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Abstract

This paper presents a novel price setting optimization problem for an electricity supplier in the smart grid. In this
framework the supplier provides electricity to a residential load aggregator using Time-and-Level-of-Use prices (TLOU).
TLOU is an energy pricing structure recently introduced in the literature, where the prices vary depending on the time
and the level of consumption. This problem is formulated as a bilevel optimization problem, in which the supplier
sets the prices that maximize the profit in a demand response context, anticipating the reaction of a residential load
aggregator that minimizes total cost. These decisions are made in a competitive environment, while explicitly considering
the aggregator’s load shifting preferences and the level of consumption, and ensuring a user-friendly price structure. The
optimization problem is reformulated as a single-level problem to be solved using off-the-shelf solvers. We present
computational experiments to validate the performance of TLOU, and provide insights on the relationship between
the user’s demand flexibility, the capacity profile and the resulting structure of prices. We show that the supplier’s
economical benefit is increased up to 10 % through the implementation of this type of demand response program, while
providing savings of up to 6% for the consumers.

Keywords: Demand-Response, Price-Setting, Bilevel Optimization, TLOU, Smart Buildings, Smart Grid.

1. Notation

Sets:
t ∈ T : Time frames
i ∈ I : Generation levels

Parameters:
πGi : Generation cost of level i (¢/kWh)
πRt : Ramping cost in time frame t (¢/kWh)
Ki : Generation capacity of resource i (kWh)
Z̄ : Ramping allowed at no cost (kWh)
Ψ : Maximum number of changes in the energy

prices
Γt : Shifting cost in time frame t (¢/kWh)
Dt : Net demand in time frame t (kWh)
C : Power capacity limit (kW)
Ωt : Maximum additional energy consumption in

time frame t (kWh)

Variables:
πHt : Higher energy price in time frame t(¢/kWh)
πLt : Lower energy price in time frame t (¢/kWh)
xit : Energy produced by generation level i at time

frame t (kWh)

∗Corresponding author
Email address: juan.gomez@polymtl.ca (Juan A.

Gomez-Herrera )

zt : Energy ramping penalized in time frame t
(kWh)

αt :

{ 1 if there is a change in the energy price
between periods t and t+ 1

0 Otherwise
yHt : Energy consumption at higher price in time

frame t (kWh)
yLt : Energy consumption at lower price in time

frame t (kWh)
w+
t : Over-consumption with respect to energy de-

mand Dt in time frame t (kWh)
w−t : Under-consumption with respect to energy de-

mand Dt in time frame t (kWh)
vt : Energy bought to the supplier competitor in

time frame t (kWh)

Auxiliary Variables:
λat , λ

b : Dual variables associated to equality constraints

µ
(a,...,g)
t : Dual variables associated to inequality con-

straints

ρ
(a,...,g)
t : Binary variables to linearize the complementary

slackness condition

2. Introduction

Electricity is a vital resource for modern societies. We
benefit from it thanks to the power systems that generate,
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transport and deliver electricity on real-time basis. Ensur-
ing this real-time balance between supply and demand is
one of the most important tasks of the system’s operators
since it affects the operational costs, the user satisfaction,
the reliability of the grid. In this context, demand re-
sponse (DR) is one of the most effective ways to facilitate
the aforementioned balance.

According to [1], DR is defined as “changes in electric
usage by demand-side resources from their normal con-
sumption patterns in response to changes in the price of
electricity over time, or to incentive payments designed
to induce lower electricity use at times of high wholesale
market prices or when system reliability is jeopardized ”.
The potential benefits of DR increase in systems with large
penetration of energy renewable sources, since a more flex-
ible demand facilitates the integration of intermittent and
non controllable generation. Additionally, the continuous
development of smart grids allows a multidirectional com-
munication among the multiple players in the power grid.
This exchange of information enables better decisions and
the opportunity to mobilize DR resources in a more effec-
tive way.

Typically, the DR programs can be classified in two
groups: incentive-based programs and price-based pro-
grams [2]. In the incentive-based programs (IBP), the con-
sumers commit to provide consumption reduction over a
specified period of time in exchange of a financial incen-
tive. In the price-based programs, the energy supplier or
the system operator defines a set of varying energy prices.
These prices reflect the generation marginal cost and there-
fore the load in the system during the day. Additionally,
since there are different energy prices during the day, the
end-users are encouraged to shift load in order to profit
from the periods of time when the prices are lower.

Several DR pricing schemes are defined in the litera-
ture. The survey presented in [3] contains a comprehen-
sive review of DR pricing programs and how these pro-
grams are integrated with different optimization-based ap-
proaches ([4], [5]).

Some of those price-based programs are currently avail-
able in different jurisdictions around the world [6]. One of
the most common is Time-Of-Use (TOU), that divides a
day into several time windows and fixes energy prices for
each time window. In a similar way, Critical Peak Pricing
(CPP) programs identify a time window during the day in
which a critical situation can arise in the system. A signif-
icantly higher price is charged during the aforementioned
time window if the critical situation occurs.

Authors in [7] proposed a TOU framework in which
different prices are determined for different segments of
the population with specific characteristics. The goal is
to better incentivize the end-users to obtain the expected
response and avoid rebound peaks.

Recently, the authors in [8] and [9] presented a new
price scheme called Time-and-Level-of-Use. TLOU offers
a similar time-windows-structure to that of the traditional
TOU, including power capacity limits that enable multi-

ple energy prices in each time window depending on the
consumption level. In TLOU, the consumption below the
capacity limit is charged at a cheaper price and the con-
sumption above the capacity limit is charged at a more ex-
pensive price. The benefits for consumers of participating
in a TLOU program are described in [8] and [9] . Addition-
ally, [8] presents potential benefits on the generation side
such as a more homogeneous consumption, reduction of
rebound peaks, and the development of backup electricity
services business models.

The levels of consumption allow TLOU to consider a
power perspective that encourages load shifting in a more
effective way while offering energy tariffs. We could think
of TLOU as a generalization of TOU that incorporates fea-
tures of power-oriented programs such as demand charges.

Although TLOU was initially developed for the resi-
dential and commercial energy sectors, authors in [10] have
demonstrated its benefits for industrial customers.

The definition of energy prices is a key factor in the
successful implementation of a DR priced-based program.
If the prices are not sufficiently attractive users will not
respond in an effective way and the system will not benefit
from the DR program. On the other hand, if the prices are
very appealing, the users can shift more load than required
by the grid creating rebound peaks that can worsen the
initial state of the system. This effect can specially occur
in the context of smart buildings in which multiple end-
users make optimal decisions locally. The survey presented
in [3] highlights the importance and the potential of game
theory approaches in the proper configuration of pricing
programs.

In this regard, bilevel optimization is an effective way
to define energy prices ([11], [12], [13]). Bilevel optimiza-
tion is a paradigm in which one optimization problem is
embedded within another. The outer optimization prob-
lem is commonly referred to as the leader’s problem and
the embedded optimization problem is commonly referred
to as the follower’s problem. The leader makes optimal de-
cisions considering the follower’s optimal reaction to the
leader’s decisions. This anticipation process can be spe-
cially useful to define DR pricing problems. Additionally,
this type of problems are typically difficult to solve due it
computationally complexity [14].

Bilevel optimization has been used in the energy price
setting context by several works in the literature [13]. We
consolidate and compare the most relevant works in Table
1. We identify key features such as the decision makers
and their objectives, the solution approach used, and the
resulting structure of prices.

We see in Table 1 different entities playing the role of
leader, having profit as their main interest. When the end-
users are the follower, it is common to consider some type
of trade-off between cost and comfort to better take into
account behavioral aspects and assess the impact of the
designed price structures. As for the solution methods,
reformulation seems to be very effective. Different algo-
rithms using reformulation and/or decomposition meth-
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Leader Follower Solution Resulting
Reference Entity Objective Entity Objective method prices

[15] DRA Profit Market Cost RE IBP
[16] WG Profit DRA Revenue RE Market
[17] WG Profit Market Social welfare RE Market

[18], [19], [20] ES Profit End-users C&C RE TOU
[21] ES Profit DRA Profit RE TOU
[22] ES cost End-users Cost RE TOU
[23] System Operator Welfare ES Revenue DM TOU

[24], [25], [26] ES Profit End-users C&C DM TOU
[27] ES Profit DRA & End-users C&C DM & RE TOU
[28] ES Revenue End-users Cost DM TLOU

This paper ES Profit End-users C&C RE TLOU

Table 1: Relevant literature review compared to the framework presented in this article. (ES: energy supplier, WG: wind generator, DRA:
demand response aggregator, C&C: cost and comfort, RE: reformulation, DM:Decomposition methods. )

ods are used when multiple leaders or multiple followers
are considered. The resulting prices range from day-ahead
market prices to more traditional TOU structures. These
energy prices depend on the hour of the day and frequently
neglect the user’s consumption level. Recently, authors in
[28] presented the first bilevel optimization approach to
set TLOU prices by profiting from the specific structure
of the follower level problem. Although that paper pro-
vides significant insights about TLOU definition, it does
not consider, load shifting provided by the end-users, gen-
eration costs and supplier’s competitors.

In this regard, the objective of this article is to fill the
need for a means to determine TLOU prices for an energy
supplier that seeks to maximize profit, encouraging the
users’ load shifting in a more effective way, and avoiding
undesired effects such as rebound peaks.

To achieve this objective we propose a novel frame-
work that explicitly considers the users’ shifting capabili-
ties, the electricity generation perspective, and the level of
consumption, in a competitive environment. Additionally
we consider determining the structure of prices as part of
the problem, which guarantees a user-friendly scheme that
facilitates social acceptance. Our paper is the first one, to
the best of our knowledge, to include these aspects in the
definition of a price-based DR program.

This paper is structured as follows. The proposed ap-
proach is defined in Section 3, the computational experi-
ments and results analysis are presented in Section 4, and
the conclusion is given in Section 5.

3. Optimization problem

TLOU is a DR price-based program where energy prices
vary depending on the time frame t and the amount of en-
ergy consumed. If the energy consumed in t is lower than
the defined power capacity limit Ct the user pays the basic
price πLt . If the user overshoots Ct he is charged πHt for
the fraction of energy consumed beyond the limit.

The general operations of the electricity supplier are
presented in Figure 1. The supplier is a generic entity that
delivers electricity. It could be a public utility, a private
generator or an energy retailer that buys electricity from
energy generators via bilateral contracts. The supplier sets
the energy prices in order to serve a population of smart
homes represented by a residential load aggregator (RLA).
The supplier makes decisions in a competitive environment
in which the competitor offers a pre-defined energy flat
rate. In other words, the RLA has the possibility to buy
energy vt from a competitor at a price Υ. This feature
becomes specially significant due to the inelastic behavior
of the electricity demand [29]. The competitor plays an
important role since it represents a reference cost for the
RLA and a boundary for the potential supplier’s profit.
We assume that the competitor offers a flat rate so that
this does not encourage any shifting and therefore we can
clearly illustrate the shifting effect of TLOU.

Figure 1: Supplier’s operation

The RLA is an entity that aggregates and coordinates
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DR actions of multiple residential end-users. Authors in
[8] present a collaborative approach in which the RLA co-
ordinates load shifting from a group of smart homes that
have been offered TLOU prices.

We assume that the RLA is able to estimate the ag-
gregated end-users’ net demand profile Dt as well as the
end-user’s shifting limit profile Dt + Ωt and transfer this
information to the energy supplier. By considering the net
demand we decouple the local generation and storage de-
cisions from the activity of the RLA. Gathering the users’
information is possible nowadays thanks to the massive
adoption of smart meters and the continuous development
of the smart grid.

Under these conditions, the supplier wants to deter-
mine πLt , and πHt to maximize profit and generate load
shifting knowing that the RLA will minimize its own costs.
Although the capacity Ct is an important part of the defi-
nition of TLOU, we assume that Ct is given and constant
during the day. We discuss this idea more deeply in the
Section 3.1.3 , and present some experiments on the selec-
tion of Ct in Section 4.

3.1. Shifting parameters

3.1.1. Shifting limit

The parameter Ωt is defined as the maximum consump-
tion increase that the RLA is able to provide at time t. In
practice, the RLA estimates this parameter from the in-
dividual shifting flexibility offered by the end-users. Con-
sequently Dt + Ωt represents the maximum consumption
in each time frame. Note that Ωt represents an intrinsic
bound of the user flexibility and it does not depend on the
DR program.

We assume that the energy demand is always satisfied
at the end of the day (

∑
t∈T (yHt + yLt + vt) =

∑
t∈T Dt).

Therefore if the RLA provides load shifting from time
frame a ( yLa + yHa + va < Da and w−a > 0), there ex-
ists at least one time frame b where the load is being
shifted to (yLb + yHb + vb > Db and w+

a > 0). The pa-
rameter Ωt thus bounds the over-consumption in certain
time frames as well as indirectly the under-consumption
along the day. Notice that the end-users do not shift any
load if yHt + yLt + vt = Dt, ∀t ∈ T .

3.1.2. Shifting penalty

The parameter Γt represents economically the discom-
fort generated from shifting. We define the shifting ac-
tivity as the increase of consumption with respect to the
demand (variable w+

t ). The impact of this increase on
the user discomfort depends on when it occurs. According
to [30], [31], and [32], there is a low on-peak to off-peak
price elasticity energy consumption. In other words, shift-
ing load from on-peak to off-peak hours requires a larger
change in price. In our case, this price change is a dis-
count that must account for the discomfort that the users
perceive as result of the increase of their consumption dur-
ing off-peak periods. Therefore, we assume that the dis-
comfort is higher in the periods of time when the known

demand is lower (i.e. the users do not want to use many
electric devices or appliances).

Following this idea, we define the parameter Γt as:

Γt =
βt
Dt
, (1)

where βt is a weight that accounts for the conversion of
the dissatisfaction units to monetary units, ensuring the
coherence in the order of magnitude with respect to the
other cost parameters in the objective function.

Note that when Dt is equal to zero no consumption is
possible, and Γt is equal to infinity (replaced by a large
enough cost in the optimization steps).

3.1.3. TLOU capacity

The capacity Ct is an essential component of TLOU.
The capacity profile has a clear meaning for the user per-
spective: the level of service that accounts for the main
electricity needs. Determining these basic needs is not a
trivial task since many factors must be considered, namely
the behavior of individual loads, shifting limits, and user
preferences. In this regard we can obtain Ct through fore-
casting and estimation approaches such as in [9], [33] and
[34]. In this case, Ct becomes the constant parameter C
for our optimization problem.

3.2. Bilevel model

In this section we present the bilevel model for the
TLOU price setting problem. The leader (i.e the sup-
plier) defines energy prices taking into account the deci-
sions made by the follower (i.e. the RLA).

3.2.1. Leader problem

The supplier seeks to maximize his profit by charg-
ing the users TLOU prices. The objective function (2) is
the difference between the income obtained from the en-
ergy sold to the users, and the generation and ramping
costs. The generation cost is an increasing function that
depends on the type of generation: baseline, load follow-
ing, and peaking plant. The ramping cost accounts for
high variations in the energy generation curve beyond the
technical limitations of the generation technology. For ex-
ample when the demand grows rapidly, the supplier could
be forced to buy electricity from a third party supplier
which generates a penalty πRt . In a similar way if the
demand decreases at a great rate the supplier will face
shut-down costs.

Constraints (3) ensure the balance between supply and
demand for each time frame including the option to buy
electricity to a third party. Constraints (4) are capacity
bounds for each generator level.

Constraints (5) establish the ramping limit. For the
sake of simplicity, ramp-up and ramp-down events are as-
sumed to have the same limits and costs. Constraints
(6)-(8) ensure that the TLOU structure is user-friendly,
allowing up to Ψ+1 different prices along the day for each
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level of price. The price structure must be simple to fa-
cilitate the end-users understanding and the acceptance of
this novel DR program. The value of M is assumed to be
large enough to account for the maximum allowed differ-
ence between two consecutive prices of the same level. In
a similar way, constraints (9) guarantee that the price re-
mains constant by at least N time frames. Constraints (6)
can be replaced by πLt −πLt+1 ≤Mαt and πLt+1−πLt ≤Mαt
in order to remove the absolute value. Constraints (5) and
(7) are linearized in a similar fashion.

max
(π,x,z)

∑
t∈T

(πHt y
H
t + πLt y

L
t )−

∑
i∈I

∑
t∈T

πGi xit −
∑
t∈T

πRt zt

(2)

subject to

yHt + yLt =
∑
i∈I

xit + zt, ∀ t ∈ T (3)

xit ≤ Ki, ∀ i ∈ I, t ∈ T (4)

|
∑
i∈I

xit −
∑
i∈I

xi,t−1 |≤ Z̄, ∀ t ∈ T : t > 1 (5)

| πLt − πLt+1 |≤Mαt, ∀ t ∈ T : t <| T | (6)

| πHt − πHt+1 |≤Mαt, ∀ t ∈ T : t <| T | (7)∑
t∈T

αt ≤ Ψ (8)

t∑
n=t−N+1

αn ≤ 1,∀ t ∈ [N, . . . , | T |] (9)

πLt ≤ πHt , ∀ t ∈ T (10)

πHt , π
L
t , xt, zt,≥ 0, αt ∈ {0, 1} (11)

Constraints (10) ensure that the higher price is always
greater or equal to the lower price. Finally, constraints
(11) are the nonnegativity constraints and binary variables
definition.

3.2.2. Follower problem

The RLA aims to minimize the end-user’s total cost
(12) defined as the sum of the energy cost from the TLOU
program, the shifting cost, and the cost of buying energy
from the competitor.

Constraints (13) establish the balance between the en-
ergy bought from the supplier and the competitor, and the
demand. Constraints (14) account for the total demand
satisfaction at the end of the day. Constraints (15) limit
the energy consumption at the lower level of the TLOU. In
a similar way, constraints (16) limit the over-consumption.
Finally, constraints (17)-(21) are the nonnegativity con-
straints.

The follower’s problem is embedded in the constraints
of the leader problem. When the follower has multiple op-
timal solutions, we assume that he selects the one favoring
the leader. This leads to an optimistic formulation of the
bilevel program. In our context it means that the RLA
will not act deliberately against the supplier’s interests.

min
(y,w)

∑
t∈T

(πHt y
H
t + πLt y

L
t ) +

∑
t∈T

Γtw
+
t +

∑
t∈T

Υvt (12)

subject to

yHt + yLt − w+
t + w−t + vt = Dt, ∀ t ∈ T : (λat ) (13)∑

t∈T
(yHt + yLt ) +

∑
t∈T

vt =
∑
t∈T

Dt : (λb) (14)

yLt ≤ C, ∀ t ∈ T : (µat ) (15)

w+
t ≤ Ωt, ∀ t ∈ T : (µbt) (16)

yHt ≥ 0, ∀ t ∈ T : (µct) (17)

yLt ≥ 0, ∀ t ∈ T : (µdt ) (18)

w+
t ≥ 0, ∀ t ∈ T : (µet ) (19)

w−t ≥ 0, ∀ t ∈ T : (µft ) (20)

vt ≥ 0, ∀ t ∈ T : (µgt ) (21)

3.2.3. MILP Reformulation

The TLOU price setting model is a bilinear bilevel
mixed integer problem. For fixed leader variables, the
follower problem is convex and can be replaced by its
Karush-Kuhn-Tucker conditions [11]. The KKT condi-
tions include the primal feasibility constraints ((13)-(21)),
the dual feasibility constraints, the complementary slack-
ness constraints, and the stationary constraints.

The dual feasibility is ensured by Constraints (22) that
are the non-negativity for dual variables of the primal in-
equality constraints.

µat , µ
b
t , µ

c
t , µ

d
t , µ

e
t , µ

f
t , µ

g
t ≥ 0, ∀ t ∈ T (22)

The complementary slackness is given by the following
non-linear equations:

(C − yLt )µat = 0, (Ωt − w+
t )µbt = 0, yHt µ

c
t = 0,

yLt µ
d
t = 0, w+

t µ
e
t = 0, w−t µ

f
t = 0, vtµ

g
t = 0, ∀ t ∈ T

These equations can be linearized as follows:

C(1− ρat ) ≥ C − yLt , µat ≤Mρat , ∀ t ∈ T (23)

Ωt(1− ρbt) ≥ Ωt − w+
t , µbt ≤Mρbt , ∀ t ∈ T (24)

(Dt + Ωt − C)(1− ρct) ≥ yHt , µct ≤Mρct , ∀ t ∈ T
(25)

C(1− ρdt ) ≥ yLt , µdt ≤Mρdt , ∀ t ∈ T (26)

Ωt(1− ρet ) ≥ w+
t , µet ≤Mρet , ∀ t ∈ T (27)

Dt(1− ρft ) ≥ w−t , µft ≤Mρft , ∀ t ∈ T (28)

(Dt + Ωt)(1− ρgt ) ≥ vt, µgt ≤Mρgt , ∀ t ∈ T, (29)

where M is an arbitrary large constant.
The M is replaced in all the constraints that do not

contain dual variables, by upper bounds computed directly

5



from the structure of the problem to have a tighter formu-
lation. For example, the maximum value for the expression
C − yLt in constraint (23), equals C when yLt = 0 since we
know that 0 ≤ yLt ≤ C from constraints (15) and (18).
Finally the stationary conditions are:

πHt − λat − λb − µct = 0, ∀ t ∈ T (30)

πLt − λat − λb + µat − µdt = 0, ∀ t ∈ T (31)

Γt + λat + µbt − µet = 0, ∀ t ∈ T (32)

− λat − µ
f
t = 0, ∀ t ∈ T (33)

Υ− λat − λbt − µ
g
t = 0, ∀ t ∈ T (34)

The bilinear terms in the objective function (2) of the
leader’s problem can be linearized by using the strong du-
ality theorem for the follower problem as follows:

∑
t∈T

(πHt y
H
t + πLt y

L
t ) +

∑
t∈T

Γtw
+
t +

∑
t∈T

Υvt

=
∑
t∈T

Dtλ
a
t + (

∑
t∈T

Dt)λ
b −

∑
t∈T

Cµat −
∑
t∈T

Ωtµ
b
t (35)

By reorganizing equation (35) and replacing in (2), we
obtain the linear leader’s objective function:

max
[∑
t∈T

Dtλ
a
t + (

∑
t∈T

Dt)λ
b −

∑
t∈T

Cµat −
∑
t∈T

Ωtµ
b
t

−
∑
t∈T

Γtw
+
t −

∑
t∈T

Υvt

]
−
∑
i∈I

∑
t∈T

πGi xit −
∑
t∈T

πRt zt (36)

4. Computational experiments

In this section we present and discuss numerical results
based on real life data. We first define the parameters and
the instances generation process in Section 4.1. Next, we
discuss the results of the bilevel problem in Section 4.2.

4.1. Parameters and instances definition

We consider consumption of a population of 1000 house-
holds. Their consumption profiles are based on the daily
consumption profiles provided by the independent system
operator in the province of Ontario, Canada. The result-
ing demand profile are used in all the experiments and it
corresponds to a daily demand of 6.8 MWh. The genera-
tion cost (¢/kWh ) πGi : {4, 7, 20} is taken from [35], where
three types of generators are available: nuclear, hydro, and
gas turbines. For the two first resources the generation ca-
pacities are equal to 150 kW. The generation cost (¢/kWh
) πGi : {4, 7, 20} is taken from [35], where three types of
generators are available: nuclear, hydro, and gas turbines.
For the two first resources the generation capacities are
equal to 150 kW.

We design instances to assess the impact of two of the
main factors in the definition of TLOU prices, the load
shifting flexibility and the capacity profile. The supplier
wants to take advantage of the flexibility that the RLA of-
fers, and uses the capacity of TLOU to encourage a more
beneficial shifting while protecting itself of undesired sce-
narios such as rebound peaks.

First, we define two flexibility profiles Ωft where f ∈
{1, 2}. This information is presented in Figure 2. We
see that Ω1

t corresponds to a RLA representing a group
of end-users that provide low shifting flexibility, while Ω2

t

corresponds to RLA representing a group of end-users that
provide high shifting flexibility.

1 4 8 12 16 20 24

Hour

0

100

200

300

400

500

600

k
W

Figure 2: Demand and shifting capabilities

We consider different TLOU capacities C = {0, 150, 300}.
Note that having a TLOU with C = 0 is equivalent to
have the traditional TOU. These TOU instances provide
us with a reference to analyze and compare the perfor-
mance of TLOU, more specifically the impact of having
a capacity profile and two different sets of energy prices.
This comparison will be discussed in the next sections.

4.2. Bilevel optimization results

Instances with different shifting flexibility and capac-
ities are denoted by Sf,C . The optimization models con-
taining 529 continuous variables, 192 binary variables, 1392
constraints, are solved with Gurobi version 8.1 on a com-
puter with 2.3 GHz Intel Core i5 CPU and 8 GB RAM.
The average solution time is 0.65 seconds.

Table 2 presents different metrics assessing the shift-
ing effect generated by the definition of energy prices, as
well as the economical performance of the RLA and the
supplier for each instance. We quantify the shifting ef-
fect using two quantities. The first one is the shifted load,
which is the percentage of variation of the RLA energy
consumption (supplier + competitor) with respect to the
original demand. The second one is the Peak to Average
Ratio (PtoAR) that accounts for the level of flattening of
the energy curve provided by the supplier. The PtoAR for
the original demand profile is 1.79.
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Shifting effect RLA Costs ($) Supplier ($)
Instance RLA Shifted PtoAR Shifting Energy from Energy from Total Income Operational Profit

load (%) supplier supplier competitor cost
S0 0.0 n/a 0.0 0.0 100.0 100.0 0.0 0.0 0.0
S1,0 9.5 1.14 1.9 87.6 7.7 97.2 87.6 41.6 46.0
S1,150 9.5 1.14 1.9 87.6 7.7 97.2 87.6 41.6 46.0
S1,300 9.5 1.13 1.9 88.6 7.1 97.6 88.6 42.5 46.1
S2,0 1.2 1.26 0.0 83.1 16.6 99.7 83.1 39.1 44.0
S2,150 5.9 1.19 1.1 84.6 11.9 97.6 84.6 39.3 45.3
S2,300 19.0 1.05 3.4 93.8 0.0 97.2 93.8 45.3 48.5

Table 2: Economical performance and shifting effect by instance.

To quantify the economic impact, we take as reference
the case in which the RLA must buy all the electricity
from the competitor. In this case, the RLA pays the flat
rate offered by the competitor, generating no shifting and
the supplier has no participation. This instance is denoted
as S0 and its total cost ($824.0) is set to be equivalent to
$100. The economic results of the other instances were
normalized accordingly dividing by 824.0. We report in
Table 2 the normalized RLA costs and supplier profit.

4.2.1. Low shifting flexibility

We first consider the RLA Ω1 with low shifting flexi-
bility. Increasing the capacity of TLOU does not result in
significant changes in the performance of the supplier and
the RLA. More precisely, we observe the same TOU struc-
ture in instances S1,0 and S1,150 regardless of the increase
of C. Although instance S1,150 includes the possibility of
having TLOU, the optimal decision is to offer a traditional
TOU (πLt = πHt , ∀ t ∈ T ). Figure 3 shows for S1,150,
the shifting effect during the first hours of the day (times
frames 1 to 6), where the energy bought from the supplier
(yLt +yHt ) increases up to the maximum demand (Dt+Ω1

t )
as reaction to cheaper energy prices. These cheaper prices
are offered as compensation during the time frames when
the users experience higher shifting cost Γt. This shifting
is equivalent to 9.5% of demand and leads to a ProAR of
1.14 for both instances.

Let πL(t,t′) and πH(t,t′) be the optimal energy prices in

the time window starting at time frame t until t′. The
difference between πH(1,6) and πH(7,24) corresponds to the
maximum value of Γt in the time frames 1 to 6. This
encourages shifting towards this segment of the day since
πH(1,6) + Γt ≤ πH(7,24),∀ t ∈ {1, . . . , 6}. This analysis can
be easily extended for the other instances.

The supplier’s competitor provides energy during the
evening peak. This occurs because the supplier can not
match the competitor’s price when the third generation
level is required (dotted line, > 300kW ). Note that the
highest optimal price obtained is equal to the price offered
by the competitor (12 ¢/kWh).

For instance S1,300, TLOU has a marginal effect on the
results (Figure 4).

The supplier price πL(6,9) is slightly cheaper than πH(6,9).

In this case πL(6,9) + Γt ≤ πH(6,9) ∀ t ∈ {6, . . . , 9}.
We observe in Figure 4 a slightly increase of energy

bought from the supplier in t = 8 with respect to previ-
ous instances. This additional shifting allows the supplier
to serve a higher proportion of demand. The amount of
energy provided by the competitor decreases for this in-
stance. The price πH(1,5) has no effect in the results since

Dt + Ω1
t < C, ∀ t ∈ {1, . . . , 5}. This minimum change

leads to a shifted load of 9.5% of and a PtoAR of 1.13.
The lack of shifting flexibility of the RLA Ω1 reduces

the potential impact of TLOU, allowing the supplier to
obtain the best performance with traditional TOU in two
our of three cases. In fact, we see that the prices obtained
in the instance S1,300 (the only one in which TLOU is
selected) is very similar to the TOU of the other two in-
stances. This causes the economical and shifting metrics
to be almost identical for the three instances. Neverthe-
less, even with low flexibility, the bilevel approach finds
the most appropriate price structure allowing the supplier
to capture most of the demand and the RLA to reduce the
energy bill by 4%.

4.2.2. High shifting flexibility

Let us now comment the results for RLA Ω2 with high
shifting flexibility (Figures 5 to 7). The flexibility pro-
vided by this RLA allows us to illustrate the benefits of
implementing TLOU.

For instance S2,0 (Figure 5) a significant fraction of the
demand is satisfied by the supplier’s competitor. In this
case, the high shifting flexibility combined with C = 0
results into a very conservative decision by the supplier
who offers a very small price incentive in the first time
frames. There is an increase in the energy bought from
the supplier as result of shifting only in t = 6. Any larger
incentive will result in a rebound peak reaching the RLA
shifting limit and worsening the economical performance
of the supplier. In this case the shifted load is only 1.2%
and the PtoAR is 1.26.

The equality πH(1,6) + Γ6 = πH(7,24) encourages shifting
towards t = 6 since Γ6 is the lowest value in time frames
1 to 6. Therefore, shifting makes no sense for the periods
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Figure 3: Load shifting and TLOU prices for instance S1,150.
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Figure 4: Load shifting and TLOU prices for instance S1,300.
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Figure 5: Load shifting and TLOU prices for instance S2,0.

1 to 5. This is a strict equality due to the optimistic fea-
ture previously explain in Section 3.2.2 . If both options
(shifting or not) are similar for the RLA, the model will
always favor the leader (i.e. the supplier).

Table 2 shows that S2,0 generates the lowest profit for
the supplier and the highest total cost for the RLA. In fact,
the total user cost is almost equal to the bound defined in
the reference case.

The results for instance S2,150 (Figure 6) show the ef-
fect of TLOU. The supplier offers TLOU prices in time
frames 1 to 6. The price πL(1,6) encourages RLA to con-

sume electricity until reaching C. Then πH(1,6) performs as
a penalty for consumption higher than C. The RLA only
pays πHt in t = 6.

We observe that πL(1,6) + Γt ≤ πH(7,24)∀ t ∈ {1, . . . , 6}.
In a similar way, πH(1,6)+Γ6 = πH(7,24). The later one encour-
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Figure 6: Load shifting and TLOU prices for instance S2,150.
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Figure 7: Load shifting and TLOU prices for instance S2,300.

ages consumption beyond C only in t = 6 during the time
window (1,6). This occurs since Γ6 is the lowest shifting
cost in the time window.

As shown in Table 2, for instance S2,150 the prices de-
fined for the TLOU by the bilevel approach report benefits
for both parties. First, the supplier captures a higher frac-
tion of the demand (competitor only makes $11.9) which
results in a higher profit. Second, the RLA is rewarded in
a more effective way (total cost of $97.6) which leads to
a higher shifting ($1.1). In fact, the load shifted reaches
5.9% which helps to reduce the PtoAR down to 1.19.

Finally Figure 7 puts into highlight the effect of TLOU
for instance S2,300. In this case C = 300 allows the supplier
to completely meet the RLA’s demand. The supplier offers
two different lower prices πL(1,5) and πL(6,9). Once again

πL(1,5) + Γt ≤ πH(6,24) ∀ t ∈ {1, . . . , 5} and πL(6,9) + Γt ≤
πH(6,24) ∀ t ∈ {6, . . . , 9}, which encourage shifting up to

C in the first part of the day. On the other hand, πH(1,5) +

Γt ≥ πL(6,9) ∀ t ∈ {1, . . . , 5} and πH(1,5) + Γt ≥ πH(6,24)
∀ t ∈ {1, . . . , 5} since no consumption in the higher level
is desired by the supplier in the time frames 1 to 5. In this
case the load shifted increases up to 19% and the PtoAR
is reduced down to 1.05 which approaches a flat curve.

For instance S2,300 the optimal TLOU prices achieve
the highest performance for both supplier and RLA. The
supplier obtains profit of $48.5 which represents an in-
crease of about 10% with respect to instance S2,0 (tradi-
tional TOU).

The high shifting flexibility of the RLA Ω2 plays an
important role in the definition of the prices and allows us
fully utilize the potential of TLOU. As we mentioned be-
fore, the supplier makes a very conservative decision in S2,0

since any larger incentive will result in rebound peaks and
operational over cost. For that instance, the supplier sees
its potential revenue reduced due to the lack of a capacity
profile. In the case of instance S2,300, the supplier uses
the capacity profile to manage in a smarter way the po-
tential load shifting and to improve its performance. This
is clearly observed in the shape of the curve yLt + yHt that
flattens as the shifted load increases. Additionally, the
RLA obtains an energy cost of $93.8 which represents a
reduction of 6.2% with respect to S0.

4.2.3. Setting the parameter C

In the previous experiments the TLOU were defined to
mach directly the generation capacities of the supplier.
Figure 8 presents the profits for a RLA S2,C where C
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changes from 0 to 500 with a step ∆C = 25.
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Figure 8: Profit for S2,C with different TLOU capacities.

The maximum profit is reached for C = 275. We see
the same cost in lower and higher capacities. Having insuf-
ficient capacity is equivalent to having a capacity greater
than the highest possible demand. In both cases the opti-
mal decision is to implement a TOU or a flat rate.

4.3. Advantages and limitations of the presented approach

As we presented in Section 4.2 the flexibility of the
optimization model allows to find the best price structure
fitting the needs of the supplier and the characteristics of
the RLA. This feature allows the energy supplier to select
the appropriate DR pricing program (TLOU, TOU or flat
rate) that maximizes its profit. The optimization model
can as well be easily integrated with classical demand side
management approaches to explicitly integrate the end-
users behavior, such as shifting preferences by type of load,
battery usage, local generation etc.

One of the main limitations in this approach is that
the decisions are made in a static fashion, which is well
suited for the definition of energy prices over a given time
horizon, but that represents a challenge for scenarios where
the prices are computed on a real-time basis. Additionally,
the approach strongly depends on the accurate represen-
tation of the end-user behavior. Integrating learning and
stochastic approaches to model the end-users preferences
could improve the accuracy and effectiveness of the pro-
posed approach.

5. Conclusions

In this paper, we have formulated a bilevel optimiza-
tion problem in which the supplier seeks to set TLOU en-
ergy prices to maximize the profit considering the shifting
activities of a RLA that minimizes the total cost. The
model considers the users’ level of consumption and their
shifting preferences in the definition of the price struc-
ture. In addition, we defined the price setting problem
in a competitive environment where the operation of the
supplier is conditioned the the prices of the competitor.
The proposed model includes also the user-friendly per-
spective in the design of the price structure to facilitate
social acceptance. This bilevel optimization problem is
reformulated as a single-level problem and solved using
off-the-shelf solvers.

The use of this pricing scheme allows the supplier to
improve the profit, encouraging the consumers to shift in a
smarter way. This effect is more significant when the RLA
is willing to shift more load, since TLOU controls rebound
peaks by incentivizing energy consumption up to the de-
fined capacity limit before passing to the second (higher)
level of prices. This ends up generating a more effective
shifting and therefore a more homogeneous consumption
profile.

Numerical results based on real life data are presented
to validate and analyze the performance of the implemen-
tation of this type of DR program. In instances of a RLA
with lower shifting flexibility, TLOU does not report signif-
icant impact on the supplier’s and the RLA performance.
In fact, in some cases the optimal decision is to implement
a TOU structure. Even in that case, the proposed bilevel
approach determines optimally-designed tariffs for the en-
ergy supplier and allows the RLA to reduce the energy bill
by 4%.

On the other hand, TLOU shows a significant improve-
ment for both supplier and RLA when the RLA is willing
to provide more shifting flexibility. In this case, the sup-
plier benefits from a more efficient operation of the system
due to a flatter demand curve and is able to better in-
centivize the RLA, who in return shifts load in a smarter
way. More specifically, the supplier’s economical benefit
is increased up to 10 % and the RLA operational cost is
reduced by 6%.

Future work will explore the definition of TLOU prices
under the presence of multiple end-users with different be-
havior (multiple followers) and the effect of offering per-
sonalized TLOU prices. Additional research directions in-
clude considering the parameter C as a variable, and the
uncertainty in the shifting reaction to prices.
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