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Abstract

A matrix method was developed by Kagemoto and Yue (1986) to compute
interactions between multiple three-dimensional bodies subjected to linear
water waves. The approach leads to a significant reduction in computational
time versus the direct method, in which the boundary value problem is solved
for all bodies simultaneously. An essential component of the theory is the
so-called diffraction transfer matrix, a linear operator defined for each unique
geometry. However, the diffraction transfer matrix is not a standard product
of a linear wave computation, for one, because it is based around an unusual
representation of incident waves, that is, as partial cylindrical waves. In this
paper, a new method is presented to compute the diffraction transfer matrix
from plane incident waves, which enables one to derive it from standard wave-
body software or experiments. Additionally, a new linear operator - the force
transfer matrix, is presented, which can also be determined by usual means.
Herein, the interaction theory calculation is verified against direct method
results from the linear wave-body software, WAMIT, and then applied to
compute absorbed power and wave field effects on a medium-sized array in
spectral seas and on a large farm of 101 wave energy converters in regular
waves.
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1. Introduction

The computation of water wave interaction effects amongst fixed or float-
ing bodies is important to the analysis of a variety of offshore and coastal
problems. For example, research was conducted in the 1990s on the design of
very large floating structures, supported by on the order of 100 floating legs,
whose purposes would be to expand usable space into the sea, such as for
floating airports (Kagemoto and Yue, 1993; Murai et al., 1999; Kashiwagi,
2000). In the arctic and antarctic regions, interactions between large fields
of icebergs in the marginal ice zone are important to environmental dynam-
ics (Peter et al., 2006). In the emerging field of offshore renewable energy,
to generate cost-effective electricity, devices, such as offshore wind turbines
and wave energy converters (WECs), must be deployed in arrays, known as
farms, where wave interactions will have significant effects on wave loads,
dynamics, and performance.

The initial approach to the analysis of floating body arrays is to compute
first-order forces and motions with linear wave theory. Kagemoto and Yue
(1986) developed a very powerful theory, often called an interaction theory,
for the computation of the linear wave forces on a body due to the presence
of other bodies. The interaction theory is exact within limits of linear wave
theory, accounts for both progressive and evanescent waves, and has only a
minimal restriction with respect to the bodies’ positions. The essence of the
theory is that hydrodynamic properties only need to be computed for each
unique geometry and the interaction effects between multiple geometries are
computed with linear algebra based on the knowledge that waves scattered
and radiated by one body are the incident waves on another. For an array of
devices of the same geometry, the method provides significant computational
savings over the direct method of computing linear wave effects on an array.
In the direct method, the linear-wave boundary value problem is solved using
the surface of all bodies simultaneously, and is typically performed compu-
tationally with a boundary element method (BEM) solver. In contrast, the
Kagemoto and Yue (1986) interaction theory uses a linear operator called a
diffraction transfer matrix that represents the scattering properties of body
and is found by solving the BVP for the body in isolation. The diffraction
transfer matrix transform vectors of incident, cylindrical, partial-wave coeffi-
cients into a vectors of outgoing, partial-wave coefficients representing waves
scattered by the body.

Analogous theories for multi-body wave interactions can also be found in
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the fields of electromagnetism and acoustics, many of which have preceded
and guided hydrodynamic ones. In these theories, the diffraction transfer
matrix is referred to as a T-matrix (for transition matrix). An extensive
treatment of multi-body wave scattering in a variety of fields can be found
in Martin (2006).

For an isolated, bottom-mounted, circular cylinder, the coefficients of
the scattered wave can be determined in a straightforward manner from
the body-boundary condition (MacCamy and Fuchs, 1954). Garrett (1971)
devised an analytical technique to find the scattered-wave coefficients for a
floating truncated cylinder. Recently, Wypych et al. (2012) discussed the
circular-cylindrical solutions of radiated waves from a point-absorber type
WEC moving in heave and surge. In that paper, they considered wave power
absorption and showed experimentally that the solutions are accurate within
the limits of linear wave theory. McNatt et al. (2013) demonstrated that
arbitrary geometries can be represented by cylindrical waves and presented a
new method to compute cylindrical wave coefficients for any geometry with
values measured in a numerical or experimental linear wave field.

Considering the array problem, Yilmaz (1998) applied the Kagemoto and
Yue (1986) method to multiple truncated floating cylinders using the analyt-
ical solution of Garrett (1971) to a single cylinder to compute the diffraction
transfer matrix and hydrodynamic forces. Following Yilmaz, Child and Venu-
gopal (2010) considered truncated floating cylinders as an array of WECs
and due to the speed of the computation were able to use a genetic algo-
rithm to optimize the WEC array layout. For complex geometries where no
analytical solution is readily available, numerical methods are required to
determine the diffraction transfer matrix. Kagemoto and Yue (1986) used
a hybrid-element method (HEM) to compute it for an axisymmetric body.
For a general shape, Goo and Yoshida (1990) and later Chakrabarti (2000)
used a BEM based on Fourier-series cylindrical Green functions developed
by Fenton (1978). A significant difficulty with both of these methods is that
to implement them a custom HEM or BEM code needs to be developed. To
the authors’ knowledge, no commercial or publicly available hydrodynamic
software produces the coefficients required for the hydrodynamic interaction
theory. Furthermore, it would not be straightforward to modify standard
BEM software, which uses Cartesian Green functions, to produce the diffrac-
tion transfer matrix, as this would necessitate changing both the incident
wave as well as the Green functions. This severely undermines the simplic-
ity of Kagemoto and Yue (1986)’s method and has relegated this powerful
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method to infrequent use in favor of direct computation with commercial
BEM software.

Following the work of McNatt et al. (2013), herein, a method is presented
for computing the diffraction transfer matrix by probing a body with plane
incident waves. The method is straight-forward and can be performed with
results from most standard software or experiments as long as linearity is
assumed or given. A novel operator called the force transfer matrix is in-
troduced. The force transfer matrix transforms a vector of incident partial
cylindrical wave coefficients into forces on the body. It is used in both the
diffraction and radiation problems, and is computed in a manner similar to
that of the diffraction transfer matrix. With the inclusion of the force transfer
matrix, the interaction problem becomes purely algebraic and programming
it is relatively uncomplicated.

A deficiency of the method presented here is that only propagating wave
modes are included. This is unavoidable because only propagating incident
waves are practical to use to compute the diffraction transfer and force trans-
fer matrices. The absence of evanescent wave modes results in differences as
compared to a full linear wave theory computation when bodies are spaced
very close together. However, it is shown for the geometries considered in this
paper that this error is very small and is negligible for most inter-body spac-
ings of practical interest. Although one may view this as a wide-spacing ap-
proximation, it is different from another well-known, wide-spacing approach
- the plane-wave approximation (Simon, 1982). In the method herein, prop-
agating radiated and scattered waves are modeled exactly as curved waves to
the limit of their truncation values, while in the plane-wave approximation,
these waves are approximated as plane-waves incident on other bodies.

In the following sections, the methodology for deriving the diffraction
transfer and force transfer matrices and the results from their applications
to interaction theory are presented. First, the cylindrical wave solution to
the linear-wave boundary-value problem and its notation are shown. Next,
Kagemoto and Yue (1986)’s interaction theory is reviewed, into which the
novel force transfer matrix is introduced for the computation of excitation
forces and the added mass and damping matrices. Then, new techniques
are presented for deriving the diffraction transfer and force transfer matrices
from incident plane waves. Following the methodology, a summary section is
presented to further clarify the computational procedures. Results are shown
for a cylinder and an attenuator-type WEC and verified with comparison to
direct computation using the BEM software, WAMIT (WAMIT User Man-
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ual, Version 7.0, 2012). Finally, the method is used to compute the power
absorption and wave field of a medium-sized array of WECs in spectral seas
and of a very large wave farm of 101 WECs in regular waves - computa-
tions that are not practical with direct methods given current computational
resources.

2. Interaction problem

The problem considered here is the linear wave-body boundary value
problem (BVP), with the usual assumptions and boundary conditions (see
Newman, 1977, Chap. 6), including an incompressible, irrotational fluid, a
flat bottom, small body motions, and a linearized free-surface boundary con-
dition. Fluid motions are sinusoidal with time, so that the velocity potential,
Φ, can be separated into a spatially dependent quantity, φ, and a time de-
pendent quantity, Φ = Re

{
φ (x) eiωt

}
, where x is the spatial coordinates, t is

time, i =
√
−1, and ω is the radial frequency. For an array of floating bodies

in proximity to one another, the velocity potential is the superposition of an
incident wave potential, φI , scattered wave potentials due to all bodies when
held fixed, φS, and the radiation potentials, φRqi due to each body i, moving
in each of its degrees-of-freedom, qi,

φ = φI + φS +
N∑
i=1

Qi∑
qi=1

ζqiφ
R
qi

(1)

where ζqi is the amplitude of the generalized motion of mode qi and Qi is
the total number of degrees-of-freedom of body i. N is the total number of
bodies and Q =

∑N
i=1Qi is the total number of degrees-of-freedom of the

array.
The BVP can be solved for the interaction between bodies in the ar-

ray under the assumption that hydrodynamic quantities for each body are
known. This is called an interaction problem. The necessary hydrodynamic
quantities are the added mass and damping, the diffraction transfer matrix,
and the force transfer matrix. The added mass and damping are familiar
quantities and their derivation is well known. The diffraction transfer matrix
is essential to this interaction theory and although not as widely employed,
it is not new to literature. The force transfer matrix is a new quantity in-
troduced herein. The derivations of the diffraction transfer matrix and the
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force transfer matrix are given in Section 3, and their meanings are discussed
throughout this paper.

The interaction problem described in this section follows that of Kage-
moto and Yue (1986) with a few differences in notation. Lower-case a is used
for partial wave amplitudes, where superscripts distinguish the type of wave
instead of Kagemoto and Yue (1986) use of capital A for the scattered wave
amplitudes and lower-case a for the planar incident wave amplitudes. The
transformation matrix has the same notation, Tij, but the opposite meaning
- ΨS

j = TijΨ
I
i rather than Kagemoto and Yue (1986) ΨS

i = TijΨ
I
j , because

the usage herein results in a more logical matrix equation for the complete
system, as shall be seen at the end of this section. And so, instead of the
interaction being solved about a body j, as in Kagemoto and Yue (1986),
the problem is solved about body i. Di rather than Bj, is used to denote
the diffraction transfer matrix. And finally, only propagating wave modes
are considered.

2.1. Cylindrical wave solutions about isolated bodies

A solution to be BVP in the absence of bodies is a long-crested plane wave,
which can be written in the cylindrical coordinates about body i, {ri, θi, z},
as the product of infinitely long vectors of coefficients and basis functions:

φPi (β) = i
g

ω

(
aPi
)T

ΨI
i (2)

where g is the gravitational constant, and T indicates the vector transpose.
aPi is a vector of coefficients (the superscript P indicates a plane wave, and
the subscript i indicates the ith body) whose mth coefficient is(

aPi
)
m

= Ae−ik0(Xi cosβ+Yi sinβ)e−im(β+π
2 ) (3)

where A is a the complex wave amplitude; k0 is the propagating wave number;
β is the wave heading (angle relative to the positive body xi-axis, where
xi = ri cos θi, yi = ri sin θi); {Xi, Yi} is the position of body i in a global
coordinate system; and the body axis xi is parallel to the global X axis. ΨI

i

is a vector of incident basis functions (the superscript I indicates an incident
wave) whose mth value is

(
ΨI
i

)
m

=
cosh k0 (h+ z)

cosh k0h
Jm (k0ri) e

imθi (4)
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where h is the water depth, and Jm is the mth order Bessel function of the
first kind.

In an analogous manner, considering for now only the propagating wave
modes, the velocity potential of the waves scattered (superscript S) or ra-
diated (superscript R) by a floating body i can be written as product of
complex coefficients and scattered basis functions

φS,Ri = i
g

ω

(
aS,Ri

)T
ΨS
i (5)

where aS,Ri is a vector of the coefficients that depend on the geometry and
for radiated waves the mode of motion, of body i. ΨS

i is a vector of scattered
basis functions (which also apply to radiated waves)

(
ΨS
i

)
m

=
cosh k0 (h+ z)

cosh k0h
H(2)
m (k0ri) e

imθi (6)

where H
(2)
m is the mth order Hankel function of the second kind. In some

cases, the Bessel of Hankel functions in the basis functions are normalized
(e.g. (Child and Venugopal, 2010)), however, here they are not.

In general the coefficient and basis function vectors are infinitely long,
and their scalar product is an infinite summation centered about m = 0. In
practice, this is truncated with a value M , so that the summation goes from
m = −M to M .

2.2. Solution to the interaction problem

For an array of N fixed bodies, the incident waves to a given body i

are the sum of the ambient incident waves, φAi = i g
ω

(
aAi
)T

ΨI
i , and waves

scattered by all other bodies, φSj = i g
ω

(
aSj
)T

ΨS
j .

φIi = i
g

ω


(
aAi
)T

ΨI
i +

N∑
j = 1
j 6= i

(
aSj
)T

ΨS
j

 (7)

Here, the terminology “incident wave” means any wave component trav-
eling towards a body. The ambient incident waves are the waves that drive
the hydrodynamic interaction - without them, there would be no scattered
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waves. However, they are not necessarily plane incident waves; in the radia-
tion problem, they are the radiated waves. The scattered waves of each body
are the result of scattering of the ambient incident wave and scattering of
incident waves that are the scattered waves of other bodies.

The relationship between an mth order Hankel function of the second kind
in body coordinate system i and an nth order Bessel function of the first kind
in body coordinate system j is given by Graf’s addition theorem (Abrmowitz
and Stegun, 1964):

H(2)
m (k0rj) e

imθj =
∞∑

n=−∞

H
(2)
m−n (k0Lij) e

i(m−n)αijJn (k0ri) e
inθi (8)

where Lij =
√

(Xi −Xj)
2 + (Yi − Yj)2 and αij = arctan

(
Yi−Yj
Xi−Xj

)
, and are

the distance and angle respectively of body i to body j. (Again, j and i are
switched as compared to Kagemoto and Yue (1986)). Define a transformation
matrix, Tij, that transforms incident basis functions in the coordinates of
body i into scattered basis functions in the coordinates of body j, ΨS

j =

TijΨ
I
i . The mnth element of the transformation matrix Tij is

(Tij)mn = H
(2)
m−n (k0Lij) e

i(m−n)αij (9)

Applying equation 9 to equation 7, the waves incident to body i in terms
of incident basis functions of i are

φIi = i
g

ω


(
aAi
)T

+
N∑

j = 1
j 6= i

(
aSj
)T

Tij

ΨI
i (10)

Equation 10 is of the form, φIi = i g
ω

(
aIi
)T

ΨI
i , where the incident wave co-

efficients, aIi , are the sum of the ambient incident waves and the transformed
scattered waves from all other bodies.

Now consider the diffraction transfer matrix of body i. The diffraction
transfer matrix is a linear operator that transforms incident wave amplitudes
to body i into the scattered wave amplitudes of body i, aSi = Dia

I
i . With

the use of the diffraction transfer matrix, equation 10 becomes
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aSi = Di

aAi +
N∑

j = 1
j 6= i

TT
ija

S
j

 (11)

If the ambient incident wave amplitudes and the diffraction transfer ma-
trices are known, then the scattered wave amplitudes can be found by solving
equation 11 as a system of linear equations in the form


aS1
aS2
...
aSN

 =


D1 0 · · · 0

0 D2
...

...
. . . 0

0 · · · 0 DN

 (12)

×



aA1
aA2
...
aAN

+


0 TT

12 · · · TT
1N

TT
21 0

...
...

. . . TT
(N−1)N

TT
N1 · · · TT

N(N−1) 0



aS1
aS2
...
aSN




Here the advantage of using the given definition of Tij becomes appar-
ent - Tij means the ith row jth column transformation matrix of the super
transformation matrix.

2.3. Forces due to the interaction problem

The incident waves on each body resulting from the interaction theory
are a summation of partial cylindrical waves of various amplitudes. Be-
cause Kagemoto and Yue (1986), and subsequent authors who employed their
method, had software designed to handle cylindrical incident waves, they
could compute excitation force by solving the BVP for incident cylindrical
partial waves and then directly integrating the dynamic pressure. Unfortu-
nately, standard, linear-wave software only solves for forces due to incident
plane waves.

To overcome this short-coming, and in keeping with the simplicity of the
diffraction transfer matrix, another linear operator, which can be derived
from plane incident waves, is introduced to compute the forces - the force
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transfer matrix. The force transfer matrix, Gi, transforms incident partial
wave amplitudes on body i into linear excitation forces on body i in each
degree of freedom, f i = Gia

I
i . The derivation of the force transfer matrix is

given in section 3.3.

2.3.1. Excitation forces due to planar incident waves

For the excitation forces on all bodies held fixed due to an incident plane
wave at a direction, β, the ambient incident wave amplitudes are given by
aAi = aPi (β) (equation 3). The scattered wave problem is solved as described
in subsection 2.2. The incident waves to body i are the quantities in the
brackets in equation 11, and the excitation force on body i is

fEi (β) = Gi

aPi (β) +
N∑

j = 1
j 6= i

TT
ija

S
j

 (13)

2.3.2. Added mass and damping matrices

The added mass, A, and damping, B, matrices for the complete system
are found by solving an interaction problem for each degree of freedom of
the entire array. For motion of the qthj mode, the ambient incident wave

amplitudes to body i are the transformed radiated wave amplitudes, TT
ija

R
qj

,

where aRqjare the radiated wave amplitudes of body j moving in mode qj. On
body j the ambient incident waves are are zero.

aAi,qj =

{
TT
ija

R
qj

i 6= j

0 i = j
(14)

For all bodies beside the body undergoing motion, the radiation force is
due solely to incident waves from other bodies. For the body undergoing the
motion, the total radiation force must include the radiation forces of the body
on itself, that is, its own added mass and damping matrices. The radiation
force on body i due to motion in mode qj is

(
FRi
)
•qj

=

{
Gia

I
i i 6= j(

−ω2 (Aj)•qj + iω (Bj)•qj

)
+ Gja

I
j i = j

(15)
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Figure 1: Incident plane wave as a summation of partial cylindrical waves (equation 2),
plotted as the surface elevation, Re

{
− (iω/g) φP

∣∣
z=0

}
, for increasing truncation values,

M .

where
(
FRi
)
•qj

is the qthj column of the radiation force matrix on body i,

FRi , and (Aj)•qj and (Bj)•qj are the qthj column vector of the added mass

and damping matrices of body j in isolation. FRi is Qi ×Q matrix, and the
radiation force matrix for the complete system of bodies is

FR =


FR1
FR2
...

FRN

 (16)

where the added mass and damping matrices of the entire system of bodies
are given by A = − 1

ω2 Re
{
FR
}

and B = 1
ω

Im
{
FR
}

.

3. Derivations of the Diffraction Transfer and Force Transfer Ma-
trices

The diffraction transfer matrix is a linear operator representing a body
that transforms an incident wave into a scattered wave. Historically it has
not been widely used, because the incident and scattered waves are of a
somewhat unusual forms - infinite summations of cylindrical partial waves.
Figure 1 helps to illustrate how cylindrical partial waves can represent an
incident plane wave. It shows the incident wave computed with its cylindrical
representation, (equation 2), for increasing truncation values, M . At M = 0,
the pattern looks like a wave due to a heaving body, but with increasing
M , the wave becomes more and more plane-wave-like in the region of the

11



origin. For the scattered wave, the cylindrical solution is a very natural
representation as discussed by McNatt et al. (2013).

Previously, each component of the diffraction transfer matrix, Dmn, was
derived by solving the scattering BVP to find the mth scattered wave co-
efficient due to an incident cylindrical wave component, n. This has been
performed analytically for cylinders (Yilmaz, 1998), and computationally in
a BEM with cylindrical Green functions (Goo and Yoshida, 1990). Note
that a commercial BEM with cylindrical Green functions is not available,
and in-house coding is difficult. The primary aim of this work is to enable
the interaction theory of Kagemoto and Yue (1986) by developing a method
to find the diffraction transfer matrix with commonly available means.

In the following sections, it is shown how the diffraction transfer matrix
as well as the force transfer matrix can be derived from numerical or physical
measurements from a series of incident plane waves at directions from 0 to
2π. First, a method is described to find the scattered wave coefficients due to
an incident wave (only later is the incident wave assumed to be plane), and to
find the radiated wave coefficients. Then, the method is applied successively
to plane waves at different incident wave directions to the body to find the
diffraction transfer matrix. The force transfer matrix is then found with an
analogous technique.

3.1. Derivation of the cylindrical wave coefficients

Now including evanescent modes, the complete linear-wave solution to
the BVP for the scattered and radiated waves of body i in the fluid domain
outside of the body is

φS,Ri = i
g

ω

∞∑
m=−∞

(
χS,Ri

)
m
eimθi (17)

(
χS,Ri

)
m

=
(
aS,Ri

)
m

cosh k0 (h+ z)

cosh k0h
H(2)
m (k0ri)

+
∞∑
l=1

(
bS,Ri

)
lm

cos kl (h+ z)Km (klri) (18)

where aS,Ri is again the vector of scattered or radiated propagating wave
coefficients (as in Sec. 2.1). bS,Ri is a vector of evanescent wave coefficients,
whose lmth value is the amplitude of the partial wave of due to evanescent
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mode l, corresponding the evanescent wave number, kl, and circular mode
m, and Km is the mth order modified Bessel function of the second kind.(

χS,Ri

)
m

can be found as the Fourier transform of the velocity potential,(
χS,Ri

)
m

= − i

2π

ω

g

∫ 2π

0

φS,Ri e−imθidθi (19)

By substitution of the propagating and evanescent mode dispersion rela-
tions and integration, the depth dependencies can be shown to be orthogonal,

∫ 0

−h
cosh k0 (h+ z) cos kl (h+ z) dz = 0 (20)∫ 0

−h
cos kl (h+ z) cos kn (h+ z) dz = 0, l 6= n (21)

which means that integration of
(
χS,Ri

)
m

over depth can be used to isolate

the propagating or evanescent partial waves.
For either the scattering or the radiation problem, if the potential, φS,Ri ,

is known over a cylindrical surface encompassing the body that extends from
the bottom to the mean free surface at a constant radius ri = Ri, the propa-
gating and evanescent wave coefficients can be found by integration over the
cylindrical surface,

(
aS,Ri

)
m

=− i

2π

ω

g

2 cosh k0h

h
(

1 + sinh 2k0h
2k0h

) 1

H
(2)
m (k0Ri)

×
∫ 0

−h

∫ 2π

0

φS,Ri (Ri, θi, z) e
−imθi cosh k0 (h+ z) dθidz (22)(

bS,Ri

)
lm

=− i

2π

ω

g

2

h
(

1 + sin 2klh
2klh

) 1

Km (klRi)

×
∫ 0

−h

∫ 2π

0

φS,Ri (Ri, θi, z) e
−imθi cos kl (h+ z) dθidz (23)

The velocity potential over a cylindrical surface can be derived by any
computational method or by experiments, as long as linearity of the problem
is given or assumed. Further details on the computation of the coefficients
is given in McNatt et al. (2013).
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3.2. The diffraction transfer matrix from incident plane waves

For an incident propagating plane wave at a direction βn, the cylindri-
cal propagating scattered wave coefficients, aSi (βn) can be computed as de-
scribed above. For which, the diffraction transfer matrix solves the equation:

aSi (βn) = Dia
P
i (βn) (24)

aPi (βn) is known and is given by equation 3, aSi (βn) is found by the pro-
cedure in section 3.1. Di is a matrix of unknown elements. For a single wave
direction, equation 24 is an under-determined matrix equation. Using the
truncation value, Mi, the incident and scatter coefficient matrices are vec-
tors of length 2Mi+1, and diffraction matrix is of size (2Mi + 1)×(2Mi + 1).
To find Di, 2Mi more equations are needed.

The additional equations are produced by solving for the scattered coef-
ficients for at least 2Mi more wave directions going from 0 to 2π. By calling
the vector of incident wave directions β,

[
aSi (β)

]
is a matrix whose value

at the mth row and nth column is the scattered wave coefficient of the mth

partial wave due to an incident wave in the direction βn. Similarly,
[
aPi (β)

]
is a matrix whose value at the mth row and nth column is the incident regular
wave amplitude given by equation 3. With this, equation 24 become a full
matrix equation [

aSi (β)
]

= Di

[
aIi (β)

]
(25)[

aSi (β)
]
m• is the mth row vector of

[
aSi (β)

]
- the scattered wave coef-

ficients of circular mode m for different incident wave directions. The mth

row of the diffraction transfer matrix, (Di)m•, can be found by solving the
system of equations: [

aSi (β)
]T
m• =

[
aPi (β)

]T
(Di)

T
m• (26)

Only 2Mi+1 incident wave directions are needed to solve for a diffraction
transfer matrix of size (2Mi + 1) × (2Mi + 1). However, it was found to
be more accurate to compute scattered wave coefficients for greater than
(2Mi + 1) incident directions to create an over determined system and then
fit row vectors (Di)m•.

For a given incident plane wave, one can also compute the scattering co-
efficients, bSi , of the evanescent wave modes. To use the evanescent mode in
the interaction problem, one would need to find scattering coefficients due to
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incident evanescent waves. However, incident partial evanescent wave modes
do not exist in isolation and so would be challenging to create experimen-
tally or with nonlinear computational software, and they are not included
in commercial linear wave software. The derivation of a diffraction transfer
matrix that includes evanescent wave modes is not practical experimentally
or computationally following the method given here.

Here the diffraction transfer matrix is found by probing the body with
incident plane waves from different directions. In the BEM of Goo and
Yoshida (1990) and Chakrabarti (2000), the diffraction transfer matrix was
found by probing the body directly with incident cylindrical waves. To find
column n of Di, the nth order incident cylindrical wave was used (each row
m was found by using the mth order cylindrical Green function). So for the
same truncation value, Mi, the method presented here for determining the
diffraction transfer matrix from plane waves requires the same number of
incident waves (except where accuracy is improved by overdetermining the
system) as methods that directly use incident cylindrical waves.

3.3. The force transfer matrix from incident plane waves

In a manner analogous the derivation of the diffraction transfer matrix,
the force transfer matrix of body i, Gi, can be found by computing the forces
on body i due to multiple incident wave directions f i (βn). f i (βn) is a Qi×1
vector. Gi is a Qi × (2Mi + 1) matrix. Like the diffraction transfer matrix,
one finds Gi by solving for a vector of different incident wave directions, β,
where the number of wave directions is at least but preferably greater than
2Mi + 1.

[f i (β)] = Gi

[
aPi (β)

]
(27)

The qthi row of the matrix,[f i (β)]qi•, represents the forces on mode qi at

each incident wave direction. The qthi row of the force transfer matrix can be
solved as

[f i (β)]Tqi• =
[
aPi
(
βT
)]T

(Gi)
T
qi• (28)

3.4. Rotation of the body

In some cases for an interaction computation, a body in the array may
be rotated with respect to the orientation for which its diffraction transfer
and force transfer matrices were computed. This does not present a problem,
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and a rotation was shown originally by Peter and Meylan (2004). A body
rotation is akin to a redefining the body coordinate system. For the rotation
of the diffraction transfer matrix, this must be done for the scattered wave
amplitudes as well as the incident wave amplitudes.

Consider the rotation angle γi of body i, the modified scattered basis
function is

(
ΨS
i,γi

)
m

=
cosh k0 (h+ z)

cosh k0h
H(2)
m (k0ri) e

im(θi−γi)

= e−imγi
(
ΨS
i

)
m

(29)

which is the product of e−imγi and the standard basis function. The same ro-
tation applies to the incident basis function. Applying this to the diffraction
transfer matrix relationship:

e−imγi
(
aSi
)
m

= (Di)mn e
−inγi

(
aIi
)
n(

aSi
)
m

= ei(m−n)γi (Di)mn
(
aIi
)
n

(30)

Clearly, ei(m−n)γi is the adjustment of diffraction transfer coefficient (Di)mn
due to a body rotation, γi.

For the force transfer matrix, the situation is a simpler, only the incident
waves need to be rotated, f i,γi = e−imγi (Gi)•m

(
aIi
)
m

. Similarly, the radia-
tion coefficients must be rotated by e−imαγi . The complete set of rotations is
then

(Di,γi)mn = ei(m−n)γi (Di)mn (31)

(Gi,γi)•m = e−imγi (Gi)•m (32)(
aRqi,γi

)
m

= e−imγi
(
aRqi
)
m

(33)

Thus the diffraction transfer matrix and force transfer matrix have been
derived and their application has been shown for the computation of exci-
tation forces and added mass and damping matrices on arrays of floating
bodies.
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4. Summary of computational procedures

The preceding theory is long and complex, and so it helps to have the
computational steps summarized in the order they are applied. The following
quantities need to be computed for each unique geometry in isolation prior
to solving the interaction problem.

1. Standard linear hydrodynamic properties - For each unique geometry
in isolation, one needs to compute the added mass, damping, and hy-
drostatic matrices.

2. The force transfer matrix - Excitation forces are found for each mode
of motion due to incident plane waves for at least Mi directions from
0 − 2π. Body symmetry can be exploited to reduce the number of
directions required. These forces are used derive the force transfer
matrix as in section 3.3.

3. The diffraction transfer matrix - Each scattered wave field is measured
over a cylindrical surface surrounding the body due to incident plane
waves for at least Mi directions from 0 − 2π. Body symmetry can be
exploited to reduce the number of directions required. These measured
points are used to compute the diffraction transfer matrix as in sections
3.1 and 3.2.

4. Radiated wave coefficients - For each mode of motion, wave field points
are measured over a cylindrical surface surrounding the body due to
unit-amplitude forced motion. These measured points are used to com-
pute the radiated wave coefficients for each mode of motion as in section
3.1.

Once these hydrodynamic quantities have been found, they can be used in
the interaction theory to find the hydrodynamic quantities for an array of
bodies.

1. Rotate bodies - If any of the bodies in the interaction problem are ro-
tated relative to the orientation at which their hydrodynamic quantities
were computed, the hydrodynamic quantities are modified as in section
3.4.

2. The scattering problem - The scattering problem is used to find the
excitation forces for the entire array. First the scattering problem is
solved as in section 2.2, where the ambient incident wave is a plane
wave at the direction of interest. Next the excitation force on each
body is found with the force transfer matrix as in section 2.3.1.
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3. The radiation problem - The radiation problem is used to find the
added mass and damping matrices for the entire array. For each mode
of motion in the array, a scattering problem is solved (section 2.2),
where the ambient incident wave is the wave radiated by that mode of
motion. The added mass and damping matrices are assembled for the
array following section 2.3.2.

The added mass, damping, and excitation forces for the array can then be
used to calculate body motions and wave power absorption in the standard
manner (e.g. see Cruz (2008)), where the matrices (added mass, damping,
stiffness, etc.) and vectors (motions and forces) are taken to be those for the
entire system. Results from the application of the method are shown and
discussed in the next section and, where possible, are verified against direct
method results computed with the BEM software WAMIT.

5. Results

In the results section, the interaction theory computational method is
verified against the direct method computed with the commercial BEM soft-
ware, WAMIT. Also presented are two cases where a direct BEM computa-
tion is not practical due to lengthy computation time, and which therefore
can only be computed with interaction theory. Two geometries are consid-
ered - a floating cylinder and an attenuator-type WEC. Two array cases are
examined for verification - two bodies at various distances, and a medium
sized array of greater than 10 bodies. Finally, using only interaction theory,
a computation is made on a medium-sized array of WECs in spectral seas,
and on a very large array of 101 WECs in regular waves.

5.1. Geometries

The cylinder has a radius a, a height, 1.5a, and a draft a (portion below
the still water level). It is uniform in density and free to move in 6 degrees-
of-freedom (1 - surge, 2 - sway, 3 - heave, 4 - roll, 5 - pitch, 6 - yaw) with
no external mechanical forces applied. All values are non-dimensionalized by
the cylinder radius, a. It is shown as its low-order panelization in figure 2-a.
All computations are performed in a water depth of h/a = 10.

The attenuator-type WEC is sometimes called a hinged raft, whose per-
formance was considered by Newman (1979). It consists of three cylindrical
bodies hinged together to rotate about axes parallel to the y-axis. It has
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Figure 2: Cylinder and attenuator geometries shown as their panelization for the BEM
computation. Black lines indicate attenuator hinges. All dimensions are nondimensional-
ized by the cylinder’s radius, a.

ζ7 ζ8

(b) Aft hinge motion(a) Forward hinge motion

Figure 3: Diagram of definitions of hinged motions for attenuator. ζ7 is ‘Forward Flex’,
where the ‘front’ of the attenuator is taken to be the end which meets the waves first at
an incident wave direction of β = 0. ζ8 is ‘Aft Flex’.
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of response per meter of incident wave amplitude, and rotational motions are shown on
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body motions are for head-seas (β = 0) and are shown for both damped and undamped
case.
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8 degrees-of-freedom - the same 6 rigid body motions as the cylinder and 2
‘flex’ motions (mode 7 is flex in the forward hinge, and 8 is flex in the aft
hinge). A unit amplitude flex motion defined as shown in figure 3. It has
a beam of a, and a total length of 10a. Its ends are spheroidal; there are
notches at the hinges; and it is semi-submerged - see figure 2-b.

The dimensions of both geometries where chosen so that each had res-
onant peaks in heave at λ/a = 10. The cylinder and attenuator motions
as the response amplitude operator, |ζqi/A|, plotted as a function of non-
dimensional wavelength are shown in figure 4. However, besides resonant
peak condition, the dimensions of the geometries are arbitrary and the inter-
action theory method could be applied to any shape.

For the attenuator, motion of a given point in the geometry about hinge
n, located at {xn, zn}, is described by the vector function ζn

ζn = |z − zn| sign (x− xn) i + |x− xn|k (34)

where i and k are the unit vectors in the body x and z directions respectively.
The hinge positions of the attenuator in body coordinates are: {x7, z7} ={
−5

3
, 0
}

, and {x8, z8} =
{

5
3
, 0
}

.
The flex motions are coupled ineritially to one another and to surge,

heave, and pitch. The mass matrix is computed following Newman (1977,
Sec. 4.16), (M)ij =

∫ ∫ ∫
ζi · ζjdm. More information on hinge modes can

also be found in Newman (1997). Due to the coupling between the heave
and flex modes, the WEC develops an interesting resonance in the heave-flex
motion. For mechanically undamped motion, the linear computation leads
to unrealistic motions. Figure 4 shows the motions of the attenuator for
normally incident waves with no external mechanical forces. To reduce the
resonance and make the WEC motions more realistic (i.e. not as extreme),
the power take-off damping is not the optimal value leading to maximum
theoretic power absorption, but still resulted in a reasonable power capture.

5.2. Excitation force and radiation values

In this section, excitation force and radiation values for an array of two
bodies are considered as a function of body separation distance, d/a, at three
wavelengths: λ/a = 3, 10, 30, and a constant water depth of h/a = 10. Three
incident wave directions are considered for the excitation force computation:
β = 0, π

4
, π

2
.
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(a) Front to back (b) Side by side

d/a

d/a
x

y

β

Figure 5: Two arrangements of the attenuator for the distance verification computation.
The outline of the attenuator is shown as the thick line; it origin is given by the ‘x’; and
its circumscribing cylinder is given by the thin line. By the interaction theory, the center
of one body must be outside of the circumscribing cylinder of the other body.

The separation distance is the origin-to-origin distance between the ge-
ometries. The cylinders are aligned along the x-axis. Due to the axisymme-
try of the cylinder, only the separation distance needs be considered; body
orientation is irrelevant. However, for the attenuator pairs, there are three
parameters - body separation, direction of separation, and the relative ori-
entation of the second body to the first. For the separation analysis - two
cases were considered: 1) two attenuators, parallel in orientation, and set up
in-line and front to back and 2) two attenuators, parallel in orientation, and
set side by side. These arrangements can be seen in figure 5. A restriction
imposed by Graf’s addition theorem is that the center of the second body
must be outside the circumscribing circle of the first body and vice versa. For
the front to back orientation, even though the bodies themselves are closer
(nearly touching at the minimum distance), the body spacing in terms of
interaction theory is in fact further than for the side by side case.

The only theoretical difference between the results of the interaction the-
ory computation and WAMIT is the absence of evanescent waves in the
interaction theory. The effect should only be present at small separation
distances.

For each of the layouts, all of the excitation force values and all important
added mass and damping values were examined. The agreement in almost
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Figure 6: Plots of added mass (A) and excitation force (f) for plane incident waves at
a direction β = 0 for two cylinders as a function of nondimensional separation distance.
Subscripts 1− 6 are the six DOFs of the first body, and subscripts 7− 12 are the 6 DOFs
of the second body. For example, A2,8 is the added mass of sway-sway coupling between
the bodies. WAM - WAMIT computation; IT - interaction theory computation.

all cases was excellent with the only differences being found at short sep-
aration distances. Example plots, selected because they show some of the
largest disagreement, are given for the cylinders in figure 6 and for the at-
tenuators in figure 7. The benchmark WAMIT computations are represented
as think lines, and the interaction theory computations are thin lines. In
some figures, only thick lines are visible, which means that the interaction
theory computation line is beneath it and the computations are in excellent
agreement. For the cylinder computation, one can see differences between
the two computations at short distances due to the evanescent wave effects,
particularly so in the added mass. For the attenuator in the front to back
configuration, one also sees evanescent wave effects at short distances. In
both of these cases, the two bodies are almost touching.
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Figure 8: The figures show wave fields produced with WAMIT and the interaction theory
(IT) computations, plotted as the magnitude of surface elevation, |η| = |− (iω/g) φ|z=0|,
at two nondimensional wavelengths and for two incident wave directions, for an array of
16 cylinders. Also shown is the percentage difference between the wave fields, 100% ×
|ηIT − ηWAM |.

5.3. Medium sized arrays

In this section, the interaction theory computation is verified by exam-
ining the wave fields of medium sized arrays. The wave field is plotted as
the magnitude of the total wave elevation normalized by the incident wave
amplitude, |η/A|, which centers the value around 1. The total wave ele-
vation is the sum of the incident, scattered, and radiated wave elevations,
and inherently includes the effects of the computed body motions. Also
shown is 100 times absolute value of the difference between the wave fields:
100×

∣∣(ηIT − ηWAM
)
/A
∣∣, which can be thought of as a percentage difference

relative to the incident wave amplitude.
Figure 8 shows the results for an array of 16 cylinders in a square 4 × 4

grid, with a spacing of d/a = 5. In general, for all wave fields there is very
good agreement. The difference is less than 0.2% for most of the wave fields.
At λ/a = 10, β = 0, one can see differences in the wave fields near the
cylinders themselves resulting from the evanescent waves (at a distance of
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1a from the wall of any given cylinder, the difference is less than 4%). This
difference dies out in the far-field wave field. In contrast at λ/a = 10, β = π

4
,

there is a small difference that propagates into the far-field. At this incident
wave angle, some of the heave body motions are larger than at β = 0, which
results in larger radiated evanescent waves and leads to differences in the
body motions.

Figure 9 shows the results for an array of 11 attenuator WECs, setup in
two offset rows. The bodies are shown as well as the circumscribing circle
from which the cylindrical coefficients were computed. One would not expect
agreement in the wave fields inside this circle. The center to center distance
between bodies in a row is d/a = 20, and the row spacing is d/a = 20. At
an incident direction, β = π/4, the front row of bodies has been rotated
to demonstrate the calculation described in section 3.4. At this spacing
evanescent wave effects are non-existent and the agreement between the wave
fields for all conditions is excellent (generally less than a 0.2% difference).

5.4. Spectral Array

In this section, a spectral wave field is considered. The incident sea spec-
trum is a Bretschneider spectrum with a peak at a wavelength, λ/a = 10,
and a cosine-squared spreading, D (θ) = A2 cos2s

(
1
2
θ
)
, where A2 is the nor-

malizing constant and s = 10 (Holthuijsen, 2007). 24 frequency components
and 5 directions were implemented for a total of 120 wave components. The
computation time for the array with this many wave components would be
very long using the direct method, and so it was only be performed using
interaction theory.

For WEC arrays, a common measure of the impact of the array effects on
device performance is the interaction factor. Although it has slightly varying
definitions throughout literature, here it is defined for a single WEC in the
array, i, as ratio of power absorbed by that WEC to the power absorbed
by the same single WEC in isolation - qi = Pi

Pisolated
. For the attenuator,

the power absorbed is the total power for both hinges over all incident wave
frequencies and directions. A q greater than 1 indicates that the given WEC
performs better due to array effects, and conversely, for q less than one, the
WEC performs worse.

Figure 10 shows the interaction factor and the wave field for the 11 WEC
array in spectral seas. The wave field is plotted as the disturbance coefficient -
the ratio of significant wave height at a field point to the incident significant
wave height

∣∣Hs/H
I
s

∣∣. The interaction factor shows that the front row of
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Figure 9: The figures show wave fields produced with WAMIT and the interaction theory
(IT) computations, plotted as the magnitude of surface elevation, |η| = |− (iω/g) φ|z=0|,
at two nondimensional wavelengths and for two incident wave directions, for the 11
attenuator array. Also shown is the percentage difference between the wave fields,
100% × |ηIT − ηWAM |. At β = π

4 , the front row of attenuators is rotated to face the
incident waves to demonstrate the rotation given in section 3.4.
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Figure 10: The plots are for the 11 attenuator array in spectral seas. Figure (a) shows
the interaction factor, q, for each body as a function of its position. q is a measure of the
effect of multi-body interactions on power absorption. Figure (b) shows the wave field for
as the disturbance coefficient,

∣∣Hs/H
I
s

∣∣.
WECs receives a slight boost in performance (+3% to +7%), likely due to
reflection of waves from the rear row. The performance of the rear row is
slightly diminished (−0.5% to −7%) due to wave shadowing from the front
row. The wave field shows wave energy reflection in front of the WECs and
a wave shadow behind the array.

5.5. Large WEC Array

In this section, an example of a very large WEC array of 101 bodies (808
degrees-of-freedom) is computed for a regular wave: λ/a = 10 at β = 0. The
array is divided into 3 rows and the spacing between WECs in a row and
between rows is d/a = 20. To the authors’ knowledge no computations of ar-
rays this large have been made with the direct method due to the limitations
of today’s computational resources.

Results for the very large WEC array are shown in figure 11. The in-
teraction factor results are interesting and somewhat unintuitive - it shows
that the performance of the first two rows is reduced by the array effects,
but the power performance of the final row is actually increased. One would
expect the opposite, as was seen for the spectral array. However, at indi-
vidual frequencies, the coherent interaction between the incident wave and
scattered and radiated waves, creates standing waves, which act to increase
or reduce wave energy at localized points in the wave field. Performance
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Figure 11: The plots are for the 101 attenuator array in regular waves, λ/a = 10, β = 0.
Figure (a) shows the interaction factor, q, for each body as a function of its position. q is
a measure of the effect of multi-body interactions on power absorption. Figure (b) shows
the wave field, as the magnitude of wave elevation, |− (iω/g) φ|z=0|.

gains or losses due to these standing wave effects are very sensitive to the
ratio of wavelength to body spacing. The effects shown here should not be
generalized, but serve to dispel the beliefs that the effects on back rows are
always negative and that no more than two rows of WECs should be used in
an array.

6. Discussion

The purpose of interaction theory is to accelerate the linear hydrody-
namic computation of arrays without losing accuracy. The method developed
herein enables the interaction theory calculation with minimal requirements
for complex custom software development. With that in mind, it is impor-
tant to first consider the extent of the computational acceleration and why
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it results. After which, shortcomings of the method, including the absence
of evanescent waves, the flat bottom condition, and the long-crested incident
wave, are discussed and their significance assessed.

The most time-consuming computation in both the direct BEM and the
interaction theory calculations is the solution to the resulting system of linear
equations. For interaction theory the system is given by equation 12. Solving
a system of equations using an iterative method leads to a computation time
of O (L2), where L is the number of unknowns (Newman and Lee, 2002). For
the low-order BEM, the number of unknowns is equal to the total number
of panels in the system. For an array of N identical bodies, each with P
panels, the total number of unknowns is NP , and the computation time is
O (N2P 2).

For the interaction theory, the number of unknowns is equal to the number
of scattered wave modes included in the problem. The number of scattered
waves is determined by the cylindrical partial-wave truncation value, M ,
where the number of scattered waves is 2M + 1. For an array of N identical
bodies, the total number of unknowns is N (2M + 1)and the computation
time is O

(
N2 (2M + 1)2

)
. Herein, the truncation value is determined based

on the accuracy and precision of the measured wave field values used to com-
pute the cylindrical wave field coefficients (section 3.1). M was determined as
the point where all coefficients beyond M where smaller than the designated
accuracy/precision floor of the wave field measurements used to determine
the diffraction transfer matrix. For example, WAMIT returns field points
to 6 significant figures. In computing the partial wave amplitudes (equa-
tion 22) with other software, these ‘measurements’ are padded with zeros,
and the FFT returns values at accuracies greater than that of the original
measurement, which of course are not real. Additionally, it was found that
these phantom accuracies adversely affect computational results, and all the
coefficients should be rounded to the accuracy/precision floor.

The number of panels and the number of scattered waves used for the
cylinder and attenuator geometries is shown in table 1. In all cases, the num-
ber of geometry panels is two orders of magnitude greater than the number
of scattered waves. Consider the attenuator at a wavelength of λ/a = 10,
the number of panels is 1920, and the number of scattered waves is 25, which
means that for a given array computation, regardless of the number of bodies,
the direct method will take on the order of (1920/25)2 (about 5900) times
longer to compute. There is an upfront computational cost to the interac-
tion theory computation. To compute the diffraction transfer matrix, force
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Cylinder Attenuator

Panels (P ) 1280 1920
λ/a = 3 17 47

Scattered Waves λ/a = 10 9 25
(2M + 1) λ/a = 30 9 15

Table 1: Panel and scattered wave count for each geometry

transfer matrix, and radiation wave field coefficients - values must be found
at field points for 20− 100 incident wave directions on a single body for each
wave frequency and water depth. However, once those quantities are found,
they can be reused to drastically speed up array computations.

Here a few representative computation times are given. Both the WAMIT
and interaction theory computations were performed on a desktop computer
with a 3.3 GHz processor. WAMIT is written in Fortan and the interac-
tion theory routine was coded in MATLAB (MATLAB R2013a, 2013) and
uses the built-in ‘mldivide’ routine to solve the system of linear equations.
No significant consideration was given to speeding up computation time for
either the direct method or the interaction computation via parallel process-
ing or other techniques. The following values should only be taken as rough
estimates. A spectral computation as performed in section 5.4 leads to a
linear increase in the computation time for both interaction theory and the
direct method. With interaction theory, the spectral solution wave found for
the entire array at all 24 frequencies and 5 wave directions in approximately
8 minutes. However using the direct method, it took roughly 40 minutes
to find the the array solution at a single frequency and direction. For the
very large array of 101 WECs each with 8 degrees-of-freedom, the interac-
tion theory computation at a single wave frequency and direction took about
40 minutes. No equivalent computation was made with the direct method,
although based on the computation with 11 bodies, theory suggests that the
computation time for such an array would be about 2− 3 days.

In essence what interaction theory expresses is that to compute the linear-
wave forces on an array of floating bodies, a detailed representation of each
body is not needed; one only needs to know the shape, magnitude and phase
of the waves it scatters. As solutions to the BVP, linear waves have a some-
what limited functional representation (i.e. sinusoidal), and so the scattered
wave can be described by far fewer variables than are generally used to de-
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scribe a geometric shape in BEM computation. Additionally, it was noticed
that near the body, higher-order coefficients (

(
aSi
)
m

at large m values), even
with very small amplitudes, were important to computations due to the ex-
ponential nature of the Hankel function, but far from the body the impact
of the coefficients decayed exponentially with the Hankel function. So, even
fewer partial cylindrical waves are required to compute bodies that are spaced
far apart, and in essence as the distance from the body increases, the prop-
agating wave effectively become more circular in shape.

The scattered wave solutions are only valid for the region outside the
body. Underneath or on-top-of the body, another solution is required, for
which the BEM is appropriate. A somewhat stricter limitation is imposed
by the interaction theory computation. Due to restrictions in Graf’s addi-
tion theorem, the interaction computation can only be performed between
two bodies, when the origin of one body’s coordinate system is outside the
circle that circumscribes the other body. This restriction is not constrictive,
because the theory presented herein does not include evanescent waves, and
so one should only use it at very close separation distances with caution.

In open water, linear theory states that waves are propagating waves
with a exponential depth dependence, but near the body, to meet the body
boundary condition, evanescent modes fit the propagating wave to the body’s
shape. Since evanescent waves are neglected in the interaction theory herein,
this will naturally lead to errors when bodies are spaced very closely together.
One can see these errors in figures 6 and 7 as hydrodynamic quantities and 8
in the wave fields around the bodies. For the 16 cylinder array, the absence of
evanescent waves does not effect the computation of motions for an incident
wave direction of β = 0. It does create small errors at β = π

4
, but the errors

are less than 2% in the body motions and wave field. For the attenuator array,
where the body spacing is larger, and more representative of the spacing in
a wave farm, the agreement between the motions computed with interaction
theory and with the direct BEM computation was excellent. In general, for
arrays like wave farms or wind farms, where the spacing is relatively large,
the interaction theory can be used with confidence, but for more compact
arrays, it should be used with caution and some results should be checked
with direct BEM computations.

The interaction theory assumes a constant depth over the domain of the
computation. For medium sized arrays, like those shown in figures 9 and 10,
constant depth is not unreasonable. However, for the very large array shown
in figure 11 it may not be a good assumption. For example, take the atten-
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uators to have a beam of a = 5m, then the area of the wave field computed
in that problem would be 0.7 km × 3.5 km, which may be too large of an
area over which to assume a constant depth. Also, herein, only a finite depth
theory has been given. Peter and Meylan (2004) extended Kagemoto and
Yue (1986)’s theory to infinite depth, but more research is needed to deter-
mine how to derived the radiated and scattered wave coefficients following
the methodology given here.

Another assumption that may be dubious for such a large array is that
the incident wave is a coherent long-crested wave. Using the large array
example above, this would be a 3.5km long crest. The coherent motions and
standing waves found throughout the entire array that result from such an
incident wave will likely not exist in reality. However, locally over a smaller
array subset, there may be such coherent interactions.

The linear wave interaction theory is probably best applied to medium
sized arrays, where the bodies are not spaced too closely together, and the
flat bottom and long-crested incident wave assumptions are reasonable. Be-
cause of the significant speed up afforded by the interaction computation,
the method can be employed as a tool for the optimization of the layout of
the array by iterative calculations. Examples of such problems would be in
the design of a wave farm to maximize power production or of an offshore
wind farm to minimize loads or body motions.

7. Conclusion

A novel method has been presented to compute the diffraction transfer
matrix and the new force transfer matrix by probing a body with a series of
incident plane waves. Inputs to the calculation can be derived from standard
numerical or experimental measurements. This computation enables the use
of a theory for water wave interactions between multiple bodies developed
by Kagemoto and Yue (1986), which leads to improvements in array com-
putation time on the order of 103 over direct methods. The method was
verified with direct method computation using the BEM solver WAMIT for
two geometries, a cylinder and an attenuator type WEC, in a variety of ar-
ray arrangements and wave conditions, but is general and can be applied to
arbitrary geometries and modes of motions. The method presented herein
neglects evanescent waves, but their effects are shown to be very small -
for the 16 cylinder array, the evanescent waves represented about 4% of the
wave field near a given body, and decayed exponentially with distance from
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the body. For arrays where the inter-device spacing is of practical interest,
such as the wave farm examples, evanescent waves are negligible and the
interaction theory matches the BEM computation to differences of less than
0.2% for most of the wave field. Finally, two cases of array computations are
considered that could only be computed with interaction theory due to the
computational acceleration it affords - a medium sized array in spectral seas
and a very large array of 101 WECs.
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