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Abstract 

The term “marginal biomass” is used here to describe materials of little or no 

economic value, e.g. plants grown on contaminated land, food waste or demolition 

wood. In this study 10 marginal biomass-derived feedstocks were converted into 19 

biochars at different highest treatment temperatures (HTT) using a continuous 

screw-pyrolysis unit. The aim was to investigate suitability of the resulting biochars 

for land application, judged on the basis of potentially toxic element (PTE) 

concentration, nutrient content and basic biochar properties (pH, EC, ash, fixed 

carbon). It was shown that under typical biochar production conditions the 

percentage content of several PTEs (As, Al, Zn) and nutrients (Ca, Mg) were 

reduced to some extent, but also that biochar can be contaminated by Cr and Ni 

during the pyrolysis process due to erosion of stainless steel reactor parts (average 

+82.8% Cr, +226.0% Ni). This can occur to such an extent that the resulting biochar 

is rendered unsuitable for soil application (maximum addition +22.5 mg Cr kg-1 

biochar and +44.4 mg Ni kg-1 biochar). Biomass grown on land heavily contaminated 

with PTEs yielded biochars with PTE concentrations above recommended threshold 

values for soil amendments. Cd and Zn were of particular concern, exceeding the 

lowest threshold values by 31 fold and 7 fold respectively, despite some losses into 

the gas phase. However, thermal conversion of plants from less severely 

contaminated soils, demolition wood and food waste anaerobic digestate (AD) into 

biochar proved to be promising for land application. In particular, food waste AD 

biochar contained very high nutrient concentrations, making it interesting for use as 

fertiliser.  
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1 PTE, potentially toxic element; VOC, volatile organic compounds; TGA, thermogravimetric analysis; PAH, polycyclic aromatic hydrocarbons; 

EC, electric conductivity; AD, anaerobic digestate; IBI, International Biochar Initiative; EBC, European Biochar Certificate 
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1 Introduction 

Produced from biomass in a high-temperature, low-oxygen treatment process, 

biochar is used in soil for its positive properties for increasing fertility and soil 

remediation (Lehmann and Joseph, 2009; Sohi et al., 2010). To achieve 

economically viable biochar production in a sustainable context, the use of waste 

feedstocks is essential. While crop residues fit into this category, they are not 

considered to be an ideal feedstock (Shackley et al., 2011). On the other hand, plant 

material from contaminated sites/phytoremediation as well as non-virgin feedstocks 

(chemically/biologically transformed, amended or treated material (Shackley et al., 

2011)) are resources that need additional treatment before re-use, and so these may 

be more suited to biochar production.  

Large areas of land world-wide have been contaminated by inorganic contaminants, 

whilst the actual size of the area depends on definition. The scale of the problem is 

still increasing, so the use of plants from this under-utilised land for conversion into 

biochar could be a valuable treatment option (Evangelou et al., 2012). Non-virgin 

feedstocks, such as food waste (anaerobic digestate (AD)), sewage sludge (AD) or 

demolition wood are also readily-available materials; in the UK alone, around 200 

million tonnes of anthropogenic waste is produced annually (DEFRA, 2015). If such 

wastes could be converted into a valuable resource through pyrolysis, a wide variety 

of feedstocks would be accessible in large quantities for biochar production. To 

describe biomass of little economic value the term “marginal biomass” is introduced 

in this study, taken from the established term “marginal land” for land which, for 

various reasons, has little agricultural importance (e.g. poor soil quality, pollution) 

(Peterson and Galbraith, 1932). These marginal biomass-derived feedstocks can be 

untreated virgin materials such as contaminated plant biomass, or non-virgin 

feedstocks from chemically/biologically transformed materials. 

For biochar application to soil to be acceptable, adverse ecosystem effects need to 

be avoided and contaminant levels kept to a minimum. The contaminants of concern 

in biochar are organic compounds that are formed during production and can attach 

loosely or tightly to the biochar framework (PAHs, VOCs, dioxins) (Buss and Mašek, 

2014; Buss et al., 2015; Hale et al., 2012) as well as potentially toxic elements 

(PTEs) originating from the feedstock (Evangelou et al., 2014; Méndez et al., 2012; 

Van Wesenbeeck et al., 2014). Total PTE concentrations have been analysed in 

biochars from virgin biomass sources (materials which have not been 

chemically/biologically transformed, amended or treated) and the results have not 

indicated any reasons for concern for soils and plants so far (Freddo et al., 2012; 

Lucchini et al., 2014a). However, the use of the term “marginal biomass” here 

describes materials that have a high probability of being somewhat contaminated 

and predominantly contain elevated levels of PTEs. Thus, the resulting biochars 

could exceed legislation values applied to soil amendments. This makes it essential 

to investigate separately the levels of PTEs in each biochar produced from a new, 
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marginal biomass for compliance with existing regulations. According to the 

International Biochar Initiative (IBI) (International Biochar Initiative, 2013), arsenic, 

cadmium, chromium, cobalt, copper, lead, mercury, molybdenum, nickel and zinc are 

the PTEs of concern in biochar which, with the exception of cobalt and molybdenum, 

are also part of the priority pollutant list of the US EPA (Environmental Protection 

Agency, 1982).  

Sewage sludge is a marginal feedstock that could be used for biochar production but 

often contains elevated levels of PTEs. It is available in large quantities and will be 

so into the future. For example, in 2008 1.6 million t of sewage sludge was produced 

in the UK (DEFRA, 2011), which could make commercial biochar production viable. 

Sewage sludge biochar has already been investigated intensively regarding risks 

and benefits with variable results, mostly related to its heterogeneity and varying 

composition (Liu et al., 2014; Luo et al., 2014; Méndez et al., 2012; Van 

Wesenbeeck et al., 2014; Zielińska and Oleszczuk, 2015). In several recent studies 

single feedstocks from contaminated biomass were investigated regarding their 

usefulness for conversion into biochar (Evangelou et al., 2014; Jones and Quilliam, 

2014; Lucchini et al., 2014b). However, to our best knowledge, no studies to date 

have carried out systematic and extensive assessment of PTE in biochars from a 

range of marginal biomass under different pyrolysis conditions.  

Besides PTEs, elements with positive effects on plant growth are present in the ash 

of feedstocks. The PTEs Cu, Zn, Ni and Mo are phytotoxic in elevated 

concentrations in soil, in contrast however, low concentrations are needed by plants 

as micronutrients (Broadley et al., 2011). N, P and K are the major elements in 

fertilisers and are macronutrients by definition, which means they are the elements 

needed by plants in high quantities (Hawkesford et al., 2011). All of these nutrients 

can be found in biochar (Enders and Lehmann, 2012; Mukome et al., 2013). Thus, 

use of nutrient-rich marginal feedstocks for biochar production could be an 

alternative way of supplying nutrients to plants through application of the resulting 

biochar to soil. 

During pyrolysis P and K mostly remain in the solid fraction and are therefore applied 

with the biochar to soil. However, N in the feedstock is mostly evaporated, together 

with most of the organic material, and this results in a N-poor material (Antal and 

Grønli, 2003; Liu et al., 2014). During the high temperature treatment of biomass, 

part of the mineral matrix evaporates as well (Kistler et al., 1987). The “loss” of 

elements from the solid char material can be beneficial when PTEs are concerned, 

but are a drawback when nutrients are vaporised (Kistler et al., 1987; Nzihou and 

Stanmore, 2013). Investigation of volatilisation of elements from pyrolysis solids is 

essential to select the best suitable production conditions of biochar from mineral-

rich feedstocks. 

The aim of this research was to investigate whether feedstocks contaminated with 

PTEs through various routes: (i) plant uptake through soil; (ii) plant uptake through 

water, and (iii) direct anthropogenic contamination, are suitable for biochar use in soil 
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in relation to their PTEs compositions. Furthermore, the main objective was to 

identify the best marginal biomass feedstock for conversion into biochar and the 

most suitable highest treatment temperature (HTT) judged on the basis of PTE 

concentrations, nutrient concentrations and basic biochar characteristics (pH, EC, 

ash, fixed carbon). For this purpose 19 biochars were produced from 10 different 

materials: feedstocks included various plant species that were grown in PTE 

contaminated soils, a plant grown in contaminated water and two non-virgin 

feedstocks.  

2 Materials and Methods 

2.1 Feedstocks 

Ten marginal biomass-derived feedstocks were sourced from five different countries 

to provide a variety of materials and plant species for biochar production. The 

feedstocks used were as follows:  

Seven biomass samples grown on contaminated land: 1) Wheat straw (Triticum 

aestivum), “WSI” from the village Madlauda (Panipat, Haryana, India) in the vicinity 

of Panipat thermal power station (coal fired plant; village Assan, Jind road, Panipat, 

India) and 2) sugarcane bagasse (Saccharum spp., species unknown), “SBI” from 

the vicinity of the river Yamuna close to the village Sarurpur (Uttar Pradesh, India) 

were sourced from India. Both locations have problems with PTE (and organic) 

pollution: Panipat thermal power station (Hajarnavis, 2000) and river Yamuna (Mehra 

et al., 2000). 3) Winter rye straw (Secale cereal) (WRB) and 4) willow logs with bark 

(salix spp., species unknown), “WLB” originated from the Campine region in Belgium 

from heavy metal (Cd, Zn, Pb) contaminated soil (Van Slycken et al., 2013). 5) 

Whole plant without roots of Salix purpurea “SLP”, 6) Paulonia tomentosa, “PAT” and 

7) Arundo donax, “ADX” were sourced from Italian industrial waste sites. Salix and 

Paulonia were grown on a site of an old Zn smelter that covers approximately 50 ha 

near the city of Crotone, Italy (Marchiol et al., 2013). Arundo donax was harvested 

from an industrial area located in Torviscosa from soil contaminated by various 

metals (Fellet et al., 2007). PTE levels of the various contaminated sites the biomass 

were sourced from are shown in Table 1 and feedstocks are also listed in Table 2. 

One feedstock grew in contaminated waters: 8) Water hyacinth (whole plant) 

(Eichhornia crassipes), “WHI” originated from a municipal waste water drain (Rajiv 

Nagar, Bhalswa, New Delhi, India) flowing close to Bhalswa Landfill Site, New Delhi 

which is known for its high levels of contamination (Jhamnani and Singh, 2009; 

Talyan et al., 2008) 

Two non-virgin feedstocks were used: 9) Solid residues from anaerobic digestion of 

food waste, sourced from the UK, denoted FWD, and containing a high amount of 

plastics; and 10) heterogeneous, glued, laminated, painted, coated, or otherwise 

treated demolition wood (without halogenated compounds), sourced from Germany 

and denoted DW, which included pieces of metal, glass and plastics. The FWD was 
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autoclaved and dried for several days at 80°C while the DW was shredded to <5 mm 

particle size prior to pyrolysis.  

If not stated otherwise above, feedstocks were dried and shredded with a Bosch 

AXT Rapid 2200 shredder prior to pyrolysis to give a particle size of around < 30 

mm. When very fine and dusty particles were created during the processing the 

fraction < 2 mm was sieved out and excluded from pyrolysis as the feed and furnace 

screws were not able to pick up these very fine particles. A sub-sample of the 

feedstock was dried in an oven at 105°C for 24 h and the moisture content was 

determined for every run. 

2.2 Biochar production 
A continuous flow, slow pyrolysis unit was used for biochar production, using an 

electrically heated split-tube furnace. The feedstock was transported by a screw 

through the furnace. Figure 1 shows a schematic of the pyrolysis unit. The residence 

time used corresponds to around 21.5 min in the heated zone for all biochars. 

Details on the pyrolysis process can be found in SI. 

Two feedstocks were pyrolysed at 5 temperatures (350, 450, 550, 650 and 750°C), 

one at two temperatures (550 and 700°C) and the remaining 7 feedstocks were 

pyrolysed at 550°C, the typical HTT for biochar production. The biochar yield of SBI 

550 could not be determined because the furnace screw did not pick up the straw 

properly and the exact amount of biomass used could not be measured. 

Consequently, the char yield is not reported and mass balances of elements could 

not be determined. Ten “UKBRC standard biochars” produced with a rotary kiln 

(described in Buss and Mašek, (2014)) using softwood pellets (SWP), rice husk 

(RH), oilseed rape pellets (OSR), miscanthus straw pellets (MSP) and wheat straw 

pellets (WSP) at 550°C and 700°C were used as a reference for comparison of 

nutrient concentrations.  

2.3 TGA, pH and EC 

Thermogravimetric analysis (TGA) was performed using a Mettler-Toledo 

TGA/DSC1 instrument to analyse ash content, fixed carbon and volatile matter 

according to the method described in Buss and Mašek (2014). Electrical conductivity 

(EC) and pH were measured according to Rajkovich et al. (2012) using 1 g of 

crushed biochar (using mortar and pestle) in 20 mL of DI water, which was shaken at 

150 rpm for 1.5 h on a bench-top shaker (EC: Hach HQ40d portable meter, 

conductivity probe meter CDC 401; pH Mettler Toledo FE 30). These analyses were 

performed in duplicates.  

2.4 Elemental analysis of biochar 

The biochars were digested according to the modified dry ashing method described  

as the best total elemental analysis method for biochar by Enders and Lehmann 

(2012). The method was adjusted in two parameters (more biochar digested, less DI 

water added in final step) to yield a higher elemental concentration in order to 

improve the final ICP-OES analysis. Briefly: 0.5 g of each biochar was weighted into 
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crucibles, heated to 500°C and held for 8 h. After cooling the samples were placed in 

a steam bath and 5 mL of concentrated HNO3 was added and evaporated to 

dryness. After cooling 1 mL HNO3 and 4 mL H2O2 were added and again evaporated 

to dryness. After cooling, 2 mL HNO3 was added to dissolve the solids. The resulting 

solution was filtered through Whatman No. 41 filter paper and the volume increased 

to 50 mL with deionised water. To ensure accurate comparison, all biochars and the 

feedstocks were digested using the same method prior to elemental analysis. 

The solutions were analysed with an ICP-OES (Perkin Elmer Optima 5300DV) for 20 

elements. Most elements were analysed in the axial mode of the instrument, but 

elements expected to be present in high concentrations (Na, Ca, K, Al, Mg, Fe) were 

analysed in the radial mode. The ICP multi-element standard solution IV (Certipur®, 

Merck) (standard 1) covered most of the elements analysed, remaining elements 

(As, Hg, Mo, P, Se) were combined from single ICP standards to form standard 2. 

Depending on the range in which the element concentrations fell, calibration curves 

of three standards (calibration blank, 0.01, 0.1 and 1 ppm), 4 standards (including 10 

ppm) or 5 standards (including 100 ppm) were used. The standards 1 and 2 as well 

as the ICP multi-element standard solution VI (Certipur®, Merck) were used as 

internal quality control standards for every batch analysed. Reagent blanks were 

analysed with each batch of extracted biochars.  

The detection limits for the various elements are stated in SI Table 1 and were 

established by running 10 DI water blanks with the respective method (see SI). The 

digestions and analyses were performed in triplicates (elements As, B, Hg, K, Mo, 

Na, Se for feedstocks and biochars of DW, FWD, SBI, WHI and WSI, however, are 

only available in duplicates). Further information, detailed processing of the ICP raw 

data, calculation of the limit of detection and mass balances can be found in the SI. 

2.5 Data analysis 
Details on data processing can be found in SI, including statistical tests used.   
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3 Results and discussion 

Ten marginal biomass samples that either grew on/in PTE contaminated land/waters 

(Table 1) or were biologically/chemically treated feedstocks sourced from 5 different 

countries were converted into biochar using the same pyrolysis unit (Figure 1) and 

very similar process conditions. Details on yields and production conditions of all 

biochars are depicted in Table 2. 

3.1 Yields, pH, EC and proximate analysis of biochars 
As expected and reported in other studies, the char yield consistently decreased with 

pyrolysis temperature (Table 2) due to increased loss of volatiles (Antal and Grønli, 

2003). Proximate analyses showed a decrease of the volatile matter content with 

temperature and consequently an increase in fixed carbon content (dry ash-free 

basis) which is again consistent with general observations in other studies (Crombie 

et al., 2013; Enders et al., 2012; Jindo et al., 2014; Ronsse et al., 2013; Xie et al., 

2015).  

The pH values of the biochars strongly increased with pyrolysis temperature and 

were all in the range of 9 - 10.5, apart from the lower temperature biochars made 

from demolition wood which had a lower pH (Table 2). In a meta-analysis of biochar 

studies, biochar has shown to increase the soil pH on average (Biederman and 

Harpole, 2013). Thus, the biochars with a high pH investigated here can be useful for 

soil pH elevation and the associated benefits of PTE mobility reduction and 

improvement of P availability (Biederman and Harpole, 2013). The demolition wood 

biochars had the lowest ash content and pH values; this relationship of low ash 

content with pH has already been described in Enders et al. (2012). The electrical 

conductivity (EC) of the biochars (used for approximation of the salinity) increased 

with pyrolysis temperature and was well correlated with ash content (R² = 0.7538; 

data not shown). WHI 550 had an ash content of over 40% and the highest EC (8115 

µS cm-1) which originated from the uptake of minerals from a waste water drain by 

the feedstock, water hyacinth. This biochar and some of the others (e.g. WSI 550, 

WRB 550, FWD 550) could potentially cause negative effects on plants and soil 

organisms due to their high salinity if applied in high concentrations. 

3.2 Nutrients in biochar 
In Table 3 elements are depicted for which statistically significant changes in mass 

balance from feedstock to biochar were detected. On average around 15% and 10% 

of the macronutrients Ca and Mg were lost during pyrolysis in all biochars (Mg p < 

0.001, Ca p = 0.009) and for the biochars produced ≥ 700°C around 22.5% of Ca (p 

= 0.042) and 15.4% of Mg (non-significant) was lost, respectively. The loss of 

macronutrients at typical pyrolysis HTTs indicates that lower temperatures are 

advisable if greater nutrient retention is desired. However, most importantly, P and K 

were not lost despite previous reports of K being volatilised during pyrolysis to a 

higher extent than Ca and Mg (Okuno et al., 2005). In this data set K even increased 

significantly (p = 0.041), however, by 14.1% only (biochars from 8 feedstocks gave 
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mass balances between +20% and -20% (SI Table 1), only the 2 feedstocks 

pyrolysed at 5 temperatures had consistently positive mass balances). 

The total concentrations of the 4 macronutrients P, K, Mg and Ca are plotted in 

Figure 2 (micronutrient concentrations can be found in SI Table 2). To provide 

baseline values, besides the biochars from marginal biomass feedstocks 

investigated in this study, 10 UKBRC “standard biochars” from 5 conventional, 

uncontaminated feedstocks pyrolysed at 550°C and 700°C were included. The wood 

biochars (SWP and DW), as expected, had the lowest concentrations of the 4 

reported macronutrients. The elemental content increased with pyrolysis temperature 

as proportionally more organic material volatilised, while most of the minerals 

remained in the char. WHI 550 contained a very high concentration of Mg, and while 

the concentration of Ca was in the same range as for most of the other biochars, P 

and K concentrations were also elevated. WRB 550 showed comparably high 

concentrations of P and K but the concentrations of Ca and Mg were in a similar 

range to most of the other biochars. PAT 550, FWD 550, SLP 550 and WHI 550 all 

contained levels of macronutrients higher than most of the other biochar samples. In 

particular, FWD 550 had highly elevated concentrations of P and Ca compared to 

the other biochars. The total levels of macronutrients in this char were: P 2.0% (w/w), 

K 2.3%, Ca 9.2% and Mg 0.4%. It has already been shown in early biochar studies 

that biochar can directly provide nutrients to plants, which can lead to crop yield 

increases (Lehmann et al., 2003). The key, however, is nutrient availability, and total 

concentration can only give an indication of this, if at all. Studies showed that biochar 

has the potential for suppling high amounts of available K to plants, as well as Ca, 

Mg and micronutrients (Lehmann et al., 2003; Major et al., 2010; Xu et al., 2013). 

Phosphorus, on the other hand, is reported to be present in available form in 

slaughterhouse waste, cattle manure and AD sewage sludge biochars and it has 

been proposed that there is potential for P-rich biochars to act as slow-release 

fertilisers (Wang et al., 2014; Zwetsloot et al., 2014). These findings suggests that 

nutrients-rich biochars like FWD 550 can be used as fertilisers on arable soils, as 

long as PTE levels are not of concern. 

3.3 PTEs in biochar 

For comparison of PTE levels in biochar, legislation and guideline values were used. 

Here the values reported are from the “German Biowaste Ordinance” (German 

Biowaste Ordinance, 1998), the “Swiss Chemical Risk Reduction Act” (Swiss 

Chemical Risk Reduction Ordinance, 2005) adapted as the EPCC basic and the 

EPCC premium grade biochar limits (Schmidt et al., 2012), respectively, the 

European compost and sewage sludge legislation (EU Council Regulation (EEC) No 

2092/91, 1991) and the International Biochar Initiative guidelines (originated from 

legislation from Australia, Canada, EU, UK and the USA) (summarized in SI Table 

3). 

Arsenic and Hg concentrations in feedstocks and biochars were mostly below 

detection limits and did not exceed any of the thresholds (Table 4). Only in WHI and 
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PAT feedstocks and biochar from PAT could As be detected at all (1.63 mg kg-1, 

1.22 mg kg-1 and 1.96 mg kg-1, respectively). In both biochars the As concentration 

was lower than theoretically expected, since enrichment through vaporisation of 

organic matter should result in higher concentrations of minerals than in the 

feedstock (WHI biochar below detection limit). This finding shows that As was lost 

during pyrolysis which can be attributed to its low boiling point of 613°C, and has 

been observed in other studies (Bridle et al., 1990; Helsen et al., 1997; Kim et al., 

2012).  

Although Al is not mentioned in any of the reported legislation and regulations Al 

toxicity can be a major problem in acidic soils (Delhaize and Ryan, 1995). In our 

study, the Al content decreased on average from feedstock to biochar significantly by 

35.0% (p = 0.013) for all of the biochars investigated in this study (Table 3). A non-

significant reduction of 53.2% was observed for the biochars produced at ≥ 700°C (p 

= 0.077) (average of only 3 biochars) which is confirmed by findings by Chiang et al. 

(2014). Although Zn was reduced by 37.5 % (p = 0.040) for the 3 biochars produced 

at ≥ 700°C (Table 3) which is similar to findings by Chiang et al. (2014) and Koppolu 

et al. (2003), Zn threshold values were still exceeded (Table 4, SI Table 3). However, 

biochars with similar Zn levels from feedstocks also grown on contaminated land 

have previously shown to result in positive effects on plant shoots, leading the 

authors to conclude that the increased Zn levels in shoots were beneficial for growth 

(Evangelou et al., 2014). Besides virgin feedstocks, non-virgin feedstock, e.g. 

sewage sludge, has been shown to contain Zn contents similar to those in this study 

(1256 mg kg-1) (Srinivasan et al., 2015). Threshold values for Mo exist only in 

Canada and the US; none are reported in the various European legislation used for 

comparison in this study. Still, 5 of the investigated biochars exceeded the reported 

limit values for Mo (Table 4). Furthermore, several biochars surpass the threshold 

values for Cd, including the biochars produced from feedstocks from the heavily 

contaminated sites in Italy and Belgium (Table 4). Overall, no significant change in 

Cd mass balance was observed on average for all biochars (data not shown), 

although Cd levels in 4 biochars were reduced by more than 80% compared to the 

feedstock (SI Table 1). Volatilisation of Cd from pyrolysis solids is frequently reported 

in literature, specifically at temperatures above 600°C (Chiang et al., 2014; 

Evangelou et al., 2014; Kistler et al., 1987; Luo et al., 2014). Yet, for example in Liu 

et al. (2014), Cd remained in the char to the highest extent in comparison with 

various other PTEs (Cu, Pb, Zn, Cr). In general, volatilisation of elements is not 

simply a function of temperature but differs according to elemental concentrations in 

the feedstock and is influenced by interactions with the other inorganic and organic 

components, which explains the high fluctuations of the same elements in different 

feedstocks in this study (SI Table 1) (Cuypers and Helsen, 2011; Okuno et al., 2005; 

Olsson et al., 1997; Van Wesenbeeck et al., 2014).  

Ni and Cr have also been reported to vaporise during pyrolysis (Kistler et al., 1987; 

Koppolu et al., 2003). Interestingly however, for these elements and Fe, even 

significant increases have been observed (Table 3). Cr increased by 82.8%, Fe by 
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207.2% and Ni even by 226.0% on average for all biochars, which indicates 

contamination during pyrolysis. This can be a result of erosion of small amounts of 

metal from reactor walls by feedstock and biochar in the continuous pyrolysis unit 

used in this study. We propose that the friction caused by the pressure the moving 

furnace screw applied onto the material in the furnace eroded small steel particles 

which contaminated the biochar. As the reactor is made of a high grade stainless 

steel 253MA (contains 21% chromium and 11% nickel), such a contamination path is 

probable. It has already been indicated in the EBC quality guidelines that there is 

potential for this to happen, specifically in new pyrolysis units (Schmidt et al., 2012). 

All in all, this is an important point to consider as, for example, DW 650 and 750 

would not be allowed to be applied on Swiss soils due only to the exceedance of Cr 

limit values and SBI 550 due only to Ni exceedance (EBC premium grade limit, Table 

4).  

To further elucidate whether the Ni and Cr exceedances were only attributed to 

erosion of Ni and Cr from steel in the pyrolysis unit, in contrast to percentage change 

as above, additional calculations were undertaken. The change in concentration of 

elements after pyrolysis compared to the expected concentration with the scenario of 

100% elemental retention in mg kg-1 was calculated (SI Table 1). This was done 

specifically to investigate how much Ni and Cr in the biochars could be attributed to 

contamination with these elements during the pyrolysis process. The deviation in 

concentrations expected (100% elemental retention) to actual concentrations for Ni 

were up to 45 mg kg-1 and up to 16-22 mg kg-1 for Cr. Considering the legislation / 

guideline values for Ni of 30-50 mg kg-1 and for Cr of 80-100 mg kg-1 (Table 4), this 

shows Ni and Cr enrichment from steel during pyrolysis can cause exceedance of 

threshold values. To overcome this, a rotary drum could be used to replace the 

furnace screw (which puts a lot of pressure on the furnace metal), or the Ni-Cr steel 

of the screw could be replaced by a different steel. However, these results show that 

the exceedance of guideline values (e.g. SBI 550) can be avoided by using a 

different pyrolysis unit and the feedstock itself is not a concern regarding these 

PTEs. 

In the 19 biochars investigated here, the PTEs Zn and Cd in particular cause 

problems with exceedance of threshold values, The highest Zn and Cd 

concentrations exceed the lowest guideline values (compost guideline) by 7-fold and 

31-fold, respectively (Table 4, SI Table 3). The feedstocks resulting in biochar that 

caused exceedances here originated from soil that is known for its contamination 

with these elements. Pb, Cu, As and Hg did not exceed biochar guideline values 

despite the fact that some of the land the plants were grown exceed soil guideline 

values (Table 1). A fraction of As, Hg, Zn and Al from feedstocks were lost from 

pyrolysis solids, which can be beneficial for biochar soil application, yet, it must be 

ensured that these PTEs are not released into the environment as vapours during 

pyrolysis. In addition to Zn and Cd, concentrations of Ni and Cr in some biochars 

exceed legislation values which can be traced back to the biochar production 

process itself.  
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3.4 Effect of temperature on concentration of PTEs in biochar 
One virgin feedstock, Arundo donax (plant biomass from PTE contaminated land), 

and one non-virgin feedstock, demolition wood, were pyrolysed at 5 temperatures in 

the range 350-750°C. As discussed in 3.1, increasing pyrolysis temperatures 

decreased the volatile matter content of the biochars and increased the fixed carbon 

and ash content (Table 2). Volatile organics vaporised, while most of the ash / PTEs 

remained. This led to enrichment of PTEs in the biochar and a higher concentration 

of PTEs compared to the feedstock (Table 4). However, some PTEs partially 

evaporated at the applied temperatures, reducing their concentration, e.g. Zn for DW 

and ADX (Table 4). Elements such as Cu did not evaporate and, due to this 

enrichment, the biochars produced at highest pyrolysis temperatures had the highest 

Cu concentrations (ADX 650 and 750 not significantly different). Consequently, the 

effect of temperature on the concentration of PTEs in biochar is not only dependent 

on the element under investigation but also on the feedstock matrix, which, as 

discussed in 3.3, affects the evaporation behaviour of the elements. However, the 

parameter which influences the concentration of PTEs in biochar most is their 

concentration in the initial material. Thus, appropriate selection of feedstock is the 

most crucial parameter for production of biochar with low total concentrations of 

PTEs (Kookana et al., 2011). 

3.5 Environmental implications of marginal biomass-derived 

biochar 

3.5.1 Biochars unsuitable for soil application 

Although water hyacinth biochar (WHI 550) contained high concentrations of 

nutrients, it also contained a very high ash content which could lead to salinity-

related toxic effects. Despite having lost large amounts of PTEs during pyrolysis (SI 

Table 1), the concentrations of Cr, Cu, Ni, Pb and Zn greatly exceeded threshold 

values (Table 4, SI Table 3). It is known that water hyacinth can take up and 

accumulate large amounts of toxic substances from water, making it interesting for 

waste water treatment (Mehra et al., 2000), however this is a clear disadvantage for 

its use in biochar production. 

Willow logs, winter rye, Salix purpurea and Paulonia tomentosa all originated from 

contaminated sites where soil PTE concentrations exceed legislation values 

(campine region in Belgium, region of an old Zn smelter in Italy) (Table 1) (EU 

Council Directive 86/278/EEC, 1986; German Federal Soil Protection Act, 1999). 

The biochars produced from these feedstocks all exceeded Cd and Zn legislation 

values and the IBI guideline values for Mo. Again, the ability of willow to accumulate 

Cd is useful for phytotextraction but here it shows that, when grown on Cd 

contaminated land, willow is unsuitable to use for biochar production for soil 

application (Van Slycken et al., 2013). 

From this it can be concluded that it is not advisable to use plants grown on soil that 

already exceeds legislation values or plants from polluted waters for biochar 

production, although exceedance of biochar threshold values does not always occur. 

Specifically, the use of plant species capable of accumulating high amounts of PTEs 



13 
 

as feedstock for biochar is problematic. Instead, as described in Evangelou et al. 

(2012) and Witters et al. (2012), since plants grown on heavily contaminated land 

are not competing with crops for human consumption they have high potential to be 

used for sustainable energy production. 

3.5.2 Biochars with little concern for application 

The biochars from wheat straw (WSI) grown at a site close to a thermal power plant 

(India), and sugarcane bagasse (SBI) that grew close to the highly polluted river of 

Yamuna (India) in PTE contaminated soil (Table 1) comply with regulations and have 

mostly moderate levels of nutrients along with medium to high pHs. The biochars 

from the woody materials, demolition wood and Arundo donax, showed rather low 

concentrations of macronutrients and no relevant exceedances of threshold values, 

despite Arundo donax having grown on a metal contaminated site that is close to 

PTE threshold values for soil (Table 1).  

Overall, as also concluded in Nzihou and Stanmore (2013) for combustion ash from 

similar materials, biochars from feedstocks grown on less heavily contaminated land 

and demolition wood biochars seem safe to apply on soil. Therefore the high 

temperature biochars from these feedstocks can be suitable for increasing soil pH 

when applied in high doses (Biederman and Harpole, 2013), for immobilising metals 

(Uchimiya et al., 2010), and for carbon sequestration due to their recalcitrance 

indicated by their high fixed carbon contents (which can be used as a proxy for 

carbon stability) (Crombie et al., 2013). Consequently, these biochars could be used 

for remediation of contaminated land (e.g. the land the feedstocks were sourced 

from) by immobilising PTEs, improving soil properties and subsequently increasing 

plant yields (Buss et al., 2012). 

3.5.3 Biochar with high potential for soil application 

Anaerobically digested food waste biochar (FWD 550) not only complied with EBC 

guideline values for heavy metal content, it also showed high concentrations of all 

the 4 macronutrients measured. This is a significant finding as around 16 million 

tonnes of food waste are produced every year in the UK alone (DEFRA, 2011). 

However, it is important to keep in mind that the composition of food waste can differ 

widely. Nevertheless, this makes food waste (AD) a very suitable marginal feedstock 

that is available in large quantities for the production of biochar and subsequent 

application on soil, as long as the nutrients in the biochar are plant available, 

something that should be tested in future work.   
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4 Conclusions 

In this study 10 marginal biomass-derived feedstocks from either contaminated 

land/waters or non-virgin biomass were investigated for their suitability for biochar 

production. First, it was shown that at typical pyrolysis temperatures some PTEs 

(e.g. As, Al, Zn) and nutrients partially evaporated from the mineral-rich materials. 

Using higher pyrolysis temperatures was found to be unsuitable as the 

macronutrients Mg and Ca were increasingly lost. In addition, feedstocks grown on 

industrial waste sites and in heavily PTE contaminated water bodies were found to 

be unsuitable for biochar production due to exceedance of PTE threshold values. 

Biochars produced from biomass grown in less contaminated soils and two 

biologically/chemically converted materials did comply with regulations and appear to 

be safe to apply to soils. Finally, food waste AD was found to be the best marginal 

feedstock for biochar production due to very high concentrations of plant 

macronutrients, making the resulting biochar a promising potential organic fertiliser. 

Our results showed that the long-standing assumption that contamination issues in 

biochar were either attributed to organic compounds formed during pyrolysis or 

inorganic PTEs originating in the feedstock is not always valid. We have shown that 

another source of contaminants can be present, namely contamination by Ni and Cr 

from high grade steel used in some high-temperature reactors. This finding has 

important consequences for the design and operation of industrial biochar production 

units. 
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Table 1: PTE concentrations of soils in the area the biomass used for biochar production grew. No data for the region of wheat 

straw (India) was available; water hyacinth (India) was grown in a waste water drain. 

plant location reference  As Cd Cu Hg Ni Pb Zn 

    lower soil limit EU #  mg kg -1   1.00 50   30 30 150 

  soils limit Germany * mg kg -1 200   5    

sugarcane Sarurpur, India Mehra et al., 2000 mg kg -1   0.46 18   13 16 47 

willow, winter rye campine region, Belgium van Slycken et al., 2013 mg kg -1   6.50     377 

Salix purpurea,  
Paulonia tomentosa 

Crotone, Italy  Marchiol et al., 2013 mg kg -1 242 498 1535 32  5802 44048 

Arundo donax Torviscosa, Italy Fellet et al., 2007 mg kg -1 20 0.83 73   22 97 
# EU Council Directive 86/278/EEC 1986, ANNEX 1 A, on the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture 

* German Federal Soil Protection Act 1999, Annex 2, 2.2, Guidance values for contaminant transfer soil-crop on agricultural fields in regards to plant quality  
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Figure 1: Continuous screw-pyrolysis unit (UKBRC stage II unit). 
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Table 2: Selected production conditions and biochar properties of 19 biochars investigated in this study. Proximate analysis (volatile matter, fixed 

carbon, ash), pH and electric conductivity (EC) were performed in duplicates and averages ± standard deviations are shown. 

biochar feedstock HTT FR yield volatile matter fixed carbon ash pH EC 

  °C g h-1 % db % daf % db    µS cm-1 

DW                                       

DW 350 Demolition wood, Germany 350 500 31.60 28.90 ± 1.63 71.10 ± 1.63 5.35 ± 0.78 7.56 ± 0.39 175 ± 18 

DW 450 Demolition wood, Germany 450 500 28.61 23.44 ± 0.91 76.56 ± 0.91 3.51 ± 0.92 7.78 ± 0.30 212 ± 25 

DW 550 Demolition wood, Germany 550 500 25.51 14.72 ± 0.26 85.28 ± 0.26 5.32 ± 0.01 7.65 ± 0.08 189 ± 29 

DW 650 Demolition wood, Germany 650 500 22.16 10.17 ± 0.52 89.83 ± 0.52 4.97 ± 0.49 8.48 ± 0.11 206 ± 17 

DW 750 Demolition wood, Germany 750 500 19.95 8.25 ± 1.78 91.75 ± 1.78 5.70 ± 2.48 9.85 ± 0.27 408 ± 37 

ADX                      

ADX 350 Arundo donax, Italy 350 500 38.69 33.72 ± 0.79 66.28 ± 0.79 12.38 ± 0.90 8.79 ± 0.44 1095 ± 306 

ADX 450 Arundo donax, Italy 450 500 30.13 21.83 ± 0.55 78.17 ± 0.55 12.62 ± 0.92 9.84 ± 0.11 2165 ± 191 

ADX 550 Arundo donax, Italy 550 500 26.24 17.13 ± 0.34 82.87 ± 0.34 14.75 ± 0.43 9.68 ± 0.21 2580 ± 85 

ADX 650 Arundo donax, Italy 650 500 25.49 14.10 ± 1.10 85.90 ± 1.10 16.01 ± 2.47 10.13 ± 0.41 2915 ± 78 

ADX 750 Arundo donax, Italy 750 500 22.95 10.84 ± 0.22 89.16 ± 0.22 15.51 ± 0.84 10.61 ± 0.64 3430 ± 269 

SBI 550 Sugarcane bagasse, India 550 250 * 16.84 ± 0.43 83.16 ± 0.43 12.91 ± 0.48 9.34 ± 0.03 954 ± 153 

WHI 550 Water hyacinth, India 550 400 45.20 43.39 ± 3.75 56.61 ± 3.75 42.92 ± 4.16 9.85 ± 0.11 8115 ± 389 

WSI 550 Wheat straw, India 550 250 30.74 21.87 ± 1.68 78.13 ± 1.68 24.55 ± 1.10 10.12 ± 0.01 6385 ± 431 

WLB                      

WLB 550 Willow logs, Belgium 550 500 26.68 16.38 ± 0.14 83.62 ± 0.14 7.22 ± 0.89 9.52 ± 0.16 192 ± 23 

WLB 700 Willow logs, Belgium 700 500 23.78 10.85 ± 0.27 89.15 ± 0.27 8.37 ± 1.78 9.52 ± 0.11 620 ± 49 

WRB 550 Winter rye straw, Belgium 550 225 20.76 21.93 ± 1.04 78.07 ± 1.04 15.92 ± 1.28 10.10 ± 0.62 6330 ± 42 

SLP 550 Salix purpurea, Italy 550 350 35.79 27.25 ± 0.39 72.75 ± 0.39 22.21 ± 0.62 10.15 ± 0.49 1678 ± 177 

PAT 550 Paulonia tomentosa, Italy 550 350 34.40 29.98 ± 2.99 70.02 ± 2.99 21.12 ± 0.21 10.55 ± 1.09 3150 ± 170 

FWD 550 Food waste digestate, UK 550 150 28.79 30.07 ± 0.99 69.93 ± 0.99 26.85 ± 0.58 8.88 ± 0.24 5580 ± 438 

*not available, see materials and methods                   

HTT, highest treatment temperature                   

FR, feeding rate during pyrolysis                   

yield, char yield during pyrolysis                   

db, dry basis; daf , dry ash free basis                   

AV, average; SD , standard deviation                   
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Table 3: Relative changes of elemental content from feedstock to biochar after pyrolysis (%). Geometric means and geometric standard 

deviations (SD) were calculated for biochars produced at all temperatures and only the ones produced ≥ 700°C. One sample, two tailed t-tests 

were performed to identify significant changes of the ln transformed data (p < 0.05) (Details in SI). Only the elements that showed significant 

changes are depicted here. 

      Al Ca  Cr Fe  K Mg Ni  Zn 

all biochars 

geometric mean % -35.0 -14.1 82.8 207.2 14.1 -9.7 226.0 -13.7 

 - geometric SD % 32.3 16.1 108.5 197.0 23.8 12.5 227.7 21.3 

 + geometric SD % 64.2 19.9 266.9 549.4 30.0 14.5 754.9 28.4 

n   17 17 17 17 17 17 17 17 

 p - value  0.013* 0.009* 0.012* 0.000* 0.041* 0.000*' 0.001* 0.056 

           

 biochars produced ≥ 700°C 

geometric mean % -53.2 -22.5 82.634 160.97 19.515 -15.4 397.54 -37.5 

 - geometric SD % 15.0 6.9 98.87 110.64 35.87 7.6 393.00 9.7 

 + geometric SD % 22.1 7.5 215.57 192.08 51.25 8.3 1870.33 11.4 

n   3 3 3 3 3 3 3 3 

 p - value  0.077 0.042* 0.313 0.095 0.478 0.091 nt 0.040* 

           

* significantly different (p < 0.05)         

' exponentially back-transformed before statistically analysed     

nt, not tested          

n, number of biochars          
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Figure 2: Total concentrations (mg kg-1) of macronutrients P and K (upper figure, A) and Mg and 

Ca (lower figure, B) in 19 biochars. In addition, 10 UKBRC standard biochars are plotted for 

comparison.
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Table 4: Potentially toxic element (PTE) concentrations (mg kg-1) of 19 biochars and their 10 feedstocks with averages and standard deviations. 

  As Cd Co Cr Cu Hg Mo Ni Pb Zn 

DW mg kg -1 < 0.72   < 0.04   0.27 ± 0.18 15.96 ± 8.33 10.36 ± 6.49 < 0.23 < 0.21   1.69 ± 0.94 35.25 ± 29.30 40.29 ± 3.96 

   DW 350 mg kg -1 < 0.72   0.50 ± 0.46 0.51 ± 0.11 35.86 ± 5.12 34.70 ± 19.62 < 0.23 0.28 ± 0.31 10.18 ± 1.03 48.63 ± 20.46 117.69 ± 15.78 

   DW 450 mg kg -1 < 0.72   0.22 ± 0.19 1.19 ± 0.97 47.44 ± 8.90 34.71 ± 4.57 < 0.23 < 0.21   8.01 ± 0.48 62.15 ± 12.37 150.15 ± 14.89 

   DW 550 mg kg -1 < 0.72   0.19 ± 0.18 0.78 ± 0.13 55.92 ± 9.18 35.68 ± 4.18 < 0.23 < 0.21   12.62 ± 3.92 66.50 ± 9.80 167.30 ± 20.34 

   DW 650 mg kg -1 < 0.72   0.33 ± 0.36 1.02 ± 0.12 94.54 ± 4.99 46.38 ± 2.65 < 0.23 < 0.21   38.48 ± 7.92 149.56 ± 123.82 236.84 ± 136.75 

   DW 750 mg kg -1 < 0.72   0.12 ± 0.11 2.08 ± 2.18 82.16 ± 15.61 53.16 ± 10.35 < 0.23 < 0.21   16.62 ± 1.30 35.71 ± 8.15 105.91 ± 9.63 

ADX mg kg -1 < 0.72   0.05 ± 0.05 < 0.08   < 0.49   1.58 ± 0.70 < 0.23 < 0.21   0.47 ± 0.25 < 0.74   11.87 ± 3.97 

   ADX 350 mg kg -1 < 0.72   0.92 ± 0.24 0.25 ± 0.04 6.08 ± 3.91 6.72 ± 0.95 < 0.23 0.56 ± 0.61 8.33 ± 2.37 1.43 ± 2.47 42.02 ± 8.11 

   ADX 450 mg kg -1 < 0.72   0.11 ± 0.02 0.16 ± 0.04 2.31 ± 2.74 5.89 ± 0.78 < 0.23 0.28 ± 0.49 3.39 ± 0.92 37.70 ± 62.57 38.16 ± 4.36 

   ADX 550 mg kg -1 < 0.72   0.98 ± 0.12 0.21 ± 0.04 5.67 ± 2.83 6.54 ± 0.66 < 0.23 0.58 ± 0.84 7.06 ± 1.07 5.30 ± 9.18 40.84 ± 4.40 

   ADX 650 mg kg -1 < 0.72   2.70 ± 0.18 0.28 ± 0.06 8.47 ± 2.08 7.73 ± 0.49 < 0.23 1.40 ± 0.79 9.35 ± 0.43 1.73 ± 2.99 48.85 ± 4.34 

   ADX 750 mg kg -1 < 0.72   2.64 ± 0.55 0.16 ± 0.05 2.85 ± 2.09 7.46 ± 1.14 < 0.23 0.54 ± 0.47 4.22 ± 0.89 27.22 ± 42.73 37.89 ± 5.64 

SBI mg kg -1 < 0.72   < 0.04   0.37 ± 0.32 4.28 ± 3.74 2.14 ± 0.34 < 0.23 < 0.21   3.26 ± 0.49 19.37 ± 33.55 8.19 ± 2.45 

   SBI 550 mg kg -1 < 0.72   0.47 ± 0.42 0.90 ± 0.28 24.21 ± 7.42 13.98 ± 6.59 < 0.23 0.92 ± 0.13 37.89 ± 13.74 4.73 ± 1.94 39.77 ± 9.21 

WHI mg kg -1 1.63 ± 0.12 1.24 ± 0.86 9.81 ± 5.15 173.62 ± 29.43 105.57 ± 8.08 < 0.23 6.07 ± 0.37 88.81 ± 1.48 100.86 ± 15.27 262.06 ± 19.83 

   WHI 550 mg kg -1 < 0.72   0.45 ± 0.39 7.44 ± 0.30 176.42 ± 18.81 118.85 ± 7.41 < 0.23 7.70 ± 0.44 110.59 ± 4.56 215.10 ± 154.13 392.82 ± 35.25 

WSI mg kg -1 < 0.72   < 0.04   0.35 ± 0.05 14.35 ± 12.43 2.17 ± 0.17 < 0.23 2.55 ± 0.21 1.41 ± 0.72 < 0.74   2.65 ± 1.25 

   WSI 550 mg kg -1 < 0.72   0.05 ± 0.05 1.17 ± 0.20 17.83 ± 13.80 16.55 ± 1.54 < 0.23 8.51 ± 0.35 26.32 ± 1.99 5.98 ± 2.66 62.00 ± 9.03 

WLB mg kg -1 < 0.72   11.46 ± 0.07 0.09 ± 0.02 < 0.49   6.91 ± 0.33 < 0.23 < 0.21   0.36 ± 0.22 16.27 ± 2.15 513.64 ± 64.20 

   WLB 550 mg kg -1 < 0.72   8.29 ± 0.50 0.29 ± 0.11 3.98 ± 3.56 16.46 ± 0.54 < 0.23 1.65 ± 2.64 16.73 ± 4.42 42.57 ± 7.65 1230.45 ± 98.92 

   WLB 700 mg kg -1 < 0.72   7.32 ± 0.72 0.48 ± 0.01 9.13 ± 2.25 19.95 ± 0.81 < 0.23 0.31 ± 0.54 45.96 ± 4.52 45.87 ± 17.94 1375.12 ± 30.58 

WRB mg kg -1 < 0.72   2.70 ± 0.03 0.16 ± 0.02 1.60 ± 2.77 9.07 ± 0.30 < 0.23 1.94 ± 0.22 0.48 ± 0.13 24.99 ± 17.78 295.75 ± 33.90 

   WRB 550 mg kg -1 < 0.72   6.82 ± 0.27 0.42 ± 0.02 6.98 ± 2.90 25.72 ± 1.14 < 0.23 9.48 ± 0.81 14.51 ± 2.62 21.95 ± 5.22 810.89 ± 25.73 

SLP mg kg -1 < 0.72   48.86 ± 3.60 0.57 ± 0.03 0.83 ± 1.44 8.14 ± 0.36 < 0.23 0.52 ± 0.90 0.78 ± 0.10 20.71 ± 27.73 629.87 ± 43.78 

   SLP 550 mg kg -1 < 0.72   22.00 ± 0.75 2.19 ± 0.09 13.13 ± 3.60 52.22 ± 1.11 < 0.23 7.85 ± 0.54 18.89 ± 2.28 42.03 ± 5.68 1404.33 ± 33.33 

PAT mg kg -1 1.22 ± 0.23 6.71 ± 1.21 0.23 ± 0.05 < 0.49   13.39 ± 2.57 < 0.23 < 0.21   1.07 ± 0.08 29.04 ± 32.54 208.63 ± 33.52 

   PAT 550 mg kg -1 1.96 ± 0.81 19.13 ± 1.27 1.36 ± 0.08 17.68 ± 3.40 47.71 ± 1.37 < 0.23 5.48 ± 0.23 24.08 ± 3.17 48.06 ± 17.14 544.68 ± 4.39 

FWD mg kg -1 < 0.72   < 0.04   0.49 ± 0.09 6.34 ± 4.22 14.38 ± 0.98 < 0.23 0.51 ± 0.58 15.49 ± 2.35 35.61 ± 42.09 56.41 ± 2.27 

   FWD 550 mg kg -1 < 0.72   < 0.04   2.76 ± 1.54 25.05 ± 6.33 45.71 ± 2.88 < 0.23 1.15 ± 0.01 10.21 ± 0.74 15.12 ± 4.06 218.77 ± 17.63 
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