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Abstract 

CCS, Carbon Capture and Storage, is considered a promising technology to abate CO2 

emissions from point sources. The present review deals with the principle of post-

combustion capture techniques, including thermal or pressure swing principles, 

adsorption or absorption, and electrical swing or membrane separation processes. 

Opportunities and challenges are assessed. In the first section of absorption processes, 

several commercial technologies are compared, and complemented by the aqueous or 

chilled ammonia (NH3) process, and a dual or strong alkali absorption. The second 

section deals with adsorption where fixed beds, circulating fluidized beds and counter-

current bed configurations will be discussed, with special focus on the different 

adsorbents ranging from zeolites or activated carbon, to more complex amine-

functionalized adsorbents, nanotubes or metal organic frameworks (MOFs), and alkali-
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promoted oxides. Thirdly, membrane processes will be analysed. The review will 

finally summarize challenges and opportunities. 

Several research groups confirmed that absorption is the most mature post-combustion 

capture process: among the assessment of post-combustion CCS, 57% apply absorption, 

14% rely on adsorption, 8% use membranes, and 21% apply mineralization or bio-

fixation. This conclusion was in-line with expectations, since absorption gas separation 

has been largely applied in the various petro-chemical industries. All other systems 

need further development prior to large scale application. 

 

Abbreviations    

APTS 3-aminopropyl-triethoxysilane CA Cellulose acetate 

CAP    Chilled ammonia process CCS Carbon capture and storage 

CFB   Circulating fluidized beds CTAB Hexadecyltrimethylammonium 

bromide 

DAA Dual alkali absorption DEA     2,2’-iminodiethanol 

DGA    Diglycolamine DIPA   Diisopropanolamine 

DMMEA Dimet hylethanolamine EDA Ethylenediamine 

ESA Electrical swing adsorption Fluor EFG+   Fluor Econamine FG PlusSM 

KMALC Kerr-McGee/AGG Lummus 

Crest 

KM-CDR Kansai Mitsubishi Carbon 

Dioxide Recovery 

MAE Methylaminoethanol MDEA N-methyl-2,2-iminodiethanol 

MEA    Monoethanol amine MMEA Monomethylethanolamine 

MWCNTs Multi-walled carbon nanotubes                                                        MOF Metal organic frameworks 

PES Polyethersulfone PEI Polyethylenimine 
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PI Polyimide PSA Pressure swing adsorption 

PSf Polysulfone SWCNTs Single-walled carbon nanotubes 

TEA    Triethanolamine TEPA Tetraethylenepentamine 

TETA Triethylenetetramine TiNT TiO2 nanotubes 

TSA Temperature swing adsorption VSA Vacuum swing adsorption 

 

1. Introduction 

Worldwide commercial energy remains fossil fuel-based for > 80%, but releases 3×1013 

kg of CO2 annually[1] resulting in an increased atmospheric CO2 concentration and 

associated climate changes[2]. Reducing these CO2 emissions is of paramount 

importance. To maintain a global temperature-rise well below 2°C above the pre-

industrial level by the end of this century, the European Union (EU) has set a binding 

target to cut at least 40% of the CO2 emissions by 2030 compared to 1990, and by 30% 

compared to 2005[3]. The final target aims to move towards a climate-neutral economy 

- an economy with net-zero greenhouse gas emissions by 2050[4]. The UK Government 

set an 80% CO2 emission reduction target by 2050[5], and India aims to reduce 33 to 

35% of its CO2 by 2030. 

CCS, i.e. carbon capture and storage, can effectively reduce the CO2 emission during 

the period of transition to low-carbon alternatives: CO2 is captured and concentrated 

from flue gas, and then compressed/liquefied at about 100 bar prior to transportation, 

injection and permanent storage into oil and gas fields, coal beds, salt cavities or 

aquifers[6], and more details about CO2 storage in salt aquifers, oil fields can be found 

in [7] [8, 9]. CCS is however accompanied by high investment costs and high energy 

penalties, in which the most expensive part is the CO2 capture.  
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CO2 capture from power plant exhausts involves techniques of post- or pre-combustion 

capture, or oxy-fuel combustion, as illustrated in Figure 1[10]. In pre-combustion 

capture, the fossil fuel is partially oxidized and reacted with steam to produce syngas 

(CO and H2O), which will be further converted to CO2 and H2. H2 can be used as fuel, 

and CO2 is captured by techniques before combustion taking place. The operating 

pressure is 20-30 bar and the temperature is high[11]. In oxy-fuel combustion, the fuel 

is burned in oxygen not air, the flue gas is mainly composed of CO2 and the impurities, 

such as SOx. It is better suitable for the CCS storage without separating CO2 from N2. 

The oxy-fuel combustion reacts at a high pressure in the range of 20-30 bar, and at a 

temperature of 100-300°C [11]. The oxygen concentration in oxy-fuel combustion is 

very high, which will lead to the change of ash chemistry, and cause many problems, 

such as corrosion, fouling, potential leaks into the plant, high maintenance cost, and 

very stringent safety management[12]. The overall net efficiency is reported to be 

decreased by 8-12% points, which leads to a 21-35% increase in fuel consumption as 

significant auxiliary power is required to separate the oxygen from the air, to purify and 

liquefy CO2-enriched flue gas[13]. The post-combustion CO2 abatement is a 

straightforward approach and forms the basis of the current infrastructure in CCS. 

Despite distinct advantages of both pre-combustion and oxy-fuel capture, these 

methods will unlikely replace the post-combustion capture on a global scale. The 

fundamentals of the different methods and their economic impacts were recently 

discussed in detail[13]. 
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Figure 1. The different CCS Systems, with Coal, Natural Gas and Biomass as energy 

sources 

 

This article provides a review of various post-combustion capture techniques and the 

development of adsorbents, absorbents and membrane separation. Section 2 mainly 

focuses on the fundamental principles of the four major post-combustion capture 

techniques. Section 3 gives detailed discussions of the absorption technologies, such as 

the KMALC technology, the Fluor EFG+ technology, the KM-CDR technology, the 

Aqueous ammonia (NH3) process, the Chilled ammonia process, and the Dual or Strong 

alkali absorption. Section 4 reviews the configurations of different adsorption processes. 

Section 5 reviews the various types of adsorbents applied in CCS. Membrane separation 

techniques are dealt with in Section 6. The summary of major advantages and 

challenges of each technology is provided in Section 7.  
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2. Post-combustion Carbon Capture Processes  

The post-combustion CO2 capture technique can remove CO2 and other gases from 

burning fossil fuel resources, based upon physical or chemical adsorption/absorption 

mechanisms. Based on the principles of the capture process, it can be classified as 

adsorption, absorption, membrane separation, chemical reactions, as shown in Figure 2 

[14-19]. Biochemical methods involving the biological fixation by terrestrial 

vegetation[20] and marine or freshwater microalgae are well-known and not considered 

in the present review. Based on the principles of the regeneration, post-combustion 

capture techniques by adsorption can be classified as temperature swing, pressure swing, 

vacuum swing, electric swing and hybrid processes.  

 

Figure 2. Post-combustion carbon capture technologies  

 

2.1 Adsorption using the effect of altering temperatures  

This adsorption method referred to as Temperature Swing Adsorption (TSA) is related 

to adsorbing volatile organic components from the air. In TSA, CO2 adsorption and 

desorption cyclically occur by adapting the operating temperature. TSA involves 
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several connected vessels, operating with fixed, moving or fluidized beds. Adsorption 

occurs mostly at a lower temperature, where desorption requires heating of the 

adsorbent bed and a cyclic mode of adsorption and desorption is hence applied. The 

advantages of TSA are multiple: (1) the impact of impurities in the flue gas such as SOx, 

H2S, NOx and H2O vapour is low, and these impurities are removed at a temperature of 

~ 1600C; (2) TSA systems are operated at low pressure (< 4 bar), and can hence be 

easily maintained; (3) TSA is often cheap to operate, but has a high initial cost; and (4) 

TSA is readily integrated into existing power plants, where low-grade waste energy is 

available for adsorbent regeneration. It is a low-risk and short-term implementation 

option[21].  

Whereas CO2 adsorption is favoured at a low temperature, 40-600C, desorption requires 

a higher temperature between 120 and 1600C, implying that the adsorption columns are 

sequentially operated at 600C (to efficiently capture CO2), and then heated mostly by 

hot air or steam to 1200C to release CO2, and finally to 1600C to remove possibly 

present impurities. A large air flow rate is needed for heating the bed for regeneration, 

due to the low heat capacity of air, thus diluting the released CO2 stream. This dilution 

is partly avoided when using steam, and totally avoided when the desorbing bed is 

heated electrically[16].  

The TSA heating and cooling cycles are energy-intensive, which consumes and 

research was conducted to reduce this energy penalty through optimising the capture 

process, through energy integration, and through developing adsorbents for use at lower 

temperatures. Operation costs are significantly reduced in power plants, since a large 

amount of low-grade heat is available. For industrial plants, such as cement and lime 

plants, regeneration heat is normally also present onsite. If an additional heat generator 

is required, it will significantly affect the economics of CO2 capture[21]. Although 
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fluidized beds are widely used in the post-combustion CCS, Pirngruber et al. 

demonstrated that a fixed bed operation has a higher thermodynamic driving force for 

CO2 adsorption, compared to fluidized bed[22]. Fixed bed heat transfer is however 

significantly lower than in fluidized beds, and a higher heat exchanging area will be 

required. Both fixed and fluidized bed processes see their performances significantly 

improved when the adsorption is operated under nearly isothermal conditions. 

Operating temperature, energy consumption, CO2 purity and subsequent recovery, 

yields and regeneration gas flow rate are interrelated in a TSA. A higher desorption 

temperature will increase the CO2 purity and recovery, but will be associated with a 

higher energy consumption. The minimum energy consumption (minimum CO2 

desorption temperature) is a strong function of the purge flow rate. Clausse et al. 

confirmed a higher productivity at a low purge flow rate for a lower desorption 

temperature (below 1300C), while a high purge flow rate increases the productivity 

above 1300C[23]. With a regeneration at 160°C and a purge of 0.3NL·min−1, the 

minimum energy consumption to obtain a 95% pure CO2, at an 81% CO2 recovery was 

3,230 kJ kgCO2
−1, while CO2 productivity of 57.7 g kgads

−1 h−1 was achieved. To 

increase the TSA performance, a preliminary pre-cooling step can be used to limit the 

initial CO2 breakthrough when the bed is still hot. An increased productivity and 

reduced energy consumption can be obtained by using a hybrid VTSA process with a 

decreasing desorption temperature. A balance between heat and electrical consumption 

needs to be investigated[23].  
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Figure 3. Flow sheet of a temperature swing CO2 capture using solid sorbents (retrieved 

from www.netl.doe.gov) 

 

2.2 Pressure swing adsorption  

In pressure swing adsorption (PSA), CO2 is adsorbed onto the surfaces of solid sorbents 

at a high pressure and is released at a low pressure. The operating principle relies upon 

molecular characteristics and affinity of CO2 and N2 for the solid sorbents. At a higher 

pressure, CO2 is selectively adsorbed by the adsorbent bed, whereas N2 will not be 

adsorbed. When the bed is saturated with CO2, regeneration can be achieved at a low 

pressure, thereby releasing the adsorbed CO2, and a new CO2 adsorption cycle can be 

started. The advantages and disadvantages of PSA in CO2 capture will be discussed in 

the comparison of VSA in the next section. The PSA can, however, be combined with 

TSA to improve the recovery and purity rate of captured CO2. The combination of PSA 

and TSA (PTSA) can achieve a 99% CO2 purity and a 90% CO2 recovery using a 

dedicated zeolite[24].  
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Figure 4. Principles of a PSA Operation (retrieved from 

http://www.co2crc.com.au/aboutccs/cap_adsorption.html) 

 

2.3 Vacuum swing adsorption (VSA) 

The VSA process has been industrially used for CO2 separation for several decades 

with advantages of a potentially extended use of the adsorbent, of process simplicity, 

and of low energy consumption[25-27]. The adsorption at atmospheric pressure is 

followed by desorption under vacuum, thus different from PSA. In the VSA case, the 

high desorption efficiency under vacuum enables the use of a single 

absorption/desorption vessel, and high separation efficiencies and yields are obtained: 

in a VSA with an activated carbon adsorbent, a 17% CO2 flue gas concentration can be 

concentrated to >> 99% with a recovery of 68.4%[28]. 

VSA applications avoid several operation modules of the traditional PSA systems, since 

avoiding the use of feed air compressors, process valves, associated dryers and feed air 

filtering systems. The single-vessel VSA system eliminates many problems associated 

with the design of a two-bed PSA, and its simplicity contributes to a higher efficiency, 
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lower cost, and reduced maintenance. VSA systems are moreover less susceptible to 

dust deposits in the adsorbent bed since the pressure swings are of a lower order of 

magnitude. The lower operating pressures also both prevent water condensation, thus 

allowing operation in humid environments, and provide a superior regeneration of the 

molecular sieve, thus extending its service life contrary to a PSA that commonly 

requires re-packing of the adsorbent sieve material every 3–5 years. Since no air 

compressor is required, energy requirements are around 50% of the simplest PSA 

systems. Since a VSA operates within the steepest part of the isotherm curves, it has 

the potential to achieve maximum efficiencies[24]. 

Many factors determine the performance of PSA and VSA systems, such as feed gas 

temperature and CO2 concentration, applied pressures, nature of the adsorbents, and 

flue gas impurities. Zhang et al. demonstrated that a VSA process has a CO2 recovery 

in excess of 70%, a CO2 purity exceeding 90% and a low power cost when the VSA 

was fed at 40oC and used a moderate vacuum[29]. Feeding a higher CO2 concentration 

to the plant will enhance the performance. Simulation and measurements of a three-bed 

pilot plant moreover demonstrated that the 13X zeolite selectivity and thermal effects 

had a more outspoken effect on the specific power consumption than on the CO2 

adsorption capacity, while its increased specific surface area did not enhance the overall 

performance. The upper limit of adsorbent performance was estimated by Maring and 

Webley using a model-material with the specific surface area as MOF-177: applying 

35 kJ heat during CO2 adsorption yielded a 68% increase in operating capacity and an 

increased purity from 78% to 94% in comparison with 13X zeolite[30].  

Kinetics and adsorption capacity of potential solid sorbents for PSA and VSA were 

screened at the University of Edinburgh using a "Zero Length Column" and a "Dual 

Piston PSA" approach. These screening tests can moreover support molecular 
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modelling and simulation of novel nano-porous materials, and membrane-based CO2 

separation. Maring and Webley applied a simplified P/VSA adsorption model for 

preliminary screening of CO2 adsorbents, based upon combining and outweighing a 

complete adsorption simulation and assessment of isotherms and selectivity 

calculations[30]. A complete simulation is tedious and requires a detailed knowledge 

of the PSA operation, while simple calculations are mostly incorrect and misleading.  

PSA and VSA are very sensitive to the flue gas impurities. The flue gas from a typical 

power plant usually contains 68–75% N2, 10–15% CO2, 5–10% H2O, 2–5% O2 and a 

trace amounts of NOx and SOx[31]: a pre-treatment/drying stage has to be applied to 

remove H2O, NOx and SOx from the flue gas, thus significantly increasing the overall 

capture cost[29, 32]. Research hence mostly uses a dry feed gas. 

The use of a hybrid VSA/TSA process can improve the CO2 capture, as shown in Figure 

5. It was found that a VTSA can significantly increase the desorption rate of CO2 

compared to TSA or VSA. The productivity and purity of captured CO2 follow the order 

of VTSA>VSA>TSA, and the CO2 concentration would be 97% with a VTSA 

process[33].  
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Figure 5. Combination of TSA and VSA with T as thermocouple and F as mass flow 

rate controller. The figure is reproduced with permission from [34]. 

 

2.4 Electric swing adsorption (ESA) 

This ESA method was first applied for CO2 capture in 1997, based upon activated 

carbon adsorption of volatile organic compounds (VOCs) from the air. A low voltage 

electric current is supplied to the adsorbents to regenerate them and the adsorbent bed 

directly heated by Joule effect, hence potentially reducing the energy cost for CO2 

capture without heating the adsorption unit and its accessories. Compared with PSA 

and TSA, ESA offers several advantages including less heat demanded, fast heating 

rate, better desorption kinetics and dynamics, and independent control of gas and heat 

flow rates. Semi-conductive activated carbon fibre materials have a high specific 

surface area, a high adsorption capability, and a high water vapour resistance. They are 

thus suitable for directly heating the adsorbent through Joule effect. Morphologies of 

activated carbons as monoliths, beads and fibre cloth were extensively compared by 

Luo et al. Activated carbon monoliths showed the lowest pressure drop, the highest 

permeability and the lowest cost, followed closely by activated carbon fibre 

materials[35]. These advantages significantly reduce the capital and operating costs.  

The economy of ESA mainly results from the energy savings in the desorption step 

when the Joule effect is solely applied to the adsorbent bed. To optimise the process in 

view of a higher energy efficiency, investigations hence focused on the desorption 

operating parameters, including the carrier gas flow rate, the current/voltage and energy 

intensity, and the time for preheating. The electric conductivity remains an important 

property of the ESA adsorbent, and a few CO2 adsorbents only can use the Joule 

effect[36]. 



14 
 

2.5 Summary of TSA/PSA/VSA 

Within the post-combustion CCS techniques mentioned above, costs and energy 

penalties need to be considered. In general, TSA is suitable for both adsorption using 

solids and absorption using solvents. The requirement of TSA on the impurities (H2S, 

SOx, NOx) in flue gas is not very strict. The adsorbed/absorbed H2S, SOx, NOx, etc. can 

be removed from adsorbents or solvents at a higher temperature. However, the energy 

penalty of TSA is high as the regeneration is often at a temperature around 140oC, and 

adsorption/absorption is at a temperature around 40oC. The repeated heating and 

cooling of the solvents/adsorbents consumes a large amount of energy. Development 

of new solvents/adsorbents with a high capacity and a low regeneration temperature is 

urgently required. PSA and VSA are suitable for the adsorption process, and can be 

conducted at room temperature, avoiding the cost from repeat heating and cooling. 

However, the pressurization and vacuum consume a large amount of energy. The 

impurities in flue gas have a detrimental impact on PSA, as the adsorbed H2S, SOx and 

NOx cannot be removed from the adsorbents at ambient pressure. Cold PSA shows 

slightly lower efficiency than the absorption-based TSA. However, PSA may become 

more energy efficient if a hot gas feed can be used. Sorption-enhanced processes are 

even more promising. The TVSA process combines the advantages of the TSA and 

VSA, and can reduce the temperature required for TSA, i.e. lower the energy 

consumption for CO2 capture with high CO2 purity and recovery if a suitable low-grade 

waste heat source is used. The VPSA, especially a two-stage VPSA has been proven to 

be able to meet the CCS targets with more advantages over other technologies, such as 

lower capital investment and flexibility to adapt to different operating conditions[34, 

37, 38]. As only a few CO2 adsorbents can use the Joule effect in ESA processes, the 
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development of adsorbents/absorbents with effective Joule effect is essential for their 

practical applications. 

 

3. Absorption Processes 

Absorption involves physical or chemical principles to remove CO2 from a gas stream 

into the bulk of liquid solvents, hence different from active-surface driven 

adsorption[39]. Figure. 5 depicts the counter-current flow of a CO2-lean solvent at a 

low temperature (around 40-600C) with the CO2-loaded flue gas, while CO2 physically 

passes the gas into the liquid phase. The CO2-rich solvent is transferred to a thermal 

stripper for regeneration at 120 to 160°C and a near-atmospheric pressure. Absorbed 

CO2 is stripped from the solvent, which is returned to the absorber column. The CO2 is 

separated with the concentration up to 99% through releasing the gas stream from the 

stripper[40-42]. Flue Gas streams with up to 20% CO2 can be handled when using 

appropriate solvents, such as amines.  

Based upon the absorbent types, the absorption processes include alkanolamines 

absorption[43, 44], aqueous ammonia absorption[45, 46], dual-alkali absorption[18], 

sodium carbonate (Na2CO3) slurry absorption[47, 48] and the chilled ammonia 

process[49]. CO2 absorption by aqueous amines has attracted much attention because 

of their high CO2 affinity. It is a mature technique. Early applications in the natural gas 

industry and to produce food and beverage grade CO2 were described in the 

literature[39, 50]. 
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Figure 6.  A typical CO2 absorption process with absorber and stripper or desorber 

column (adapted from www. power-technology.com) 

 

Alkanolamines are derived from ammonia (NH3), where one or more hydrogen atoms 

are replaced by a functional group through reaction with e.g. ethanol. The number of 

substituents defines the classes of primary, secondary and tertiary amines, In CO2 

capture, primary amines are commonly monoethanol amine HOC2H4NH2 (MEA) and 

diglycolamine H2NCH2CH2OCH2CH2OH (DGA). Secondary amines are mostly 2,2’-

iminodiethanol C4H11NO2 (DEA), diisopropanolamine (DIPA) and 

monomethylethanolamine CH3NHCH2CH2OH (MMEA). Tertiary amines include N-

methyl-2,2-iminodiethanol CH3N(C2H4OH)2 (MDEA), triethanolamine (TEA) and 

dimethylethanolamine (DMMEA). The reaction of CO2 with amines is reversible since 

the weak bond formed is easily disrupted when heating the liquid. CO2 reacts with MEA 

to form a carbamate and bicarbonate solution while releasing 83.6 kJ/mol as shown in 
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equation (1)[51]. Upon heating the MEA solution, the MEA carbamate and bicarbonate 

are decomposed while regenerating the amine and releasing CO2. 

 

C2H4OHNH2 + H2O + CO2 ⇔ C2H4OHNH3
+ + HCO3

-    (1) 

 

MEA is generally considered for immediate industrial applications to remove CO2 and 

H2S[52], despite critical drawbacks of high-energy consumption and corrosion. A 

recent study reported that the energy penalty is very high with an estimated efficiency 

loss from the MEA installation between 25 and 28% for new constructions and between 

36 and 42% for retrofitting an existing plant[53]. MEA is much more corrosive than 

secondary or tertiary amines. The degradation of MEA absorbents is attributed to 

irreversible chemical reactions between the oxygen and acids from flue gas components 

and the amine solution. The MEA absorbents are degraded to corrosive, toxic and 

dangerous chemicals[54]. Approaches to decrease the energy consumption includes 

improvement of the operation in the stripper (reboiler) temperature[55], a higher 

alkanolamines concentration[56], CO2 loading, mixed amines, and mixture of ionic 

liquid and alkanolamines[57]). For example, the amine corrosion rate for AISI 1018 

carbon steel coupon is 𝑟𝑟𝑎𝑎 = 𝑘𝑘𝑎𝑎exp (−∆𝐻𝐻
𝑇𝑇

) ∙ [𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎] ∙ [𝐶𝐶𝑂𝑂2]𝑏𝑏 ∙ [𝑂𝑂2]𝑐𝑐 . If the solvent 

temperature at the stripper decreases from 120oC to 70oC, the corrosion rate will be 

reduced by exp �− ∆𝐻𝐻
339
� exp �− ∆𝐻𝐻

343
�� = exp (0.000371∆𝐻𝐻). For MEA, ∆H= 8963.8J, 

the corrosion rate will be reduced to 1/28 of the corrosion rate at 120oC. 

Commercially-available MEA processes can be classified as the Kerr-McGee/AGG 

Lummus Crest process (KMALC)[58], the Fluor Econamine FG PlusSM process (Fluor 

EFG+), and the Kansai Mitsubishi Carbon Dioxide Recovery Process (KM-CDR)[39].  



18 
 

 

3.1 The KMALC Process 

This technology uses a 15–20 wt % of MEA solution. A KMALC demonstration plant 

yielded a CO2 absorption capacity of 800 ton CO2/day with 2 parallel absorption 

columns[58, 59]. 

 

3.2 The Fluor EFG+ process  

This CO2 capture process is proven, cost-effective and applicable to low-pressure, O2-

containing flue gas. It was licensed to 28 plants worldwide[60]. The CO2 recovery pilot 

plant, commissioned in 2012 at the E.ON’s coal-fired power plant in Wilhelmshaven, 

Germany, was designed to handle 19,500 Nm3/h flue gas or 70 ton per day CO2 at a 90% 

CO2 recovery. The more recent large-scale CCS plant, using the Econamine FG PlusSM 

Process, was designed for NRG's WA Parish Electric Generation to capture 90% of the 

CO2 present in a 240 MW equivalent flue gas stream, thus producing 4,776 ton per day 

of supercritical CO2 for sequestration. The Econamine FG PlusSM Process was 

optimized to reduce the regeneration energy needs and capital cost, to reduce the 

solvent flowrate and the environmental footprint. Improvements involve a flue gas 

conditioning (cooling and reducing the SO2 concentration), absorber intercooling, and 

a lean vapour compression in the solvent regeneration step. Increasing the MEA 

concentration to 35 wt% in a recent plant, reduces the solvent degradation through 

oxidation, while the corrosive nature of the MEA solvent is reduced by adding a 

proprietary inhibitor to the MEA solution. SO2 should be removed to below 10 ppm to 

limit the cost of proprietary inhibitors and excessive solvent makeup[39, 59, 60]. 

 

3.3 KM-CDR technology 



19 
 

This process, launched by Mitsubishi Heavy Industries, Ltd. (MHI), in collaboration 

with Kansai Electric Power Co., Inc. (KEPCO), aimed at reducing the CO2 capture 

costs for oil industries. Several (>10) of such plants are currently operated in chemical 

and fertilizer industries with a maximum CO2 capture capacity of 450 metric ton per 

day. CO2 is captured from the flue gas of a natural gas-fired steam reformer and 

subsequently used to react with ammonia to produce urea. For the CCS purpose, the 

KM CDR process of Alabama Power's Plant Barry (USA) can achieve a 500 ton/day 

CO2 capture and demonstrates the black coal ‘full chain’ CCS. Both initial partners, 

MHI and KEPCO, further improved the energy-efficiency of the process by using the 

sterically hindered amine solvent, KS-1TM [61], where a bulky molecule is attached to 

a nitrogen atom as illustrated in equation (2). It is slightly corrosive and less prone to 

O2 degradation compared with the MEA[62, 63]. 

RNH2 + CO2 + H2O ⇔ RNH3 + HCO3
-      (2) 

Despite anti-corrosion and low degradation advantages, a low CO2 loading capacity  (< 

0.40 kg CO2/kg for MEA[51]), a high energy consumption in stripping/regeneration, a 

large plant, and the production of a hazardous waste stream (which increases the plant 

footprint) are recognized drawbacks[39]. 

Diethanol amine (DEA) and methyldiethanol amine (MDEA) have been used in CCS 

to overcome the drawbacks of MEA absorption. Although DEA and MDEA have a 

similar molecular structure and are of comparable basic strength (DEA, Kb(293 K) = 

1.02×10−5; MDEA, Kb(293 K) = 5.53×10−6)[64], their chemical performances in CO2 

capture and desorption are different. Compared with tertiary MDEA, the secondary 

DEA has a lower absorption capacity but a higher reaction rate towards CO2. By using 

13C NMR spectroscopy, Barzagli et al. demonstrated a maximum loading capacity for 

DEA and MDEA of 0.5 and 1 mol, respectively. At equilibrium, achieved after 13 h, 



20 
 

the CO2 absorption efficiency is 82.6% in MDEA, and 84.0% in DEA. The amine 

regeneration efficiency ranges on average from 69.6% (DEA) to 78.2% (MDEA)[65]. 

The required regeneration energy is lower for primary and secondary amines than for 

tertiary amines.  

The absorption capability of different alkanolamines was further correlated in terms of 

their structural properties and operating parameters (reaction temperature, flue gas flow 

rate, CO2 partial pressure, the concentration of the absorbents and the acid-base reaction 

mechanisms). Idem et al. demonstrated that a mixture of MEA/MDEA can achieve a 

modest reduction of the circulation rate, but a large reduction in the required stripping 

heat, in comparison with the MEA system[66].  

 

3.4 Aqueous ammonia (NH3) process  

Ammonia has been regarded as a possible alternative to the MEA solvent as it is a 

relatively cheap, commercially available solvent with a relatively high CO2 absorption 

capacity. It is less corrosive and has a lower susceptibility to degradation compared 

with MEA. Ammonia reacts with CO2 as described by equations (3-5)[17, 67]. 

Carbamate is mainly formed in the early reaction stages where excess ammonia is 

present, while in the final NH3-lean stage the main species becomes bicarbonate. To 

counteract the high volatility of ammonia, the CO2 adsorption is achieved at a low 

temperature of 15 to 27°C. CO2 is stripped from the CO2 loaded solution by heating to 

between 27 and 92oC in a stripping column. Ammonium bicarbonate and carbonate 

thermally release CO2 while restoring the original ammonia solvent. The bicarbonate 

formation is more desirable since its decomposition heat is lower than that of carbonate. 

Throughout the process, the carbonate concentration is lower than the concentration of 
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carbamate[17, 36, 68]. The carbonate formation is promoted at a high pH, whereas 

bicarbonates are preferably formed at a low pH.  

 

2NH3 + CO2 ⇔ NH2COONH4       (3) 

NH2COONH4 + H2O ⇔ NH4HCO3 + NH3      (4) 

NH4HCO3 + NH4OH ⇔ (NH4)2CO3 + H2O      (5) 

 

The CO2 capture efficiency increases exponentially with a moderate increase of the 

aqueous ammonia concentration and the maximum efficiency is 99%. A high 

concentration of aqueous ammonia is however detrimental to the absorption efficiency, 

which achieves a limit value, as demonstrated by Zhu et al.[69].  

The forward ammonia-CO2 reaction dominates at low temperature (around ambient 

temperature), but is reversed at a higher temperature in the range of 38 to 60°C[70]. 

The reaction temperature affects the CO2 absorption efficiency in a complex and a non-

monotonical manner, whereby all operating parameters (flow rates, energy 

consumption, reactor design) should be considered. 

Similar to other absorption processes, the CO2 capture efficiency is a function of the 

intimate contact between ammonia and CO2, as fostered by a large contact surface area 

to increase the mass transfer. Hollow fiber membranes[71, 72], rotating disc high 

gravity reactors[73, 74] and vortex spray scrubbing technology[75, 76] have been 

designed for increasing the contact area. Both latter methods are similar in principle 

which enhances the liquid-gas mixing and mass transfer by externally applied super 

gravity or centrifugal rotation forces[17].  

Ammonia also reacts with the impurities NO2 and SO2 (in an oxidizing atmosphere 

present as SO3) to generate NH4NO3 and (NH4)2SO4 respectively. The products from 
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the aqua ammonia process (carbonates, nitrates, sulphates) could be directly used as 

fertilizers, hence saving energy otherwise required in solvent regeneration, CO2 

compression and storage.  

In comparison with the other absorption processes, the aqueous ammonia absorption 

offers the advantages of a high CO2 loading capacity (1.20 kg CO2/kg NH3), the 

possible reaction with other flue gas impurities, and the formation of co-fertilizer-grade 

ammonium nitrate and sulphate. Its major disadvantages are the loss of volatile NH3 

vapor (NH3 slip), the secondary contamination during stripping, and the high-energy 

needs in the solvent regeneration stage[39, 77]. 

 

3.5 Chilled ammonia process, CAP 

Patented in 2006 by Eli Gal, the CAP process absorbs CO2 at low temperatures 

(between 0 and 20oC but preferably below 10oC), and it significantly reduces the 

concentration of moisture, acidic and volatile components. CAP reduces the NH3 slip, 

and limits the NH3 loss to less than 6% of the solvent, compared with conventional 

aqueous ammonia process with common NH3 losses up to 9%[78]. The adsorption step 

applies a 28 wt% ammonia solution at a near-atmospheric pressure. The recycled CO2-

lean stream should have a low molar CO2 ratio of the ammonia molar amounts 

(ammonia in its various aqueous forms) and ranges between 0.25 and 0.67, but 

preferably between 0.33 and 0.67 hence fostering a high adsorption efficiency. To 

release CO2, the CO2-rich stream is pressurized and heated to 100-150oC in the desorber. 

Both low absorption and desorption temperatures reduce the respective energy 

consumptions and absorbent degradation, and it was claimed that CAP energy use is 

only 50% of the energy use in a conventional MEA process[6], despite the extra energy 

needed for flue gas cooling, water condensation, cooling of the recycle CO2-lean 
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solvent stream, and abatement of the NH3 slip. Drawbacks of CAP include the NH3 

volatility, the low absorption rate, the use of multiple absorber vessels[49]. 

 

3.6 Dual alkali absorption (DAA) 

DAA modified the Solvay process. CO2 reacts with NaCl, methylaminoethanol (MAE) 

and water to produce sodium bicarbonate (NaHCO3), subsequently calcined to produce 

commercial grade Na2CO3, as shown in Equation (6). In the capture process, MAE 

catalyses the absorption of CO2, while NaCl increases the Na+ concentration to enhance 

the precipitation of NaHCO3. The calcination of NaHCO3, with associated CO2 release, 

hampers the application of the process for large scale CO2 capture. The gas stream must 

be cooled to 250C and be treated in a de-NOx/ de-SOx step. Acidic impurities from the 

flue gas (e.g. SOx and CnOx) and ash will react with MAE to generate heat-stable salts, 

which are regarded as one of the leading reason of absorption capacity reduction of the 

system[54]. A pre-treatment of the flue gas is thus required to remove impurities[41]. 

CO2 + NaCl + H2O + HOCH2CH2(CH3)NH3 → NaHCO3 + HOCH2CH2(CH3)NH2C       (6) 

 

3.7 Strong alkali absorption  

Alkali metal-based oxides can be used for CO2 capture in the presence of H2O to form 

e.g. sodium or potassium bicarbonates at temperatures of 50-60oC. At a moderate 

temperature of 120-200oC, these bicarbonates decompose and release both CO2 and 

H2O. Water can be easily removed through condensation. For adsorption and 

regeneration, fluidized-bed or transport reactors can be used. Common adsorbents are 

mixtures of K2CO3 and activated carbon, K2CO3 and Al2O3, K2CO3 and TiO2, K2CO 

and MgO, Na2CO3 slurry. These strong alkali reactants have high CO2 capture 

capacities and carbonation reaction rates are high[11, 79]. They can be fully regenerated 
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within a temperature range from 130 to 400oC (130oC for K2CO3/AC and K2CO3/TiO2, 

350oC for K2CO3/MgO and 400oC for K2CO3/Al2O3). When the regeneration 

temperatures are below 200oC, the reduced CO2 capture capacity of K2CO3/Al2O3 and 

K2CO3/MgO is mainly caused by the formation of KAl(CO3)2(OH)2, K2Mg(CO3)2 and 

K2Mg(CO3)24(H2O).  

The support material plays an important role in the process absorption and regeneration 

capacities. In humid conditions, K2CO3/AC is more suitable for cyclic fixed-bed 

operation, while K2CO3/Al2O3 is more applicable in fluidized-bed systems. The good 

multi-cycle behaviour of this attrition-resistant sorbent is particularly beneficial for the 

CO2 capture capacity[80].  

Although strong alkali adsorption does not involve the use of volatile chemicals, its 

lower absorption rate of CO2 in comparison with amines, and the large equipment size 

of the absorption remain major drawbacks. 

 

3.8 Summary of absorption  

Chemical absorption with amines is currently the most mature technology for CO2 

capture and has been commercialized for many years. Prior to absorption, other acid 

gases such as SO2 and NO2 should be removed to reduce the formation of thermally 

stable by-products. Beside the high-energy penalty, thermal degradation and corrosion 

are other two major problems. In terms of capture performance and the regeneration 

cost, MEA is the best single solvent for CO2 capture. 30% of MEA aqueous solution is 

still the most commonly used solvent for chemical absorption for CCS. Recent research 

has demonstrated that the mixture of MEA with other solvents can provide much better 

CO2 absorption capacity and kinetics[81]. The regeneration temperature can be reduced 

significantly. The addition of the DEGMEE to MEA solution, especially those at low 
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MEA concentration (20–40 wt%) showed good absorption and desorption rates, but 

also low energy consumptions during the regeneration steps. The addition of NMF to 

MEA greatly enhanced the CO2 absorption kinetics due to a possible increase of the 

pKa of MEA when dissolved in NMF, but the presence of the amide group and high 

dielectric constant of NMF may speed up the deprotonation step of the zwitterions into 

carbamates.  

Solvent-based absorption process presents a series of drawbacks, such as high energy 

requirement with sorbent regeneration, solvent losses due to thermal and chemical 

degradation, evaporation, corrosion, reduced absorption capacity when flue gas 

impurities are present (e.g. O2, SO2, HCl and particulates). New effective solvents are 

crucial to developed for a lower energy consumption and acceptable solvent 

degradation and corrosion. The use of mixed solvents may be a right approach towards 

this direction.  

 

4. Adsorption Processes 

Adsorption processes are low-cost alternatives for post-combustion CO2 capture. It is a 

physical or chemical process where atoms, ions, or molecules from a gas, liquid, or 

dissolved ions are captured by the adsorbent. CO2 adsorption on surfaces of the solid 

adsorbents mostly involves physical principles via the formation of a range of physical 

interactions between CO2 and solid surfaces, by e.g. the Van der Waals force. The 

adsorption is reversible in the function of applied temperature or pressure without 

adsorbent degradation. After desorption, the adsorbents can be recycled many times. 

The thermodynamics of the gas-adsorption is governed by the adsorption isotherms (P, 

T), which define how the adsorption capability of the solid depends on temperature and 
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pressure. Physical adsorption has a lower adsorption heat than chemisorption, and the 

heat required for CO2 desorption is even lower.  

Adsorption and desorption will hence apply a pressure swing or temperature swing 

process (PSP and TSP). In PSP, CO2 is captured at high pressure, and desorbed from 

the solids by a pressure reduction. The opposite is used in TSP with a low temperature 

during adsorption and a higher temperature for desorption. The number of molecules 

adsorbed increases with the increase of pressure, up to a saturation status. In TSP, CO2 

is favourably attached to adsorbents at a low temperature due to the exothermicity of 

adsorption. Temperature swing operation can also remove other adsorbed impurities, 

i.e. SOx and NOx, thus maintaining a high CO2 concentration. TSP omits the energy 

penalty of the PSP-compression of CO2. Regeneration in PSP is however much faster 

than in TSP. Several configurations have been proposed for both pressure and 

temperature driven processes, as discussed hereafter.  

 

4.1 Fixed bed configuration  

The fixed bed application is shown in Figure 7, where adsorption and desorption take 

place in a single column. After a certain time, mainly determined by the amount of CO2 

to be adsorbed and by the amount of adsorbent being present, the fixed adsorber bed 

will progressively be saturated (from bottom to top) and CO2 will break through at the 

column exit. The adsorption step is then interrupted, and desorption is started.  
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Figure. 7. Fixed bed setup with stainless steel adsorption column, packed in the middle 

with zeolite 13X. A glass mesh in the bottom 10 cm of the column ensured a uniform 

gas distribution. The figure is reproduced with permission from [82]. 

 

4.2. Circulating fluidized beds (CFB) 

The CFB configuration is a mature technology, which is used in many applications such 

as metallurgy, biomass combustion and chemical industry in general. It is mainly used 

because of some highly beneficial properties including excellent heat and mass transfer 

and its capability to handle large gas flow rates. Its scale-up is relatively easy and can 

be performed in a short timescale. Two separate columns, i.e., the downcomer and the 

riser are present in this configuration to perform the CO2 adsorption and desorption 

simultaneously: CO2 capture takes place in the riser and the adsorbent regeneration in 

the downcomer. The adsorbed CO2 and the residual CO2 in the flue gas at the exit of 

the riser are close to being in equilibrium.  

The CFB used by Veneman et al (2012) for continuous CO2 capture is depicted in 

Figure 8. Amine functionalized beads were used as adsorbents, circulating between the 
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riser and downcomer[83] and introduced a simulated flue-gas at the bottom of the 

absorber fluid bed. Selective adsorption of CO2 from the flue gas in both the absorber 

fluid bed and the riser section was observed at temperatures between 40 and 60°C. The 

transport of the sorbent particles in the riser and to the cyclone was carried out via a co-

current gas flow. The CO2-loaded particles were separated in the cyclone and 

transported downwards again via the downcomer to the regenerator section. The 

purified gas was evacuated from the system via the cyclone exhaust. The fluidised bed 

of the desorber was rectangular with a cross-section of 5×3 cm2 and was 1 m high.  

Water cooling was applied to the adsorber section through the concentric tube with 4 

cm inner diameter and 0.5 m height. The riser consisted of a 1.9 m long glass tube with 

an inner diameter of 1.5 cm[83].  

 

Figure 8. CFB set-up [the figure is reproduced with permission from[83]]. The sorbent 

recycle loop seal 6 connects the adsorber and desorber columns and prevents undesired 

mixing of flue gas and the purge gas. 
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Dinca and Badea (2013) described a pilot-scale CFB system using MEA as an absorbent 

for CO2 separation from flue gases. Heat contained in the flue gases is used for the 

regeneration of the MEA, combined with additional heat supply via an electrical re-

boiler. The added heat increased in the solvent temperature to 90-100°C[84].  

Recently, Veneman [85] utilized multi-stage fluidized bed desorber with a gas-solid 

trickle flow adsorber to achieve the counter-current flow of sorbent and gas, to improve 

the operational efficiency of the TSA process. The increasing the number of stages in 

the adsorber and desorber can achieve a better working capacity, hence, reducing the 

energy consumption for CCS in TSA processes [86].  

 

4.3 Counter-current beds 

Although yet not further investigated, some US patents (US 7594956 and US 5169607) 

describe a counter-current moving bed for flue gas CO2 capture, executed as a parallel 

plate heat exchanger, and capable of treating 80 to 500 °C flue gas. Detailed conditions 

of the operation are however not specified in the patents, thus making its assessment 

impossible.  

In summary, the fixed bed configuration combines adsorption and desorption 

(regeneration) in a single column. This arrangement can reduce capital investment, 

maintaining cost and operational cost, but works in intermittent operation mode and the 

gas-adsorbent contact time is shorter. Circulating fluidized bed provides a continually 

operational mode. The adsorption and regeneration are conducted in different columns. 

The co-current flow increases the contact time of flue gas with adsorbents. However, 

the fast motion of the adsorbents increases the erosion of the column wall and the 

attrition of the adsorbent particles.  
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5. Adsorbents  

Various porous materials have been tested for their capability to adsorb CO2. Both 

physical adsorption based on Van der Waals attraction between CO2 and the adsorbent, 

and chemical adsorption in which the CO2 is chemically bound to the adsorbent surface 

are possible. Criteria that have been put in place to evaluate the applicability and 

efficiency of CO2 adsorbents are capacity, selectivity, rate of adsorption and desorption, 

required adsorption and desorption temperatures, thermal and mechanical stability, the 

possibility for regeneration, manufacturing and regeneration cost, the influence of 

impurities in the flue gas such as H2O, Hg, SO2, and NOx, environmental impact etc. In 

reality, the advantages and disadvantages of an adsorbent material should be evaluated 

toward the practical application of the adsorption at a relevant scale, and should include 

cost considerations.  

A wide variety of factors influence the adsorption selectivity. Examples are the 

concentration of active adsorption sites on the surface, pore size and pore geometry, 

presence of impurities and water in the flue gas, temperature and pressure of operation, 

and CO2 content. Metal oxides have been identified to possess very beneficial 

properties in CO2 adsorption, but they also present a strong affinity towards H2S, H2O, 

SOx and NOx, requiring these impurities to be removed before introduction in the 

adsorption bed (even to trace level). Otherwise, a strong competition with CO2 for 

adsorption sites would be in place. Additionally, some of these components will 

accumulate at the adsorbent at each adsorption/desorption cycle because of the present 

low desorption rates leading to a drastic reduction in CO2 adsorption capacity of the 

adsorbents. 

Characteristics of the adsorption capacity and kinetics are mainly related to chemical 

(chemical composition of the adsorbent material) and structural (pore size, pore 
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structure and total exposed surface area) properties of the adsorbent. Pore geometry can 

be cylindrical, or in the form of interconnected cages or slits (via pore windows). The 

separation of gas molecules occurs because of differences in equilibrium concentration, 

adsorption kinetics, or molecular sieving mechanisms.  

The following properties should be present to achieve an effective CO2 adsorption: (1) 

a high total exposed surface area providing a high number of adsorption sites, (2) an 

optimal pore size distribution enabling a high intraparticle diffusivity of gases, (3) a 

high selectivity towards CO2 and low selectivity towards other impurities in the flue 

gas, (4) a high tolerance to commonly present flue gas impurities such as SOx, which 

may bind to the adsorbent surface and are not readily desorbed through regeneration, 

(5) a high adsorption and desorption rate to limit the required residence time in the 

column, (6) the application of mild desorption conditions (e.g. a low-temperature 

difference between adsorption and desorption operating mode)[39]. Recently, the 

selection criteria based on the AHP/TOPSIS approach has been proposed to compare 

the potential of sorbents. Particle density, the specific heat, reactions with a negative 

free Gibbs energy, etc. were considered as the essential criteria to evaluate the CO2 

conversion rate for chemical reaction with various sorbents. MgO and Mg(OH)2 were 

shown the highest potential as CO2 sorbents[11].  

The CO2 adsorption materials can be classified in function of their chemical 

composition as activated carbons, zeolites, metal organic frameworks (MOFs), amine-

functionalized adsorbents, alkali-doped metal oxides, and other compounds. Based 

upon the pore size of the support materials, distinction can be made between 

microporous materials (interconnected pores with < 2 nm pore windows) and 

mesoporous ones (crystalline materials with narrow pore-size distributions or 

amorphous materials with broader pore-size distributions, however in general a pore 
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size in a range of 2–50 nm) adsorbents[2]. The separation mechanisms for microporous 

adsorbents is based on equilibrium, kinetics, or molecular sieving. The large pore size 

of mesoporous adsorbents enhances the mass transport of gas molecules in the 

interconnected pores for rapid reverse cycles. Belmabkhout et al. reported a specifically 

high adsorption capacity for CO2 of mesoporous adsorbents. When combining meso- 

and microporous sorbents, a high mass transfer rate will allow more rapid 

adsorption/desorption cycles[87]. This principle was illustrated by Ma et al. for a 

MCM41 sorbent with both micro- and mesopores. The mesopores were tailored using 

either hexadecyltrimethylammonium bromide (CTAB) as a soft template, or 

mesoporous carbon as a hard template[88]. These obtained materials showed a high 

CO2 adsorption capacity at CO2 pressures in excess of those applied in the VSA or TSA.  

 

5.1 Zeolite adsorbents 

Zeolites are crystalline materials composed of silicon, aluminium and oxygen. The 

crystals are TO4 tetrahedra (T=Si or Al), which form a matrix of channels and cavities 

providing a porous structure with a large total specific surface area, as illustrated in 

Figure 9. Zeolites show high adsorption capacities with fast adsorption rate under mild 

operating conditions (0-100oC, 0.1–1 bar CO2). The adsorption capacity rapidly 

decreases with an increase in temperature, and becomes insignificant above 200oC. 

Therefore, the flue gas must be cooled to less than 100oC before zeolite adsorption.  

Synthesized zeolites are denoted by X (having high alumina content) and Y (having 

high silica content), and were initially produced by Milton and Breck[89]. The main 

mechanism of CO2 adsorption on zeolite surfaces is physisorption, which was identified 

by near infrared (IR) spectroscopy. Cations in the silicate framework (e.g., Na+ and Li+), 

induce a negative charge on the framework, providing the zeolite with the capability to 
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adsorb a wide variety of flue gas components, such as H2O, CO2, NOx, SOx and H2S[90]. 

The amount and nature of the cations determine to a large extent the adsorption. Also, 

the Si/Al ratio in the lattice plays a predominant role. Ideally, a low Si/Al ratio (such as 

NaLSX, Si/Al = 1, NaX with Si/Al = 1.25) is desirable since it promotes the presence 

of a higher number of cations, hence leading to a higher CO2 adsorption capacity[91]. 

Substituting general cations such as Na with less common ones such as Rb, Cs, K and 

Li further increases the adsorption capacity of the zeolite for CO2[92]. The K/Na ratio 

also affects the efficient separation of CO2 from N2. When the K+/(K+ + Na+) ratio in a 

NaKA zeolite is about 17 %, N2 adsorption is negligible whereas the CO2 adsorption 

capacity remains high. At a high K+/ (K+ + Na+) ratio, the CO2 adsorption also decreases 

significantly[2]. 

 

Figure 9. Structures of zeolites and metal organic framework (MOF): (A) zeolite A, (B) 

ZSM-5, (C) zeolite X and (D) MOF-5. The figure is reproduced with permission of [2].  

 

The porous structure of the zeolite is an additional determining factor controlling the 

CO2 adsorption. Pore size determines the diffusion rate and selectivity of CO2 
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adsorption. A large pore size promotes the diffusion rate of CO2. Whereas pore sizes 

similar to the kinetic diameter of CO2 enhance the kinetic selectivity (separation of CO2 

and other gases), a small pore size prohibits the diffusion rate of CO2 throughout the 

zeolite, but also improves the separation selectivity. The particle size determines gas 

diffusion rates: typically a quadratic decrease is observed with increasing the particle 

size. 13X shows the highest adsorption capacity among various commercially available 

zeolites (4A, 5A, 13X, APG-II, and WE-G 592) because of its largest pore diameter 

and volume81. 36 molecular simulations carried out by Kohen using grand canonical 

Monte Carlo method and the ideal adsorbed solution theory the confirm the relevance 

of the pore structure when developing zeolites with good CO2 adsorption properties.  

The disadvantage of zeolites is their strong hydrophilic nature, resulting in strong water 

absorption and low gas selectivity. A preferential adsorption of the polar H2O, SOx, 

NOx and H2S molecules to the cations in zeolites will take place, hence occupying 

adsorption sites for CO2 molecules[93]. To achieve the optimal adsorption performance 

using zeolites, removal of the impurities (NOx, SOx, and H2O) has to be thoroughly 

conducted prior to adsorption. Due to its strong hydrophilic property, relatively high 

temperature and a long time will be required to regenerate zeolite adsorbents. If the 

heating temperature is 150°C, the CO2 adsorption capacity of zeolite 13X could only 

be restored to 2.7 mmol/g. However, when the temperature increases to 3500C for 6h 

under the same dry N2 flow, the restored CO2 adsorption capacity of zeolite 13X 

monoliths increased to 5.15 mmol/g[94]. The main reason is that a temperature of 150°C 

is insufficient to desorb water molecules from zeolite pores. Surface modification of 

zeolites can also increase the CO2 adsorption capacity, water-resistance and selectivity 

against N2, by functionalizing zeolites with amines to alter the CO2 adsorption from 

physisorption to chemisorption[95].  
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5.2 Porous carbon-based adsorbents 

Activated carbon, carbon nanotubes and nanofibers are all types of carbon-based 

adsorbents. Various low-cost raw materials are used for activated carbon production, 

including bamboo, coconut shells, wood, industrial by-products and other types of 

biomass (waste) sources[96, 97]. This leads to a wide spectrum of chemical and 

structural properties, and pore size (distribution) and hence a widely varying adsorption 

performance. 

 

5.2.1 Activated carbon  

Activated carbon is the most frequently used adsorbent in industry. For CO2 adsorption, 

they have a lower cost compared to other adsorbents[98], but their adsorption capacity 

is only comparable to zeolites under high CO2 pressure[99]. The adsorption kinetics of 

CO2 are similar to zeolites, reaching the maximum adsorption capacity within minutes. 

Adsorption studies show that activated carbon exhibits lower adsorption heats 

compared to zeolites[28]. Their regeneration by TSA, PSA, VSA and ESA are rather 

easy[98]. The efficiency of activated carbon is the highest around room temperature 

and under high CO2 pressure condition (>4 bar). The adsorption capacity dramatically 

decreases with increasing temperature. At low CO2 partial pressure, activated carbon 

has low selectivity and adsorption capacity due to the unfavourable adsorption 

isotherms with a high degree of hysteresis. The commercial activated carbon (VR‐5 and 

VR‐93) can achieve a volumetric adsorption capacity, yielding up to 380 and 500 

cm3/cm3, respectively at 25 °C and 50 bar[100]. 

The selectivity and adsorption capacity of activated carbon rely on the high specific 

surface area, complex structure and chemical characteristics, specifically the acidic and 
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basic character[98]. Their chemical characteristics are predominantly determined by 

heteroatoms that are included in the structure, such as nitrogen, oxygen, sulfur, 

hydrogen, phosphorus, and metal ions. These are originating directly from the 

composition of the raw material or being introduced via the activation process. The 

acidic or basic character of activated carbon surface affects the adsorption capacity and 

selectivity of activated carbons through the surface functional groups formed from these 

heteroatoms and the delocalized electrons of the carbon structure[101, 102]. The acidic 

character relates to the functional groups containing oxygen, and the acidity of the 

activated carbon will be higher when the oxygen concentration at the outer surface of 

the basal plane increases[103]. Lewis base sites are associated with the carbon structure 

itself. The basicity of activated carbon, which is closely related to the CO2 adsorption 

capacity of activated carbon[104], is caused by the resonation of π-electrons present in 

carbon aromatic rings, which attract protons, and basic surface functionalities, such as 

nitrogen-containing groups[105-107].  

 

Figure 10. Functional groups (acidic and basic) in a carbon basal plane. The figure is 

reproduced with permission from [104, 106].  

 

To improve the selectivity of the activated carbon materials, the basicity of activated 

carbons should be increased to enhance the affinity of CO2 and the carbon material. It 
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can be achieved by thermal treatment and ammonia treatment, which removes or 

neutralizes the acidic groups, or even introduces basic groups, such as basic nitrogen 

functionalities. At 800–1000°C, most oxygen functional groups on carbon surfaces can 

be decomposed under inert nitrogen or helium, which leads to an increase in Lewis 

basic sites on the oxygen-free graphene layers and the few basic oxygen-containing 

groups (pyrone and chromene) remaining in the carbon surface[108, 109]. The 

unsaturated surfaces were generated due to the removal of acidic functional groups, 

which leads to the increase of the hydrophobicity of the activated carbons[104, 110]. 

Another approach to increase the basicity of activated carbon is to introduce basic 

nitrogen functionalities to the carbon surfaces[111, 112] by either reacting with nitric 

acid, ammonia, amines, or with nitrogen-containing precursors[113]. Functional 

nitrogen-containing groups include lactam, imide, amide, pyrrolic and pyridinic groups. 

When applying ammonia thermal treatment, the alkaline nitrogen functionalities are 

integrated in the surface by heating the activated carbons in the presence of a continuous 

ammonia flow. The ammonia decomposition induced by the high-temperature results 

in the presence of free radicals such as NH, NH2, atomic hydrogen and nitrogen, which 

subsequently react with carbon and create nitrogen-containing functional groups[114]. 

The reaction of carboxylic acid sites with ammonia in the carbon leads to the formation 

of ammonium salts via dehydration, with end-products amides and nitriles: 

 

–COONH4
 + H2O ⟶  –CONH2 − H2O ⟶ CN                                            (7) 

 

It is reported that introducing various nitrogen functional groups to polyethylenimine 

(PEI)‐derived activated carbon achieves 4.9–5.7 mmol/g CO2 uptake at 0 °C and 2.9–

3.7 mmol/g at 25 °C, 1 bar. The rich nitrogen content brings a typical high specific 
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surface micro-porosity. The PEI-derived carbons were proven to keep a high stability 

after multiple adsorption-desorption cycles and to keep the high selectivity of CO2 

adsorption over N2 at 25 °C[115]. 

Activated carbons possess a better tolerance to water moisture and SOx, NOx, H2S in 

the flue gas than zeolites because of their higher hydrophobicity, but still a strong 

competition of these with CO2 is present for adsorption sites. The flue gas should be 

cooled to 25–750C, and NOx, SOx, and H2O have to be scrubbed before separating CO2 

from N2. A study showed that the capacity of bamboo activated carbon would be 

reduced by about 75% in the presence of H2O at 0oC and 1 bar CO2.  

 

5.2.2 Carbon nanomaterials  

Carbon nanomaterials include fullerenes, carbon nanotubes (CNTs), graphene and 

carbon nanofilms or fibers. They are widely available and have excellent CO2 

adsorption capacities, due to their fast adsorption kinetics, hydrophobicity, reversibility 

and low regeneration energy requirement[15]. Other advantages comprise their tight 

pore size distribution, their high specific surface area, their good chemical and physical 

stability, their high thermal conductivity, their low mass density and strong affinity[116, 

117]. Carbon nanomaterials possess a hierarchical porous structure with both macro- 

and micropores. This structure feature is appropriate for CO2 capture since the 

macropores create low resistance pathways, whereas micropores offer a high surface 

area.  

CNTs have been widely investigated and their synthesis was previously reported[118-

120]. Two types of carbon nanotubes available for CO2 capture, being multi-walled 

(MWCNTs) and single-walled carbon nanotubes (SWCNTs). CO2 adsorption on CNTs 

depends upon the fraction of the opened and unblocked nanotubes, the available 
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adsorption sites and the CNT oxygen content. Metal/non-metal dopants and eventual 

impurities further determine their adsorption performance. While more adsorption sites 

are provided by opened CNT bundles than by capped CNTs, the number of adsorption 

sites is dependent on the external surface area, the spaces in the central graphite tube, 

the grooves on the outer surface of a nanotube bundle, the distance between the coaxial 

tubes of MWCNTs, and the surface area of the outermost nanotubes. The adsorption 

capacity is influenced by the oxygen present in CNTs. Functional oxygen-containing 

groups, such as –OH, –CO, and –COOH can be formed using various acids[121, 122], 

ozone[123-125] and plasma[126], and can be removed via heating. The thermal 

treatment and surface modification alter the variety of functional groups on the surface 

and improve the selectivity and CO2 adsorption capacity of CNTs. Su et al. modified 

CNTs with a solution of 3-aminopropyl-triethoxysilane (APTS) and reported that these 

modified CNTs adsorbed CO2 at 20°C, and released CO2 at a fairly low 

temperature[127]. Combined thermo-chemical treatments have also been applied to 

improve the CNTs performance in CO2 capture. After heating the CNTs at 300 °C for 

60 min and subsequently dispersed into chemical solutions, they were proven to have a 

higher CO2 adsorption capacity, even increasing with an increase in relative humidity. 

The dissolution of CO2 in the adsorbed water on the CNT surface and the interaction of 

CO2 and APTS forming bicarbonate in the presence of water were considered 

underlying facts for the high CO2 adsorption[128]. One major drawback for potential 

industrial application of MWCNTs is its high cost of the purified MWCNTs. Some 

researchers have found that impregnating TEPA with industrial-grade MWCNTs can 

achieve a higher adsorption capacity up to 3.088mmol/g comparable to that of TEPA 

impregnated purified MWCNTs, but with a much lower cost[129].  
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5.3 Amine-functionalized adsorbents 

Flue gas CO2 removal using amine solutions of 20-30 wt% is the only technique 

commercially proven and available to date, despite drawbacks of equipment corrosion 

and energy consumption, as described before. Immobilization of the amines onto solid 

supports can significantly limit these drawbacks, and various supports including 

silicates, zeolites, MOFs, carbon-based materials, and others were investigated. The 

loading method of amine on/into these materials are similar. Silica-supported amines 

using amorphous silica gels produced by co-condensation of various amine-containing 

silanes were already reported in 1992 for CO2 capture under dry conditions. Leal 

proposed amine-functionalized mesoporous silicas in 1995 when silane chemistry 

immobilized n-propylamine groups were grafted onto a commercial, amorphous, 

mesoporous silica gel. Further to these early investigations, the use of supported amines 

for CO2 capture was further investigated[93, 130]. The two most common methods to 

synthesize the amine-functionalized adsorbents are wet amine impregnation and 

grafting (amines-containing covalently bound to oxide supports). 

 

5.3.1 Wet impregnation  

This technique is simple and typically consists of physically mixing silica or other 

porous solid supports with amines and solvents, normally water or organic solvents for 

an appropriate mixing time at room temperature. Amine and solvents diffuse into the 

sorbent pores to create active sites for adsorption, and solvents are subsequently 

removed by evaporation. In wet impregnation, amines diffuse into the pores of the 

supports and interact with the hydroxyls (silanols) on the silica surfaces by hydrogen 

bonds, which promote the uniform distribution of the polymer chains onto pore surfaces. 
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This explanation is supported by a decreasing maximum decomposition temperature of 

this type of adsorbents as the amine content increases[131].  

Polyethyleneimine (PEI) is widely used for wet impregnation, and is commonly used a 

very high amine concentration (~33 wt% N). TEPA is an ultra-low-molecular-weight 

PEI, and its silica-impregnation was investigated by Zhu[132], who also investigated 

the impregnation of mixtures of TEPA and diethanolamine (DEA) into SBA-15. 

The adsorbent capacity and selectivity produced by wet impregnation rely on the 

loading capacity of the support solids, the pore-diffusion of CO2, temperature and 

impurities of flue gas. Five mesoporous silica supports impregnated with 50 wt% PEI  

were investigated by Son et al. (2008): the equilibrium adsorption capacities increased 

with increasing pore size[133]. Sayari and Zhu also reported larger loading capacities 

of amine on MCM-41 which possesses a larger pore volume[134, 135]. Flue gas 

impurities, such as NOx and SOx, can react with liquid amine to form stable salts, 

resulting in a large reduction of the adsorption capacity. A pre-treatment process is thus 

needed to remove water vapour, NOx, SOx and other impurities. The temperature of the 

flue gas must be cooled to between 50 and 75oC before the flue enters the adsorption 

vessels, since amine adsorbents can degrade at elevated temperatures and limits the CO2 

adsorption capacity of the amine-impregnated adsorbents. 

 

5.3.2 Amine-functionalized TiO2 nanotubes  

These adsorbents were prepared through impregnating TiO2 nanotubes (TiNT) with 

functional liquids to increase the sorption capacities, applying monoethanolamine 

(MEA), ethylenediamine (EDA), triethylenetetramine (TETA) and 

tetraethylenepentamine (TEPA), providing the higher amino-groups content. The 
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highest CO2 adsorption of the TEPA-loaded nanotubes was ~ 4.37 mmol/g at 60 ◦C, 

but increased to 5.24 mmol/g in humid gas.   

 

5.3.3 Amines, covalently tethered to oxide supports 

Amine-functionalized CO2 adsorbents can also be prepared when amines are covalently 

bound to the active linkages (such as hydroxyl, alkyl-silyl) of the porous solid supports, 

less prone to leach during CO2 capture than amine-impregnated porous solids, unless 

the covalent amine/solid support bonds are disrupted. These absorbents can be fully 

regenerated by TSA and have a long life-time.  

Their adsorption capacities depend on the number of active groups on the surface of the 

adsorbents, and this as the function of the temperature and pressure of the adsorption. 

Capacities vary from 0.089 to 0.22 g CO2/g adsorbent when the pressure (0.05–1 bar 

CO2) and temperature (25–75°C) change[93]. The CO2 partial pressure is of less 

importance than for activated carbons and zeolites. Amine-tethered adsorbents are 

applicable in mildly humid environments and at low CO2 pressure, as confirmed by 

Yue et al. when demonstrating that a small amount of water increased the adsorption 

efficiency by providing a bicarbonate formation pathway[135]. The adsorption yield of 

TEPA and DEA impregnated SBA-15's increased by 20% under humid conditions. An 

equal molar ratio of CO2 and H2O is believed to be the optimum for CO2 adsorption, at 

a temperature of 50 to 75oC, hence requiring a flue gas cooling prior to the adsorption 

column. Impurities such as H2S, NOx and SOx will strongly compete with amine 

through their irreversible adsorption onto the silane groups or other active sites of the 

oxide carrier. TSA is commonly used for adsorbent regeneration, although the 

adsorption capacity decreases by 4 to 9% after the first adsorption/desorption cycle 

even though the flue gas has been pre-treated very well[93]. 
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5.4 Metal Organic Frameworks (MOFs)  

MOFs, also referred to as coordination polymers, are considered potential adsorbents 

or membrane separation materials for CO2 abatement due to excellent properties of very 

high and accessible porosities (up to 6000 m3/g), high surface areas, very low densities, 

high tenability of pore functional groups, and dynamic and reversible structural 

characteristics. The volume and mass capacity of MOFs can be as high as 390 cm3 

(STP)/cm3 and 40 mmol/g at 31ºC and 50bar[136]. Yaghi et al. reported that MOFs 

with an ultra-high porosity possess the mass capacity of 54.5 mmol/g[137]. The CO2 

adsorption by MOFs is preferably at ambient temperature (250C) and high CO2 partial 

pressure. In fact, the adsorption capacity is poor compared with zeolites and activated 

carbon when the CO2 partial pressure is low (0.1-0.2 bar)[138].  

MOFs can be synthesized as crystalline porous materials through solution reaction 

under ambient condition[139]. Many transition metals (Cu, Zn, Ni, Al, Gr and Mn) 

have been incorporated in MOFs to improve the framework rigidity or flexibility. Rigid 

MOFs are stable and have robust frameworks with permanent porosity, similar to 

zeolites. Flexible MOFs contain dynamic and “soft” frameworks, thus facilitating their 

response to pressure, temperature, and guest molecules. They are a promising material 

for P/T-dependent molecular sieving. Structures and properties of flexible MOFs can 

be designed and fine-tuned through a rigorous choice of the building blocks before 

synthesis, and by tailoring in post-synthetic modifications[140]. Yaghi et al. 

demonstrated that MOFs pore spaces and stability can be tailored by applying 

dicarboxylate ligands within a substantial range[141]. In CO2 capture, water vapour and 

other flue gas impurities can, however, displace framework ligands thus generating 

defects in the crystal lattice, thereby leading to the MOFs degradation even in the first 
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adsorption cycle. For using MOFs as adsorbents, impurities and water have to be 

removed before the capture stage. The water resistance (hydrophobicity) of MOFs can 

be improved through modification, as demonstrated by Cohen et al. when grafting long‐

chain alkyl groups onto IRMOF-3[140]. Li et al. reported how vapor amine-modified 

MOFs resists water while achieving a CO2 adsorption capacity of 2.45 mmol/g at 25 °C 

and 1 bar. It also shows a good selectivity as CH4 capacity was only 2.68 × 10−5 mmol/g. 

Xian et al. synthesized PEI-impregnated UiO-66 with the CO2 adsorption capacity of 

2.41mmol/g under the wet conditions[142]. Su et al. found that the CO2 adsorption 

capacity of amino-Mg-MOF-74 has reached to 5.68 mmol/g at 25°C[143]. The water-

resistance of MOF can be improved by loading amine as the amine layer protects the 

MOF structure from adsorbing water. 

A “gate” phenomenon with an increased adsorption at low pressure and saturation at a 

higher pressure in several flexible MOFs was reported upon[144, 145]. Maji et al. 

illustrated this “gate” effect when capturing CO2 through Cu(pyrdc)(bpp) 

(pyrdc=pyridine-2,3-dicarboxylate, bpp=1,3-bis(4-pyridyl)propane)[146]. The 

desorption and adsorption isotherms were considerably different. To understand this 

difference, Maji et al. analysed the MOF crystal structure after CO2 inclusion: CO2 

molecules formed a C–H· · ·O (2.46–2.59A˚) H-bond with the pore walls, thus creating 

a sorption driving force within a strong confinement in the framework. The same "gate 

effect" was recently observed in (Cu(4,4’-bipy)(H2O)2(BF4)2)(4,4’-bipy) (4,4’-bipy = 

4,4’-bipyridine)[147], and Zn(Gly-Ala)2[148]. Further experiments and molecular 

simulations indicated that these unusual phenomena were the result of both torsion and 

displacement of peptide linkers, and a modified pore conformation. The resulting 

flexibility smoothly increased the effective pore volume with an increased CO2 loading. 

Table 1. Properties of MOF adsorbents 
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Adsorbents BET-surface 
area (m2/g) 

Capacity 
(mmol/g) 

      

T/°C P/bar 

Mg-MOF-74[138] 1495 8.48 25 1 

Co-MOF-74[138] 957 7.55 25 1 

Ni-MOF-74[138] 936 7.15 25 1 

SIFSIX-2-Cu-i[149] 735 5.41 25 1 

 

ZIFs, which has the imidazole as the building unit and M-Im-M as linkages, have been 

investigated as analogous to MOF due to their identical topology. ZIFs have the 

advantages of both MOF and zeolites, and have a greater potential than MOFs in CCS 

as they possess zeolite-like structure, higher thermal and chemical stability, and better 

water resistance[150, 151]. Although the CO2 capacity of MOFs is much higher than 

ZIFs, the ZIFs have a better CO2 selectivity over water. Xian et al. found that the 

adsorption capacity of PEI impregnated ZIF-8 would be 1.99 mmol/g and CO2/N2 

selectivity reaches 89.3 at 55% relative humidity[152].  

 

5.5 Alkali metal promoted oxides  

Recently, alkali oxides and hydroxides attracted and increasing attention for CO2 

capture at a high temperature[11]. These chemical adsorbents have high theoretical 

capacities, while the reaction kinetics is slow and regenerability is relatively low as the 

regeneration of these materials needs decarbonisation at high temperature. CO2 reaction 

and regeneration temperatures for widely available calcium and magnesium 

oxides/hydroxides were recently assessed using an AHP/TOPSIS multi-criteria 

method[11]. Although their theoretical adsorption capacities are relatively high (e.g. 

24.8 mmol CO2/g MgO), the actual uptake of CO2 by MgO is significantly lower due 

to slow kinetics and pore size reduction by the high molecular volume carbonates that 
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are formed[11, 153]. Xiao et al. used mixed MgCO3 and K2CO3 with different Mg/K 

ratio to absorb CO2 at a temperature between 300 and 400oC: the CO2 adsorption 

capacities were 1.65 wt% at 300 °C, 8.47 and 8.55 wt% at 350 and 375 °C, and 0.63 

wt% at 400 °C at a CO2 partial pressure of nearly 1 bar[154]. Among different lithium-

based ceramics, Li2−xNaxZrO3, Li4SiO4, Li4TiO4, Li2+xCuO2+x/2, and Li5AlO4, Wang et 

al. demonstrated that Li4SiO4 was most suitable for its high sorption capacity, multi-

cycle durability, fast rates of sorption/desorption and its mechanical strength[155]. 

Hatton et al. reported that coating alkali metal nitrates with MgO particles can promote 

the CO2 adsorption capacity to 10.2 mmol/g at moderate temperature (about 300oC) 

under ambient pressure[156]. The molten alkali metal nitrates prevent the formation of 

a rigid, CO2-impermeable, unidentate carbonate layer on the surfaces of MgO particles, 

thus allowing a high rate of CO2 sorption.  

 

5.6 Summary of adsorbents  

In summary, many adsorbents can be used for CO2 capture. The selection of adsorbents 

should consider their production cost, adsorption capacity, selectivity, rate of 

adsorption and desorption, required adsorption and desorption temperatures, thermal 

and mechanical stability, regeneration and resistance to degradation due to the 

impurities in the flue gas. Zeolites, MOFs and ZIFs have tunable pore size, large surface 

area and high porosity, therefore high CO2 adsorption capacity, but the cost for 

preparation of these adsorbents is high, and their tolerance to the impurities in flue gas, 

particularly moisture, is low. Removal of water vapor and other impurities pre-CO2 

capture process is essential in the use of theses adsorbents. Amine-functionalized TiO2 

nanotubes and carbon nanotubes have lower adsorption capacity in comparison with 

MOFs etc., but their tolerance to water moisture is better. Theoretically, wet 
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impregnation of porous particles with amines can combine the advantages of solvents 

(the high portion of adsorption sites) and porous adsorbents (large specific surface area), 

the adsorption capacity of amine impregnated adsorbents should be high and the 

production cost is relatively low. However, the challenge in wet impregnation processes 

is how to distribute liquid amine uniformly onto pore surfaces without blocking the 

pores, and how to improve the stability of liquid amines on the pore surfaces.  Table 2 

presents a summary of the major advantages and disadvantages of each adsorbent for 

CO2 capture. 

 

Table 2 Summary of advantages, disadvantages and improvements of major solid 

adsorbents 

Adsorbents  Advantages  Disadvantages  Improvement  

Zeolites Uniform pore size; 
high porosity; high 
adsorption 
capacity, high 
thermal/photo 
stability 

Strong water 
absorption and low 
gas selectivity; low 
acid/alkali resistance 

Surface 
modification with 
amines; improve 
selectivity and 
tolerance to the 
impurities in flue 
gas 

Porous 
carbon[151, 
157, 158] 
(e.g. activated 
carbon, carbon 
nanotubes and 
nanofibers) 

Various precursors; 
low cost; high 
specific surface 
area; light weight; 
high acid/alkali 
resistance; high 
thermal stability 

Not suitable for low 
CO2 concentration; 
strong water 
absorption and low 
gas selectivity 

Increase the basicity 
of carbon materials 
and tolerance to the 
impurities in the 
flue gas; surface 
modification 

Amine-
functionalized 
adsorbents[150
] 
 

Applicable at low 
CO2 pressure; high 
CO2 selectivity, 
relatively high CO2 
adsorption 
capacity; good 
regeneration ability 

Amine degradation at 
high temperature; low 
thermal stability; 
dependent on solid 
supports 

Improve thermal 
stability, 
Optimization of 
pore volume, size, 
multi-layered 
structure, etc. 

MOFs[151] Large specific 
surface area; 
adjustable pore size 
and surface 

Complex synthesis; 
high cost; low 
adsorption capacity 
under low pressure; 

Removal of the flue 
gas impurities and 
water; increase the 
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property; high 
capacity 

instability under acid 
or alkali condition; 

hydrophobicity; 
amino modification; 

Alkali-metal 
based 
oxides[159] 

Applicable under a 
wide temperature 
range (20-7000C); 
wide availability; 
low cost (for MgO 
and CaO) 

High cost (e.g. 
Li4SiO4 and Li2ZrO3); 
low cyclic stability; 
relatively low 
adsorption capacity 
(for MgO and 
hydrotalcite-like based 
adsorbents); 

Add inert materials 
to improve the 
cyclic stability; 
nanosized CaO 
adsorbents; pre-
removal of the flue 
gas impurities and 
water 

 

6. Membrane Separation 

The application of membranes in CO2 abatement is a relatively novel approach, with 

the membrane gas separation and the membrane contactor proposed. Membranes form 

semi-permeable barriers to separate compounds through various effects of diffusion, 

solution, adsorption, molecular sieve action and ionic transport[18]. Some gas 

molecules permeate the selective membrane more readily than others. A membrane 

contactor combines the membrane (acting as a gas/liquid interface) and adsorption.  

Membranes are the key elements for both two processes to ensure feasibility and 

compatibility. Based on the materials applied, the membrane can be of different nature 

and includes organic (polymeric), inorganic (carbon, zeolites, ceramics) and mixed 

matrix membranes. Each membrane has its advantages and disadvantages in terms of 

lifetime, operational and material cost, and CO2 capture performance. The membrane 

performance is measured by its permeability and selectivity, themselves a function of 

mostly membrane nature, and applied conditions of temperature, pressure and 

concentration of the target compound. Permeability defines the permeation of a specific 

volumetric flow rate of a gas species per unit membrane surface area. Selectivity 

quantifies the relative preference of the membrane to permeate one gas species over 

another[39, 160]. In recent years, permeance (gas flux) rather than permeability has 
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been more emphasized as it is more desirable for a membrane can achieve an increased 

the gas flux through the membrane without losing the selectivity[161]. 

The common polymer materials include mostly cellulose acetate (CA), polysulfone 

(PSf), polyethersulfone (PES), and polyimide (PI). Polyimides possess the best 

performance and are applied for membrane CO2 separation, for their good thermo-

mechanical and chemical stabilities, and varying CO2 permeability[162]. An enhanced 

selectivity of polymeric membranes requires an increased solubility of CO2 in the 

membrane material through both changing the polymer composition and increasing the 

CO2 diffusion by modifying the polymer packing within the membrane. Combining 

these modifications extended the range of polymeric membranes with fair permeability 

and selectivity towards an effective CO2 separation[41].  

In comparison with polymer membranes, inorganic membranes have a higher 

selectivity, a lower CO2 permeability, but superior chemical and thermal stability. Both 

porous and non-porous inorganic membranes are available. The non-porous membranes 

offer high selectivity for gas molecules. Porous membranes are of twin-layer 

composition, with a porous thin membrane layer cast on a porous support with good 

mechanical strength, usually of metallic or ceramic nature. The difficulty to mass 

produce uniform and defect-free inorganic membranes with large surface areas, makes 

their production more expensive. Porous inorganic materials are mostly alumina, 

carbon, silica or glass, SiC, titania, and zeolites[41]. For example, SAPO-34 (a silico 

aluminophosphate zeolite) membranes have shown a good CO2 selectivity and good 

CO2 adsorption capacity. Fan et al. utilized SAPO-34 zeolite membrane combined with 

a non-thermal plasma reactor, and this hybrid system gives a satisfactory CO2 efficiency 

(91.8%) with excellent stability according to the 40h longevity test[163].  
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Mixed matrix membranes also apply to add inorganic porous micro- or nanoparticles 

(discrete phase) into a polymer matrix (continuous phase). Adding these inorganic 

particles into the polymeric membrane increase the physical, thermal, and mechanical 

properties, while moreover increasing their hydrophobicity. Such mixed matrix 

membranes are expensive, brittle, and not yet commercially available.  

Membrane separation for CO2 capture is simple and does not involve chemicals or 

regeneration. Capital costs are moderate. Among these membrane materials mentioned 

above, polymeric and its hybrid membranes are the most intensively investigated as 

they have relatively high separation selectively, good membrane process ability and 

low cost[164]. However, most membrane applications are still under development. 

Efficient membrane separation moreover needs a much higher initial pressure, with 20% 

or higher CO2 concentrations, hence questionable when considering the low partial CO2 

pressure in post-combustion flue gas (4% CO2 concentration) is the main challenge, 

where multistage membrane systems could offer a solution. When comparing 

membrane separation and basic amine absorption, Bounaceur et al. showed that the 

energy consumption of a membrane separation significantly exceeds that of a basic 

amine system for CO2 streams containing 10% or less CO2[165]. Also, the commercial 

membranes cannot be applied at high temperature, thus necessitating compression and 

cooling steps. 

 

7. Conclusions, opportunities and Challenges 

Over the past decades, considerable progress has been made and the different 

technologies dealt with in this review show promising for CO2 mitigation, each with 

specific operational conditions, advantages and drawbacks. Major challenges remain 

before the industrial application can take place. Several research groups, including 
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EPRI (Palo Alto, USA) confirmed that absorption is the most mature post-combustion 

capture process: among the assessment of post-combustion CCS, 57% apply absorption, 

14% rely on adsorption, 8% use membranes, and 21% apply mineralization or bio-

fixation. This conclusion was in-line with expectations, since absorption gas separation 

has been largely applied in the various petro-chemical industries. All other systems 

need further development prior to large scale application. Membrane separation does 

not involve any use of chemicals, temperature swing or pressure swing for regeneration. 

It shows a high potential to become an environmental-friendly and sustainable 

technology for CO2 capture. Pilot-scale experiments of CO2 capture has demonstrated 

its long-period stable performance. Further development to reduce the operational cost, 

to optimize the selectivity, permeability and antifouling, and to improve membrane life-

time will promote its application to an industrial scale. 

The high-energy penalty (about 29-52%) towards the use in a power plant is significant 

and detrimental to operate the CCS processes[40, 166]. The reduction of the energy 

penalty is of paramount importance with heat pinch, process integration and 

improvements, and/or developing adsorbents with a higher CO2 capacity and low heat 

capacity as major research targets, albeit still at an initial stage of research. It is urgent 

to reassess every aspect of CO2 capture processes to significantly reduce the energy 

penalty and achieve an energy-acceptable level for large-scale application. 

A 90% capture of CO2 from the flue gas by amine absorption will consume about 30% 

of the power generated by the power plant, at a cost of 40 to 100$ per ton of CO2 

captured [167]. Besides the high-energy penalty, corrosion and solvent degradations 

are other major problems in absorption processes. Amines are very corrosive to 

equipment such as the reboiler, heat exchangers, pipes and the column[23, 168]. 

Development of next generation solvents with low regeneration temperature will 
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significantly reduce their corrosion and degradation, therefore the operational cost. The 

solvent with low regeneration temperature will also benefit to the use of industrial waste 

heat. 

Among the range of CCS systems, it appears that adsorption has a high potential 

towards future application. Adsorptive capture of CO2 by PSA has been studied in most 

detail, although most of the experimental work used a synthetic mixture of CO2 and N2. 

Since flue gas contains significant amounts of water vapour, SOx and NOx, these 

impurities must be taken into consideration for their strong chemisorption on 

adsorbents, hence permanently reducing the adsorption capacity. Further investigations 

of the effects of impurities in adsorption processes and of the physico-chemical 

properties of the adsorbents are required prior to promoting their full-scale use as CCS. 

The degradation of adsorbents caused by the presence of impurities also requires further 

investigation. For current use, a pre-treatment of flue gas for impurities removal is 

necessary for full use of the now available ad- and ab-sorbents. The additional 

equipment required and the increased capital and operating costs need to be examined 

for the large-scale CCS application. Research on systems that effectively and 

simultaneously abates NOx, SOx, and CO2 is needed, since it would partly avoid the 

costs of the otherwise required pre-treatment stage in CCS systems. The development 

of novel absorbents or adsorbents is required. 

Fixed bed and circulating fluidized bed are the common configurations used for post-

combustion CO2 capture. The column size of these two configurations is large and more 

suitable for CO2 capture from large emission points, such as power plants. CO2 

emission from many industrial sectors, such as chemical refineries and iron/steel plants 

are from a number of small, low concentration sources with a wide range of flue gas 

compositions and impurity profiles. If a centralized CCS plant is applied, a large piping 
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network and compression power will be required (e.g., based on the INEOS 

Grangemouth refinery near Edinburgh[169]. It is necessary to develop compact and 

flexible capture units to deal with these small industrial emission, with low operating 

and capital costs and high efficiency able to use waste heat from different process units. 

Available techniques rely on small-scale experimental units, and their upscaling and 

integration have been seldom investigated, despite the expected operational issues and 

cost increases[6]. A 500 MW fossil fuel fired power plant emits about 8000 ton/day of 

CO2, present in multi-million m³ of flue gas, and such quantities and volumes present 

major challenges towards CCS design. Retrofitting will involve major modifications of 

the applied equipment, but the scale-up to the large quantities of flue gas and CO2 from 

burning fossil fuels remains a huge challenge! 
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