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Abstract 

Humanity is facing existential, societal challenges related to food security, ecosystem 
conservation, antimicrobial resistance, etc, and Artificial Intelligence (AI) is already 
playing an important role in tackling these new challenges. Most current AI approaches 
are limited when it comes to ‘knowledge transfer’ with humans, i.e. it is difficult to 
incorporate existing human knowledge and also the output knowledge is not human 
comprehensible. In this chapter we demonstrate how a combination of comprehensible 
machine learning, text-mining and domain knowledge could enhance human-machine 
collaboration for the purpose of automated scientific discovery where humans and 
computers jointly develop and evaluate scientific theories. As a case study, we 
describe a combination of logic-based machine learning (which included human-
encoded ecological background knowledge) and text-mining from scientific 
publications (to verify machine-learned hypotheses) for the purpose of automated 
discovery of ecological interaction networks (food-webs) to detect change in 
agricultural ecosystems using the Farm Scale Evaluations (FSEs) of genetically 
modified herbicide-tolerant (GMHT) crops dataset. The results included novel food-
web hypotheses, some confirmed by subsequent experimental studies (e.g. DNA 
analysis) and published in scientific journals. These machine-leaned food-webs were 
also used as the basis of a recent study revealing resilience of agro-ecosystems to 
changes in farming management using GMHT crops. 
 

1. Introduction  

Humanity is facing existential, societal challenges related to the well-being and 
sustaining a growing population of 7.7 billion people and issues such as food 
security, the use of biotechnology in agriculture and medicine, antimicrobial 
resistance (AMR) and the emergence of new pathogens and pandemic 
diseases. 
Scientists are today equipped with an ever-growing amount of human 
knowledge and empirical data in addition to advanced technologies such as 
Artificial Intelligence (AI). AI and Machine Learning are already playing an 
important role in tackling these new scientific challenges. For example, AI in the 
form of Deep Learning has recently been used in the discovery of a new 
candidate antibiotic which has been successfully tested against a range of 
antibiotic-resistant strains of bacteria (Stokes et. al, 2020). 
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Despite great potential for new scientific discoveries, most current AI 
approaches, including Deep Learning, are limited when it comes to ‘knowledge 
transfer’ with humans. It is difficult to incorporate existing human knowledge 
and the output knowledge is not human comprehensible. Knowledge transfer 
is, however, a critically important part of Human-Machine Discovery which is 
necessary for collaboration between humans and AI.  
Human-machine knowledge transfer is the subject of Human-Like Computing, 
also known as Third Wave of AI. Human-Like Computing (HLC) research aims 
to endow machines with human-like perception, reasoning and learning abilities 
which support collaboration and communication with human beings. Such 
abilities should support computers in interpreting the aims and intentions of 
humans based on learning and accumulated background knowledge. 
Figure 1 shows the change in perspective which HLC represents in AI research, 
in particular with regards to knowledge transfer with humans. The idea of 
incorporating human knowledge in AI is not new and it was the basis of Expert 
Systems in 1980s where machines were dependent on being fed explicit 
knowledge from human experts (Figure 1a). However, incorporating existing 
knowledge and knowledge transfer are limited in the present black-box forms 
of AI where computers learn from Big Data, while humans are excluded from 
both the knowledge development cycle and the understanding of output 
knowledge (Figure 1b). In HLC, by contrast, humans and machines are viewed 
as co-developers of knowledge (Figure 1c). In the HLC world, we envisage a 
symmetric form of learning in which humans derive explicit knowledge from 
machines, and machines learn from humans and other data sources.  
This form of two-way human-machine learning is also related to ultra-strong 
machine learning as defined by Michie (1988). Michie’s aim was to provide 
operational criteria for various qualities of machine learning which include not 
only predictive performance but also comprehensibility of learned knowledge. 
His weak criterion identifies the case in which the machine learner produces 
improved predictive performance with increasing amounts of data. The strong 
criterion additionally requires the learning system to provide its hypotheses in 
symbolic form. Lastly, the ultra-strong criterion extends the strong criterion by 

Figure 1 Perspective of Human-Machine knowledge transfer as variants of AI research. a) 
Expert Systems (1980s) with a dependence on manual encoding of human knowledge, b) 
Deep Learning and Big Data in which humans are excluded from the encoded knowledge 
and c) Human-Like Computing (HLC) in which Humans and Computers jointly develop and 
share knowledge. 
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requiring the learner to teach the hypothesis to a human, whose performance 
is consequently increased to a level beyond that of the human studying the 
training data alone.  
In this chapter we demonstrate how a logic-based machine learning approach 
could meet the ultra-strong criterion and how a combination of this machine 
learning approach, text-mining and domain knowledge could enhance human-
machine collaboration for the purpose of automated scientific discovery where 
humans and computers jointly develop and evaluate scientific theories.  
As a case study, we describe a combination of the logic-based machine 
learning (which included human-encoded ecological background knowledge) 
and text-mining from scientific publications (to evaluate machine-learned 
hypotheses and also to identify potential novel hypotheses) for the purpose of 
automated discovery of ecological interaction networks (food-webs) from a 
large-scale agricultural dataset. Many of the learned trophic links were 
corroborated by the literature: in particular, links ascribed with high probability 
by machine learning corresponded with those having multiple references in the 
literature. In some cases, previously unobserved but high probability links were 
suggested and subsequently confirmed by subsequent experimental studies. 
These machine-learned food-webs were also the basis of a recent study (Ma 
et. al., 2019) revealing resilience of agro-ecosystems to changes in farming 
management using genetically modified herbicide-tolerant (GMHT) crops.  
This chapter is organised as follows. Sec. 2 describes the scientific problem 
and dataset. The knowledge gap for modelling agro-ecosystems is discussed 
in Sec. 3. Sec. 4 describes a machine learning approach for automated 
discovery of ecological networks. The ecological evaluation of the results and 
subsequent discoveries are discussed in Sec. 5. Sec. 6 concludes the chapter. 
 

2. Scientific problem and dataset: Farm Scale Evaluations (FSEs) of 
GMHT crops 
 
Humanity is facing great challenges to feed the growing population of 7.7 billion 
people and sustainable management of ecosystems and growth in agricultural 
productivity is at the heart of the United Nations’ Sustainable Development 
Goals for 2030.  Innovative agricultural management will be required to 
minimise greenhouse gas emissions and enrich biodiversity, provide sufficient 
nutritious food and maintain farmers’ livelihoods and thriving rural economies.  
Predicting system-level effects will be crucial to introducing management that 
optimises delivery of many potentially conflicting objectives of agricultural, 
environmental and social policy.  
 
Replacing existing conventional weed management with GMHT crops, for 
example, might reduce herbicide applications and increase crop yields. 
However, this requires an evaluation of the risks and opportunities owing to 
concerns about potential adverse impacts of GMHT crop management on 
biodiversity and the functioning of the agro-ecosystems. 
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The Farm Scale Evaluations (FSE) was a three-year study to test the effects of 
GMHT crop management on farmland biodiversity across the United Kingdom, 
and the details of farmland selection and crop field design are described in 
(Champion et al. 2003; Bohan et al. 2005). To summarize, a split-field design 
was used in 64 beet, 57 maize, 65 spring-sown oilseed rape and 65 winter-
sown oilseed rape sites in the UK (see Figure 2). Each crop field was split 
approximately in half and a conventional and GMHT variety of one of the crops 
assigned randomly to each half. Plant and invertebrate species were sampled 
using a variety of standard ecological protocols. Taxa identity and abundance 
information were recorded within the field across all the sites. Approximately 
60,000 field visits were made, sampling some 930,000 plants and 650,000 
seeds that were identified to species. In excess of 2 million invertebrates were 
sampled, and 24,000 bees and 18,000 butterflies counted on the transect 
walks.  
 
The overarching null hypothesis for the FSEs was that “there was no effect of 
the herbicide management of GMHT crops on biodiversity”, but with the 
expectation that effects on biodiversity would be mediated by a combination of 
the direct effects of herbicides killing weed plants and indirect effects on wider 
biodiversity through the loss of refuge and food resources provided by these 
weeds. The FSE scientists and steering committee agreed that a biologically 
significant effect on any taxon was a change in amount (count, density, 
biomass) of 50%, either up or down.  
 
The sample data were analysed on a taxon by taxon basis using statistical 
approaches such as ANOVA (Perry et al., 2003). The null hypothesis was 
tested with a paired randomization test using the treatment effect, d (computed 
as d = log10(GM + 1) – log10(C + 1)), for the difference in count for a taxon due 
to management in the GM and Conventional half-fields. The results of the 
analyses demonstrated that there were significant changes to the amounts of 
some taxa of weeds, surface dwelling invertebrates and bees and butterflies in 
the different crops, with some going up and others down in the GMHT.  
 

Figure 2 Map of study fields in the FSEs. The circles show the locations of the field sites of 
spring-sown beet, maize and oilseed rape, and winter-sown oilseed rape overlain across UK. 
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Assessment of the probable changes to biodiversity from adopting GMHT crops 
was used to inform decision-making by regulatory authorities and companies.  
For a variety of environmental policy and commercial reasons, none of the 
crops were commercialised in the UK. Nevertheless, the FSE dataset is the 
largest agro-ecological census dataset collected to date and it provided the 
agricultural Big Data used in the human-machine discovery of agro-ecological 
networks described in this chapter. Network reconstruction was done from 
invertebrate abundances sampled in the Vortis suction sampling and Pitfall 
trapping protocols. A new study using these machine-learned food-webs has 
also revealed that network-level responses in GMHT crop fields are remarkably 
similar in their composition, network properties, and responses to simulated 
trajectories of species removals, to their conventional counterparts, suggesting 
the resilience of agro-ecosystems to changes in farming management using 
GMHT crops (see Section 5). 

3. The knowledge gap for modelling agro-ecosystems: ecological 
networks 
The agro-ecological, mechanistic underpinning of ecosystem services, their 
response to change and how they interact is still poorly understood, as 
exemplified by the so-called “optimist’s scenario” (Pocock et al. 2012), which 
may be summarized as ‘the management of one ecosystem service, for 
improved outcomes, benefits the outcomes of all ecosystem services.’ The 
specific dependencies of one service on any other are only poorly understood 
and the validity of this scenario at system-relevant scales can only be guessed. 
 
Since ecosystems are structured by flows of energy (biomass) between primary 
producer plants (autotrophs) and consumers (heterotrophs), such as 
invertebrates, mammals and birds (Lindeman 1942, Dickinson and Murphy 
1998), food-webs are key explanations of ecosystem structure and dynamics 
that could be used to understand and predict responses to environmental 
change (Odum, 1974; Caron-Lormier et al., 2009; Cohen, Schittler, Raffaelli 
and Reuman, 2009, Woodward et al., 2012). 
 
Still relatively few ecosystems have been described and detailed using food 
webs because establishing interactions, such as predation, between the many 
hundreds of species in an ecosystem is resource intensive, requiring 
considerable investment in field observation and laboratory experimentation 
(Ings et al 2009). Across such large datasets, it is often difficult to relate 
observational data sampled in protocols that have different basic metrics, such 
as density or activity-density or absolute abundance. Increasing the efficiency 
of testing for trophic links by filtering out unlikely interactions is typically not 
possible because of uncertainty about basic background knowledge of the 
network, such as whether any two species are likely even to come into contact 
and then interact (Ings et al 2009). In addition, it may require considerable 
analysis and interpretation to translate from the ecological ‘language’ of sample 
data (count, abundance, density, etc.) to the network language of nodes and 
links within a trophic network. Consequently, of those ecosystems that have 
been studied using trophic network approaches, component communities that 
provide known, valuable ecosystem services or those that are experimentally 
tractable or under threat have most often been evaluated (Ings et al 2009).  
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To make good decisions about ecosystem management, e.g. the management 
of agricultural land for the optimal delivery of ecosystem services, it is 
necessary to have theories that predict the effects of perturbation on 
ecosystems. Network ecology, and in particular food-webs, holds great promise 
as an approach to modeling and predicting the effects of perturbation on 
ecosystems. Networks of trophic links (i.e. food-webs) that describe the flow of 
energy/biomass between species, are important for making predictions about 
ecosystem structure and dynamics. However, relatively few ecosystems have 
been studied through detailed food-webs because establishing predation 
relationships between the many hundreds of species in an ecosystem is 
expensive, and in many cases, impractical. This is mainly because establishing 
predation relationships between the many hundreds of species in an ecosystem 
requires specialist expertise in species identification and considerable 
investment in field observation and laboratory experimentation. 
 
The difficulties in deriving ecological networks therefore severely limit our ability 
to model and predict responses to changes in ecosystem management and any 
technique which can automate the discovery of plausible trophic links from 
ecological data is highly desirable. 
 

4. Automated discovery of ecological networks from FSE data and 
ecological background knowledge 
 
Many forms of Machine Learning, such as Neural Nets and Support Vector 
Machines, cannot make use of domain knowledge (i.e. ecological knowledge in 
this study). By contrast, Inductive Logic Programming (ILP) techniques 
(Muggleton 1991; Muggleton and De Raedt 1994) support the inclusion of such 
background knowledge and allow the construction of hypotheses that describe 
structure and relationships between sub-parts. ILP systems use given example 
observations E and background knowledge B to construct a hypothesis H that 
explains E relative to B. The components E, B and H are each represented as 
logic programs. Since logic programs can be used to encode arbitrary computer 
programs, ILP is arguably the most flexible form of Machine Learning, which 
has allowed it to be successfully applied in complex problems (Santos et al. 
2012; Bohan et al. 2011; Tsunoyama et al. 2008). 
 
In this section we describe an Abductive ILP approach which has been used to 
automatically generate plausible and testable food-web theories from 
ecological census data and existing ecological background knowledge. The 
main role of abductive reasoning in machine learning of scientific theories is to 
provide hypothetical explanations of empirical observations (Flach and Kakas 
2000). Then, based on these explanations, we try to inject back into the 
scientific theory new information that helps complete the theory. This process 
of generating abductive explanations and updating theory can be repeated as 
new observational data become available. The process of abductive learning 
can be described as follows. Given a theory, T, that describes our incomplete 
knowledge of the scientific domain and a set of observations, O, we can use 
abduction to extend the current theory according to the new information 
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contained in O. The abduction generates hypotheses that entail a set of 
experimental observations subject to the extended theory being self-consistent. 
Here, entailment and consistency refer to the corresponding notions in formal 
logic. Abductive Logic Programming (Kakas et al. 1993) is typically applied to 
problems that can be separated into two disjoint sets of predicates: the 
observable predicates and the abducible predicates. In practice, observable 
predicates describe the empirical observations of the domain that we are trying 
to model. The abducible predicates describe underlying relations in our model 
that are not observable directly but can, through the theory T, bring about 
observable information. Hence, the hypothesis language (i.e. abducibles) can 
be disjoint from the observation language. We may also have background 
predicates (prior knowledge), which are auxiliary relations that help us link 
observable and abducible information.  
 
In many implementations of abductive reasoning, such as that of Progol 5.0 
(Muggleton and Bryant 2000), as used in this chapter, the approach taken is to 
choose the explanation that ‘best’ generalises under some form of inductive 
reasoning. This link to induction then strengthens the role of abduction to 
machine learning and the development of scientific theories. We refer to this 
approach as Abductive ILP (A/ILP). 
 
A/ILP has been used in a series of studies involving the inference of biological 
network models from example data. In Tamaddoni-Nezhad et al. (2006) 
encoding and revising logical models of biochemical networks was done using 
A/ILP to provide causal explanations of rat liver cell responses to toxins. The 
observational data consisted of up and down regulation patterns found in high 
throughput metabonomic data. This approach was further extended by 
Sternberg et al. (2013), where a mixture of linked metabonomic and gene 
expression data was used to identify biosynthetic pathways for capsular 
polysaccharides. In this case ILP was shown to provide a robust strategy to 
integrate results from different experimental approaches. 
 
A/ILP was also used Tamaddoni-Nezhad et al. (2012) to infer probabilistic 
ecological networks from the FSE data described in Section 2. The Vortis and 
Pitfall datasets used for the machine learning were year total data, produced by 
summing the counts from each sample date, for each taxon in each half-field. 
This raw data was used to measure a treatment effect ratio: counts from each 
conventional and GMHT half-field pair were converted into a geometric 
treatment ratio, as used in Haughton et al. (2003). Counts were log-
transformed, using formula Lij = log10(Cij +1), where Cij is the count for a species 
or taxon in treatment i at site j. Sites where (C1j + C2j) ≤ 1 were removed from 
the learning dataset (as in Haughton et al. 2003). The treatment ratio, R, was 
then calculated as R = 10d where d = (L2j – L1j). Following the rationale in Squire 
et al. (2003), important differences in the count between the two treatments 
were considered to be greater than 50%. Thus, treatment ratio values of R < 
0.67 and R > 1.5 were regarded as important differences in count with direction 
of down (decreased) and up (increased) in the GMHT treatment, respectively. 
This information on up and down abundances is considered as our 
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observational data for the learning and can be represented by predicate 
abundance(X, S, up) (or abundance(X, S, down)) stating the fact that the 
abundance of species  X at site S is up (or down). 
 
The knowledge gap that we initially aimed to fill was a predation relationship 
between species. Thus, we declare abducible predicate eats(X, Y) capturing 
the hypothesis that species X eats species Y. It is clear that this problem has 
properties that require an abductive learning approach such as A/ILP: firstly, 
the theory describing the problem is incomplete; and secondly, the problem 
requires learning in the circumstance in which the hypothesis language is 
disjoint from the observation language.   
 
In order to use abduction, we also need to provide the rules which describe the 
observable predicate (abundance) in terms of the abducible predicate (eats):  
 
abundance(X, S, Dir):-  

predator(X), 
bigger_than(X, Y), 
abundance(Y, S, Dir), 
eats(X, Y). 

 
where Dir can be either up or down. This Prolog rule expresses the inference 
that following a perturbation in the ecosystem (caused by the management), 
the increased (or decreased) abundance of species X at site S can be explained 
by X eating species Y, and the abundance of species Y is increased (or 
decreased). This rule also includes additional conditions to constraint the 
search for abducible predicate eats(X, Y). These constraints are 1) X should be 
a predator and 2) X should be bigger than Y. Predicates predator(X) and 
bigger_than(X, Y) are provided as part of the background knowledge. The 
‘ecological’ background knowledge that a predator should be bigger than a prey 
was provided by the domain expert.  
 
Given this model and the observable data, the Abductive ILP system Progol 5.0 
(Muggleton and Bryant 2000) was used to generate a set of ground abductive 

abundance(a, s1, down).
abundance(a, s2, down).
abundance(a, s3, down).
abundance(a, s4, down).
abundance(b, s1, up).
abundance(b, s2, up).
abundance(b, s3, down).
abundance(b, s4, down).
abundance(c, s1, down).
...

Observables

Ground hypotheses (Abduction)

Background knowledge
abundance(X, S, Dir):-

predator(X),
bigger_than(X, Y),
abundance(Y, S, Dir),
eats(X, Y).

eats(a, b).
eats(a, c).
eats(b, d).
eats(b, e).
eats(c, f).
.
.
.

a

b

d e f

c

X

Y Z

Observables

Ground hypotheses (Abduction)

Background knowledge
abundance(X, S, Dir):-

predator(X),
bigger_than(X, Y),
group(X, XG),
group(Y, YG),
abundance(Y, S, Dir),
eats(XG, YG).

group(a, g).
group(b, h). 
...

eats(g, h).
eats(g, k).
eats(h, l).
eats(k, l).
.
.
.

g

h k

l

abundance(a, s1, down).
abundance(a, s2, down).
abundance(a, s3, down).
abundance(a, s4, down).
abundance(b, s1, up).
abundance(b, s2, up).
abundance(b, s3, down).
abundance(b, s4, down).
abundance(c, s1, down).
...

Figure 3 Machine learning of species (left) and functional (right) food-webs from ecological data 
using Abductive ILP. 
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hypotheses in the form of ‘eats’ relations between species as shown in Fig. 3. 
These abductive hypotheses are generated by matching observable input 
against the background knowledge (which includes the rule describing the 
observable predicate in terms of abducible predicate). In general, many choices 
for matching could be made, leading to a variety of alternative hypotheses and 
a preference is imposed by Progol 5 using an information-theoretic criterion 
known as compression (Muggleton and Bryant, 2000). Here, compression can 
be defined as p - n - h, where p is the number of observations correctly 
explained by the hypothesis, n is the number incorrectly explained and h is the 
length of the hypothesis (e.g. 1 for a single fact such as a trophic link). The set 
of ground hypotheses can be visualised as a network of trophic links (a food-
web) as shown in Fig. 4. In this network a ground fact eats(a, b) is represented 
by a directed trophic link from species b to species a. 
 
A Probabilistic ILP (PILP) approach, called Hypothesis Frequency Estimation 
(HFE) (Tamaddoni-Nezhad et al., 2012), was used for estimating the 
probabilities of hypothetical trophic links based on their frequency of occurrence 
when randomly sampling the hypothesis space. HFE is based on direct 
sampling from the hypothesis space. In some ILP systems, including Progol 
5.0, training examples act as seeds to define the hypothesis space (e.g. a most 
specific clause is built from the next positive example). Hence, permutation of 
the training examples leads to sampling from different parts of the hypothesis 
space. Using this technique, the thickness of trophic links in Fig. 4 (and Fig 5) 
represent probabilities which are estimated based on the frequency of 
occurrence from 10 random permutations (a user selected parameter) of the 
training data (and hence different seeds for defining the hypothesis space).  
 
A probabilistic trophic network can be also represented using standard PILP 
representations such as SLPs (Muggleton, 1996) or ProbLog (De Raedt et al., 
2007). For this we can use relative frequencies in the same way probabilities 
are used in PILP. We can then use the probabilistic inferences based on these 
representations to estimate probabilities. For example, the probability 
p(abundance(a, s, up)) can be estimated by relative frequency of hypotheses 
that imply a at site s is up. Similarly, p(abundance(a, s, down)) can be estimated 
and by comparing these probabilities we can decide to predict whether the 
abundance is up or down. 
 
Species food-web (Fig 4) can be used to explain the structure and dynamics of 
a particular ecosystem. However, functional food-webs  which represent trophic 
interactions between functional groups of species, might be more important for 
predicting changes in agroecosystem diversity and productivity (Caron-Lormier 
et al., 2009). Species in FSE data can be classified into ‘trophic-functional 
types’ using general traits that reflect their functional type, primarily resource 
acquisition and attributes (Caron-Lormier et al., 2009).  
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Figure 4 Species food-web learned from farm-scale evaluations (FSE) of GMHT crops data collected using Vortis sampling method 
from 257 fields across the UK. Thickness of trophic links represents probabilities which are estimated using Hypothesis Frequency 
Estimation (HFE).  
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By assuming that the background knowledge includes information on the 
functional group of each species, trophic networks for functional groups can be 
also learned from ecological data using the machine learning approach 
described above (See Fig. 3). Here we need a rule which describes the 
observable predicate in terms of eats relation between functional groups: 
 
abundance(X,S,Dir):-  

predator(X), 
bigger_than(X, Y),  
group(X, XG),  
group(Y, YG),  
abundance(Y, S, Dir), 
eats(XG, YG). 
 

Given this new model and background information, i.e. functional group of 
species in the form of group(X, XG), trophic networks can be constructed for 
functional groups in a learning setting similar to the one described above for 
individual species. 
 
Fig. 5 shows a functional food-web learned from the FSE data (Vortis). This 
food-web is constructed by learning trophic interactions between functional 
groups rather than individual species. Each functional group is represented by 
a species which can be viewed as an archetype for the functional group.  
 
Evaluating food-webs learned from a set of crops on unseen data from a 
different crop was done by repeatedly constructing food-webs from all crops 
data, excluding test data from a particular crop and measuring the predictive 
accuracy on this test data. Fig. 6 show predictive accuracies of Vortis species-
based and functional food webs on different crops. The average predictive 
accuracies (the proportions of correctly predicted left-out test examples) are 
reported with standard errors associated with each point where 0% to 100% of 
the training examples are provided. 

Figure 5 Functional food-web learned from FSE data (Vortis). Each group in the functional food-web 
is represented by a species which can be viewed as an archetype for that functional group. 
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In these experiments, Hypothesis Frequency Estimation (HFE) (Tamaddoni-
Nezhad et al., 2012), was used for estimating probabilities of hypothetical 
trophic links based on the frequency of occurrence from 10 random 
permutations of the training data. The HFE method was also used in the leave-
one-out cross-validation to compare the predictive accuracies of species food-
web vs functional food-webs (food-webs shown in Figs. 4 and 5). The 
experimental materials and methods are described in (Tamaddoni-Nezhad et 
al., 2013). 
 
According to this figure, the predictive accuracies of the learned food-webs 
were significantly higher than the default accuracy of the majority class (around 
55%). Predictive accuracies for the functional food webs were the same or 
higher than their species-based counterpart, particularly at low to medium 
percentages of training examples. This suggests that the functional food webs 
are at least as accurate as their species-based counterpart, but are much more 
compact (parsimonious). We also expect the higher predictive accuracy of the 
functional food-web to be more evident if the food-webs are evaluated on a 
different agricultural system where different species (not present in the training 
of species food webs) may exist. 
 

5. Evaluation of the results and subsequent discoveries 
 

The initial species food-webs discovered by machine learning, were examined 
in Bohan et al. (2011), by domain experts from Rothamsted Research UK and 
it was found that many of the learned trophic links, in particular those ascribed 
with high probability by machine learning, are corroborated by the literature. In 
some cases, novel and high probability links were suggested, and some of 
these were tested and corroborated by subsequent empirical studies (Davey et 
al. 2013).  
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Figure 7 Manual corroboration of trophic links for some prey (columns) and predator (rows) species 
combination from Fig. 4. Each pairwise hypothesised link has a strength (i.e. frequency between 1 to 10) 
followed by references (in square brackets) in the literature (see Appendix 1 of (Tamaddoni-Nezhad et al., 
2012)) supporting the link. Multiple references are indicated by yellow and green ellipses and potential novel 
hypotheses by dashed red ellipses. 
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Manual examination of the food-webs was used to corroborate some of known 
trophic links and also to identify potential novel hypotheses as shown in Fig. 7. 
However, manual corroboration of hypothetical trophic links is difficult and 
requires significant amounts of time and is error prone.  Hence, a text-mining 
technique was adopted (Tamaddoni-Nezhad et al., 2013) for automatic 
corroboration of hypothetical trophic links from ecological publications. This 
was particularly useful for larger food-webs from merged Vortis and pitfall data. 
 
Fig. 8 illustrates how a literature network can be generated based on the co-
occurrences of predators/prey species in the relevant context, directly from the 
literature.  The pairs of species (from a given food web) and the interaction 
lexicons (from a dictionary file) are used to generate queries. Then the text-
mining module searches through the text of available publications to match 
each query. The publications can be in a local database or accessed via a 
search engine (e.g. Google Scholar). The output of the text-mining for each 
query is the number of publications that matched that query (number of hits). 
The output for a whole food web can be represented by a literature network in 
which the number associated with each edge is related to the number of papers 
where the co-occurrences of the predator / prey species have been found with 
at least one trophic interaction lexicon (eat, feed, prey, or consume). We have 
shown that the frequencies of trophic links (using HFE) are significantly 
correlated with the total number of hits for these links in the literature networks 
(Tamaddoni-Nezhad et al., 2013). Moreover, the proposed approach was used 
to successfully identify hypothetical trophic relations for which there are little or 
no information in the literature (potential novel hypotheses). 
 
The manual corroboration table (Fig. 7) represents prey (columns) and predator 
(rows) species combination from the Vortis food-web. Each pairwise 
hypothesised link has a strength (i.e. frequency between 1 to 10, from the HFE 
method) followed by references (in square brackets) in the literature (see 
Appendix 1 of (Tamaddoni-Nezhad et al., 2012)) supporting the link. This table 
shows that many of the links, suggested by the model, are corroborated by the 
literature. In particular, links in the model ascribed with high frequency 
correspond well with those having multiple references in the literature. For 
example, there are 15 links with more than two references and 8 of these are 
with frequency 10 and from these all the three links with three references 
(marked by green circles) have frequency 10. In addition, there are also highly 
frequent links with no references in the literature, and these could potentially be 
novel hypotheses for future testing with targeted empirical data.  For example, 
one surprising result, was the importance of carabid larvae as predators of a 
variety of prey and in some cases with no reference in the literature (see Fig 7). 
As another example, some species of spiders appeared as prey for other 
predators); a result that was unexpected because spiders are obligate 
predators. This hypothesis was tested in a subsequent study using molecular 
analysis of predator gut contents and it was found that this hypothesised 
position in an animal-animal network is correct (Davey et al. 2013), and spiders 
do appear to play an important role as prey at least for part of the agricultural 
season. Thus, even though some of the hypothesised links were unexpected, 
these were in fact confirmed later and this provided an extremely stringent test 
for this human- machine scientific discovery approach. 
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Figure 8 Automatic corroboration of the merged Vortis and pitfall food-web. A literature network is automatically 
generated from a food-web using text mining of pairs of species from publications. Thickness of the links in a literature 
network is related to the number of papers with the co-occurrences of the pairs of species (number of hits). 
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Figure 9 Pairwise comparisons of structural properties of individual crop food-webs between conventional and GMHT 
managements (a,b, beet; c,d maize; e,f, spring oilseed rape; g,h, winter oilseed rape). C represents network 
connectance; ϕ, core link density; RR, robustness via random removal; RT, robustness via targeted removal of highest degree 
nodes as described in Ma et. al. (2019).    
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The food-webs constructed and validated using this human-machine discovery 
approach were also the basis of a recent study revealing resilience of agro-
ecosystems to changes in farming management using GMHT crops. Ma et. al. 
(2019) constructed replicated food webs using the merged Vortis and pitfall 
food-web, populated on the basis of the sampled taxonomic and abundance 
information of each half of the split-field in FSE and obtained a total of 502 food 
webs (251 conventional and 251 GMHT). A network analysis approach was 
used to characterize the structural properties of all the individual food-webs. 
The network analysis metrics include: C, connectance; ϕ, core link density; 
Core size; RR, robustness via random removal; RT, robustness via targeted 
removal of highest degree nodes, as defined in Ma et. al. (2019). Each metric 
is averaged across all webs of a given variety and normalized by its overall 
range. The effects of crop type can be visualized by comparing results from 
conventional crops horizontally as shown in Fig. 9. As shown in this figure, food 
web properties varied significantly between crop types. However, this figure 
suggest that the food web properties remain unaltered between conventional 
and GMHT food webs. The network analysis approach by Ma et. al. (2019) also 
revealed that network-level responses of GMHT crops are remarkably similar 
in their composition and responses to simulated trajectories of species 
removals, to their conventional counterparts. These results suggest that that 
crop type was by far the dominant driver of differences in web structure and 
robustness, across several organizational levels, ranging from sub-structural to 
whole-network attributes; inter-annual variation is probably greater than 
differences between conventional and GMHT. 
 

6. Conclusions 
 

In this chapter we have demonstrated how a combination of comprehensible 
machine learning, text-mining and expert knowledge was used to automatically 
generate plausible and testable food-web hypotheses from ecological census 
data. The logic-based machine learning included human-encoded ecological 
background knowledge, e.g. size relationship between predator and prey and 
taxonomical functional types.  Text-mining from scientific publications was 
initially used to verify machine-learned hypotheses, but it was also useful for 
identifying potential novel hypotheses, i.e. high probability hypotheses 
suggested by machine learning with no references in the literature. The results 
included novel food-web hypotheses, some confirmed by subsequent 
experimental studies (e.g. DNA analysis of gut contents) and published in 
scientific journals. This case study shows the potentials of human-machine 
collaboration / communication for the purpose of hypothesis generation in 
scientific discovery.  
Fig. 10 shows the cycle of hypothesis generation and experimentation in 
(biological) scientific discovery. In this cycle, machine learning is usually used 
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for ‘Model Construction’ from ‘New Data’. However, the purpose of Human-
Machine discovery is to also automate other steps of this cycle by combining 
machine learning, text-mining and domain knowledge, as in the case study 
described in this chapter. 
We argue that with ever-growing amount of human knowledge and empirical 
data as well as advances in AI, human-machine discovery, where humans and 
computers jointly develop and evaluate scientific theories, will be important for 
the advancement of the science in future. 
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