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Males and females present differences in complex traits and in the risk of a wide array of diseases. 1 

Gene by sex interactions (GxS) are thought to account for some of these differences. However, the 2 

extent and basis of these interactions are poorly understood. Here we provide insights into both the 3 

scope and mechanism of GxS across the genome of circa 450,000 individuals of European ancestry 4 

and 530 complex traits in the UK Biobank.  We found small yet widespread differences in genetic 5 

architecture across traits. We also found that, in some cases, sex-agnostic efforts might be missing 6 

loci of interest, and looked into possible improvements in the prediction of high-level phenotypes. 7 

Finally, we studied the potential functional role of the differences observed through sex-biased gene 8 

expression and gene-level analyses. Our results suggest the need to consider sex-aware analyses 9 

for future studies in order to shed light into possible sex-specific molecular mechanisms. 10 

 11 

INTRODUCTION 12 

 13 

In recent years, there has been growing evidence of common genetic variation having different effects 14 

on males and females1,2. This, along with sex-biases observed in the human transcriptome3–10, the 15 

presence of a distinct hormone milieu in each sex, and differential environmental pressures arising 16 

from gender societal roles2,11,  has led to an increased study of the potential importance of GxS 17 

interactions to understand the underlying biology of complex traits, including the estimation of 18 

disease risk. Previous studies have investigated differences in heritability between the sexes (h2)12–15, 19 

departure of genetic correlations from 1 (rg)12,14,16–19, and performed sex-stratified genome-wide 20 

association studies (GWAS) to directly assess differences in the effects of genetic variants between 21 

the sexes6,20–27. These studies have however been limited with regards to the number of traits studied 22 

or statistical power. Furthermore, insights into how differences in genetic architecture translate into 23 

differences in complex traits have been lacking. Accounting for sex differences is of great importance 24 

as sex-agnostic analyses could potentially be masking sex-specific effects, and which could - if better 25 

understood - lead to better personalized treatment and an improved understanding of the biological 26 

mechanisms driving these differences17,28. 27 

 28 

The objective of the current study was to assess both the existence and scope of GxS interactions in 29 

the human genome by estimating sex-specific heritability and genetic correlations, as well as 30 

performing sex-stratified GWAS analyses. To this end, we analysed 530 traits using 450K individuals 31 

of European ancestry from the UK Biobank. Furthermore, we evaluated the potential of improving trait 32 

predictions using sex-stratified polygenic scores (PGS), as well as looked into the possibility of missing 33 

loci of interest in non-sex stratified studies. Finally, to shed light on the downstream effects of sex-34 

differences in genetic architecture, we performed a functional in silico analysis. 35 

 36 

RESULTS 37 

 38 

Data overview 39 

 40 

Using the July 2017 release of the UK Biobank dataset, we performed sex-stratified GWASs and 41 

partition of variance analyses for 530 traits (446 binary and 84 non-binary, Supplementary Table 1) 42 

within 452,264 individuals of European ancestry (245,494 females and 206,770 males) using 43 

DISSECT29. Linear Mixed Models (LMMs) were fitted for each phenotype by sex. We then tested the 44 
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association of 9,072,751 autosomal and 17,364 X-chromosome genetic variants, obtaining estimates 45 

of the genetic effects of each variant in each sex. In our quality control (QC) stage we excluded genetic 46 

variants with a minimum allele frequency (MAF) < 10% in the analysis of binary traits due to the general 47 

limited number of cases available, thus reducing the number of variants considered for these traits to 48 

4,229,346 autosomal and 7,227 genotyped X-chromosome genetic variants (see Methods). The results 49 

of the autosomal analyses were used to estimate sex-stratified genetic parameters (such as 50 

heritability) and genetic correlations. We then tested for differences in these genetic parameters and 51 

between the effects of genetic variants estimated within sexes (see Methods). 52 

 53 

Because of the different QC treatment of binary and non-binary traits, as well as the difference in 54 

phenotype characteristics, results are presented separately for both throughout this work, not as a 55 

means to compare the results between the two but so as to contain them both to their own separate 56 

categories.  57 

 58 

Heritability differences between the sexes 59 

 60 

Heritability (here referring to SNP heritability30) is defined as the fraction of the variation of a trait that 61 

can be explained by the additive effects of genetic variation. A difference in heritability between the 62 

sexes would entail a difference in the fraction of the variance of a trait that is accounted for by the 63 

genotype, and thus a possible difference in the underlying genetic mechanisms of said trait. Out of 64 

the 530 traits studied, 41/84 (48.88%) non-binary traits and 30/446 (6.73%) binary traits showed 65 

significant differences in their heritability between the sexes (FDR corrected p, termed q, < 0.05, Figure 66 

1, Supplementary Table 1). Of these, a total of 25/41 (60.98%) non-binary and 14/30 (46.67%) binary 67 

traits had a larger heritability in males than in females. Non-binary traits with the largest significant 68 

difference in heritability between the sexes included body mass traits, while binary traits included 69 

ankylosing spondylitis, disorders of mineral metabolism and soft tissue disorders (Supplementary 70 

Table 1).  71 

 72 

Although differences in the heritability of traits between the sexes can offer potential insights into 73 

genetic differences, one must also consider that these could arise due to differences in environmental 74 

variances. Hence, we looked for differences in genetic variance between the sexes (q < 0.05). We found 75 

that 65/84 (77.38%) non-binary and 136/446 (30.49%) binary traits showed significant differences in 76 

the amount of genetic variance estimated in each sex, including impedance-related traits, and 77 

diseases of the thyroid and heart (Extended Data Figure 1, Extended Data Figure 2, Supplementary 78 

Table 1). A total of 6/84 (7.14%) non-binary traits and 4/446 (0.90%) binary traits presented a significant 79 

difference in heritability but no significant difference in genetic variance between the sexes, 80 

indicating differences in environmental variance. These included numerous blood phenotypes (such 81 

as lymphocyte percentage and mean reticulocyte volume), ease of skin tanning, venous thrombosis 82 

disease, anaphylaxis/allergy and diseases of the digestive system.   83 

 84 

Finally, we observed significant differences in evolvability (a measure of the ability to undergo 85 

adaptation) between sexes for 56/84 (66.67%) non-binary and 35/446 (7.85%) binary traits (q < 0.05, 86 

Extended Data Figure 2, Supplementary Table 1). These included binary traits like ankylosing 87 

spondylitis and malabsorption/coeliac disease, as well as non-binary traits like current tobacco 88 
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smoking. These estimates offer further evidence for differences in the underlying genetic architecture 89 

of the traits considered, paralleling previous reports at smaller scales for traits including height, waist-90 

hip circumference ratio and weight12–14. 91 

 92 

Genetic correlations indicate genotype by sex interactions 93 

 94 

Genetic correlations between two sub-groups of the population are usually interpreted as a measure 95 

of shared underlying genetics, and are a means to estimate the size of putative genotype by group 96 

interactions. Genetic correlations between the sexes can thus offer insights into the common genetic 97 

control of complex traits and diseases of males and females.   98 

 99 

We obtained genetic correlations between the sexes for a total of 83 non-binary and 77 binary traits 100 

with over 5,000 cases using LD score regression (LDSC, Supplementary Table 1)31 which met our QC 101 

criteria (see Methods). Genetic correlations ranged from 0.716 to 0.996 for non-binary traits and from 102 

0.226 to 1.099 for binary traits (note that with heritability close to zero application of LDSC can result 103 

in rg exceeding the theoretically valid range [-1, 1]32). A total of 58/83 (69.88%) non-binary traits and 104 

11/77 (14.29%) binary traits had a rg significantly different from 1 (q < 0.05, Figure 2A). These included 105 

binary traits like hernia (rg = 0.59, q = 4.04 x 10-10), eczema (rg = 0.61, q = 0.04) and gastric reflux (rg = 106 

0.67, q = 0.02), and non-binary traits like waist-hip circumference ratio (rg = 0.72, q = 8.43 x 10-37) and 107 

alcohol intake frequency (rg = 0.85, q = 7.49 x 10-9, Figure 2B). Our rg estimates for several non-binary 108 

traits were in line with what has previously been published, noting that one of the compared studies 109 

also used UK Biobank data (Supplementary Table 2, Extended Data Figure 3)12,14,16.  110 

 111 

Genome-wide genetic effect comparison across traits 112 

 113 

We directly assessed whether each genetic variant in the genome had different effects in males and 114 

females through sex-stratified GWASs. Our genome and trait-wide genetic effect comparison between 115 

the sexes (see Methods) yielded a total of 61/84 (72.62%) non-binary and 42/446 (9.42%) binary traits 116 

with at least one autosomal genetic variant presenting a significantly different effect at a p < 1 x 10-8 117 

threshold (Supplementary Table 3), hereon termed as a sex-dimorphic SNP or sdSNP (Table 1 shows 118 

traits with the largest number of independent autosomal sdSNPs, i.e. lead sdSNPs, found). The 119 

distribution of sdSNPs across the genome for the traits with most autosomal lead sdSNPs is shown in 120 

Figure 3. When testing the X-chromosome variants, we found 28/84 (33.33%) non-binary traits with at 121 

least one sdSNP. Considering the autosomal genome, the trait with the largest number of sdSNPs was 122 

waist-hip circumference ratio, a complex trait that has appeared frequently in analyses of sex 123 

differences in genetic architecture12,20,21. A total of 2,421 sdSNPs were found for this trait, which 124 

represent 100 unique loci after linkage disequilibrium (LD) clumping (see Supplementary Note). The 125 

trait with the most sdSNPs in the X-chromosome was hematocrit percentage, with a total of 12 that 126 

mapped to 5 unique loci after LD clumping (Supplementary Table 1 and 3). Our results include 127 

replications of several previously reported loci for traits including anthropometric measurements or 128 

diseases like gout20–24,33.  129 

 130 

A total of 4,179 (4,179/9,072,751 = 0.046%) and 4,196 (4,196/4,229,346 = 0.099%) autosomal genetic 131 

variants showed evidence of GxS in at least one non-binary or binary trait respectively (p < 1 x 10-8), 132 



 5 

which mapped to 264 and 88 independent loci respectively. A total of 37 (37/7,227 = 0.213%) X-133 

chromosome variants showed evidence of sex differences in at least one non-binary trait (p < 1 x 10-8), 134 

which mapped to 8 unique loci. The sdSNP associated to the highest number of traits (a total of 17) was 135 

rs115775278, an imputed intergenic variant found on chromosome 16. The closest genes to this variant 136 

include LOC105371341 (an uncharacterized non-protein coding RNA gene, with transcription start site, 137 

TSS, ~40kb downstream), LOC390739 (MYC-binding protein pseudogene, TSS ~50kb upstream), 138 

PMFBP1 (Polyamine Modulated Factor 1 Binding Protein 1, TSS ~60kb downstream), and LINC01572 (a 139 

long intergenic non-protein coding RNA gene, TSS ~470kb upstream). PMFBP1 has been linked to 140 

spermatogenesis function34. The distribution of hits across the autosomal and X chromosome genome 141 

is shown in Extended Data Figure 4. 142 

 143 

Several sanity checks were performed to support these results (see Supplementary Note), which 144 

included fitting alternative models (including Logistic Mixed Models35), comparison to the Genetic 145 

Investigation of Anthropometric Traits (GIANT) cohort20,21, and a randomization scheme. These checks 146 

suggested results for the nucleated red blood cell percentage trait likely represent false positives (see 147 

Supplementary Note), thus its exclusion from future discussion. 148 

  149 

Phenotype prediction with sex-stratified effect estimates 150 

 151 

We studied whether genetic prediction could potentially be improved using sex-stratified models. To 152 

this end, we estimated genetic effects in a training population of 300,000 UK Biobank white British 153 

individuals in two different ways: (1) including both sexes in the model (obtaining sex-agnostic effects) 154 

and (2) using each sex in a separate model (obtaining sex-specific effects, see Methods). We then used 155 

a testing population consisting of 43,884 white British individuals to compare the performance of 156 

these two models in three different ways using PGSs: (1) obtaining predictions from the sex-agnostic 157 

effects (agnostic PGS), (2) obtaining predictions using the female effects applied to females and the 158 

male effects applied to males (same PGS), and (3) obtaining predictions using the female effects to 159 

predict in males and vice versa (opposite PGS). Prediction accuracy was measured as the correlation 160 

(r) between or the area under the curve (AUC) for our prediction and the true phenotype value for non-161 

binary and binary traits respectively. Only lead sdSNPs were used in our PGS calculation. Due to the 162 

general low number of sdSNPs across traits, we focused our comparison on phenotypes with at least 163 

10 lead sdSNPs. These included 7 non-binary traits (waist-hip circumference ratio, standing height, 164 

trunk fat percentage, hip circumference, whole body water mass, trunk predicted mass and trunk fat-165 

free mass) and 3 binary traits (ankylosing spondylitis, gout and hypothyroidism/myxoedema). 166 

 167 

Although of the 7 non-binary traits tested only waist-hip circumference ratio showed a moderately 168 

significant difference in prediction accuracy (correlation comparison p = 0.059, see Methods) between 169 

same PGS and agnostic PGS in males (Supplementary Table 11), all 7 traits consistently presented a 170 

larger prediction accuracy when comparing the sex-stratified model with the agnostic model, thus 171 

suggesting that the stratified model captures the effect sizes better than the agnostic model. On the 172 

other hand, we consistently observed smaller prediction accuracies when the stratified model was 173 

used to perform predictions on the opposite sex (opposite PGS). We did not observe any consistent 174 

prediction improvements for the 3 binary traits considered (Supplementary Table 11).  175 

 176 
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A limitation of our approach is the overlap between our discovery data set (used to establish sdSNPs) 177 

and our training and testing data sets in our prediction analysis (see Methods). We repeated our 178 

analysis with independent data sets (see Methods) for waist-hip circumference ratio, and we found 179 

that the same PGS and agnostic PGS had similar predictive ability in females (r = 0.132 with p = 1.85 x 180 

10-98 and r = 0.133 with p = 4.02 x 10-99 respectively), the same PGS surpassing the agnostic for males 181 

(r = 0.038 with p = 7.91 x 10-8 and r = 0.024 with p = 9.97 x 10-4 respectively), however the differences 182 

in predictive power were not significantly different in either case (correlation comparison p > 0.05).  183 

 184 

A possible explanation for the modest increase in predictive power found when using our sex-185 

stratified models, when taking observed differences in heritability into account, is the potential 186 

existence of large numbers of SNPs of small dimorphic effect across the genome. These small effects 187 

remain undetected in a GWAS, and as such, are not being included in our predictions. This reasoning 188 

parallels the missing heritability problem36, where the predicted heritability of traits can’t be explained 189 

by the detected GWAS associations, a hypothesis for which is the existence of large amounts of 190 

variants of small effect that are yet to be found. Consistent with this theory, we found that our sdSNPs 191 

generally accounted for a very low percentage of the sex-specific heritability for the considered traits 192 

(Supplementary Table 12, Methods), which ranged from 0.18% to 0.65%. Waist-hip circumference ratio 193 

was the exception, for which our sdSNPs accounted for 12.10% and 1.70% of the female and male 194 

specific heritability, respectively, which could be due to the substantially larger number of sdSNPs 195 

identified.  This could also be, however, due to sdSNPs having a generally small effect on the 196 

phenotypes considered.  197 

 198 

Potential masking of loci in sex-agnostic studies 199 

 200 

Currently, many GWASs fit non-sex-stratified models. However, a situation could arise in which (1) a 201 

locus possesses a differentially signed genetic effect in each sex or (2) a genetic variant shows a larger 202 

effect in one of the sexes and a small or no effect in the other. In any of these situations, the power of 203 

detecting the variant will be reduced in a non-stratified analysis, and the variant effect size 204 

misestimated in both sexes. This phenomenon we term as “masking” of a genetic effect. 205 

 206 

To assess masking effects in the UK Biobank, we evaluated the total number of genetic variants that 207 

were found to be significantly associated with a trait in a sex-stratified GWAS (i.e. associated to a trait 208 

in males and/or females), but were not significantly associated in a sex-agnostic model. We performed 209 

this analysis on the 530 traits in our study, considering a genetic variant as potentially masked if it is 210 

significantly associated in females and/or males but not for the mixed population at a p < 1 x 10-8 211 

threshold (see Methods). 212 

 213 

We found that 98/446 (21.97%) binary and 78/84 (92.86%) non-binary traits had at least one genetic 214 

variant that showed potential masking across the autosomal genome (Supplementary Table 14, 215 

Extended Data Figure 5A). On average, the percentage of these variants that presented opposite signs 216 

in each sex was 20.03% (SD 36.25%) in binary traits and 5.34% (SD 9%) in non-binary traits (Extended 217 

Data Figure 5B). This may indicate that for a small percentage of traits opposite signed genetic effects 218 

are leading to masking. However, this could also be the result of smaller sample sizes leading to false 219 

positives in one sex but not the other.  220 
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 221 

A total of 93 traits (33 binary and 60 non-binary) presented at least one sdSNP and one potentially 222 

masked variant. We also found a significant correlation between the number of potentially masked 223 

variants and the number of sdSNPs (r = 0.624, p = 9.793 x 10-8) for non-binary traits, as shown in 224 

Extended Data Figure 6. On average, the percentage of masked variants that presented sex differences 225 

in binary traits was 3.83% (SD 18.97%), and 1.39% (SD 2.22%) in non-binary traits (Extended Data Figure 226 

5C). These low percentages could indicate that masked variants may have different effects on the two 227 

sexes, just not surpassing our significance threshold to be considered sdSNPs. On the other hand, 42 228 

of our 103 traits with at least one sdSNP had one of these sdSNPs potentially masked, and, on average, 229 

the percentage of sdSNPs that were potentially masked in binary traits was 12.30% (SD 30.59%) and 230 

18.44% (SD 21.99%) in non-binary traits (Extended Data Figure 5D). This could suggest a large number 231 

of potentially interesting variants that present a difference in genetic effect between the sexes could 232 

be being missed in sex-agnostic studies.  233 

 234 

Gene-level analyses 235 

 236 

To gain insight into the biological meaning of these results, gene enrichment analyses were carried 237 

out for all 103 phenotypes with at least one sdSNP. To do this, the two-tailed sex-comparison p-values 238 

for the sdSNPs found were converted to two one-tailed p-values (pF and pM) according to the sex which 239 

presented the largest genetic effect (see Methods). Using these two sets of p-values in combination 240 

with MAGMA we then estimated the degree of sex dimorphism of each gene, thus obtaining dimorphic 241 

gene lists, which were dominant in females or males (i.e. which presented a significantly larger effect 242 

in one sex versus the other, see Methods, Supplementary Table 15 and 16, Supplementary Note).  The 243 

GENE2FUNC tool in FUMA was then used to investigate any functional enrichments among these 244 

dimorphic gene lists (Supplementary Table 17, 18 and 19, Supplementary Note) for the 10 traits with 245 

the largest number of sexually different genes. These were largely all of the anthropometric class and 246 

were: standing height, waist-hip circumference ratio, trunk predicted mass, trunk fat-free mass, trunk 247 

fat percentage, whole body fat-free mass, basal metabolic rate, impedance of arm (left), body fat 248 

percentage and hip circumference. As a background to compare our results to, this procedure was 249 

repeated using sex-agnostic GWAS results, obtaining gene sets enriched in genes associated to each 250 

of our 10 phenotypes (see Methods). 251 

 252 

A total of 4,840 gene sets were found to be enriched in either male or female dominant genes across 253 

the 10 traits considered (q < 0.05, Supplementary Table 18 and 19). Genes dominant in one sex or the 254 

other were found to be enriched in sets in an exclusive manner (i.e. sets would not show a larger 255 

amount of both male and female dominant genes than what would be expected by random), with the 256 

average percentage of shared enriched sets across traits being 3.3%, SD = 3.34% (Supplementary Table 257 

17). A total of 383/4,840 gene sets were found to be significantly differentially enriched between male 258 

and female dominant genes in at least one of the traits considered (Fisher’s exact test q < 0.05), with 259 

an average of 12.88% (SD 12.96%) of gene sets being differentially enriched across traits 260 

(Supplementary Table 17). Furthermore, 251/383 gene sets were found to also show a significant 261 

difference in enrichment when comparing with the results of our background of sex-agnostic 262 

associated genes (Fisher’s exact test q < 0.05, see Methods), the mean percentage of gene sets 263 

presenting this behaviour across traits being 67.30% (SD 18.87%, Supplementary Table 17).  264 
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 265 

Heatmaps were produced considering the aforementioned 251 gene sets, with hierarchical clustering 266 

both by gene set and by trait (Extended Data Figure 7). Most notably, we find clusters of sets pertaining 267 

to small non-coding RNA (sncRNA) biogenesis and RNA-mediated silencing, enriched in female 268 

dominant genes for body mass-related traits. It has previously been postulated that miRNA may play 269 

a role in the regulation of phenotypic sex differences due to its ability to regulate large numbers of 270 

genes with a high degree of specificity, with intervention of the sex chromosomes and/or gonadal 271 

hormones37.  272 

 273 

Sex differences in gene expression regulation 274 

 275 

Differences between the sexes in complex traits could be partially explained by sex-specific gene 276 

expression regulation, which could lead to differences downstream across biological pathways and 277 

traits, and thus to the detection of GxS interactions in GWASs. Although studies have been carried out 278 

searching for differential gene expression between the sexes (sex-DE) in a variety of tissues of 279 

interest, studies linking sex to differences in gene expression regulation (sex-specific or sex-biased 280 

eQTLs) are few, with often contradictory results5,38–41. These mixed results could be due to the 281 

contribution of GxS to gene expression being tissue specific, a lack of sufficient statistical power, or 282 

the fact that this contribution occurs only on a small number of genes40. Overall, a system-wide 283 

analysis (i.e. across a wide variety of tissues) is yet to be carried out in order to determine whether 284 

there is evidence of sex-biased eQTLs and whether some tissues are more prone to sex-specific 285 

regulation than others. 286 

 287 

In order to bring light to potential intermediary mechanisms underlying differences in genetic 288 

architecture between the sexes we investigated whether our lead sdSNPs could also be acting as sex-289 

biased eQTLs. To do this, we performed an eQTL analysis, looking for GxS interactions in gene 290 

expression, considering genes within a 1Mb window to our lead sdSNPs (Supplementary Table 3, see 291 

Methods). This was done for a total of 39 tissues from the Genotype-Tissue Expression (GTEx) 292 

consortium v6, originating from up to 450 individuals.  293 

 294 

A total of 8 sex-biased eQTLs were found at a q < 0.05 threshold (Supplementary Table 20, 21, 22 and 295 

23). We also checked for enrichment of GxS in gene-variant pairs for variants that presented evidence 296 

of sex dimorphism (genetic effect comparison between the sexes p < 1 x 10-8) versus those that did not 297 

(genetic effect comparison between the sexes p > 0.5), using contingency tables (see Methods). We 298 

found enrichment for a small number of the tissues considered (see Supplementary Note, 299 

Supplementary Table 24).  300 

 301 

The variant rs56705452 from chromosome 6 was found to be a sex-biased eQTL for the transcript 302 

ENSG00000204520.8, which corresponds to the gene MICA (Extended Data Figure 8), in muscle 303 

skeletal tissue. This gene encodes the highly polymorphic major histocompatibility complex class I 304 

chain-related protein A, and variations of this gene have been associated to susceptibility to psoriasis, 305 

psoriatic arthritis and ankylosing spondylitis, amongst others42. Interestingly, this sdSNP has been 306 

shown to bind FOXA1 through ChIP-Seq experiments43, a protein that dictates the binding location of 307 

androgen and oestrogen receptors, and that has been found to play a role in the sexually dimorphic 308 
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presentation of various cancers44,45. Furthermore, this sdSNP was found to act in a sexually different 309 

manner in regards to its association to ankylosing spondylitis in our genome-wide sdSNP analysis. 310 

This result would be consistent with a hypothesis where this sdSNP is regulating MICA in a sex-311 

dependent manner in the muscle tissue, thus leading to differences in ankylosing spondylitis 312 

presentation between the sexes when one possesses a particular variant. 313 

 314 

The small number of significant sex-biased eQTLs found parallels the findings of recent study by Porcu 315 

et al41, where they conclude that millions of samples would be necessary to observe sex-specific trait 316 

associations that are fully driven by sex-biased eQTLs. Overall, this type of pipeline could help in the 317 

future when short-listing biomarkers for risk susceptibility in males and females, help develop 318 

precision medicine strategies for each of the sexes, and bring light into the underlying mechanisms 319 

of the disease/trait of interest as well as possible underlying sexually different molecular networks, 320 

once larger sample sizes become available. 321 

 322 

DISCUSSION 323 

 324 

In this study, we have delved into the differences in genetic architecture between the sexes in the UK 325 

Biobank for a total of 530 traits from around half a million individuals. This has enabled us to assess 326 

the genetics of sex dimorphism at a depth and breadth not previously achieved. 327 

 328 

Overall, we have found evidence of sex differences for a large number of the traits considered, though 329 

be it of generally modest magnitude, through a thorough investigation of sex-specific genomic 330 

parameters. A total of 71 traits were found to present significantly different heritability estimates 331 

between the sexes, while a total of 69 presented genetic correlations between the sexes that 332 

significantly differed from one, indicating the presence of genetic heterogeneity across these 333 

complex traits. In order to dissect this heterogeneity and pin-point genetic sites that could be 334 

differentially associated to these traits, sex-stratified GWASs were performed, yielding over 100 traits 335 

with at least one sdSNP. These traits included those of the anthropometric class as well as diseases 336 

like gout, ankylosing spondylitis or hypothyroidism. These results reinforce the need for future studies 337 

to account for genetic sex heterogeneity to fully understand the genetic underpinnings of disease and 338 

ultimately shed light on potential sex-specific biological mechanisms.  339 

 340 

Having found evidence of GxS across the genome, we investigated whether sex-specific genetic 341 

models could improve phenotypic prediction. While no statistically significant improvement in 342 

prediction was found for the traits considered, a consistent trend of increased predictive accuracy 343 

was seen when comparing the results of sex-specific models to those of a sex-agnostic model. Putting 344 

our results in context with the heritability differences found, we postulate the potential existence of 345 

large numbers of loci presenting small amounts of dimorphism with insufficient statistical power to 346 

be detected in our analysis that could account for both this missing heritability difference as well as 347 

the absence of increased predictive power. We also investigated whether sex-agnostic models could 348 

potentially be missing loci of interest, and found indications of potential masking for 176 traits, with 349 

further investigation being needed to replicate these results. 350 

 351 
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Finally, gene set enrichment and eQTL analyses were performed in an effort to translate our GWAS 352 

results to function and bring light to potential mechanisms underlying the observed dimorphism 353 

across traits. Our eQTL analysis found a total of 8 sex-biased eQTLs, but our results parallel previous 354 

reports on the need for larger sample sizes to truly uncover potential links between sex-biased eQTLs 355 

and sdSNPs. Our gene-set enrichment analysis suggests a link to miRNA regulation, which has been 356 

hypothesized in the past to underlie sex differences. Further studies are needed to truly understand 357 

what underlies sdSNPs, moving beyond gene expression regulation mechanisms and looking at other 358 

biological regulatory mechanisms and omics data sets. 359 
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FIGURES 

 

 

Figure 1. Sex-specific heritability estimate comparison. Scatterplots of male heritability estimates 

against female heritability estimates for binary traits (on the left) and non-binary traits (on the right) 

are shown. Each point represents a trait, which is marked in pink when heritability between the sexes 

is significantly different (see Methods) at a threshold of q < 0.05. Note that for the binary traits, 

heritability estimates were considered on the liability scale, which led to some estimates over 1 (see 

Methods). Blue line corresponds to x = y, and traits straying the furthest away from said line are 

annotated.  
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Figure 2. Genetic correlations between the sexes across traits. (a) Barplot of genetic correlations (rg) 

between the sexes for traits that were found to have a rg significantly different from one (q < 0.05, see 

Methods). Black bars indicate the standard errors of the rg estimates (rg +/- SErg). (b) Histogram of 

genetic correlations that were found to be significantly different from one (q < 0.05) for both binary 

and non-binary traits. 
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Figure 3. Manhattan plots for traits with most lead sdSNPs. The x axis corresponds to the genomic 

position in the genome, and the y axis to the –log10 p-value of the two-sided t-test (see Methods) for 

which the null hypothesis is that no difference between the sexes exists. Each point corresponds to a 

genetic variant. Points that go above the statistical significance line at –log10 p = 1 x 10-8 are considered 

to be sdSNPs. Traits represented: waist-hip circumference ratio, ankylosing spondylitis, standing 

height, and gout.
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EXTENDED DATA FIGURES 

 

Extended Data Figure 1. Barplot of log2 fold difference in variance between males and females for 

binary (top) and non-binary (bottom) traits with a significantly different heritability between the sexes 

at a q < 0.05 threshold. Pink bars represent fold change between the sexes in genetic variance, and 

blue bars represent fold change between the sexes in residual variance. Fold change is calculated as 

log2(male variance/female variance), thus positive fold change = larger variance in males, negative 

fold change = larger variance in females. 
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Extended Data Figure 2. Top plots: scatterplots comparing male genetic variance to female genetic 

variance for binary (left) and non-binary (right) traits. Bottom plots: scatterplots comparing male 

evolvability to female evolvability for binary (left) and non-binary (right) traits. Each point represents 

a trait, and pink points indicate traits for which the genomic parameter considered (genetic variance, 

evolvability) between the sexes is significantly different (q < 0.05, see Methods). Basal metabolic rate 

was removed as an outlier. 
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Extended Data Figure 3. Barplot comparing genetic correlation estimates from this effort to the 

literature for several non-binary traits (“WHR”: waist-hip circumference ratio, “Body Fat %”: body fat 

percentage, “BMI”: body-mass index, “WC”: waist circumference, “HC”: hip circumference, and 

“Height”: standing height). Height of bar indicates genetic correlation estimate (rg), different colors 

corresponding to different publications, as represented in legend by surname of first author12,14,16 and 

the values of which, are shown in Supplementary Table 2. Error bars represent 95% confidence 

intervals of rg estimates (rg +/- 1.96SErg). 
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Extended Data Figure 4. Manhattan plot of number of sdSNPs (p < 1 x 10-8, two-sided t-test, see 

Methods) per genomic position, each point representing a genetic variant, and its height the number 

of traits it affects in a sexually different manner, for (a) non-binary traits and (b) binary traits. 
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Extended Data Figure 5. For binary (left) and non-binary (right) traits with at least one potentially 

masked variant: (a) histogram of number of masked genetic variants, (b) histogram of proportion of 

masked SNPs that presented opposite sign effects between the sexes, (c) histogram of proportion of 

masked SNPs that were found to possess significantly different genetic effects between the sexes 

(two-sided t-test, p < 1 x 10-8 threshold, see Methods) and (d) histogram of the proportion of lead 

sdSNPs that were found to be masked. 
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Extended Data Figure 6. For binary (left) and non-binary (right) traits with at least one sdSNP and one 

potentially masked variant, shown is a scatterplot of number of sdSNPs against number of potentially 

masked variants (p < 1 x 10-8, and LD clumped within sex, see Methods).  
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Extended Data Figure 7. Heatmap with hierarchical clustering of FUMA set enrichment -log10 q-values 

for 251 gene sets that were found to be significantly differentially enriched between males and 

females (Fisher’s exact test q < 0.05), as well as significantly differentially enriched to GWAS 

background genes (Fisher’s exact test q < 0.05). x-axis corresponds to male or female dominant genes 

(see Methods) for different traits, and y axis to gene sets. Color within plot represents scaled -log10 q-

value of enrichment, and “Sex” horizontal column indicates the sex in which the genes considered are 

dominant (pink for females, and blue for males).   
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Extended Data Figure 8. Relationship of genotype at variant rs56705452 with the expression of the 

transcript ENSG00000204520.8 in muscle skeletal tissue, for males (pink) and females (blue). Each 

point represents an individual, the x-axis its genotype at the considered variant, and the y-axis gene 

expression levels for the considered transcript.  
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TABLES    

 

Table 1. Number of lead sdSNPs found across traits. Traits with the largest number of autosomal 

sdSNPs, that is, SNPs which presented a statistically significant difference between male and female 

genetic effect estimates (p < 1 x 10-8, two-sided t-test, see Methods), are shown. For each trait, total 

number of sdSNPs found across the genome is shown, along with the total number of independent loci 

presenting sex differences post-LD clumping (lead sdSNPs). Traits are sorted by number of lead 

sdSNPs. (*) Our analyses point to nucleated red blood cell percentage likely being a false positive (see 

Supplementary Note). 

 

Trait 

p < 1 x 10-8 

(sdSNPs) 

p < 1 x 10-8 LD 

clumped (lead 

sdSNPs) 

Waist circumference / Hip 

circumference 2421 100 

ankylosing spondylitis 626 18 

Standing height 86 18 

gout 708 16 

Nucleated red blood cell percentage* 26 16 

Trunk fat percentage 432 15 

Hip circumference 124 12 

Whole body water mass 39 12 

Trunk predicted mass 163 12 

Trunk fat-free mass 141 12 

hypothyroidism/myxoedema 168 11 

Arm predicted mass (left) 52 10 

Impedance of arm (left) 149 10 

Impedance of whole body 233 10 

Impedance of arm (right) 155 10 
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METHODS  1 

 2 

UK Biobank data 3 

 4 

UK Biobank is a large population-based prospective study with participants aged 40 to 69 years at 5 

recruitment, with extensive matching phenotypic and genomic data46.  In this study, of the circa 6 

490,000 individuals whose data was released in July 2017, we considered data pertaining to a total of 7 

452,264 white European individuals. Of these, 245,494 were females and 206,770 were males, here 8 

referring to individuals whose self-proclaimed sex coincided with a XX or XY chromosomal content for 9 

females and males respectively, thus excluding individuals whose self-reported sex did not coincide 10 

with said genotypes. We also excluded individuals that were identified by UK Biobank as outliers based 11 

on genotyping missingness rate or heterogeneity, and individuals whose first or second genomic 12 

principal component differed by over 5 standard deviations from the mean of self-reported white 13 

Europeans. Finally, we removed individuals with a missingness rate > 5% for the genetic variants that 14 

passed quality control (described in Genotypes section), arriving at the aforementioned number of 15 

individuals. 16 

 17 

Genotypes 18 

 19 

UK Biobank’s participants were genotyped using either of two arrays, the Affymetrix UK BiLEVE Axiom 20 

or the Affymetrix UK Biobank Axiom array, and later augmented by imputation of over 90 million 21 

genetic variants from the Haplotype Reference Consortium, the 1000 Genomes project, and the UK 10K 22 

project.  23 

 24 

We excluded variants which did not pass UK Biobank quality control procedures in any of the 25 

genotyping batches and retained only bi-allelic variants with p > 1 x 10-50 for departure from Hardy-26 

Weinberg and MAF > 1 x 10-4, computed on a subset of 344,057 unrelated (Kinship coefficient < 0.0442) 27 

individuals of White-British descent with missingness rate > 2% in the study cohort, paralleling the QC 28 

procedure followed by Canela-Xandri et al47. 29 

 30 

A second round of QC was done prior to performing everything that followed the sex-stratified GWAS 31 

and genetic parameter estimation (described below), including calculation of genetic correlations and 32 

genetic effect comparisons between the sexes. This was done to account for the smaller sample sizes 33 

(versus those of 47) as well as to be more stringent as we are comparing between groups. Variants were 34 

further filtered if they possessed p < 1 x 10-6 for departure from Hardy-Weinberg and MAF < 1 x 10-3, 35 

computed on the aforementioned subset of unrelated individuals. A stricter MAF threshold (MAF < 1 x 36 

10-1) was set for binary traits due to the general limited number of cases available which can lead to an 37 

inflation of type I error rates in association tests48. Briefly, this is based on simulations from Loh et al’s 38 

work48, where, when the case/control ratio is 0.001, a MAF filter of 10% shows no significant inflation 39 

of Type I error rates for the sample sizes considered here. Furthermore, variants with a significant 40 

effect (p < 1 x 10-8) when running a GWAS on sex for the aforementioned subset were also excluded, as 41 

these could arise due to sampling bias49. Finally, only imputed variants with no genotyped counterpart 42 

and with an imputation score > 0.9 were retained. As a result, a total of 9,072,751 (602,984 genotyped 43 
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and 8,469,767 imputed) autosomal genetic variants and 17,364 X-chromosome genetic variants 44 

remained for our analysis of non-binary traits, and 4,229,346 autosomal (244,743 genotyped and 45 

3,984,603 imputed) and 7,227 genotyped X-chromosome genetic variants for our analysis of binary 46 

traits. 47 

 48 

Phenotypes 49 

 50 

In total we analyzed 530 non-sex specific traits. These included 446 binary traits, which had at least 51 

400 cases in each of the sexes, relating to self-reported disease status, ICD10 codes from 52 

hospitalization events, and ICD10 codes from cancer registries, as well as 84 non-binary traits 53 

comprising non-scale transformed continuous and ordered integral measures. 54 

 55 

Our starting point were the 778 traits considered in the GeneATLAS study47. These were in turn 56 

extracted from the UK Biobank June 2017 release. From these original 778 traits, we further removed 57 

binary traits that had fewer than 400 traits in either sex (this thus excluded traits that were sex-58 

specific from our study). We further removed several blood measurement related traits as well as 59 

others that did not pass our QC stage. The remaining 530 traits were considered in this study. For more 60 

information on the treatment and filtering of the phenotype data see 47. 61 

 62 

Sex-stratified parameter estimation 63 

 64 

To obtain genetic and environmental variance estimates for each of the sexes we used DISSECT29 65 

following the same methodology as described in 47. Briefly, a partition of variance analysis was run 66 

using linear mixed models (LMMs), which were fitted for each trait with a Genetic Relationship Matrix 67 

(GRM) containing all common autosomal genetic variants (MAF > 5%) which passed QC.  68 

 69 

Heritability was then calculated as 70 

 71 

hg 
2  = σg2 / σg2 + σϵ2  , 72 

 73 

where σg2 and σϵ2 are the estimates of the genetic and residual variance. Heritability for binary traits 74 

was transformed from the observed scale to the liability scale using the sex-specific population 75 

prevalence of the trait, under the assumption that there was an underlying normal distribution of 76 

liability to the considered trait, as described in 50.  77 

 78 

Wanting to see if the sexes differ in regards to their ability to undergo adaptation, evolvability was 79 

calculated for males and females separately. Evolvability, defined as the expected evolutionary 80 

response to selection per unit of selection51, or the ability of populations to respond to natural or sex 81 

selection52, was calculated as 82 

 83 

e = σg / m2 84 

 85 

where σg is the additive genetic variance of the trait and m is the trait mean.  86 
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 87 

To establish differences between heritability, genetic variance, and evolvability between the sexes, we 88 

used the t statistic 89 

 90 

t = 
Xmales   -  Xfemales

SEmales
2  +  SEfemales

2 
 91 

 92 

where X represents either heritability, genetic variance or evolvability, assumed to be independent 93 

between the sexes, and SE the standard error of the aforementioned, for males and females 94 

respectively. Two-tailed p-values were then FDR corrected (using the Benjamini-Hochberg procedure) 95 

to account for multiple testing. 96 

 97 

Sex-stratified GWAS 98 

 99 

To test the genetic effect of each variant for each of the sexes on the 530 chosen traits we ran a sex-100 

stratified GWAS. The procedure followed for each of the sexes is that described in 47 using the DISSECT 101 

software29. Briefly, a Linear Mixed Model (LMM) was fitted, 102 

 103 

y = Xβ + g + ϵ , 104 

 105 

y being the vector of phenotypes, X the matrix of fixed effects, β the effect size of these effects, g the 106 

polygenic effect that captures the population genetic structure, and ϵ the residual effect not 107 

accounted for by the fixed and random effects. Following the procedure described in 47, our curated 108 

genetic variants were regressed against the residuals of the LMM to assess association.  109 

 110 

Genetic correlations 111 

 112 

Genetic correlations between the sexes were calculated using the bivariate linkage disequilibrium 113 

score (LDSC) regression analysis software31, which works directly on GWAS summary data and can thus 114 

be applied to very large sample sizes. As we were using data of European origin, we used the LD scores 115 

provided by the LDSC software and limited our genetic correlation calculation to the genetic effect 116 

estimates of SNPs for which such scores were available (1,189,831 total genetic variants, of which 117 

1,169,868 passed LDSC’s QC filters and were used in the computation). These scores were computed 118 

using the 1000 Genomes European data. We furthermore restricted our binary traits to those that had 119 

at least 5000 cases in each of the sexes, as was recommended in the documentation. Note that for 120 

traits with very low heritability this computation was unsuccessful. In total, genetic correlations were 121 

obtained for 83 non-binary and 77 binary traits.  122 

 123 

To establish which correlations differed from one, we used the t statistic 124 

 125 

t = 
rg  - 1
SErg

 126 

 127 
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where rg is the genetic correlation, and SErg is the standard error of the genetic correlation. Two-tailed 128 

p-values were FDR corrected to account for multiple testing. 129 

 130 

Sex differences in genetic effects 131 

 132 

To compare genetic effects across the genome between the sexes for all traits we considered the 133 

following two-tailed t test, as used in previous sex-stratified GWAS comparison studies20,23: 134 

 135 

t = 
bmales  -  bfemales

SEmales
2  +  SEfemales

2 – 2r · SEmales ·  SEfemales

 136 

  137 

where b is the estimated effect of the genetic variant considered for a given trait for males and 138 

females, SE is the standard error of the effect, and r is the Spearman rank correlation between the 139 

sexes across all genetic variants for a given trait. Both the SE and b were adjusted by the standard 140 

deviation of the trait, for each sex, to correct for scale effects that could act as confounders in the 141 

study. Some studies have opted to ignore the third term in the denominator, which estimates the 142 

covariance of the error terms, assuming r to be equal to 06. However, for the traits considered this 143 

correlation ranged from -0.00335 (cervical spondylosis) to 0.34173 (standing height), thus our 144 

decision to include it.  145 

 146 

As this test was done for all variants and all phenotypes, this effort resulted in a total of 4,808,558,030 147 

statistical tests (9,072,751 x 530). Binary traits were then filtered further as stated in the Genotypes 148 

section. To account for multiple testing, we considered the commonly used genome wide significance 149 

cut-off of p < 1 x 10-8.  150 

 151 

In order to cluster our results into independent lead variants, we used the --clump option in PLINK 1.953. 152 

For each individual trait, variants found to be genome-wide significant with regards to difference 153 

between the sexes were clustered into lead variants, assigning them variants in LD within 10Mb, with 154 

an r2 > 0.2 with the lead variant. To obtain the total number of independent loci across all traits, the 155 

same clustering method was used but for all variants found to be leads across traits, choosing the 156 

variant with the lowest p-value if variants were found in more than one trait.  157 

 158 

Analysis checks 159 

 160 

Our replication/sanity check methods can be divided into technical (different models, sex 161 

randomization, logistic mixed models using REGENIE35, simulations of effect of case-control 162 

imbalance on heritability estimates) and biological (comparison to the GIANT cohort). Detailed 163 

information and results of these analyses can be found in the Supplementary Note. 164 

 165 

Calculation of Polygenic Scores (PGS) 166 

 167 

Using the subset of unrelated White British individuals from UK Biobank, we calculated PGS for our 168 

traits with most evidence of GxS found using our lead sdSNPs.  169 
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 170 

PGS are calculated as: 171 

 172 

PGSi = ∑ bj∙dosageij
n
j  173 

 174 

Where PGSi is the polygenic risk score estimate for individual i, bj is the genetic effect estimate for 175 

variant j, dosageij is the effect allele count (0, 1 or 2) of variant j in individual i, and n is the total number 176 

of genetic variants considered in the PGS calculation (here just the lead sdSNPs).  177 

 178 

The genetic effects used in our PGS calculations were obtained re-running our original model using UK 179 

Biobank’s unrelated White British participants, randomly selecting 150,000 women to obtain female 180 

specific genetic effects, 150,000 males to obtain male specific genetic effects, and 75,000 men and 181 

75,000 females to obtain sex-agnostic genetic effects. This was done to match sample sizes.  182 

 183 

We then proceeded to calculate PGS for a total of 34,928 females and 8,956 males from UK Biobank 184 

and which were self-reported white European, which had not been considered in the calculation of the 185 

genetic effects. We did this in three ways: using the genetic effects corresponding to the sex of the 186 

individual (same PGS), using the genetic effects corresponding to the opposite sex of the individual 187 

(opposite PGS) and using the genetic effects for the whole population (agnostic PGS). Thus, in total 188 

each of our circa 44K individuals had 3 PGS calculated.  189 

 190 

In order to assess predictive power, the phenotypes of our 44K individuals (corrected by all the 191 

covariates in our original model to account for population structure and other effects) were then either 192 

regressed on the same, opposite and agnostic PGSs respectively in the case of non-binary traits, and 193 

in the case of binary traits the area under the curve (AUC) was calculated for the ROC curve for the 194 

three PGS groups. Statistical significance of AUCs was assessed using the two-tailed Mann Whitney U 195 

test54. To assess differences between PGS-phenotype correlations, these were transformed using 196 

Fisher’s Z transformation55, and then compared using the resulting Z scores (two-tailed Z test). AUCs 197 

were compared using the roc.test function from the pROC R-package56. Correlation, AUC and 198 

comparison statistics and p-values are reported in Supplementary Table 11. 199 

 200 

An important caveat of this methodology is that there is an overlap between the discovery (the 201 

population used to declare variants as sexually different) and the replication (for which genetic effects 202 

were re-calculated and/or PGS were obtained) populations. As a way of checking whether the overlap 203 

could potentially be influencing our results, we repeated this step by obtaining the genetic effects for 204 

the circa 408K individuals of White British ethnicity in UK Biobank, repeating the steps described in 205 

the “Sex differences in genetic effects” section, to establish genetic effect differences across the 206 

genome. Then we calculated the different PGSs for the remaining circa 42K individuals of white 207 

ethnicity, again regressing on the phenotype, for our most representative trait: waist-hip 208 

circumference ratio. This, however, only serves as a validation for a single trait, meaning that caution 209 

should be taken when interpreting the predictive power of the PGSs calculated.  210 

 211 

Heritability explained by sdSNPs 212 
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 213 

In order to put our prediction analysis into context, we obtained the proportion of sex-specific 214 

heritability explained by the sex-specific genetic effect estimates of the sdSNPs found for each trait. 215 

To do this, for each trait with i sdSNPs, the heritability of sdSNPs was calculated, for males and females 216 

separately, as 217 

 218 

hsdSNP
2 = 

Σi2pi(1 - pi)b i
2

σg2 + σe2
  219 

 220 

where b is the sex-specific genetic effect for each of the i lead sdSNPs for a given trait, p is the 221 

frequency of the reference allele, and σg2 and σe2 are the sex-specific genetic and residual variance 222 

estimates for each trait respectively. The proportion of the sex-specific heritability explained by 223 

sdSNPs was then calculated for each sex as h sdSNP
2  / h 

2. 224 

  225 
Masking analysis 226 

 227 

To evaluate potential masking across traits in the UK Biobank, we compared the results from sex-228 

stratified models to those from a non-stratified model, across the 530 traits in our study. Genetic 229 

effects across the genome were assessed for significant association in males and females, and were 230 

deemed to be potentially masked if significance was reached in either at a p < 1 x 10-8 threshold, but 231 

not in a sex-agnostic model. 209 traits were found to have at least one potentially masked genetic 232 

variant, with a total of 127/446 (28.48%) binary and 82/84 (97.62%) non-binary traits (Supplementary 233 

Table 13).  234 

 235 

 We also performed this analysis by LD-clumping the results from our sex-stratified models prior to 236 

assessing significance in a sex-agnostic model across traits in order to account for the effects of 237 

random fluctuation (Supplementary Table 14). Using this methodology, a total of 176 traits, 98/446 238 

(21.97%) binary and 78/84 (92.86%) non-binary, were found to present at least one potentially masked 239 

genetic variant. While we found a high correlation with our original results (r = 0.96, p = 4.59 x 10-299, 240 

Supplementary Table 14, Figure S8), numbers of potentially masked variants found decreased by 241 

around half for each trait (regression slope = 0.49, Figure S8). To be conservative, these are the results 242 

considered in the main text.  243 

 244 

Gene level analysis 245 

 246 

We performed a gene-level analysis to translate our SNP data into a more manageable and 247 

interpretable form. This was done for the subset of traits that presented at least one sdSNP for a total 248 

of 103 traits.  249 

 250 

As we wanted to obtain genes relevant to each of the sexes, we began by partitioning our two-tailed p-251 

values (p2T) from the genetic effect (b) comparison between the sexes into two one-tailed p-values. For 252 

genetic variants where bF was greater than bM, one tailed p-values were calculated as: 253 

 254 
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pF =
p2T
2
 and pM =1 - (

p2T
2
) 255 

 256 

On the other hand, when the genetic effect was greater in males, the p-values were calculated as 257 

 258 

pM =
p2T
2
 and pF =1 - (

p2T
2
). 259 

 260 

This process led to the creation of two additional distinct sets of p-values for each phenotype, 261 

corresponding to sites where the genetic effect was significantly greater in males or females. 262 

 263 

Each of these sets of p-values (p2T, pM and pF) was subsequently used to identify gene level associations 264 

using MAGMA57. First, we annotated every gene (i.e. defined which SNPs were in the gene region) 265 

considering a range of 1kb upstream and downstream. MAGMA was then run for each phenotype and 266 

each set of one tailed p-values separately, considering two distinct SNP-wise models (SNP mean and 267 

top SNP), using a random sample of 1,000 unrelated white British individuals from the UK Biobank, 500 268 

males and 500 females, as a base population for LD and MAF correction. The analysis provides three 269 

distinct p-values for each gene, one for the SNP mean model, one for the SNP top model, and a 270 

combined p-value. For subsequent analyses, we considered the combined p-value for each gene. 271 

Genes were declared significantly dimorphic and female or male dominant if an FDR corrected 272 

combined p-value (q) < 0.01 was obtained when considering pF or pM respectively. 273 

 274 

The set of genes that reached our threshold were then used in the gene set and enrichment analyses 275 

using the GENE2FUNC tool in FUMA58. The GENE2FUNC tool in FUMA was run for the top 10 traits with 276 

the largest number of significant genes when considering a two-tailed p-value. As a result, FUMA was 277 

run for 10 traits for both male and female dominant genes.  278 

 279 

Briefly, FUMA takes our list of candidate genes and checks for enrichment across: (1) differentially 280 

expressed genes (DEG) for different tissues (tissue enrichment analysis was conducted considering 281 

the GTEx V6 database59), and (2) biological pathways/functional categories (considering MSigDB v7, 282 

WikiPathways and GWAS Catalog60). Enrichment is assessed using a hypergeometric test. In this study 283 

we have focused on just biological pathways/functional categories. Significantly differentially 284 

enriched gene sets between female and male dominant genes were assessed using a Fisher’s exact 285 

test, and p-values were FDR corrected.  286 

 287 

As a background, the same procedure as is described in this section was followed using sex-agnostic 288 

GWAS results for the 10 traits of interest. Using MAGMA, genes associated to each of the traits were 289 

obtained, and sets enriched for genes associated to each trait were obtained using FUMA. Significantly 290 

differentially enriched gene sets between our background and our female and male dominant genes 291 

were obtained using a Fisher’s exact test, and p-values were FDR corrected.  292 

 293 

Heatmaps of the scaled -log10 q-values per set were created for each phenotype and sex. Heatmaps 294 

for gene sets were limited to those both significantly differentially enriched in at least one sex versus 295 

our background (Fisher’s exact test q < 0.05), as well as significantly differently enriched between 296 

female and male dominant genes (Fisher exact test q < 0.05).  297 
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 298 

GTEx data 299 

 300 

In order to assess whether differences in genetic architecture, as established by our analysis of the 301 

UK Biobank data, lead to differences in gene expression, we proceeded to complete an expression 302 

quantitative trait loci (eQTL) analysis looking for GxS interactions in gene expression. The data from 303 

the Genotype-Tissue Expression Project (GTEx) V6p release was used, which consists of samples and 304 

genotypes from 449 human donors (292 males and 158 females) and 39 non-sex specific and non-305 

diseased tissue types. Each tissue type holds a different number of samples (minimum of 70, median 306 

of 149), with a male-bias present in all of them (the percentage of female samples ranging from 25% to 307 

44%). 308 

 309 

Processed, filtered and normalized RNA-seq data was downloaded from the GTEx portal for both the 310 

autosomal genome as well as for the X chromosome, the number of transcripts varying across tissues 311 

due to tissue-specific expression, with a median of 23,538 autosomal transcripts and 793 X-linked 312 

transcripts per tissue. Covariates were also downloaded for each of the considered tissues. Further 313 

information regarding the treatment of the data can be found in the GTEx v6p analysis methods 314 

documentation. Genotype data was also obtained for all the donors from dbGaP, and which included a 315 

total of 11,607,846 genetic variants, from genotyping efforts with Illumina OMNI 5M and 2.5M SNP 316 

Arrays and imputation from the 1000 Genomes Project Phase I version 3 reference panel. For more 317 

information regarding the processing of the genotype data see the GTEx v6p analysis methods 318 

documentation. 319 

 320 

eQTL analysis 321 

 322 

To assess whether our sdSNPs had different effects on the expression of nearby genes depending on 323 

sex, we assigned our lead sdSNPs nearby genes (1Mb window) using Granges61 and the Biomart 324 

resource62. The total number of sdSNP-gene pairs were 6,591 when considering our autosomal hits for 325 

non-binary traits, 4,533 when considering our autosomal hits for binary traits, and 95 when 326 

considering our X-chromosome hits for non-binary traits. 327 

 328 

For each of the 39 tissues, we tested for GxS in gene expression for each variant-gene pair using a 329 

linear regression model in PLINK 1.9, which was adjusted for three genotyping principal components 330 

(PCs) and PEER factors, the number of which included in the model depended on the sample size 331 

(sample sizes < 150 had 15 PEER factors, sample sizes between 150 and 250 had 30 PEER factors, and 332 

sample sizes over 250 had 35 PEER factors), as indicated in 63. In the end, our gene expression model 333 

for each gene within 1Mb of a sexually dimorphic variant, and each tissue was formulated as 334 

 335 

y = μ + β1·sex + β2·SNP + β3·SNP·sex + PC1-3 + PEER + ε 336 

 337 

where y is the gene expression of the given gene in a given tissue, μ is the mean expression levels, β1 338 

and β2 are the regression coefficients for sex and genotype of the sexually dimorphic variant 339 

respectively, β3 is the regression coefficient for the interaction of the genotype with sex, PC1-3 and PEER 340 
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are the principal components and PEER factor covariates, and ε is the residual. FDR correction was 341 

applied to account for multiple testing.  342 

 343 

When running our eQTL analysis we found that two tissues returned missing values across all tests 344 

performed with PLINK, the brain anterior cingulate cortex BA24 and the small intestine terminal ileum 345 

tissues. These are the two tissues with the smallest number of samples, therefore this absence of 346 

results is likely due to not enough variation being present in the phenotype.  347 

 348 

eQTL enrichment 349 

 350 

To assess whether our sexually dimorphic genetic variants were enriched for GxS interactions versus 351 

those not presenting sex differences, we proceeded to re-run our eQTL model using genetic variants 352 

significant for the whole population (p < 1 x 10-8) but that had no evidence of being sexually dimorphic 353 

(t-statistic comparing genetic effects between the sexes with p > 0.5). Using contingency tables and 354 

Fisher’s exact test, we considered whether the number of significant variant-gene GxS terms (at a p < 355 

1 x 10-3 threshold) was enriched for our sexually dimorphic variants for each of the tissues.  356 

 357 

DATA AVAILABILITY 358 

 359 

This research has been conducted using the UK Biobank Resource under project 788. Data from the 360 

Genotype Tissue Expression (GTEx) project V6p release was also employed, protected genotype data 361 

accessed via dbGaP, and processed gene expression data downloaded from the GTEx portal, which is 362 

openly available: https://gtexportal.org. The GIANT cohort's summary statistics were employed to 363 

compare findings to (openly available: https://portals.broadinstitute.org/collaboration/giant/), as well 364 

as Pulit et al's (Human Molecular Genetics, 2019) summary statistics pertaining to a GIANT-UKB meta-365 

analysis (openly available: https://github.com/lindgrengroup/fatdistnGWAS). The authors declare that 366 

the data supporting the findings of this study are available within the paper and its supplementary 367 

information files. The GWAS summary statistics of both autosomal and X-chromosome variants from 368 

sex-stratified models are openly available from the University of Edinburgh DataShare repository 369 

within the following collection: https://datashare.ed.ac.uk/handle/10283/3908 (clinical binary traits 370 

DOI: 10.7488/ds/3046, non-clinical binary traits DOI: 10.7488/ds/3047, non-binary traits: 371 

10.7488/ds/3048, and logistic mixed model results DOI: 10.7488/ds/3049). 372 

 373 

CODE AVAILABILITY 374 

 375 

We used DISSECT (v1.15.2c, May 24, 2018), which is publicly available at http://www.dissect.ed.ac.uk/ 376 

under GNU Lesser General Public License v3), PLINK (v1.9 and v2.0, freely available online at 377 

https://www.cog-genomics.org/plink2/), BGENIX (v1.0 freely available online at 378 

https://bitbucket.org/gavinband/bgen), LD Score Regression (v.1.0.1, freely available online at 379 

https://github.com/bulik/ldsc), MAGMA (v1.06, freely available online at 380 

https://ctg.cncr.nl/software/magma), FUMA (freely available online at https://fuma.ctglab.nl/), GCTA 381 

(v. 1.91.4, freely available at https://cnsgenomics.com/software/gcta/) and REGENIE (v.1.0.7, freely 382 

available online at https://github.com/rgcgithub/regenie/tree/v1.0.7-latest). Custom code created to 383 
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perform the analysis is openly available (https://zenodo.org/record/4844680), with DOI: 384 

10.5281/zenodo.4844680. 385 
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