REMARKS ON THE THIN OBSTACLE PROBLEM AND CONSTRAINED GINIBRE ENSEMBLES

ARAM L. KARAKHANYAN

Abstract. We consider the problem of constrained Ginibre ensemble with prescribed portion of eigenvalues on a given curve \(\Gamma \subset \mathbb{R}^2 \) and relate it to a thin obstacle problem. The key step in the proof is the \(H^1 \) estimate for the logarithmic potential of the equilibrium measure. The coincidence set has two components: one in \(\Gamma \) and another one in \(\mathbb{R}^2 \setminus \Gamma \) which are well separated. Our main result here asserts that this obstacle problem is well posed in \(H^1(\mathbb{R}^2) \) which improves previous results in \(H^1_{loc}(\mathbb{R}^2) \).

1. Introduction

Let \(\Gamma \) be a regular curve in \(\mathbb{R}^2 \) with locally finite length and \(\mathcal{M}_a \) the set of all probability measures such that

\[
\mu(\Gamma) \geq a, \quad a \in (0, 1).
\]

By an abuse of notation we let \(\Gamma : \mathbb{R} \to \mathbb{R}^2 \) be the arc-length parameterization of the curve such that

\[
|\dot{\Gamma}(t)| = 1, \quad t \in \mathbb{R}.
\]

In this paper we consider the minimizers of the energy

\[
I[\mu] = \int \int \log \frac{1}{|x - y|} d\mu(x) d\mu(y) + \int Q d\mu
\]

where \(Q(x) \) is a given function such that the weight function \(w = e^{-Q} \) on \(\mathbb{R}^2 \) is admissible (see Definition 1.1 p.26 [8]). This means that \(w \) satisfies the following three conditions:

(H1) \(w \) is upper semi-continuous;

(H2) \(\{ w \in \mathbb{R}^2 \ s.t. \ w(z) > 0 \} \) has positive capacity;

(H3) \(|z| w(z) \to 0 \) as \(|z| \to \infty \).

In higher dimensions \(\mathbb{R}^d, d \geq 3 \) one can consider more general kernels

\[
K(x - y) = \begin{cases}
\log \frac{1}{|x - y|}, & d = 2, \\
\frac{1}{|x - y|^{d-2}}, & d \geq 3,
\end{cases}
\]

with \(\Gamma \) being a Lyapunov surface in \(\mathbb{R}^d \) and define the energy as follows

\[
I[\mu] = \int \int K(x - y) d\mu(x) d\mu(y) + \int Q d\mu.
\]

2000 Mathematics Subject Classification. Primary 35R35, 31A35, 49K10, 60B20.
Keywords: Obstacle problem, thin obstacle, free boundary, global regularity.
In this note we mostly confine ourselves with quadratic potentials \(Q(x) = |x|^2 \) in \(\mathbb{R}^2 \), although all our results remain valid for more general \(Q \) satisfying (H1) – (H3). Furthermore, our main result on global \(L^2 \) estimate of the gradient of the equilibrium potential with kernel \(K(x-y) = |x-y|^{-d} \) remains valid in \(\mathbb{R}^d, d \geq 3 \), see Theorem 4.1.

The functional \(I[\mu] \), with \(Q = |x|^2, d = 2 \), arises in the description of the convergence of the spectral measure of square \(N \times N \) matrices with complex independent, standard Gaussian entries (i.e., the Ginibre ensemble) as \(N \to \infty \). In case when there are no constraints imposed on the eigenvalues, it is well known that the eigenvalues spread evenly in the ball of radius \(\sqrt{N} \), and after renormalization by a factor \(\frac{1}{\sqrt{N}} \) the normalized spectral measure converges to the characteristic function of the unit disc. This is known as the circular law [4], [2]. In this context the functional \(I \) is used to prove large deviation principles for the spectral measure.

If one demands that the eigenvalues are real (i.e. when \(a = 1, \Gamma = \mathbb{R} \)) we get the so called semicircle law. More generally, one can demand that a portion of eigenvalues is contained in a prescribed set \(\Gamma \). This is considered in [2] when a portion of eigenvalues are contained in an open bounded subset of \(\mathbb{R}^2 \) and in [4] when \(\Gamma \) is a line. These problems can be related to the thin obstacle and obstacle problems respectively. The key step in proving this is to establish \(H^1_{\text{loc}}(\mathbb{R}^2) \) estimates for the logarithmic potential

\[
U^{\mu_a} = K \ast \mu_a
\]

of the corresponding equilibrium measure. The aim of this note is to show that the thin obstacle problem is well-posed in \(H^1(\mathbb{R}^2) \) by showing that in fact \(U^{\mu_a} \in H^1(\mathbb{R}^2) \), see Theorem 4.1. This improves the previous results in [2] and [4].

The paper is organized as follows: In the next section we prove the existence and uniqueness of the equilibrium measure \(\mu_a \) minimizing the energy \(I[\mu] \). In section 3 we discuss some basic properties of \(\mu_a \). In particular we show that there are two positive constants \(A_\Gamma \) and \(A_0 \) such that \(2U^{\mu_a} + Q = A_\Gamma \) on \(\text{supp} \mu_a \cap \Gamma \) and \(2U^{\mu_a} + Q = A_0 \) on \(\text{supp} \mu_a \setminus \Gamma \). Furthermore, \(A_\Gamma > A_0 \). This fact will be used later to show that \(\text{supp} \mu_a \setminus \Gamma \) and \(\text{supp} \mu_a \cap \Gamma \) are disjoint.

Our main result Theorem 4.1 is contained in section 4. To prove it we study the Fourier transformations of \(U^{\mu_a} \) and \(\mu_a \). It leads to some integral identity involving Bessel functions. This approach is based on a method of L. Carleson [3]. Finally, combining the results obtained, in section 5 we show that \(U^{\mu_a} \) solves the obstacle problem where the obstacle is given by

\[
\psi(x) = \begin{cases}
\frac{1}{2}(A_\Gamma - |x|^2) & \text{if } x \in \Gamma, \\
\frac{1}{2}(A_0 - |x|^2) & \text{if } x \in \mathbb{R}^2 \setminus \Gamma.
\end{cases}
\]

\(\psi(x) \) is contained in section 4. To prove it we study the Fourier transformations of \(U^{\mu_a} \) and \(\mu_a \). This fact will be used later to show that \(\text{supp} \mu_a \setminus \Gamma \) and \(\text{supp} \mu_a \cap \Gamma \) are disjoint.

Our main result Theorem 4.1 is contained in section 4. To prove it we study the Fourier transformations of \(U^{\mu_a} \) and \(\mu_a \). It leads to some integral identity involving Bessel functions. This approach is based on a method of L. Carleson [3]. Finally, combining the results obtained, in section 5 we show that \(U^{\mu_a} \) solves the obstacle problem where the obstacle is given by

\[
\psi(x) = \begin{cases}
\frac{1}{2}(A_\Gamma - |x|^2) & \text{if } x \in \Gamma, \\
\frac{1}{2}(A_0 - |x|^2) & \text{if } x \in \mathbb{R}^2 \setminus \Gamma.
\end{cases}
\]

2. Existence of minimizers

In this section we show the existence of a unique equilibrium measure.

\textbf{Theorem 2.1.} Suppose \(d = 2, \Gamma \subset \mathbb{R}^2 \) is a regular \(C^{1,\alpha} \) smooth planar curve without self-intersections. There is a unique minimizer \(\mu_a \in \mathcal{M}_a \) of \(I[\mu] \) such that

\[
I[\mu_a] = \inf_{\mu \in \mathcal{M}_a} I[\mu].
\]

\textbf{Proof.} Observe that the uniqueness follows from the convexity of \(\mathcal{M}_a \) and can be proved as in [4]. Moreover, \(I[\mu] \) is also semicontinuous. Thus, we have to show that \(I[\mu] \) is bounded by below for all \(\mu \in \mathcal{M}_a \).
and there is at least one \(\mu_0 \) such that \(I[\mu] \) is finite. The lower bound follows as in the proof of Theorem 1.3 (a) p. 27 [8].

It remains show that the \(\inf_{\mu \in \mathcal{M}_+} I[\mu] < \infty \). Let \(\chi_D \) denote the characteristic function of the set \(D \) and take

\[
\mu = a \frac{1}{L} \mathcal{H}^1(\Gamma \cap \Omega) + (1 - a) \frac{1}{|B|} \chi_B
\]

where \(B = B_\rho(z) = \{ x \in \mathbb{R}^2 : |x - z| < \rho \} \) with small \(\rho \) such that \(B \subset \Omega, \Omega \subset \mathbb{R}^2 \) is a compact, \(L = \mathcal{H}^1(\Gamma \cap \Omega) > 0, \) and \(\text{dist}(\Gamma, B) > 0 \). Observe that for this choice of \(\mu \) we have

\[
\int_\Omega \log \frac{1}{|x - y|} d\mu(x) = \frac{1}{L} \int_0^L \log \frac{1}{|\Gamma(t) - y|} dt + \frac{1}{|B|} \int_B \log \frac{1}{|x - y|} d\mu(x).
\]

Assuming that \(\Gamma \) is given by arc-length parametrization we have for the logarithmic energy (2.1)

\[
\mathcal{L}[\mu] = \frac{a^2}{L^2} \int_0^L \int_0^L \log \left| \frac{1}{|\Gamma(t) - \Gamma(s)|} \right| dt ds + \frac{2a(1 - a)}{L|B|} \int_0^L \int_B \log \left| \frac{1}{|\Gamma(t) - y|} \right| dtdy + \frac{(1 - a)^2}{|B|^2} \int_B \int_B \log \frac{1}{|x - y|} dx dy.
\]

Since \(\text{dist}(\Gamma, B) > 0 \) then the second integral is bounded. As for the last integral then after change of variables \(x - y = \xi \) we have

\[
\int_{B_\rho(z)} \log \left| \frac{1}{|x - y|} \right| dx = \int_{B_\rho(z - y)} \log \left| \frac{1}{|\xi|} \right| d\xi \leq \int_{B_\rho(0)} \log \left| \frac{1}{|\xi|} \right| dx < \infty
\]

where we used \(|x - y| \leq \rho \) and the fact that \(\rho \) is small by construction.

It remains to check that the first integral is finite. Let us fix \(s \in [0, L] \). Then we have that

\[
\int_0^L \log \frac{1}{|\Gamma(t) - \Gamma(s)|} dt = \int_{-s}^{L-s} \log \frac{1}{|\Gamma(t + s) - \Gamma(s)|} d\tau =
\]

\[
= \tau \log \left| \frac{1}{|\Gamma(t + s) - \Gamma(s)|} \right| - \int_{-s}^{L-s} \frac{1}{|\Gamma(t + s) - \Gamma(s)|^2} (\Gamma(t + s) - \Gamma(s)) d\tau =
\]

\[
= (L - s) \log \frac{1}{|\Gamma(L) - \Gamma(s)|} + s \log \frac{1}{|\Gamma(0) - \Gamma(s)|} - I_0
\]

where \(I_0 \) is the last integral. Using the crude estimate

\[
|I_0| \leq \int_{-s}^{L-s} \tau \left| \frac{1}{|\Gamma(t + s) - \Gamma(s)|} \right| d\tau = \int_{-s}^{L-s} \left| \frac{1}{|\Gamma(t + s) - \Gamma(s)|} \right| d\tau =
\]

\[
= \int_{[-s, L-s] \setminus (-\delta, \delta)} \left| \frac{1}{|\Gamma(t + s) - \Gamma(s)|} \right| d\tau + \int_{-\delta}^{\delta} \left| \frac{1}{|\Gamma(t + s) - \Gamma(s)|} \right| d\tau
\]

\[
\leq \frac{4L^2}{C_\delta} + \int_{-\delta}^{\delta} \left| \frac{1}{|\Gamma(t + s) - \Gamma(s)|} \right| d\tau
\]

because \(|\Gamma(t + s) - \Gamma(s)| \geq C_\delta \) if \(|\tau| \geq \delta \). Finally, from \(C^{1, \alpha} \) regularity of \(\Gamma \) we get

\[
|\Gamma(t + s) - \Gamma(s)| = |\tau| \left| \int_0^1 \frac{\dot{\Gamma}(\tau + s)}{d\sigma} - \int_0^1 \frac{\dot{\Gamma}(\tau + s) - \dot{\Gamma}(\sigma)}{d\sigma} \right|
\]

\[
\geq |\tau| \left(\left| \int_0^1 \frac{\dot{\Gamma}(\sigma + s)}{d\sigma} - \int_0^1 \frac{\dot{\Gamma}(\sigma + s) - \dot{\Gamma}(s)}{d\sigma} \right| \right)
\]

\[
\geq |\tau| (1 - \delta^\alpha).
\]
Combining (2.3) with (2.2) we get
\[|I_0| \leq \frac{4L^2}{C_\delta} + 2\delta (1 - \delta^\alpha) < \infty. \]

Returning to the first integral in (2.1) we infer
\[
\begin{align*}
\int_0^L \int_0^L \log \frac{1}{|\Gamma(t) - \Gamma(s)|} dt ds & \leq \int_0^L \left\{ (L - s) \log \frac{1}{|\Gamma(L) - \Gamma(s)|} + s \log \frac{1}{|\Gamma(0) - \Gamma(s)|} + \frac{4L^2}{C_\delta} + 2\delta (1 - \delta^\alpha) \right\} ds \\
& \leq L \left[\frac{4L^2}{C_\delta} + 2\delta (1 - \delta^\alpha) \right] + L \log \frac{1}{C_\delta} + \\
& \quad + \int_\delta^{L-\delta} \left\{ (L - s) \log \frac{1}{|\Gamma(L) - \Gamma(s)|} + s \log \frac{1}{|\Gamma(0) - \Gamma(s)|} \right\} ds \\
& \leq C(\delta, L)
\end{align*}
\]
if we choose \(\delta > 0 \) suitably small. This finishes the proof for \(d = 2 \).

Remark 2.2. If \(d \geq 3 \), \(Q(x) = |x|^2 \) then clearly \(I[\mu] \geq 0 \). The upper estimate for \(I[\mu] \) follows from a similar argument if we assume that \(\Gamma \) is a Lyapunov surface and take
\[
\mu = a \frac{1}{L} \mathcal{H}^{d-1}(\Gamma \cap \Omega) + (1 - a) \frac{1}{|B|} \chi_B
\]
with \(L = \mathcal{H}^{d-1}(\Gamma \cap \Omega) \) and \(\text{dist}(B, \Gamma) > 0 \). Therefore Theorem 2.1 remains valid for \(d \geq 3 \).

3. Basic properties of minimizers

In this section we prove some basic properties of the equilibrium measure. The arguments are along the line of those in [2]. Therefore, we mostly focus on those aspects of the proofs which are new or differ essentially. The results to follow are valid in \(\mathbb{R}^d, d \geq 2 \) unless otherwise stated.

Lemma 3.1. Let \(\mu_a \) be as in Theorem 2.1. Then \(\mu_a(\Gamma) = a \).

Proof. If the claim fails then \(\mu_a(\Gamma) > a \). Fix \(\delta \in (0, a) \) and let \(\mu_{a-\delta} \) be the minimizer of \(I[\cdot] \) over \(\mathcal{M}_{a-\delta} \supset \mathcal{M}_a \). Form \(\mu = (1 - \varepsilon)\mu_a + \varepsilon \mu_{a-\delta}, \varepsilon \in [0, 1] \). Clearly, \(\mu \in \mathcal{M}_a \) if we choose \(\varepsilon \delta \) sufficiently small because
\[
\mu(\Gamma) > a + [\mu_a(\Gamma) - a] - \varepsilon \delta.
\]

Consequently, we have from the strict convexity of \(I \)
\[
\begin{align*}
I[(1 - \varepsilon)\mu_a + \varepsilon \mu_{a-\delta}] & < (1 - \varepsilon)I[\mu_a] + \varepsilon I[\mu_{a-\delta}] = I[\mu_a] + \varepsilon (I[\mu_a] - I[\mu_a]) \\
& \leq I[\mu_a]
\end{align*}
\]
which is in contradiction with the fact that \(\mu_a \) is a minimizer. \(\square \)

Observe that the Fréchet derivative of \(I[\mu] \) is \(2U^{\mu_a} + Q \) where
\[
U^{\mu_a}(y) = \int K(x - y) d\mu_a(x).
\]
It is convenient to consider variations of the equilibrium measure in terms of affine combinations. More precisely, let \(\mu_\varepsilon = (1 - \varepsilon)\mu_a + \varepsilon\nu, \nu \in \mathcal{M}_a, \varepsilon \in [0, 1] \), then by direct computation we have that

\[
I[\mu_\varepsilon] = (1 - \varepsilon)^2 \int \int K(x - y)d\mu_a(x)d\mu_a(y) + 2\varepsilon(1 - \varepsilon) \int \int K(x - y)d\mu_a(x)d\nu(y) + \varepsilon^2 \int \int K(x - y)d\nu(x)d\nu(y) + (1 - \varepsilon) \int Qd\mu_a + \varepsilon \int Qd\nu
\]

\[
= I[\mu_a] + \varepsilon \left(2 \int \int K(x - y)d\mu_a(x)d(\nu(y) - \mu_a) + \int Qd(\nu - \mu_a) \right) + O(\varepsilon^2) = I[\mu_a] + \varepsilon \int (2U^{\mu_a} + Q)d(\nu - \mu_a) + O(\varepsilon^2).
\]

Since \(\mu_a \) is the minimizer then \(I[\mu_a] \leq I[\mu] \), and after sending \(\varepsilon \to 0 \) it follows that

\[
(3.2) \quad \int (2U^{\mu_a} + Q)d(\nu - \mu_a) \geq 0, \quad \forall \nu \in \mathcal{M}_a.
\]

Lemma 3.2. Let \(A_\Gamma = \frac{1}{a} \int \Gamma (2U^{\mu_a} + Q)d\mu_a \) then quasi everywhere

\[
(3.3) \quad 2U^{\mu_a} + Q = A_\Gamma \quad \text{on} \quad \Gamma \cap \text{supp} \, \mu_a,
\]

\[
2U^{\mu_a} + Q \geq A_\Gamma \quad \text{on} \quad \Gamma.
\]

Similarly, let us denote \(A_0 = \frac{1}{1 - a} \int_{\mathbb{R}^2 \setminus \Gamma} (2U^{\mu_a} + Q)d\mu_a \) then

\[
(3.4) \quad 2U^{\mu_a} + Q = A_0 \quad \text{on} \quad \text{supp} \, \mu_a \setminus \Gamma,
\]

\[
2U^{\mu_a} + Q \geq A_0 \quad \text{on} \quad \mathbb{R}^2 \setminus (\text{supp} \, \mu_a \setminus \Gamma).
\]

Furthermore,

\[
(3.5) \quad A_\Gamma > A_0.
\]

Proof. We first prove (3.3). Suppose that there is a set capacitable \(E \) of positive capacity such that \(\Gamma \cap E \) has zero capacity and

\[
2U^{\mu_a} + Q < A_\Gamma - \delta \quad \text{q.e. on} \quad E
\]

for some positive \(\delta \). Let \(\mu_E \) be the equilibrium measure of \(E \) and form \(\nu = \mu_a \mathbb{1}_{(\mathbb{R}^2 \setminus \Gamma)} + a\mu_E \). Clearly \(\nu \in \mathcal{M}_a \). Therefore, in view of (3.1) for the measure \(\mu_\varepsilon = \varepsilon \mu_a + (1 - \varepsilon)\nu \in \mathcal{M}_a \) we get

\[
I[\mu_\varepsilon] = I[\mu_a] + \varepsilon \left(2 \int \int K(x - y)d\mu_a(x)d(\nu(y) - \mu_a) + \int Qd(\nu - \mu_a) \right) + O(\varepsilon^2)
\]

\[
= I[\mu_a] + \varepsilon \int (2U^{\mu_a} + Q)d(a\mu_E - \mu_a) + O(\varepsilon^2)
\]

\[
= I[\mu_a] + \varepsilon \left(a \int \Gamma (2U^{\mu_a} + Q)d\mu_E - aA_\Gamma \right) + O(\varepsilon^2)
\]

\[
< I[\mu_a] - a\varepsilon\delta + O(\varepsilon^2)
\]

\[
< I[\mu_a]
\]
if ε and δ are sufficiently small. This will be in contradiction with the fact that μ_a is the minimizer. Thus we have proved that $2U^{\mu_a} + Q \geq A_\Gamma$ q.e. on Γ.

Next we show that on $\text{supp } \mu_a \cap \Gamma$ we have $2U^{\mu_a} + Q = A_\Gamma$ q.e. Indeed, from the definition of A_Γ it follows

$$aA_\Gamma = \int_\Gamma (2U^{\mu_a} + Q) d\mu_a \geq aA_\Gamma$$

where the last inequality follows from the first inequality in (3.3). The proof of (3.4) is similar. In order to prove the last claim $A_\Gamma > A_0$ we first observe that there exists a measure $\nu \in \mathcal{M}_a$ such that

- $a > \nu(\Gamma)$,
- $I[\nu] \leq I[\mu_a]$.

First notice that $\mathcal{M}_a \subset \mathcal{M}_{a-\delta}$ for $\delta \in (0, a)$. Fix such $\delta > 0$ and let $\mu_{a-\delta}$ be the minimizer of $I[\cdot]$ over $\mathcal{M}_{a-\delta}$. Then by Lemma 3.1 $\mu_{a-\delta}(\Gamma) = a - \delta < a$ and $I[\mu_{a-\delta}] = \inf_{\mathcal{M}_{a-\delta}} I[\mu] \leq I[\mu_a] = \inf_{\mathcal{M}_a} I[\mu]$. Therefore one can take $\nu = \mu_{a-\delta}$.

From the strict convexity of I it follows that

$$I[\nu] > I[\mu_a] + \langle DI[\mu_a], \nu - \mu_a \rangle$$

where $DI[\mu] = 2U^{\mu} + Q$ is the Fréchet derivative of $I[\mu]$. Therefore, from the properties of ν we infer

(3.7) $0 \geq I[\nu] - I[\mu_a] > \langle DI[\mu_a], \nu - \mu_a \rangle$

or equivalently

$$\langle 2U^{\mu_a} + Q, \nu - \mu_a \rangle < 0.$$

On the other hand

(3.8) $\int_\Gamma (2U^{\mu_a} + Q) d\mu_a = aA_\Gamma + (1 - a)A_0$

while

$$\int_\Gamma (2U^{\mu_a} + Q) d\nu = \int_\Gamma (2U^{\mu_a} + Q) d\nu + \int_{\mathbb{R}^2 \setminus \Gamma} (2U^{\mu_a} + Q) d\nu \geq \nu(\Gamma) A_\Gamma + \nu(\mathbb{R}^2 \setminus \Gamma) A_0.$$

This together with (3.8), (3.7) yields

$$aA_\Gamma + (1 - a)A_0 > \nu(\Gamma) A_\Gamma + (1 - \nu(\Gamma)) A_0 \Rightarrow A_0 (\nu(\Gamma) - a) > A_\Gamma (\nu(\Gamma) - a).$$

Finally, the property $\nu(\Gamma) < a$ implies that $A_\Gamma > A_0$. \hfill \square

Corollary 3.3. $\text{supp } \mu_a$ is compact.

Proof. If $d \geq 3$ then $K(x - y) \geq 0$, hence by Lemma 3.2 for $x \in \text{supp } \mu_a$ we have

(3.9) $\max(A_\Gamma, A_0) \geq 2U^{\mu_a}(x) + Q(x) \geq Q(x) \to \infty$ if $|x| \to \infty$

which is a contradiction. If $d = 2$ then from the triangle inequality we get that

(3.10) $K(x - y) \geq -\log |x| - \log \left(1 + \frac{|y|}{|x|}\right).$

Consequently, for $x \in \text{supp } \mu_a$

$$\max(A_\Gamma, A_0) \geq 2U^{\mu_a}(x) + Q(x) \geq Q(x) - 2 \log |x| - \int \log \left(1 + \frac{|y|}{|x|}\right) d\mu_a$$

$$= Q(x) - 2 \log |x| + O(1) \to \infty \quad \text{if } |x| \to \infty.$$
for sufficiently large $|x|$, where the last inequality follows from (4.12) and $\int Qd\mu_a < I[\mu_a] < \infty$. Since $Q = |x|^2$ (or for the general case from the hypotheses on Q (H1) – (H3)) it again follows that $\text{supp } \mu_a$ is bounded. □

4. Global L^2 estimates for U^{μ_a} and ∇U^{μ_a}

Our main result is contained in the following

Theorem 4.1. Let $U^{\mu_a}(y) = \int K(x - y)d\mu_a$, if $d \geq 3$ then $\nabla U^{\mu_a} \in L^2(\mathbb{R}^d)$. If $d = 2$ then $U^{\mu_a} \in H^1(\mathbb{R}^2)$.

Furthermore, there holds

\begin{equation}
\|U^{\mu_a}\|_{H^1(\mathbb{R}^2)} \leq CE[\mu_a].
\end{equation}

Here $E[\mu]$ is the energy of μ defined as $\int \int K(x - y)d\mu(x)d\mu(y)$.

Remark 4.2. It is shown in [3] that $E[\mu] > 0$ for any probability measure μ and $d \geq 2$. In fact, this can be seen from the proof to follow (see also Corollary 4.3).

Proof. The case $d \geq 3$ follows from Lemma 1.6 p. 92 [7] (see also Lemma 17 p. 95), which assert that

\[\frac{\partial U^{\mu_a}(x)}{\partial x_i} = \int \frac{\partial K(x - y)}{\partial x_i}d\mu_a \]

almost everywhere and moreover

\[\frac{1}{4\pi^2} \int_{\mathbb{R}^d} |\nabla U^{\mu_a}|^2 \leq \int \int K(x - y)d\mu_a(x)d\mu_a(y) = E[\mu_a]. \]

The case of the logarithmic potential follows from a modification of the argument by L. Carleson [3] Lemma 3 page 22. We begin with computing the Fourier transformation of K. Note that since $\text{supp } \mu_a$ is compact we can assume that $K(r) = 0$ for $r \geq r_0$ for some fixed $r_0 > 0$. We have

\[\hat{K}(\xi) = \int K(x)e^{-2\pi i \langle x, \xi \rangle}dx = \int K(x)e^{-2\pi i \langle x, \frac{\xi}{|\xi|} \rangle}dx = \frac{1}{4\pi^2|\xi|^2} \int K\left(\frac{y}{2\pi|\xi|}\right)e^{i\langle y, \frac{\xi}{|\xi|} \rangle}dx. \]

Let us denote $K_0(y) = K\left(\frac{y}{2\pi|\xi|}\right)$ and define

\[F(\eta) = \int K_0(y)e^{i\pi \langle y, \eta \rangle}, \quad \eta = \frac{\xi}{|\xi|}. \]

From Lemma 2 p. 21 [3] it follows that there is a universal constant c_1 such that

\[F(\eta) = c_1 \int_0^\infty K_0(r)J(r)rdr, \quad |\eta| = 1 \]

where J is the Bessel function

\begin{equation}
J(r) = -J''(r) - \frac{J'(r)}{r}, \quad J(0) = 1, J'(0) = 0, \quad J(r) < 1, r \neq 0.
\end{equation}
Therefore $F(\eta)$ can be further simplified as follows

\[(4.3)\quad F(\eta) = -c_1 \int_0^\infty K_0(r)(rJ(r))'dr = c_1 \int_0^{2\pi|\xi| r_0} rJ'(r)K_0'(r)dr\]

because from the definition of K_0 we have $\text{supp } K_0 \subset [0, 2\pi|\xi| r_0]$. Moreover, $K_0'(r) = -\frac{1}{r}$ hence

\[(4.4)\quad F(\eta) = c_1(1 - J(2\pi|\xi| r_0)).\]

Consequently,

\[(4.5)\quad \hat{K}(\xi) = \frac{c_1}{4\pi^2|\xi|^2}(1 - J(2\pi|\xi| r_0)).\]

Next we restrict $\mu_1 = \mu_a \upharpoonright \mathcal{C}$ where $\mathcal{C} \subset \text{supp } \mu_a$ is a compact such that U^{μ_1} is continuous. Observe that $\int U^{\mu_a}d\mu_a$ is finite hence U^{μ_a} is finite μ_a almost everywhere. By Theorem 1.8 p. 70 [7] for every $\varepsilon > 0$ small there is a restriction of μ_a such that

\[0 \leq \int \mu_a - \int \mu_1 < \varepsilon.\]

Note that if $\tau = \mu_a - \mu_1$ then we have

\[|E[\mu_a] - E[\mu_1]| = \left| \int U^{\mu_a-\mu_1}d\mu_a + \int U^{\mu_a-\mu_1}d\mu_1 \right| = \left| \int (U^{\mu_a} + U^{\mu_1})d\tau \right| = O(\varepsilon).\]

Let $\phi_n(y) = n^\frac{d}{2}e^{-n\pi|y|^2}$ be the sequence of normalised Gaussian kernels. It is well-known that ϕ_n is a mollification kernel for every $n \in \mathbb{N}$ and moreover $\hat{\phi}_n = e^{-\frac{1}{n}|\xi|^2}$. From the Parseval relation

\[(4.6)\quad \int (\phi_n * U^{\mu_1})d\mu_1 = \int \hat{\phi}_n \hat{K}|\mu_1|^2.\]

If we first send $n \to \infty$ and then $\varepsilon \to 0$ to conclude the identity

\[(4.7)\quad E[\mu_a] = \int \hat{K}|\mu_a|^2.\]

On the other hand $\hat{U}^{\mu_a} = \hat{K}\hat{\mu_a}$, which yields

\[(4.8)\quad E[\mu_a] = \int \hat{K}(\xi)\frac{|\hat{U}^{\mu_a}(\xi)|^2}{|\hat{K}(\xi)|^2}d\xi = \int \frac{4\pi^2|\xi|^2}{c_1(1 - J(2\pi r_0|\xi|))}|\hat{U}^{\mu_a}(\xi)|^2d\xi = \int_{|\xi| < \delta} + \int_{|\xi| \geq \delta}.\]

Using the expansion $J(t) = \sum_{s=0}^{\infty} \frac{(-1)^s}{(s!)^2} \left(\frac{1}{2} \right) 2^s = 1 - \frac{t^2}{4} + \frac{t^4}{64} + \ldots$ we see that

\[\frac{4\pi^2|\xi|^2}{c_1(1 - J(2\pi r_0|\xi|))} = \frac{1}{r_0^2c_1} \left(1 - \frac{2\pi r_0|\xi|}{t_0} + \frac{4}{16} \ldots \right)\]
hence the first integral is bounded below by \(C(\delta) \frac{1}{r_0} \int_{|\xi| < \delta} |\hat{U}^{\mu_a}(\xi)|^2 d\xi \) for sufficiently small \(\delta > 0 \). As for the second integral, we have

\[
(4.9) \quad \int_{|\xi| \geq \delta} \frac{4\pi^2|\xi|^2}{c_1(1 - J(2\pi r_0|\xi|))} |\hat{U}^{\mu_a}(\xi)|^2 d\xi \geq \frac{4\pi^2\delta^2}{c_1} \int_{|\xi| \geq \delta} |\hat{U}^{\mu_a}(\xi)|^2 d\xi.
\]

Combining we see that \(\hat{U}^{\mu_a} \in L^2(\mathbb{R}^2) \) which, after we apply Parseval’s relation again, yields \(U^{\mu_a} \in L^2(\mathbb{R}^2) \) and

\[
(4.10) \quad ||U^{\mu_a}||_{L^2(\mathbb{R}^2)} \leq C\mathcal{E}[\mu_a].
\]

To finish the proof we use that \(4\pi^2|\xi|^2|\hat{U}^{\mu_a}|^2 = |\nabla \hat{U}^{\mu_a}|^2 \) which together with (4.8) implies that

\[
(4.11) \quad \mathcal{E}[\mu_a] = \int \frac{1}{c_1(1 - J(2\pi r_0|\xi|))} |\nabla \hat{U}^{\mu_a}(\xi)|^2 d\xi \geq \frac{1}{c_1} \int |\nabla \hat{U}^{\mu_a}(\xi)|^2 d\xi
\]

which finishes the proof.

\[\square \]

Corollary 4.3. Let \(\mu_a \) be as in Theorem 2.1. Then there holds

\[
(4.12) \quad \mathcal{E}[\mu_a] = \int U^{\mu_a} d\mu_a > 0.
\]

5. **The thin obstacle problem**

From the \(H^1(\mathbb{R}^2) \) estimate for \(U^{\mu_a} \) it follows that \(U^{\mu_a} \) is a solution to some variational inequality, and hence \(U^{\mu_a} \) can be interpreted as a solution to an obstacle problem with a combination of both thin (on \(\Gamma \)) and ”thick” obstacles (on \(\mathbb{R}^2 \setminus \Gamma \)). It is convenient to define the obstacle as follows

\[
(5.1) \quad \psi(x) = \begin{cases}
\frac{1}{2}(A_{\Gamma} - |x|^2) & \text{if } x \in \Gamma, \\
\frac{1}{2}(A_0 - |x|^2) & \text{if } x \in \mathbb{R}^2 \setminus \Gamma.
\end{cases}
\]

Lemma 5.1. Let \(U^{\mu_a} \) be the logarithmic potential of \(\mu_a \) and define

\[
\mathcal{K} = \{ v \in H^1_{loc}(\mathbb{R}^2) \text{ s.t. } v - U^{\mu_a} \text{ has bounded support in } \mathbb{R}^2, \, v \geq \psi \}.
\]

Then \(U^{\mu_a} \) solves the following obstacle problem:

\[
\int \nabla U^{\mu_a} \nabla (v - U^{\mu_a}) \geq 0, \quad \forall v \in \mathcal{K}.
\]

The proof is the same as in [2].

Corollary 5.2. \(\text{dist}(\Gamma, \text{supp}(\mu_a \setminus \Gamma)) > 0. \)

Proof. This follows from the estimate \(A_{\Gamma} > A_0. \) Indeed, let us assume that \(x_0 \in \Gamma \cap \text{supp} \mu_a \) and there is a sequence \(\{x_k\}_{k=1}^\infty, x_k \in \text{supp} \mu_a \setminus \Gamma \) such that \(\lim_{k \to \infty} x_k = x_0. \) Using the lower semicontinuity of \(U^{\mu_a} \) (see Lemma 1 p.15 [3]) we see that

\[
(5.2) \quad \frac{1}{2}(A_0 - |x_0|^2) = \liminf_{x_k \to x_0} U^{\mu_a}(x_k) \geq U^{\mu_a}(x_0).
\]

Let \(\rho > 0 \) be such that \(\{x_k\} \subset B_{\rho}(x_0). \) If \(\rho \) is small then \(\Gamma \) divides \(B_{\rho}(x_0) \) into two parts \(D^+ \) and \(D^- \). To fix the ideas let us suppose that \(D^+ \) contains a subsequence \(\{x_k\}. \) Let \(h \) be the harmonic function in \(D^+ \)
such that \(h = \psi \) on \(\partial D^+ \). Observe that \(h \) is continuous at \(x_0 \) because \(\Gamma \in C^{1,\alpha} \). Since \(U^{\mu_a} \) is superharmonic and on \(\partial D^+ \) we have \(U^{\mu_a} \geq \psi = h \) then the comparison principle implies that

\[
U^{\mu_a}(x_0) \geq h(x_0) = \frac{1}{2}(A_\Gamma - |x_0|^2).
\]

Combining (5.2) and (5.3) we see that \(A_0 \geq A_\Gamma \) which is a contradiction in view of (3.5). \(\square \)

From Corollary 5.2 it follows that near \(\Gamma \) the potential \(U^{\mu_a} \) is a solution to a thin obstacle problem in the following sense, see [5] p. 108:

\[
U^{\mu_a} \geq \frac{1}{2}(A_\Gamma - Q)
\]

\[
\frac{\partial U^{\mu_a}}{\partial n^+} + \frac{\partial U^{\mu_a}}{\partial n^-} \geq 0
\]

\[
(u - \frac{1}{2}(A_\Gamma - Q)) \left(\frac{\partial U^{\mu_a}}{\partial n^+} + \frac{\partial U^{\mu_a}}{\partial n^-} \right) = 0
\]

on \(\Gamma \)

where \(n^\pm \) are the outward normals on the \(\Gamma \) corresponding to the domains that \(\Gamma \) separates. In particular, if \(\Gamma \) is \(C^3 \) regular then \(U^{\mu_a} \) is \(C^{1,\alpha} \) up to \(\Gamma \) from each of its side, see Theorem 11.4 p.111 [5].

A particular case is \(\Gamma = \mathbb{R} \) [4]. Using a simple symmetrization argument (see e.g. [6] p. 119 Theorem 4.6) we can show that the potential \(U^{\mu_a} \) is symmetric w.r.t. the real line and hence we get the Signorini problem near \(\mathbb{R} \) [5] p. 111.

One can make the connections with the obstacle problem more explicit by using the \(H^1(\mathbb{R}^2) \) estimate in Theorem 4.1 and transforming the energy \(I[\mu_a] \). Let \(R > 0 \) be fixed then using the divergence theorem

\[
\int_{B_R} U^{\mu_a} d\mu_a = -\frac{1}{2\pi} \int_{\partial B_R} U^{\mu_a} \Delta U^{\mu_a} = -\frac{1}{2\pi} \int_{\partial B_R} U^{\mu_a} \frac{\partial}{\partial n} U^{\mu_a}.
\]

For a.e. \(R > 0 \) the last integral can be estimated as follows

\[
\left| \int_{\partial B_R} U^{\mu_a} \frac{\partial}{\partial n} U^{\mu_a} \right| \leq \int_{\partial B_R} |U^{\mu_a}| |\nabla U^{\mu_a}| \leq \int_{\partial B_R} |U^{\mu_a}|^2 + |\nabla U^{\mu_a}|^2.
\]

From Theorem 4.1 and Fubini’s theorem it follows that

\[
\int_{\mathbb{R}^2} (|U^{\mu_a}|^2 + |\nabla U^{\mu_a}|^2) = \int_0^\infty \int_{\partial B_R} (|U^{\mu_a}|^2 + |\nabla U^{\mu_a}|^2) dR.
\]

Consequently,

\[
\int_{\partial B_R} |U^{\mu_a}|^2 + |\nabla U^{\mu_a}|^2 \to 0 \quad R \to \infty
\]

and we infer from (5.5) that

\[
\int_{\mathbb{R}^2} U^{\mu_a} d\mu_a = \frac{1}{2\pi} \int_{\mathbb{R}^2} |\nabla U^{\mu_a}|^2.
\]

Recalling that by Corollary 3.3 \(\text{supp} \mu_a \subset B_{r_0} \) for some \(r_0 > 0 \) and using the divergence theorem again we conclude

\[
\int_{B_{r_0}} |x|^2 d\mu_a = -\frac{1}{2\pi} \int_{B_{r_0}} |x|^2 \Delta U^{\mu_a} = -\frac{1}{2\pi} \int_{B_{r_0}} U^{\mu_a} \Delta |x|^2 + \frac{1}{2\pi} \int_{\partial B_{r_0}} (2r_0 U^{\mu_a} - r_0^2 \frac{\partial}{\partial n} U^{\mu_a})
\]

\[
\int_{\partial B_{r_0}} U^{\mu_a} + \frac{r_0}{\pi} \int_{\partial B_{r_0}} U^{\mu_a} + r_0^2.
\]
Combining these we have that the energy can be rewritten in terms of U^μ_a in the following form

$$I[\mu_a] = \frac{1}{2\pi} \int_{\mathbb{R}^2} |\nabla U^\mu_a|^2 - \frac{2}{\pi} \int_{B_{r_0}} U^\mu_a + \frac{r_0}{\pi} \int_{\partial B_{r_0}} U^\mu_a + r_0^2.$$

REFERENCES

School of Mathematics, The University of Edinburgh, Peter Tait Guthrie Road, EH9 3FD, Edinburgh, UK
E-mail address: aram6k@gmail.com