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Abstract 24 

The avian central melanocortin system is well conserved between birds and mammals in 25 

terms of the component genes, the localisation of their expression in the hypothalamic 26 

arcuate nucleus, the effects on feeding behaviour of their encoded peptides and the 27 

sensitivity of agouti-related protein (AGRP) and pro-opiomelanocortin (POMC) gene 28 

expression to changes in energy status. Our recent research has demonstrated that AGRP 29 

gene expression precisely differentiates between broiler breeder hens with different 30 

histories of chronic food restriction and refeeding. We have also shown that the 31 

sensitivity of AGRP gene expression to loss of energy stores is maintained even when 32 

food intake has been voluntarily reduced in chickens during incubation and in response to 33 

a stressor. However, the similarity between birds and mammals does not appear to extend 34 

to the way AGRP and POMC gene expression are regulated. In particular, the preliminary 35 

evidence from the discovery of the first avian leptin genes suggests that leptin is more 36 

pleiotrophic in birds and may not even be involved in regulating energy balance. 37 

Similarly, ghrelin exerts inhibitory, rather than stimulatory, effects on food intake. The 38 

fact that the importance of these important long-term regulators of AGRP and POMC 39 

expression in mammals appears diminished in birds suggests that the balance of 40 

regulatory inputs in birds may have shifted to more short-term influences such as the tone 41 

of cholecystokinin (CCK) signalling. This is likely to be related to the different metabolic 42 

fuelling required to support flight. 43 

 44 
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1. Introduction 47 

The avian melanocortin system genes were all cloned and characterised 14 years 48 

ago. They comprise five melanocortin receptors (Takeuchi et al., 1996; Takeuchi et al., 49 

1998; Takeuchi and Takahashi, 1998; Takeuchi and Takahashi, 1999), and the pro-50 

opiomelanocortin (POMC) and agouti-related protein (AGRP) genes encoding their 51 

endogenous agonists and antagonists, respectively (Berghman et al., 1998; Takeuchi et al., 52 

1999; Takeuchi et al., 2000). The central melanocortin system shows evolutionarily 53 

functional and neuroanatomical conservation in comparison with mammals. Thus, 54 

melanocortin signalling is regulated by opposing, agonistic and antagonistic actions of 55 

endogenous α-melanocyte-stimulating hormone (α-MSH) and agouti-related protein 56 

(AGRP) that, respectively, increase and decrease food intake after central injection 57 

(Tachibana et al., 2001; Strader and Buntin, 2003; Strader et al., 2003). Also, the AGRP 58 

and POMC genes are expressed in the arcuate nucleus of the hypothalamus where AGRP 59 

is co-expressed with neuropeptide Y (NPY) in individual arcuate nucleus neurons 60 

(Boswell et al., 2002). In this mini-review we focus on the regulation of the AGRP and 61 

POMC genes in birds with emphasis on our recent work on chronic food restriction and 62 

natural models of voluntarily reduced food intake. We also consider the implications of 63 

the identification and preliminary characterisation in 2014 of the first avian leptin genes. 64 

 65 

2. Effects of manipulating energy status 66 

The functional evolutionary conservation of the avian central melanocortin system 67 

extends to its response to manipulation of energy status. Most investigations have focused 68 

on short-term food deprivation, which increases AGRP mRNA (Phillips-Singh et al., 69 



2003; Higgins et al., 2010; Song et al., 2012). Changes in mRNA appear to reflect 70 

parallel changes in peptide because food deprivation increased the number of AGRP-71 

immunoreactive cells in the arcuate nucleus of the ring dove (Streptopelia risoria) which 72 

were also elevated during the parental phase of the breeding cycle when the birds are in 73 

negative energy balance (Strader and Buntin, 2003; Strader et al., 2003). For POMC, 74 

Higgins et al. (2010) observed a significant decrease in mRNA after food deprivation and 75 

two studies have reported a non-significant decrease (Phillips-Singh et al., 2003; Song et 76 

al., 2012). Thus the changes in AGRP and POMC expression during fasting are in the 77 

direction predicted from the behavioural effects of their encoded peptides as part of a 78 

coordinated counter-regulatory response of hypothalamic appetite control peptides to 79 

restore lost energy stores (Phillips-Singh et al., 2003). Higgins et al. (2010) used 80 

microarray analysis to explore patterns of gene expression in the hypothalamus of 81 

domestic chicks in relation to food deprivation. Pathway analysis software predicted that 82 

POMC lies within a network of six interrelated differentially-expressed genes and 83 

experimental evidence for the existence of the network was provided from in vitro 84 

experiments. In addition to POMC, the network contained genes encoding the 85 

neuropeptide relaxin-3, the neuropeptide receptors NPY Y5 and somatostatin receptor 5, 86 

and the  β2 adrenergic and metabotrophic glutamate receptor 8 neurotransmitter receptors 87 

(Fig. 1). POMC was the only gene downregulated by fasting while the others in the 88 

network were upregulated. This suggests a role for these pathways in the control of 89 

appetite within the hypothalamus. There is also suggestive evidence for a role of 90 

hypothalamic energy sensing pathways in regulating central melanocortin signalling. 91 

Proszkowiec-Weglarz observed strong immunostaining for the energy sensor AMP-92 



activated protein kinase (AMPK) in the arcuate nucleus and Song et al. (2012) reported 93 

changes in AMPK activity indicated by phosphorylation during food deprivation and 94 

refeeding that paralleled changes in AGRP gene expression. 95 

In comparison to food deprivation, the effects of chronic food restriction on the 96 

central melanocortin system have received less attention. We recently measured AGRP 97 

and POMC gene expression in broiler breeder hens subjected to different levels of 98 

chronic food restriction and refeeding (Dunn et al., 2013a). Food restriction for six weeks 99 

at a level routinely used in the poultry industry to improve reproductive performance 100 

strongly stimulated AGRP gene expression. We also made comparisons between hens of 101 

the same body mass that had experienced different feeding histories. Thus, we were able 102 

to distinguish in terms of significant changes in AGRP mRNA between birds killed at the 103 

same body mass that had been either been maintained on an intermediate level of food 104 

restriction or more severely restricted and then refed for two weeks. We also observed a 105 

difference between restricted birds compared to restricted hens that had been allowed to 106 

refeed for two days, with refeeding causing a pronounced decrease in AGRP mRNA. 107 

Overall we found that AGRP mRNA provided an integrated and sensitive measure of 108 

feeding history and has potential as an objective measure of hunger in animal welfare 109 

research. As has been observed in food deprivation studies, there appears to be a 110 

tendency for POMC gene expression to be decreased during food restriction. Hen et al. 111 

(2006) reported a significant decrease in POMC mRNA after seven days’ food restriction 112 

in broiler and layer chickens Although we did not observe a significant effect of 113 

restriction on POMC expression in our study (Dunn et al. 2013a), we have subsequently 114 

observed a significant decrease in chronically restricted broiler chickens in a recent study 115 



with greater sample sizes and statistical power (Dunn et al., unpublished). 116 

 117 

3. Seasonal and stress-induced changes in body mass 118 

Seasonal cycles of food intake and body mass have been well studied in birds, 119 

particularly in relation to migration, but little is known about the regulatory role of the 120 

central melanocortin system (Cornelius et al., 2013).  Experiments in white-crowned 121 

sparrows (Zonotrichia leucophrys gambelii) have suggested that increases in body mass 122 

during the migratory period are associated with a regulated change in the level around 123 

which body mass is defended, a phenomenon known as a ‘sliding set point’ or rheostasis 124 

(King et al., 1963; Mrosovsky, 1990). One hypothesis is that seasonal changes in appetite 125 

and body weight are driven by an altered basal expression of AGRP and POMC in a 126 

direction reflecting the behavioural effects of the peptides. For example, to generate a 127 

seasonal body mass increase, the expression of AGRP and POMC would be respectively 128 

increased and decreased. However preliminary evidence from experiments in the 129 

European quail (Coturnix coturnix) suggested that AGRP and POMC gene expression 130 

were unchanged at a time when food intake and body mass were increasing during the 131 

migratory period (Cornelius et al., 2013). These findings are reminiscent of those from 132 

studies of seasonal mammals where the rheostatic mechanisms appear to lie in brain areas 133 

outside the arcuate nucleus (Ebling, 2014).  134 

Another example of rheostasis that has been well defined in birds is the voluntary 135 

loss of appetite and body mass that occurs during incubation, one of several examples of 136 

naturally occurring ‘animal anorexias’ (Savory, 1979; Sherry et al., 1980; Mrosovsky and 137 

Sherry, 1980). We have recently examined the expression of AGRP and POMC during 138 



incubation in the domestic chicken (Dunn et al., submitted) where hens show reduced 139 

feeding behaviour for a three-week period, even though food is freely available. We 140 

hypothesised that gene expression would be unchanged because the decreased body mass 141 

represents a rheostatic change in the defended level. However, unexpectedly, AGRP was 142 

increased in incubating birds compared to laying hens. To control for the possibly 143 

confounding fact that the reproductive system is regressed in incubating birds, we 144 

imposed food restriction on laying hens to induce a mass loss comparable to that in 145 

incubating birds. AGRP expression was similarly high in the incubating and food 146 

restricted groups and was significantly reduced in restricted birds allowed to refeed. 147 

These findings suggest that AGRP expression remains sensitive to nutritional state during 148 

incubation, which may be of adaptive significance in allowing a hen to terminate 149 

incubation if her energy stores fall too low.  However, the normally anabolic effects 150 

associated with increased AGRP mRNA must be overridden by inhibitory inputs. POMC 151 

is a candidate because its mRNA was increased in incubating birds on the boundary of 152 

significance, although hypothalamic vasoactive intestinal polypeptide (VIP) may also be 153 

involved. 154 

To consider another example of voluntarily reduced food intake in birds, we 155 

examined AGRP and POMC gene expression six days after transferring domestic 156 

chickens from individual housing in cages to social housing in pens, a stressor that 157 

induced a 70% reduction in food intake (Dunn et al., submitted). The results were 158 

comparable to incubation, with AGRP mRNA being significantly elevated in transferred 159 

birds together with significantly increased POMC mRNA. Again, the results suggested 160 

that AGRP gene expression is sensitive to energy status and this may be important to 161 



allow the birds to recover from the effects of the stressor. Similar to incubation, it is 162 

possible that increased POMC expression plays a role in stress-induced inhibition of food 163 

intake as has been suggested in some mammalian studies (Liu et al., 2007). 164 

 165 

4. Regulation of AGRP and POMC gene expression by leptin 166 

As noted in Section 3, a period of two days’ refeeding following prolonged food 167 

restriction in broiler chickens results in a rapid decrease in AGRP gene expression. The 168 

endocrine signals underlying this response, together with those responsible for increased 169 

AGRP expression after energy deprivation or restriction, are currently uncertain. In 170 

mammals, leptin is well established as an important regulator of AGRP and POMC gene 171 

expression, upregulating POMC and downregulating AGRP (Friedman, 2009). However 172 

progress in understanding the role of leptin in regulating the central melanocortin system 173 

in birds has been slow because the existence of leptin genes in avian genomes has been 174 

controversial for twenty years. Early claims in the literature that bird leptin genes had 175 

been cloned were challenged and there was no evidence for their existence from 176 

sequenced avian genomes and other genomic resources (Friedman-Einat et al., 1999; Pitel 177 

et al., 2010). However, in 2013, a leptin-like sequence was released into public databases 178 

during annotation of the zebra finch (Taeniopygia guttata) genome that has led to leptin-179 

like genes being identified in, currently, ten bird genomes (Prokop et a., 2014; Friedman-180 

Einat et al., 2014; Huang et al., 2014; Friedman-Einat and Seroussi, 2014).  These show a 181 

similar syntenic relationship with surrounding genes as other vertebrate leptins. The fact 182 

that avian leptin proved difficult to clone by traditional methods is explained by the 183 

approximately 30% amino acid identity to mouse and human leptin, together with a high 184 



(up to 80%) GC content in the coding region. Recombinant peregrine falcon (Falco 185 

peregrinus), zebra finch, and rock dove (Columba livia) leptins activate the leptin 186 

receptor (LEPR) in avian LEPR reporter gene cell lines, and also the JAK-STAT pathway 187 

through phosphorylation of STAT3 (Prokop et al., 2014; Huang et al., 2014; Friedman-188 

Einat et al., 2014). The tissue distribution of expression of the newly discovered leptin 189 

genes has only been studied in two species to date. In the zebra finch real time PCR 190 

showed expression of leptin primarily in the brain and the pituitary gland, of which the 191 

latter was also the most abundant site of expression of the LEPR (Huang et al., 2014). 192 

The pituitary was also the main site of expression of the rock dove LEPR while leptin 193 

was largely expressed in the liver and gonads (Friedman-Einat et al., 2014). In both 194 

species, leptin expression in adipose tissue was low or undetectable. Thus, although 195 

limited, the expression data suggest that leptin cannot be regarded as being predominantly 196 

an adipose tissue hormone in birds to the extent it is in mammals and that it shares a more 197 

widespread distribution comparable to that observed in other non-mammalian vertebrates 198 

(Crespi and Denver, 2006; Rønnestad et al., 2010). This led Millar (2014) in a 199 

commentary on the discovery of avian leptin-like genes to suggest that they may 200 

primarily be involved in pituitary-gonadal function rather than energy balance regulation, 201 

although studies investigating avian leptin expression in response to nutritional 202 

manipulation have yet to be performed. Previous investigations in birds had suggested 203 

that putative leptin protein and LEPR binding activity are very low or undetectable in the 204 

blood in several avian species (Richards et al., 2000; Adachi et al., 2008; Hen et al., 205 

2008; Yosefi et al., 2010). Also, although short isoforms of the avian LEPR have been 206 

identified (Liu et al., 2007) the most abundant avian LEPR isoform is orthologous to the 207 



mammalian Rb long isoform and none has so far been shown to be equivalent to the 208 

mammalian Ra short isoform thought to be involved in the transport of leptin into the 209 

brain. Collectively, these data may indicate a more paracrine role for leptin in birds, 210 

although rock dove serum was recently shown to activate a LEPR reporter bioassay 211 

(Friedman-Einat et al., 2014). 212 

Much of the investigation into the role of leptin in regulating energy balance in 213 

birds has focused on the domestic chicken. However, the existence of functional leptin 214 

genes in chickens, Japanese quail and the mallard duck has yet to be proven (Friedman-215 

Einat and Seroussi, 2014). Friedman-Einat and Seroussi (2014) suggest that this may be 216 

associated with changes in appetite regulation linked to domestication, and that it is in 217 

line with the observation that a pegylated leptin antagonist that inhibited activation of a 218 

LEPR bioassay reporter system by rock dove leptin was ineffective in altering food intake 219 

and body mass in chickens (Gertler et al., 2014). However, that conclusion is dependent 220 

on leptin having a physiological role in energy balance regulation in the chicken, which 221 

may not be the case. Also, if chicken leptin is absent from the genome, it might be 222 

expected that the LEPR would also be missing or degenerate as appears to be the case 223 

with kisspeptin in birds (Pasquier, 2014). It is therefore possible that leptin may yet be 224 

identified in chickens, and the recent discoveries in other species have provided a new 225 

impetus and scope for comparative analysis. It is certainly the case that mammalian leptin 226 

inhibits food intake in chickens and other birds after central or peripheral administration 227 

(Denbow et al., 2000; Cerasale et al., 2011). Similar inhibitory results have been obtained 228 

after administration of the ‘chicken leptin’ protein that shares 97% amino acid sequence 229 

identity to mouse leptin and is evidently artifactual (Raver et al., 1998; Löhmus et al., 230 



2003). Given the new information about the low sequence identity of avian leptins with 231 

mammalian leptins, these results need to reevaluated using recombinant avian leptin 232 

proteins. This applies to the only study in which the effects of mammalian leptin 233 

(‘chicken leptin’) were investigated in relation to AGRP and POMC expression (Dridi et 234 

al., 2005). Here, leptin was administered peripherally to young broiler chickens for six 235 

hours after which hypothalamic AGRP and POMC gene expression were measured. No 236 

change in expression was detected for either gene, in contrast to what would be expected 237 

from mammalian studies. If leptin does regulate AGRP and POMC expression in birds, it 238 

would be expected that the LEPR is co-expressed with those genes in arcuate nucleus 239 

neurons. However, in our experience, the chicken LEPR long isoform is difficult to detect 240 

by in situ hybridisation because although detectable by PCR it is not highly expressed in 241 

the hypothalamus. Although we were able to increase the sensitivity of radioactive 242 

oligonucleotide in situ hybridisation sufficiently to detect expression of low-abundance 243 

prolactin receptor in the chicken hypothalamus, we were unable to detect expression of 244 

the LEPR at the same time using the same methodology (T. Boswell, unpublished). 245 

 246 

5. Regulation of AGRP and POMC gene expression by other neuroendocrine signals 247 

In the absence of information regarding leptin’s possible role in regulating AGRP 248 

and POMC gene expression, a small number of investigations have focused on other 249 

candidate signals. Several studies have been performed in the domestic chick in relation 250 

to insulin, the circulating concentrations of which decrease with fasting in birds as well as 251 

in mammals (Christensen et al., 2013). Insulin was established in mammals as a regulator 252 

of arcuate nucleus appetite peptide gene expression before the discovery of leptin. It 253 



stimulates POMC gene expression and inhibits that of NPY and AGRP, corresponding to 254 

an inhibitory effect of centrally-administered insulin on food intake (Porte et al., 2002). 255 

Insulin also inhibited food intake after central injections in domestic chicks, an effect 256 

blocked by melanocortin receptor antagonists (Honda et al., 2007; Shiraishi et al., 2008). 257 

Chick NPY neurons were demonstrated to co-express the insulin receptor and it is likely, 258 

but was not determined, that those same individual neurons expressed AGRP given the 259 

co-expression of NPY and AGRP previously observed in birds (Boswell et al., 2002; 260 

Shiraishi et al., 2011). Co-expression of the insulin receptor with α-MSH was also 261 

observed in the arcuate nucleus (Shiraishi et al., 2011). Two independent studies in 262 

chicks reported increased gene expression of POMC in the chick brain after central 263 

insulin injection but no effect on AGRP mRNA in contrast to an inhibitory effect on NPY 264 

mRNA (Honda et al., 2007; Shiraishi et al., 2008). The apparent absence of an inhibitory 265 

effect of insulin on AGRP gene expression may point to a regulatory difference between 266 

birds and mammals although observations need to be extended to adult chickens and to 267 

other species. 268 

With regard to other neuroendocrine signals, Byerly et al. (2009) combined in vivo 269 

and in vitro studies on chicken hypothalami from fat and lean chicken lines to investigate 270 

the possible regulation of appetite peptide gene expression by brain-derived neurotrophic 271 

factor (BDNF), triiodothyronine (T3) and corticosterone. BDNF did not affect AGRP and 272 

POMC gene expression but T3 was found both in vitro and in vivo to upregulate AGRP 273 

mRNA and downregulate POMC mRNA. A specific effect of T3 on AGRP gene 274 

expression would not be predicted from the fact that circulating T3 concentrations are 275 

decreased by fasting in chickens (Harvey and Klandorf, 1983) at the time AGRP mRNA 276 



is increased. However it is possible that T3 concentrations within the hypothalamus may 277 

differ from those in the blood as a result of local conversion of thyroxine. Fasting 278 

increases plasma corticosterone concentrations in birds as in mammals (Harvey and 279 

Klandorf, 1983) and it would therefore be predicted that corticosterone would increase 280 

AGRP expression and decrease POMC expression in line with mammalian studies 281 

(Makimura et al., 2003). However Byerly et al. (2009) reported that while corticosterone 282 

administration in vitro and in vivo decreased POMC mRNA, it did not affect AGRP gene 283 

expression. Liu et al. (2012) replicated the suppressive effect of corticosterone on POMC 284 

expression after peripheral administration in laying hens, but also reported decreased 285 

AGRP mRNA. However, central injection of the glucocorticoid receptor agonist 286 

dexamethasone in broiler chicks produced no change in AGRP or POMC gene expression 287 

(Liu et al., 2014). The lack of consensus may be because adrenalectomy and 288 

glucocorticoid replacement together with consideration of corticosterone and insulin 289 

interactions are needed to demonstrate a stimulatory response for AGRP mRNA 290 

unambiguously (Makimura et al., 2003). Such studies have not been performed in birds. 291 

An additional candidate neuroendocrine feedback signal to the arcuate nucleus that 292 

we have investigated recently is tonic signalling by cholecystokinin (CCK). Investigation 293 

into the genetic basis of growth rate between lines of fast- and slow-growing chickens 294 

revealed the importance of an apparently cis-acting regulatory region downstream of the 295 

CCKAR (CCK1 receptor) that explained 19% of the difference in body mass between the 296 

lines. Birds with the high-growth haplotype at that locus showed lower expression of 297 

CCKAR throughout the body together with decreased sensitivity to the inhibitory effects 298 

of exogenous CCK administration (Dunn et al., 2013b). Thus high growth rate was 299 



associated with a lower overall tone of CCK signalling. When we investigated AGRP and 300 

POMC gene expression, we found that AGRP mRNA was significantly higher in the 301 

high-growth haplotype compared to heterozygotes and the low-growth haplotype but 302 

there was no difference in POMC mRNA. These data suggest that AGRP gene expression 303 

is sensitive to the tone of CCK signalling. The effect of CCK on the central melanocortin 304 

system has not been widely investigated but sensitivity of the feeding response to CCK 305 

injections was reduced in MC4R-knockout mice and MC4R neurons were observed to 306 

project to hindbrain regions influenced by CCK signalling (Blevins et al., 2009). It is, of 307 

course, possible that the increased AGRP gene expression we observed in the high-308 

growth birds was a secondary consequence of altered CCKAR expression, and we are 309 

carrying out further studies to test for a direct regulatory influence of CCK.  310 

 311 

6. Future perspectives 312 

It is now well established that the avian central melanocortin system shows 313 

conservation with its mammalian counterpart in terms of the genes involved and the 314 

neuroanatomical localisation of the neurons expressing the genes within the arcuate 315 

nucleus. There is functional conservation with respect to the behavioural effects of the 316 

peptides and the response of gene expression to changes in energy status. The precision 317 

with which we were able to distinguish between hens with different histories of chronic 318 

food restriction and refeeding is remarkable (Dunn et al., 2013a) and from our work that 319 

we report in Section 3, sensitivity of AGRP expression to energy status appears to be 320 

maintained even in situations where food intake is voluntarily decreased, indicating the 321 

functional importance of this mechanism. However a similar degree of conservation does 322 



not appear to extend to the way the AGRP and POMC genes are regulated. There are 323 

striking differences in the regulatory effects of the two hormones principally associated 324 

with the long-term regulation of energy balance in mammals, leptin and ghrelin. As we 325 

review in Section 4, a 20-year search for leptin in birds has finally resulted in the 326 

identification of leptin-like genes in several avian orders. However, the encoded proteins 327 

show low sequence identity to mammalian leptins and the preliminary evidence from the 328 

tissue distribution of gene expression suggests that leptin is more pleiotrophic in birds 329 

and may not be primarily involved in regulating energy balance. Ghrelin research in birds 330 

has been more straightforward in that there has been no lengthy controversy about its 331 

existence. However the behavioural effect of ghrelin on feeding is fundamentally 332 

different to the situation in mammals in that there is consistent evidence that ghrelin acts 333 

in the brain to inhibit food intake rather than stimulate it (Kaiya et al., 2013). The 334 

inhibitory effect appears to be mediated by hypothalamic corticotrophin-releasing factor 335 

(Saito et al., 2005) rather than through the central melanocortin system. Two other 336 

hormones that influence long-term regulation of arcuate nucleus peptide signalling in 337 

mammals, insulin and corticosterone, share more similarity with regulatory effects 338 

observed in mammals, but with some differences (Fig. 1). Overall, the influence of the 339 

neuroendocrine signals involved in long-term energy balance regulation appear 340 

diminished in birds compared to mammals, perhaps indicating that regulation of AGRP 341 

and POMC synthesis and activity is under more short-term control. Our preliminary 342 

observations suggesting a regulatory influence of CCK support this idea. It is also 343 

possible that direct energy sensing within the hypothalamus plays a relatively greater role 344 

in regulating the arcuate nucleus neural circuitry in birds. The application of genomic 345 



methods has provided a foundation for understanding how changes in the hypothalamic 346 

environment may influence central melanocortin signalling (Fig. 1). It should not be 347 

surprising that the regulation of energy balance is likely to differ between vertebrate taxa. 348 

Birds in particular face very different metabolic challenges from most mammals and from 349 

ectothermic vertebrates imposed by the requirements of the intense aerobic activity of 350 

flight. Fundamental differences in metabolism such as the relative circulating 351 

concentrations of insulin and glucagon, present even in domesticated birds like the 352 

chicken, are likely to reflect this. It would be beneficial for future investigations to draw 353 

more on the established metabolic differences between birds and mammals, particularly 354 

on the relatively greater reliance in birds on lipid metabolism as a source of metabolic 355 

fuels. We hope that the impetus to the field provided by the identification of avian leptins 356 

will encourage a new approach. 357 
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Figure legend 551 
 552 
Figure 1. Summary of current knowledge of regulatory inputs (positive and negative 553 
influences are indicated) on agouti-related protein (AGRP) and pro-opiomelanocortin 554 
(POMC) gene expression in the arcuate nucleus of the avian hypothalamus. Signalling 555 
within the hypothalamus is shown in the box. Abbreviations: ADRB2 -  β2 adrenergic 556 
receptor; AMPK – AMP-activated protein kinase; GRM8 – metabotrophic glutamate 557 
receptor 8; NPY5R – neuropeptide Y receptor Y5; RLN3 – relaxin-3; SSTR5 – 558 
somatostatin receptor 5. 559 
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