V moraine (Figures 7, 8, 9d). Our RC VI samples come from the most prominent ridge of a 1.5 km-wide moraine complex featuring a minimum of four older and five younger distinct moraine ridges (Leger et al., 2020; Figure 2), thus suggestive of another prolonged period of ice-front stability at around 21 ka.

Geomorphological mapping of palaeo-shorelines indicates that the western retreat of the RC ice-front from the RC V moraine complex initiated the formation of a second proglacial lake phase (surface elevation: 790 m) in the RC northern sub-basin (Figure 9d). Indeed, remote sensing and field observations revealed the relatively widespread occurrence of palaeo-shorelines nested at the elevation of ~790-800 m in both the RC and RH valleys (Leger et al., 2020, main map). In the RC valley, the palaeo-shorelines can be discerned across the northern sub-basin, notched on the ice-proximal slopes of the RC V moraine complex (Supplementary materials). We propose a lake formation age, bracketed by the modelled RC V and RC VI formation ages, of between 20.7 ± 1.0 ka and 21.7 ± 0.9 ka. Ages from the RH₇₉₀ shoreline were interpreted as indicating shoreline abandonment and thus lake-level drop from ~790 m to ~680 m associated with the transition from glaciolacustrine phase two to phase three. Based on a mean modelled age of 19.0 ± 0.9 ka for the RH₇₉₀ palaeo-shoreline (Figure 8), we suggest a total residence time for the proglacial lake at ~790 m of 1.5 to 2.5 ka. During this time, we argue that this proglacial lake enabled meltwater runoff from the LP/LGV, RC and RH glaciers to drain towards the Atlantic via Río Tecka. We suggest the 790 m proglacial lake’s main spillway occurred at 43°42’S, 71°13’W, where the prominent shoreline bends eastwards into a 200 m-wide gorge breaching the RC V and RC IV moraine complexes.

Approximately 10 km to the northwest, in the more topographically constrained RC trough, isolated remnants of the 790 m palaeo-shoreline can be discerned on the eastern hillslope (Figure 4a), while evidence of this shoreline disappears north of 43°37’S. This indicates that the 790 m proglacial
lake expanded and persisted during the early stages of local deglaciation, when the RC calving front progressively retreated northward. This is supported by the finding of fine, sand to clay-sized sediment deposits exposed through sections of the valley’s main road (RP44), at elevations of 686 m (43°42’7.2"S), 709 m (43°42’15.2"S) and 720 m (43°42’11.7”S). These exposures exhibit laminations and varves, represent the topmost unit below soil, and were interpreted as glaciolacustrine deposits. OSL samples from the exposures of rippled sands and varves at 709 m and 686 m yielded burial ages of 34.9 ± 2.9 ka and 52.1 ± 4.4 ka, respectively (Supplementary materials). We consider these ages to be older than the deposition of these sediments, despite the use of single grains to overcome the effects of incomplete bleaching. OSL dating determines the time elapsed since mineral grains were last exposed to sunlight. For these sediment-laden, turbulent glaciolacustrine sediments deposited near ice fronts where the opportunity for exposure to sunlight is minimal, the last sunlight exposure may relate to a former depositional cycle, and so caused OSL age-overestimation in this context (Wallinga, 2002; Alexanderson & Murray, 2012; Johnsen et al., 2012).

In the RH valley, field mapping revealed a prominent flat bench running over several km on the southern valley slopes, perched at an elevation of ~790 m, and notched on the ice-proximal side of the innermost preserved RH terminal moraine (Figures 6b, 4 c,d). This landform was interpreted as a palaeo-shoreline and was sampled for TCN dating using three polished granite surface cobbles. It indicates the formation of a separate, isolated proglacial lake in the RH valley, formed as the RH glacier retreated westward. The comparable elevation of shorelines in both RC and RH valleys suggests that the two proglacial lakes could have been connected following northward/westward retreat of both ice fronts beyond Corcovado (43°32’S, 71°27’W), and thus arguably experienced final lowering and shoreline abandonment synchronously. The main spillway draining the RH palaeolake towards the Atlantic occurs at 43°31’42”S, 71°13’26”W, where a central, 130 m-wide breach through the innermost RH moraine complex displays a basal elevation of 780 m (Figure 6b).
After depositing the RC VI moraine, the RC glacier experienced another period of retreat prior to stabilising or re-advancing around 19.9 ± 1.1 ka, thus causing the formation of the innermost preserved LGM moraine (RC VII, Figure 9e), which is located 3.5 km inboard and ~70 m lower than the RC VI moraine at the location of sampling (Figures 2, 7). The sampled RC VII moraine crest is only 20-30 m above the 790 m shoreline level, and geomorphological mapping indicates no preserved matching ridges further east towards the former RC frontal-terminal environment, suggesting that while the RC glacier front was grounded above water level at its western lateral margin, it may have been calving at its frontal margin toward the centre of the RC basin.

Our ages from the RC VI and RC VII moraines coincide with a fairly widespread glacial expansion event that occurred in numerous other Patagonian valleys at around 20-21 ka. Indeed, this expansion event was for instance recorded in the Strait of Magellan (52°S; outermost C limit, Kaplan et al., 2007; 2008), the Torres del Paine valley (51°S: TDP I moraine; García et al., 2018), the Lago General Carrera/Buenos Aires valley (46.5°S: Fenix I moraine, Kaplan et al., 2004; Douglass et al., 2006), and the Río Cisnes valley (44°S: CIS IV: García et al., 2019). A coeval event, locally named the Otira 6 advance, was also found to occur in several New Zealand Southern-Alps valleys, with a reported mean age of ~20.5 ka (e.g. Shulmeister et al., 2019).

5.2.3 The onset of local deglaciation and proglacial lake phase three (Figure 9f)

Bayesian age modelling suggests a mean age of 19.9 ± 1.1 ka for the RC VII advance/stillstand. As we did not find evidence for younger moraine deposits related to the RC glacier, we interpret this result as a maximum-limiting age for the onset of local deglaciation. However, our confidence in moraine-age interpretation is lower for RC VII than for other RC moraines due to its significantly higher degree of boulder exposure-age scatter (MSWD: 5.34, n = 3) and high number of proposed
outliers (n=3) (Table 2, Figure 8), suggestive of substantial inheritance and/or post-depositional disturbance signals. The ridge is similar to the RC III-VI moraines in orientation (at the location of sampling: northwest-southeast), vertical relief, width-to-height ratio (7.4), slope gradients (Ice-P: 17° and Ice-D: 14°), and surface clast lithologies and shape (GR% = 56; C40: 13.3, block-dominated) (Figure 7). These geomorphological and sedimentological similarities support our interpretation of the ridge as a moraine formed by the RC glacier. However, the RC VII moraine is distinctively less sharp-crested, and exhibits a flatter, wider and more subdued crest surface with little variation in crest-line elevation (Figure 7). Contrary to the RC III-VI moraines, the RC VII moraine is not part of a complex displaying numerous superimposed recessional ridges, and only exhibits one, prominent but relatively subdued ridge. Surface clast analysis (Figure 7) also reveals a higher proportion of angular-to-very-angular clasts than for other moraines (RA: 36.7). Given these geomorphological differences, one might argue that the RC VII moraine was either former under different conditions, or experienced more post-depositional disturbance.

One possible disturbance mechanism is the presence of a proglacial lake at ~790 m in the RC valley between ~21 and ~19 ka. Indeed, glacier-front recession from the grounded RC VII margin would likely have resulted in wave pounding of the RC VII moraine. This is supported by DEM cross-moraine elevation profiles (n = 7) drawn along the preserved moraine ridge, which display a notched platform, here interpreted as a palaeo-shoreline, on the ice-proximal moraine slope at the approximate elevation of 785-795 m (Figure 7, red arrow). Wave pounding of the ice-proximal moraine slope may have destabilised the 20-30 m protruding moraine crest, causing lateral creep, and generating crest-surface lowering and flattening. Such disturbance may have caused subsequent moraine-boulder rotation and/or exhumation and enhance the potential for under-estimating exposure ages.

However, our chronological and stratigraphical interpretation suggests that outliers (n = 3) from the RC VII exposure-age population seem to be over-estimating ages suggestive of inheritance signals
(Figure 8). A more realistic potential source of age-scatter could be the contamination of the RC VII moraine by older, more ice-distal LGM deposits. Indeed, unsorted and unconsolidated lateral till deposits mantling steep valley slopes could fall as supraglacial debris onto glacier surfaces following ice-thinning from outermost LGM margins. This hypothesis would support the observed negative correlation between LGM moraine age and boulder age-scatter, but also the slightly higher angularity of RC VII surface clasts (Figure 7).

The RC valley displays a second, easily discernible bench cutting through the entire north-to-south extent (over 15 km) of the eastern hillside (slope 16–19°) at an elevation of ~680 m (Figures 4a, 6c). We interpreted this as a wave-cut proglacial lake shoreline, and it was sampled for TCN dating using polished granite surface cobbles (Table 2; Figure 6c). Twenty-seven cross-section elevation profiles were drawn across the platform from DEM in locations exhibiting a preserved terrace. They revealed a mean maximum shoreline excavation of ~6 m. This shoreline roughly matches (within ~10 m) the elevations of numerous other shorelines, raised deltas and raised outwash deposits located in the RC, RH, RF and RP valleys (Supplementary materials). Such geomorphic evidence indicates the formation of a third proglacial lake phase, diagnosed by a geographically widespread proglacial lake eventually connecting all valleys of the studied region. This is further evidenced by field observations of uppermost (below soil) units of fine, sand to clay-sized and occasionally laminated, varved sediments exposed at numerous road-cut sections across the RC, RP and RF valley floors (Supplementary materials). We sampled one of these road-cut exposures located near the RC valley floor, at an elevation of 544 m (43°41'50.3"S, 71°24'22.4"W), and composed of laminated and varved clay-to-silt sized sediments, for OSL dating. The sample yielded a burial age of 65.4 ± 7.1 ka. Following the same reasoning described above (5.2.2), we consider this age to be significantly older than the deposition of these sediments.
The third glaciolacustrine phase is inferred to have started with the abandonment of the RH790 shoreline at 19.0 ± 0.9 ka (Table 2, Figure 8), when the lake-level dropped from ~790 m to ~680 m (Figure 9f). We suggest that this ~100 m lake lowering reflects the continued retreat of the RC, RH and RF ice-fronts into the RP valley. We hypothesise that once the ice front retreated westward beyond Corcovado (Figure 9f), such retreat enabled northward drainage of the palaeolake through the RF valley, which also contains preserved palaeo-shorelines and raised deltas at ~680 m (Supplementary materials). However, the lowest potential spillway towards the northeast today lies at approximately 750 m, about 70 m higher than the palaeolake elevation. We hypothesise that this drainage elevation mismatch can be attributed to the post-glacial accretion of a large (~5 km²) arcuate alluvial fan into a narrow col located between the RF and Lago Rosario basins (43°17’S; 71°24’W; see supplementary materials). The RF spillway would enable waters to drain towards contemporary Lago Rosario. We thus propose, during glaciolacustrine phase three, a complex network of connected palaeolakes enabling meltwater drainage from the former RC, RH and RF-connected lake (~680 m) into the current Lago Rosario (665 m), and into a former proglacial lake occupying the Trevelin basin to the north (~650 m; Andrada de Palomera, 2002; Martínez et al., 2011), which eventually spilled eastward towards Río Tecka and the Atlantic Ocean (proposed spillway: 43°05’57”S, 71°02’48”W).

Overall, if assuming the former ice-sheet divide was located near Macizo Nevado (Figure 1c), our reconstruction thus suggests that by ~19 ka, the RC glacier had experienced ~30 km of retreat from its innermost RC VII margin, representing a ~40 km retreat and ~40% glacier-length loss relative to its full local LGM extent (RC III). We thereby interpret the age of 19.0 ± 0.9 ka as a minimum-limiting age for the onset of significant local deglaciation.

For several other glaciated regions of Patagonia, a predominant late-LGM event of PIS expansion and/or stabilisation was reported at around 17-18 ka, towards the onset of Heinrich Stadial 1 (Hemming, 2004). Glacier advance/stillstands around this time were reported, for instance, for the
Magellan outlet glacier (innermost C limit, Kaplan et al., 2007; 2008), the Río Guanaco glacier (49°S: La Sofia and San Jorge moraines: Murray et al., 2012), the Lago Belgrano glacier (47°S: Mendelová et al., 2020a) and several glaciers of the Chilean lake district (Moreno et al., 2015) (Supplementary materials). Such event coincides furthermore with the widespread Otira 7 signal of glacial advance in New Zealand (Shulmeister et al., 2019). However, our chronological reconstruction shows no evidence of advances/stillstands of the RC glacier younger than 19.9 ± 1.1 ka. A similar lack of late-LGM PIS expansion signal was reported for the Río Cisnes outlet glacier 90 km to the south of our field site (García et al., 2019). The available evidence thus argues deglaciation of main PIS outlets initiated somewhat earlier in northeastern Patagonia, as any possible readvance of the RC glacier during the late-LGM was not recorded in the geomorphologic record. This is further supported by new glacial geochronological TCN dating results suggesting that subsequent glacier advances/still-stands in the region were restricted to local mountain glaciers (Leger et al., in review).

5.2.4 The timing of ice-sheet disintegration and Atlantic/Pacific drainage reversal (Figure 9G, H)

Our TCN dating of ice-moulded bedrock surfaces from the RP valley (Figure 5) suggests that by 16.3 ± 0.3 ka, the Palena ice-stream had retreated at least towards the foothills of Macizo Nevado (Figures 1, 9g,h), west of 72°W, facilitating final drainage of the ice-dammed ~680 m proglacial lake beneath or between shrinking mountain ice caps. The opening of a westward drainage route represents an Atlantic to Pacific drainage reversal (Figure 9h) and a 70 km shift in the drainage divide, which is common to other over-deepened eastern Patagonian valleys (Glasser et al., 2016; Thorndycraft et al., 2019). Since the bedrock surfaces sampled are elevated at 343 m and 254 m a.s.l, the >340 m deep-water overburden during proglacial lake phase three would have been sufficient to reduce ^{10}Be muonogenic and spallation production by >99.9%. We thus argue that the mean exposure age of 16.3
± 0.3 ka is representative of the approximate timing of local Atlantic/Pacific drainage reversal, and marks the end of glaciolacustrine phase three. We thereby propose that the extensive ~680 m proglacial lake existed for 2.5 to 3 ka, between ~19 ka and ~16 ka. The former maximum lake area and volume may have been as much as ~950 km2 and ~273 km3 for this third phase, although these estimates yield significant uncertainties as they were computed (from DEM) using a hypothetical ice-dam location near the foothills of Macizo Nevado (Figure 9g). The timing of lake drainage is further evidenced by the age proximity of the three surface cobbles sampled from the RC680 palaeo-shoreline, which suggest a mean exposure age of 16.3 ± 0.8 ka, here interpreted as the onset of the ~680 m proglacial lake drainage and lowering. Our present reconstruction does not allow us to distinguish whether the final Pacific-directed drainage was a progressive or relatively sudden event, nor whether drainage was directed towards Lago Yelcho (Northwest), or Río Palena (Southwest). To resolve this will require further geomorphological investigations.

The PIS recession associated with ice-sheet disintegration and Atlantic/Pacific drainage reversal represents ~70 km of total ice-front retreat from innermost LGM position associated with the RC VII moraine (Figure 9). These results suggest an approximate mean retreat rate of 14 m yr$^{-1}$ between 19.9 ± 1.1 ka and 16.3 ± 0.3 ka (1σ range: 9-36 m yr$^{-1}$). Such rates are comparable to deglacial retreat rates proposed for other eastern PIS outlet glaciers (e.g., Bendle et al., 2017a: 15.4-18.0 m yr$^{-1}$). We thus argue that by ~16-16.5 ka, the northeastern PIS (43°S) started disintegrating into separate ice caps and mountain glaciers constrained to higher topography (Figure 9h).
5.3. Palaeoclimate

5.3.1. The timing of local LGM expansions

Our geomorphological and geochronological reconstruction suggests that the timing of PIS LGM expansion in northeastern Patagonia is broadly coeval with the expansion of northern hemispheric ice sheets, a minimum in northern hemispheric atmospheric temperatures (e.g., NGRIP members, 2004) and a minimum in summer insolation intensity at 60° N (Berger & Loutre, 1991). On the other hand, southern hemispheric summer insolation intensity at 44° S was increasing during the global LGM, reaching a maximum at ~21.5 ka, and was thus out of phase with local glacier expansion (Berger & Loutre, 1991; Doughty et al., 2015; Figure 10). The timing of the RC LGM advances/stillstands is however synchronous with a decrease in southern winter insolation intensity at 40° S, which reached a minimum at ~19.5 ka, causing increased seasonality and local winter duration during PIS LGM expansions (Darvill et al., 2016; Denton et al., 2021; Figure 10).

Furthermore, we observe a good agreement between the timing of RC glacier LGM advances/stillstands and atmospheric cooling over west Antarctica, according to $\delta^{18}O$ data from the West Antarctic Ice Sheet (WAIS) Divide Ice Core (WDC; 79°S; WAIS Divide Project Members, 2013; 2015; Figure 10). Indeed, major $\delta^{18}O$ minima diagnostic of atmospheric cooling over West Antarctica during MIS 2 occurred at ~28.5, ~27.4, ~25.7, ~22, ~21.2 and ~20.0 ka. Ages from the RC moraines broadly match those minima. The most potent of these West Antarctic cooling events seems to have occurred at ~25.7 ka, which coincides approximately with the timing of the outermost RC III advance (26.4 ± 1.4 ka) (Figure 10). Moreover, the 3-4 ka gap separating the ages of the RC III (~26.4 ka) and RC IV (~22.4 ka) moraines coincides with a 2 ka, slight atmospheric warming signal in the WDC record evidenced by a ~2 ‰ increase in $\delta^{18}O$ (between 25.9 and 23.8 ka; ibid).
Individual RC advances also match maxima in WDC sea-salt sodium concentration record, a local sea-ice expansion/contraction proxy for West Antarctica (Figure 10).

Oceanic conditions in the southeast Pacific and near Patagonia (south of the Subtropical Front) have been inferred from the MD07-3128 (53°S; Caniupán et al., 2011) and ODP-1233 (41°S; Kaiser et al., 2007) ocean sediment core records (Figure 10g-j). Local sea surface temperature (SST) proxy data from both records indicate sea-surface cooling of between 5 and 6 °C relative to today during the global LGM (Kaiser et al., 2005; 2007) and consistent with a minimum in northern hemispheric summer insolation intensity (Figure 10). Furthermore, they demonstrate millennial-scale SST fluctuations broadly consistent with atmospheric temperature variations over west Antarctica and with PIS expansions during the global LGM, although the resolution of those SST LGM records is often too poor to correlate confidently millennial-scale fluctuations between records. Other investigations (e.g., Doughty et al., 2015; Shulmeister et al., 2019) reconstructing New Zealand LGM glacier advances and local millennial-scale climate variability further support synchronicity between local SST lowering, Antarctic atmospheric cooling, and glacier expansion at the southern middle latitudes during the global LGM, despite out-of-phase local summer insolation intensity.

Consequently, our data support the hypothesis of a synchronous southern hemispheric glacial response to major fluctuations in northern hemispheric insolation intensity, and bolster the hypothesis that a MIS 2 oceanic and atmospheric cooling signal propagated from the northern to the southern hemisphere (Broecker, 1998; Doughty et al., 2015; Buizert et al., 2018). However, we note that our data could also support the new Zealandia Switch hypothesis proposed by Denton et al. (2021). This hypothesis instead argues that insolation-induced variations in the position and strength of the SWW and their impact on the tropical/subtropical ocean could be the main driver for millennial-scale climate variations in the Southern Hemisphere during the last glacial cycle.

Atmospheric conditions over West Antarctica are thought to be strongly influenced by the strength and position of the ACC, which is mostly controlled by the position of the SWW (Rignot...
et al., 2019). It has moreover been argued that colder intervals in the southern mid-latitudes are linked to a northward migration and strength reduction of the SWW, which would increase precipitation delivery over northern Patagonia, promote local glacier expansion, and lead to a weakening of the ACC through the Drake Passage (Lamy et al., 2015). In turn, this would cause the Subtropical Frontal zone to migrate northward and promote Antarctic sea-ice build-up, generating colder conditions over West Antarctica (Pedro et al., 2018). The near-synchronicity of West Antarctic sea ice build-up with minima in WDC atmospheric palaeo-temperatures, and thus with northeastern Patagonian glacier advances, as revealed by the WDC sea-salt sodium record (WAIS Divide Project Members, 2013; 2015; Figure 10), supports this mechanism.

δ¹³C data from Hollywood Cave (42.5°S), South Island, New Zealand, are used as a local proxy record of palaeo-precipitation and SWW intensity (Whittaker et al., 2011; Figure 10). During the global LGM, this dataset demonstrates significant levels of precipitation variability, with wetter episodes between 30.3 and 27.1 ka, but also around ~24.6 ka and ~22.3 ka (Figure 10). This data does not demonstrate a systematic positive correlation between precipitation over New Zealand at 42.5°S and LGM advances of the RC glacier, although some precipitation maxima overlap with RC moraine ages (e.g. RC IV, V, and VII). Palaeo-ecological reconstructions from the Chilean Lake District (41°S; Moreno et al., 2015; 2018) also suggest an increased SWW influence and wetter conditions in northwestern Patagonia between 25 ka and 17.8 ka BP, with a slight warming and drying during the Varas interstade (22-19.2 ka BP). These data also suggest a precipitation decline along with rapid warming between 17.8 and 14.8 ka BP, likely associated with a poleward shift in the SWW belt (Moreno et al., 2018). These data thus support the proposed equatorward migration of the SWW belt during the LGM. Since northeastern PIS outlet glaciers were located toward the northern edge of the wind belt, one could argue that they would have been sensitive to fluctuations in precipitation delivery forced by latitudinal migrations of the SWW (Davies et al., 2020). Therefore, along with decreasing atmospheric temperatures, periodic northward migrations of the
SWW may have also played a role in controlling the timing of individual LGM advances of northeastern PIS outlet glaciers.

However, there is a dearth of MIS 2 palaeo-precipitation records from northeastern Patagonia and records from the Chilean Lake District (Moreno et al., 2015; 2018) may not necessarily be representative of LGM precipitation east of the Patagonian Andes. Recent climate modelling studies (Fogwill et al., 2015; Berman et al., 2016) and empirical data (Van Daele et al., 2016) have instead been used to argue that despite a northward migration of the SWW belt, the enhanced orographic effect of the PIS-covered Andes may have caused up to 50% drier-than-present conditions to the east of the former ice divide throughout the global LGM. Therefore, assessing the former role of precipitation in promoting PIS outlet glacier expansion during the global LGM in northeastern Patagonia remains a challenge.
Figure 10. (2-column fitting image). Vertical plot comparing our RC III - RC VII \(^{10}\)Be chronology with other palaeoclimate proxy records. (A): 1σ probability density distributions, arithmetic means (black dots) and standard deviation (error bars) from Bayesian age model outputs for the RC III – RC VII moraines. (B): Reconstructed, approximate percentage extent of the RC glacier relative to full LGM extent (RC III) for each glacial and deglacial event dated in this study. Blue dashed lines represent a scenario of linear ice-front retreat and stillstands while black dashed lines represent potential scenarios of RC ice-front retreat and re-advance. (C-F): Insolation intensity for (C) 44°S, December; (D) 40°S, June; (E) 15°N, July; and (F) 65°N, July (Berger & Loutre, 1991). Hatching in between the southern summer and winter insolation curves highlights periods of high (blue) and low (red) seasonality. (G): Sub-antarctic SST (Mg/CA) record from the southern Pacific Ocean, 56°S (core E11-2; Mashiotta et al., 1999). (H): Alkenone SST record from the Southeast Pacific (Chilean coast), 53°S (core MD07-3128; Canupian et al., 2011). (I) Alkenone SST record from the Southeast Pacific (Chilean coast), 41°S (core ODP-1233; Kaiser et al., 2007). (J) Organics SST (TEX86) from the Southern Ocean (southern Australian coast), 36.9°S (core MD03-2607; Lopes Dos Santos et al., 2013). (K): \(\delta^{18}O\) record (% Vienna Standard Mean Ocean Water scale) from the WDC Antarctic ice core (WAIS Divide Project Members, 2013; 2015) displayed with a 12-point moving average. (L) Sea-salt sodium data (ssNa; ng/g) from the WDC Antarctic ice core, interpreted as a proxy for regional sea-ice production (ibid). (M-O): Weighted moving average of (M) Nothofagus Dombeyi, (N) Isoetes Savatieri, and (O) Poaceae pollen-type concentration (%) from the Lago Pichilaguna record (41°S; Moreno et al., 2018). (P) \(\delta^{13}C\) data from a speleothem record located at Hollywood Cave (42.5°S; Whittaker et al., 2011), South Island, New Zealand interpreted as a local palaeo-precipitation and SWW intensity record.

5.3.2. The onset of local deglaciation

Patagonian palaeoglacial records seem to indicate an asynchronous deglacial response of major PIS outlet glaciers during the Last Glacial Termination (e.g., Kaplan et al., 2008; Hein et al., 2010; Moreno et al., 2015; Bendle et al., 2017a; García et al., 2019). With the onset of ice recession from LGM margins appearing to be glacier-specific, and to vary between 19-20 ka in northeastern Patagonia and 17-18 ka in northwestern, central and southern Patagonia (Supplementary Figure 2). However, most records seem to agree on a rapid, extensive retreat of outlet glaciers towards the mountain front occurring prior to ~16 ka, leading to the establishment of warm, near-Holocene conditions by ~15 ka (e.g., Hein et al., 2010; Boex et al., 2013; García et al., 2019; Davies et al., 2020).
The Patagonian asynchronous deglacial response has been addressed by several studies (e.g. Bendle et al., 2017a; García et al., 2019). García et al. (2019) highlight an early atmospheric and oceanic warming signal arguably widespread throughout the southern mid-to-high latitudes and beginning at around 20-22 ka. The occurrence of this warming is supported by numerous local palaeoclimate records including pollen records from the Chilean Lake District; which indicate a sharp increase in *Nothofagus Dombeyi* arboreal pollen percentage values from ~21.8 ka and peaking at ~19.5 ka (Denton et al., 1999; Moreno et al., 2015, 2018; Figure 10m). This increase in glacial arboreal populations was interpreted as a shift in the regional treeline resulting from increasing air temperatures (Moreno et al., 2018). This relatively warm and drier late-LGM interval, termed the Varas interstade in northwestern Patagonia (Denton et al., 1999; Mercer, 1972), is argued to have started at around 22.6 kcal yrs BP and peaked at 19.3 kcal yrs BP. This event preceded a return to colder, wetter conditions between 19.3 and 17.8 kcal yrs BP, as demonstrated by sharp positive anomalies in *Poaceae* and *Isoetes savatieri* pollen concentrations at Lago Pichilaguna (41°15’S; 73°3’W; Moreno et al., 2018; Figure 10o,p). Southeast Pacific Sea Surface Temperature (SST) records from 56°S (Mashiotta et al., 1999), 53°S (Caniupán et al., 2011) and 41°S (Kaiser et al., 2007) all indicate a 2-3°C SST warming signal starting between 21.5 and 22 ka and reaching a maximum at ~20.5 ka prior to renewed cooling, thus indicating a local SST increase approximately coeval with the Varas interstade. A similar pattern of SST increase was recorded in the southern Atlantic (41.1°S; Barker et al., 2009). In West-Antarctica, δ¹⁸O data from the WDC ice core (79°S) suggest local air temperatures reached a minimum at ~21.8 ka, and demonstrate a ~2.5°C warming until ~18.6 ka, marking the onset of a slight renewed cooling until 17.9 ka, a time of local deglacial warming (WAIS Divide Project Members, 2015; Figure 10). Antarctic sea-ice extent proxy data from the southeast Pacific (WAIS Divide Project Members, 2015) and the Scotia Sea (Collins et al., 2012) both suggest a coinciding sea-ice decline starting at 20 ka and 22 ka, respectively, prior to a brief period of build-up between 18.7 and 17.9 ka. Allen et al. (2011) provide further evidence that while winter sea-ice extent did not recede until ~19 ka in the Scotia Sea, summer sea ice retreated
to south of 61°S by ~22 ka, which suggests a local pattern of seasonally ice-free waters during the
Varas interstade. Therefore, as previously argued by García et al. (2019), we propose that local
coupled atmospheric and oceanic warming between ~22.5 and ~19.5 ka might have caused some
sensitive Patagonian glaciers to experience early destabilisation and recession (19-20 ka; e.g. RC
glacier, Río Cisnes glacier, Lago Cochrane/Pueyrredón glacier). The RC moraine record presented
here thus provides further evidence that PIS outlet glaciers in northeastern Patagonia experienced
relatively early recession from their LGM margins. However, subsequent cooling and northward
migration of the SWW leading to wetter conditions between ~19.5 and ~18 ka (Moreno et al., 2018)
caused certain PIS outlets to stabilise and/or re-advance towards LGM margins, such as observed
in the Chilean Lake District (e.g. Llanquihue glacier; Denton et al., 1999; Moreno et al., 2015).
Similarly to the Río Cisnes glacier (García et al., 2019), our investigation provides no evidence of
a pronounced re-advance of the RC glacier between ~19.5 and ~18 ka. Our chronology suggests
instead that the RC glacier had experienced significant retreat (at least ~40% glacier-length loss
relative to its full LGM extent) by ~19 ka. This could indicate a local east/west asymmetry whereby
northeastern PIS outlets glaciers were more sensitive to warming during the Varas interstade than
glaciers of the wetter, western side of the Andes, and thus experienced a more negative mass
balance. Conversely, western PIS outlets in northern Patagonia were perhaps more sensitive and
responsive to a late-LGM cooling and wetting between ~19.5 and ~18 ka. The proposed increase in
west-to-east precipitation starvation over the Patagonian Andes during the LGM (Berman et al.,
2016; Van Daele et al., 2016) could help to explain the higher sensitivity of drier, northeastern
Patagonian glaciers to such atmospheric warming, as well as a lack of outlet glacier response to
increased moisture delivery between ~19.5 and ~18 ka. Moreover, the formation of large ice-
dammed proglacial lakes during PIS recession is much more common to the east than to the west of
the Patagonian Andes, due to the westward–sloping glacially over-deepened nature of the region’s
main valley troughs. Recent glaciological observations (Jackson et al., 2020) and modelling work
conducted on temperate mid-latitude mountain glaciers has shown that under identical climate
forcing, glaciers calving into proglacial lakes were likely to experience up to four times more extensive and up to eight times faster ice-front retreat than a land-terminating glacier (Sutherland et al., 2020). In the RC valley, the formation of glaciolacustrine phase two (between ~20.7 and ~21.7), added to slightly warmer and drier conditions during the Varas interstade (22.6-19.3), may have caused enhanced ablation and extensive, rapid retreat of the ice-front and a lower sensitivity to subsequent cooling and wetting between ~19.5 and ~18 ka. Such glaciolacustrine climate-decoupling mechanism of major eastern PIS outlets has been proposed for several valleys of central Patagonia (e.g. Mendelová et al., 2017).

On the other hand, ocean sediment cores from the southern coasts of New Zealand and Australia exhibit little evidence of SST increases prior to 18-19 ka (Pahnke et al., 2003; Barrows et al., 2007; Lopes dos Santos et al., 2013). Similarly, δ¹⁸O data from the EPICA Dome C and Dronning Maud Land (EPICA Community Members, 2006), Dome Fuji (Kawamura et al., 2007) and Talos Dome (Stenni et al., 2011) ice cores do not display clear evidence of sustained atmospheric warming over East-Antarctica between 22 and 18 ka. In the New Zealand Alps, the onset of glacial termination causing rapid ice-front retreat is argued to have occurred around the early stages of Heinrich Stadial 1, shortly after ~18 ka (Shulmeister et al., 2010; Putnam et al., 2013; Kelley et al., 2014; Doughty et al., 2015), while little to no evidence of prior late-LGM warming and significant glacier retreat was found. These data suggest that the early oceanic and atmospheric warming signal beginning at 20-22 ka was perhaps not widespread throughout the southern mid-to-high latitudes, but was possibly more confined to West Antarctica, Patagonia, and local ocean basins.
6. Conclusions

- The Río Corcovado Last Glacial Maximum (LGM) moraine record displays at least five (RC III-VII) distinct advances/stillstands of the Río Corcovado glacier. Our results from ^{10}Be terrestrial cosmogenic nuclide dating of moraine boulders suggest that these major advances/stillstands occurred over a 6-7 ka period, at 26.4 ± 1.4 ka, 22.4 ± 1.15 ka, 21.7 ± 0.9 ka, 20.7 ± 1.0 ka and 19.9 ± 1.1 ka, thereby during the global LGM. These glacial expansion events are coeval with a decline and minimum in northern hemispheric insolation intensity, atmospheric cooling over Antarctica, and lowering of sea-surface temperatures in mid-latitude southern ocean basins, thus supporting the hypothesis of a Marine Isotope Stage 2 oceanic and atmospheric cooling signal propagated from the northern to the southern hemisphere.

- Our geochronological reconstruction of the Río Corcovado glacier advances/stillstands provides no evidence for Marine Isotope Stage 3 advances more extensive than those that occurred during the global LGM in this area. Therefore, our results support the idea of large latitudinal and longitudinal disparities across Patagonia in the timing and magnitude of maximum glaciation during the last glacial cycle.

- The oldest LGM advance recorded in the Río Corcovado valley is associated with the formation of the first of three glaciolacustrine phases, dated to 26.4 ± 1.4 ka, and characterised by a surface lake level of ~990 m a.s.l. Gradual glacier retreat from late-LGM margins led to the formation of a second glaciolacustrine phase, formed between ~20.5 and ~22 ka, with the proglacial-lake surface at an elevation of ~790 m a.s.l. for 1.5 to 2.5 ka.

- The onset of local deglaciation and Río Corcovado glacier retreat from LGM margins occurred between 19 and 20 ka. Our chronology thus supports an early deglaciation scenario for
outlet glaciers of northeastern Patagonia relative to northwestern and southern Patagonia, which may indicate a high local glacier sensitivity to atmospheric warming and drying during the Varas interstade (~19.5-22.5 ka), and/or to the enhanced ablation effect of large proglacial lake formation.

- At around 19.0 ± 0.9 ka, further ice-front retreat into the Río Palena valley precipitated a third and last glaciolacustrine phase associated with a new proglacial-lake spillway opened into the north Río Frio valley, causing a lake-level drop from ~790 a.s.l. m to ~680 m a.s.l. We propose that this extensive ~680 m a.s.l. proglacial lake existed for 2.5 to 3 ka, between ~16 and ~19 ka.

- By ~16 ka, the Palena ice front had retreated westwards by at least ~70 km, towards the mountain front interior, leading to local PIS disintegration and the final westward, Pacific-directed drainage of glaciolacustrine phase three, dated to 16.3 ± 0.3 ka. We interpret this age as the approximate timing of local Atlantic/Pacific drainage reversal, which caused an estimated ~270 km³ of freshwater to drain, either progressively or suddenly, into the Pacific Ocean and the Golfo Corcovado.
CRediT authorship contribution statement

Tancrède P. M. Leger: Conceptualization, Data curation, Formal analysis, Funding acquisition, Investigation, Methodology, Project administration, Software, Visualization, Writing (original draft and review & editing).

Andrew S. Hein: Conceptualization, Data curation, Funding acquisition, Methodology, Project administration, Supervision, Validation, Writing (original draft and review & editing).

Robert M. Bingham: Data curation, Supervision, Writing (original draft and review & editing).

Ángel Rodés: Data curation, Methodology, Writing (original draft).

Derek Fabel: Data curation, Writing (original draft).

Rachel K. Smedley: Data curation, Writing (original draft)

Acknowledgments

We wish to express our sincere gratitude towards all individuals who contributed to the https://crowd.science/ crowdfunding campaign enabling a 2020 field trip to our study site. We also thank the local landowners who authorized access and work on their property, in particular, the Estancia Tecka (Chubut, Argentina) for enabling access to their land and private roads. Moreover, we are grateful to Dr. Robert McCulloch, Dr. Juan Luis García, Pablo Tapia Gonzalez, Dr. Oscar Martínez, María Paz Lira-Bahamonde and Dr. Rodrigo Soteres for help and logistical support with the overall project and in the field. We also wish to thank Dr Mateo A. Martini for his insightful discussions in the field and precious comments on the final manuscript, as well as Mr. Allan Davidson for his precious work and supervision on sample quartz isolation and purification at SUERC. Finally, we thank the two anonymous reviewers for their thoughtful comments allowing us to improve the quality of the manuscript.
Declaration of competing interest

No known competing financial interests or personal conflicts influencing this investigation are here reported by the author(s).

Funding

This investigation is part of a University of Edinburgh E3 Doctoral Training Partnership Ph.D. studentship (award code: NE/L002558/1) awarded by the National Environment Research Council (NERC) to TPML. Our second field expedition (01/02 2020) was supported by a crowd-funding campaign through the Crowd.Science fundraising platform (https://crowd.science) and a British Society for Geomorphology Postgraduate Research Grant award (BSG-2019-04) awarded to TPML. TCN dating laboratory analysis and AMS measurements were funded by a NERC Cosmogenic Isotope Analysis Facility (CIAF) grant (9196-0419) awarded to ASH and TPML in June 2019.

Current word count: 12676 (main text only, excluding abstract, titles, figure captions and footnotes)

