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Abstract—An approach is proposed to solve multistage 

distribution network expansion planning problems considering 
future uncertainties, guiding the planner from production of 
expansion plans, evaluation of the plans under various future 
uncertain scenarios, to the selection of the best strategy. A new 
balanced genetic algorithm (BGA) is introduced that improves 
the intensification of the solution search procedure by trading-off 
diversification ability. This facilitates searching for the optimal 
solution, but also the efficient production of suboptimal solutions 
for the planner to take into consideration. The features of the 
BGA allow a multistage planning problem to be solved more 
efficiently; the BGA can consider a set of expansion plans in an 
early planning stage in a single run and produce planning 
strategies required to solve network problems in a later stage 
along the planning horizon. The overall performance of each plan 
under different uncertain scenarios is evaluated using a modified 
data envelopment analysis to assist decisions on which solution to 
adopt. The approach is applied to a multistage ‘greenfield’ 
distribution network expansion problem considering scenarios 
for the location of future loads. The results clearly show the 
advantages of the approach over more conventional methods. 
 

Index Terms—Network planning, uncertainties, genetic 
algorithms, data envelopment analysis. 

I.  INTRODUCTION 

N liberalized electricity markets, distribution network 
companies have an obligation to operate their networks in 

an efficient, secure and economic way, and to provide 
unbiased opportunities for the connection of demand and 
generation customers. Capital intensive infrastructure is 
required for power networks to satisfy increasing demand and 
integrate generation while complying with technical 
regulations. 

The creation of optimal network expansion plans, implying 
that the investment shall be fully justified in the future without 
stranded assets, is of paramount importance to network 
companies. The transmission and distribution expansion 
planning (TDEP) problem is complex and, by its nature, 
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mixed integer, non-linear and non-convex. There is no 
consensus on which optimization method is more capable than 
others in solving the problem. Comprehensive reviews of 
optimization techniques proposed in recent decades for 
solving TDEP problems are given in [1-3]. The use of 
mathematical optimization methods such as linear 
programming [4], mixed-integer programming [5, 6], non-
linear programming [7], Benders decomposition [8] and 
branch-and-bound techniques [9, 10], have been observed to 
have potential convergence issues and locally optimal final 
solutions. While evolutionary algorithms like genetic 
algorithms (GAs) [11-13], simulated annealing [14], tabu 
search [15, 16], and particle swarm [17], might, in some cases, 
produce better solutions, they are subject to stochastic errors 
due to the algorithms involved. 

In addition to the optimization methods, other techniques 
are required if the TDEP problem takes place under 
uncertainties related to demand growth, or new load and 
generation sizes and locations. First, the uncertainties can be 
modeled as scenarios using the probabilistic approach [18, 19] 
if the probabilistic data for the input variables are available, 
otherwise the planner can draw out possible scenarios based 
on experience and knowledge or, for instance, using fuzzy set 
theory [20, 21]. Second, a decision support tool, such as those 
based on the probability choices [22, 23] and risk analysis [22-
24], is applied to assign a single index value to a planning 
solution representing the overall goodness or risk of adopting 
the solution considering its performance in the different 
scenarios and their corresponding weighting factors. The 
weighting factors can be based on the probability of 
occurrence of the scenario in which the performance of the 
solution is measured, on the planner’s judgment or using 
Pareto analysis. Furthermore, a suboptimal solution could be a 
better choice than the optimum one for the same scenario, if it 
has a more satisfactory performance across other scenarios. 
Therefore, adopting optimization methods like the immune-
based evolutionary algorithms [19] or improved GAs [25] 
could be advantageous as they have been credited with 
producing both optimal and suboptimal solutions that can 
increase the number of candidate plans for the planner to take 
into consideration. 

Dynamic models [25, 26] or multistage static planning [27, 
28] are adopted if the asset connection schedule needs to be 
defined along the planning horizon. Two approaches are 
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generally adopted. The forward approach solves TDEP 
problems consecutively from the beginning to the end of the 
planning horizon, while the backward approach first seeks the 
best expansion solution at the end of the planning horizon 
which influences expansion planning in earlier years. The 
backward approach has been said to produce better results as it 
allows more expensive equipment to be installed in the early 
years that become truly cost-effective options in solving later 
TDEP problems [25]. However, this conclusion was made 
without reference to uncertainty. A reasonable assumption can 
be made that for multistage planning under uncertainty [29, 
30], the uncertainty is greater in the long term than in the short 
term. The implications are that the backward approach could 
create problems if the uncertainties are not thoroughly 
considered, leading to an expansion plan which at the end of 
the planning horizon is less optimal or even infeasible. The 
forward approach would at least ensure that effective solutions 
are adopted for solving the TDEP problems in the early 
planning years for which the uncertainty could be 
probabilistically modeled with a degree of confidence. Further 
complexity can arise in planning distribution networks due to 
more onerous voltage constraints and the need to enforce 
radial configurations [31]. 

This paper introduces a process for solving a multistage, 
static, distribution expansion planning problem under 
uncertainty using the forward approach. It harnesses a new 
balanced genetic algorithm (BGA) to ensure solution diversity 
as well as modified data envelopment analysis (MDEA) to 
ensure a flexible and objective comparison of plans by 
avoiding the need for precise weighting factors for the specific 
attributes. The multistage aspect of the planning problem 
requires assessment of multiple later stage planning solutions 
that evolve from early stages. Examination of all potential 
future developments of each planning solution is time 
consuming. However, the BGA is able to speed up this 
process by exploiting the generational structure of GA search 
to efficiently generate expansion plans from a set of early 
stage solutions. The approach is applied to a multistage 
‘greenfield’ distribution network expansion problem 
considering uncertainties surrounding future major load 
locations. Section II explains the concept and the design of the 
BGA while Section III introduces MDEA. The case study and 
results are shown in Section IV, followed by a discussion of 
results and the conclusions. 

II.  BALANCED GENETIC ALGORITHM 

A.  Concept, Solution Codification and Quality 

Conventional GAs allow newly-generated solutions to have 
great discrepancies from existing solutions. The high 
‘diversification’ increases the chances of avoiding the search 
being trapped into a local optimum. Consequently, the ability 
of the GA to search for solutions that resemble existing 
solutions – ‘intensification’ – is limited. As a result, if an old 
solution is replaced by a new one, large pieces of information 
inside the old solution could be eliminated, increasing the risk 
of losing critical components of the global optimal solution. 
The balanced GA therefore aims to improve the intensification 

of the search by limiting the diversification of conventional 
GAs such that only a small amount of existing information is 
replaced at each solution substitution. This means suboptimal 
solutions will be more thoroughly searched by the BGA than 
conventional GAs before convergence to an optimum. 

As depicted in Fig. 1(a), solutions are represented as 
chromosomes, comprising a string of genes that contain 
information that characterizes the solution. In the example of a 
distribution expansion planning problem shown in Fig. 1(b), 
the genes indicate the potential network paths. Here, the 
information denotes the number of new circuits built in each 
of the paths (e.g., 0, 1, 2). 

For the distribution planning problem the quality (or 
fitness) of the network configuration (solution) is defined by 
its cost (normally the cheaper the better); and its feasibility in 
terms of voltage, thermal and connectivity constraints (i.e., 
that there are no isolated network sections) as determined by 
power flow analysis. 

 
(a) (b) 

Fig. 1. (a) BGA solution representation in a (b) network expansion plan. 

B.  Population, Genetic Operators and Solution Substitution 

New solutions are generated by a random process as in a 
conventional GA and put into a pool if those solutions are 
feasible and no identical solutions already exist. This solution 
generation process stops when a specified pool size is reached.  

A crossover operator is applied to the parents (two 
randomly selected solutions from the pool) to produce two 
new solutions, the offspring. Only the genes that differ 
between parents are eligible for crossover and, of these, a 
limited set of genes will be randomly chosen from a 
predefined maximum number. Fig. 2 shows an example where 
parents X and Y have five genes that differ between them 
(indicated by the dashed arrows). In this case where a given 
maximum of genes (less equal than five) will able to 
crossover, only two genes (3, 7) are randomly selected to do 
so. Since there is strict limitation on the numbers of genes 
allowed to crossover in the BGA, the structure of the offspring 
would be very similar to the parent. This is critical in ensuring 
good information diversity. 

 
 

Fig. 2. New chromosomes produced by crossover. 

The mutation rate is kept low, typically below 1%. If it 
occurs, a stochastic process is again applied to select one gene 
from each offspring and alter the information inside the gene. 
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In the BGA, offspring can only substitute one of its parents 
having a similar structure, provided that the offspring is a 
feasible solution, is better than the parent and that no identical 
solutions are in the pool. Offspring that fails to meet the 
requirements are discarded. The novel combination of the 
process of crossover and solution substitution applied here 
allows more subtle change to genes in the pool towards 
optimality. Merely limiting the number of genes in the 
crossover would not achieve the same aim. 

C.  Filtering the Final Population 

A filtering method is used to eliminate solutions from the 
final pool which have similar topological structure but are 
inferior to other solutions. Filtering avoids the need to 
consider all suboptimal solutions, by identifying the more 
worthwhile ones as candidate solutions. 

The filtering ranks the planning solutions in the final pool 
by their performance (from the best to the worst). A term 
‘degree of uniqueness’ is defined here as the number of 
differences (in terms of branches) necessary for the structures 
of two solutions to be regarded as distinct. Starting from the 
solution with the best performance as a reference, other 
solutions that have fewer than the number of differences 
specified by the degree of uniqueness are said to be similar 
solutions to the best one and are therefore eliminated. Then the 
remaining solutions are compared with the solution with the 
second best solution in the pool and the size of the pool is 
further reduced by eliminating similar solutions. The process 
continues until all the configurations left in the pool have been 
selected as reference and each solution possesses a certain 
degree of topology uniqueness. 

Although no constraints or special methods in the BGA 
check the radiality of a network solution, there is a high 
probability that the final distribution network solutions will be 
radial as the primary objective of minimizing planning costs 
will promote solutions that have fewer branches than similar 
parents; these are more likely to be radial. Filtering of the final 
population eliminates premature meshed networks if they have 
similar structures to other radial, but cheaper, network 
solutions. 

D.  Efficient Generation of Future Expansion Solutions 

Extending the example in Fig. 1, suppose that it is foreseen 
that the expansion planning at stage 1 will be followed by an 
additional two loads (stage 2) connected via five additional 
paths, as shown in Fig. 3(a). With n planning solutions 
considered at stage 1, it would be time inefficient to execute 
separate searches for quality future developments in stage 2 
for each expansion plan considered at stage 1. However, with 
a few modifications the BGA can generate future expansion 
plans for all candidates together. 

The first modification is made in the phase of generating 
initial solutions for stage 2 expansion planning. Every solution 
generated must carry one of the n candidates at stage 1 with 
additional genes indicating which candidate the stage 2 
solution is developed from. Fig. 3(b) shows a stage 2 solution 
developed from the second stage 1 candidate. To create an 
impartial assessment, there will be an equal number of stage 2 

solutions in the pool developed from each of the n candidates. 
With a pool size of p, the pool will initially feature p/n feasible 
stage 2 solutions randomly generated from each candidate. 

 
Fig. 3. (a) An example of multi-stage network expansion planning and (b) 
chromosome representation. 

 
The crossover operator is modified such that the number of 

single or double lines in a path adopted by the expansion 
solution at stage 1 within a stage 2 solution cannot be 
decreased (as this would allow removal of infrastructure) but 
may be increased. For example, Fig. 4 shows that genes 1 and 
6 selected for crossover between parents X and Y developed 
from two first stage solutions. The information in gene 1 of 
parent X cannot be substituted by that of parent Y as this 
would remove a line that has ‘already’ been built. However, 
parent Y will accept the information from gene 1 of parent X 
indicating an additional line built as a part of the stage 2 
expansion solution. 

 
 

Fig. 4. Further modification of the crossover operator in BGA. 

III.  EVALUATING EXPANSION PLANS 

Data envelopment analysis (DEA) is a decision support tool 
developed by Charnes et al. [32] to assist decision makers in 
comparing the performance of a group of candidate solutions 
and selecting the best one. DEA is a linear programming (LP) 
procedure that does not require exact weighting values to be 
assigned to each attribute of a candidate and provides a 
flexible and objective evaluation. The ‘relative efficiency’ (RE) 
of each candidate solution (configuration) is defined as the 
ratio of its aggregate output to its aggregate input; the best 
candidate has the highest RE. The general form for the RE of 
candidate i with multiple inputs and outputs is: 
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where r
iX  is the r-th input, t

iY  the t-th output and Ar and Bt 

are the respective weighting factors assigned by the LP.  
In this application, all the planning options at stage 1 need 

to be evaluated in terms of their ability to be ‘uncertainty-
proof’. Hence, for a given configuration at stage 1, the input 
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will be the corresponding stage 1 planning cost, and the 
outputs will be the investments needed for each future 
scenario (stage 2). Thus, the efficiency of the configuration 
will show its effectiveness in keeping costs low while being 
able to cater for uncertainties. Hence each of n candidate 
configurations has a single input and T outputs representing 
each future scenario. To enable solution, the LP is 
reformulated such that the RE of configuration k is as follows: 





T

t

t
k

tYB
1

REmax  (2) 

s.t. 1kAX  (3) 

0
1




i

T

t

t
i

t AXYB  (4) 

nki ,.....,,...,1    0, tBA . (5) 

Constraints (3)-(5) ensure that each candidate’s RE will not 
exceed unity. A candidate with a RE of unity is the best 
candidate for the specific conditions defined by the weighting 
factors assigned by the LP. A candidate with RE less than 1 
has at least one solution better than itself (akin to dominance). 
However, where several candidates are assigned the maximum 
RE, they cannot be distinguished. To allow ranking of these a 
modified data envelopment analysis (MDEA) was introduced 
in [33, 34] that allows the RE to exceed unity by relaxing the 
constraints for each candidate so that aggregate output can 
exceed aggregate input. In order to maximize the RE, the 
traditional DEA LP process can assign very large values to 
one weighting factor and small ones to others. This may 
conflict with the decision-maker’s view of the relative 
importance or likelihood of occurrence of scenarios. The 
weighting factors should reflect their judgment and additional 
constraints inserted to limit the weighting factor values within 
a credible range that reflects reality. Thus, the MDEA [33] is 
created by extending the constraints to (6) and using (7) 
instead of (5): 

pqqppq WBBW maxmin /   ; Tqp  ,1  (6) 

kini  ,,........,1    0, tBA . (7) 

Here pB  and qB  are the weighting factors for the p-th and q-
th outputs, whose ratio is constrained by upper and lower 
limits pgWmin

, pgWmax
. To ensure consistency these values will be 

set by the decision maker (say) based on assumptions over 
likelihood of occurrence of scenarios.  

IV.  APPLICATIONS AND RESULTS 

A.  Multistage Distribution Network Expansion Planning 

The approach is demonstrated on a two-stage, greenfield 
11kV distribution network expansion problem based on [29]. 
Fig. 5(a) shows the first stage (S1) where two 2.5MW loads 
known to be locating at nodes 15 and 16 require connection to 
the existing grid. The dashed lines indicate 34 potential paths. 
The planner has been informed that three additional load 
centers will emerge in the future and that this should be 
planned for as a second stage expansion. The locations of the 
three 2MW second-stage loads are still uncertain although, 
based on the information available, the planner has defined 

two possible scenarios for their location. These will connect at 
nodes 17, 18 and 19 although the precise location of these 
depends on the scenario: in scenario S2-1 (Fig. 5(b)) an 
additional 10 potential network paths exist while scenario S2-
2 (Fig 5(c)) has 8 new paths. Thermal and voltage (±6% pu) 
constraints apply in all cases. Only one type of underground 
line is used in the analysis: 0.12+j0.0765/km, with standard 
capacity of 15MVA and a cost of US$100k/km. Detailed 
branch data is given in the Appendix. 

The objective is to find an expansion plan in stage 1 which 
is not only cost-competitive relative to other candidate plans in 
S1, but will also lead to robust network expansion in both 
second stage alternatives (S2-1 and S2-2). 

 

 

 
Fig. 5. Greenfield distribution network planning (a) first stage S1; (b) second 
stage scenario 1 S2-1; (c) second stage scenario 2 S2-2. 

B.  Network Expansion Planning in Stage 1 

The BGA is implemented using the computer language 
Python and interacts with the PSS/E power flow software to 
model the network and simulate AC power flows. The 
objective is to search for solutions with minimum costs while 
subject to voltage, thermal and network connectivity 
constraints. In order to show the advantages of the BGA, the 
results are compared with those obtained using a conventional 
GA with single crossover point and non-generational 
population substitution technique where if the offspring is 
feasible and better than the worst solution in the pool, the 
offspring then replaces it. 

The initial population for both algorithms is set to 60 
chromosomes. The search stops if no solution substitutions 
occur after 200 consecutive runs. Ten trials for each algorithm 
are attempted. For the BGA, the number of genes allowed to 
crossover is set to 5. It is assumed that crossover will occur 
every iteration to produce new solutions and the mutation rate 
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is set to 1%. The filtering procedure is applied to both 
algorithms, in which the degree of uniqueness is set to 2 such 
that, after filtering, no network configurations in the pool 
share more than two routes. The results are summarized in 
Table I. 

The best expansion strategy in stage 1 (S1) costs $613.6k. 
BGA found this optimal solution in every trial, while it 
appears in seven out of the ten trials of the GA. More 
importantly, after the solution filtering phase, on average 19 
solutions remain with the BGA compared with only 7 for the 
GA. This implies that, for this specific case, when a variety of 
solutions is needed, the BGA is 2.7 times more efficient than 
the GA, provided that the latter needs to generate no repeated 
solutions between each trial – which is very unlikely. 

Due to limited information exchange and the substitution 
method adopted in the BGA, some solutions may converge to 
local optimal points, producing relatively expensive solutions. 
However, those solutions may be future-proof and of value to 
the planner. Despite the wider solution range produced by 
BGA, the last columns of Table I show that even if only the 
solutions with costs lower than the most expensive solution 
found by the GA ($834.2k) are considered, the BGA search in 
the vicinity of the optimum is more thorough. In addition, all 
the solutions have radial configurations with meshed solutions 
eliminated by the filtering process due to their higher costs. 
Appendix-B outlines other measures of algorithm efficiency. 

Table II shows the top five expansion solutions (P1 to P5) in 
S1 obtained by the BGA algorithm in one trial. They are 
assumed here to be the candidates on which future network 
development will be based, i.e., the candidates for the two 
stage 2 scenarios (S2-1 and S2-2). 

 
TABLE I 

OPTIMAL SOLUTIONS FOR S1 WITH BGA AND GA (A = AVERAGE) 
 

Trial 
Best solution Number of Solution range Solutions under 

US$k solutions US$k US$834.2k 
BGA GA BGA GA BGA GA BGA GA 

1 613.6 613.6 22 5 613.6 - 1209.7 613.6 -717.3 17 5 
2 613.6 613.6 20 11 613.6-1363.7 613.6 -801.5 18 11 
3 613.6 662.4 16 6 613.6 -1050.0 662.4 -804.5 15 6 
4 613.6 630.3 17 10 613.6 -1526.0 630.3 -807.4 16 10 
5 613.6 613.6 16 8 613.6 -792.1 613.6 -804.8 16 8 
6 613.6 613.6 24 6 613.6 -1494.6 613.6 -705.3 21 6 
7 613.6 613.6 18 6 613.6 -849.2 613.6 -804.8 17 6 
8 613.6 630.3 25 6 613.6 -1200.0 630.3 -834.2 21 6 
9 613.6 613.6 18 8 613.6 -1226.5 613.6 -804.8 16 8 
10 613.6 613.6 18 5 613.6 -1383.6 613.6 -705.3 17 5 
 10/10 7/10 A=19 A=7   A=17 A=7 

 
TABLE II 

TOP FIVE PLANNING CANDIDATES IN STAGE 1 
 

Planning Candidate Network Configuration Cost (US$k) 

P1 2-15, 10-15, 10-16 613.6 
P2 3-9, 9-15, 9-16 630.3 
P3 2.15, 4-12, 12-16 662.4 
P4 2-15, 7-10, 10-16 663.0 
P5 2-6, 6-15, 10-15, 10-16 688.6 

C.  Network Expansion Planning in Stage 2 

Using the BGA the performance of the five stage 1 
planning strategies (P1–P5) are examined for each stage 2 
scenario. Fifty feasible solutions for scenarios S2-1 and S2-2 
are generated from each of the five candidates in stage 1, 

resulting in 250 initial solutions in each pool. The search stops 
if no substitutions occur in the pool after 500 iterations. The 
crossover, mutation and degree of uniqueness are the same.  

Ten trials are attempted for each scenario and the top 
solutions found are shown in Table III. Overall, the final 
planning cost is considerable in meeting the requirements of 
scenario S2-2 over S2-1. If S2-1 happens, the best planning 
strategy is developed from P5, which is the most expensive 
among all the five candidates in S1. In this case, four of the 
top S2-1 solutions are based on P3. As for S2-2, the best 
expansion option along with two other options is found to 
contain the structure of P2. 

 
TABLE III 

TOP SOLUTIONS FOUND IN S2-1 AND S2-2 (US$K) 
 

Rank S2-1 Developed from S2-1 Developed from 
1 1298.3 P5 1516.0 P2 
2 1372.0 P1 1524.4 P3 
3 1386.7 P4 1549.1 P1 
4 1387.3 P5 1559.4 P2 
5 1424.3 P3 1560.4 P1 
6 1431.9 P3 1592.1 P4 
7 1458.1 P3 1611.9 P2 
8 1459.3 P2 1624.1 P5 
9 1466.9 P2 1624.8 P4 

10 1470.3 P3 1633.8 P1 

D.  Selecting the Best Planning Candidate in Stage 1 

The relative efficiency (RE) of the five S1 strategies (P1–
P5) in terms of their performance under both scenarios is 
calculated by both conventional DEA and MDEA. One input 
and two outputs are taken to measure the efficiency of each 
candidate. The input X is the cost of a candidate in S1. The 
two outputs are related to the costs of future planning 
solutions in S2-1 and S2-2. The idea is to maximize the 
efficiency which, in this case, the costs being cheaper. 
Therefore, the outputs, Y1 and Y2 are, respectively, the 
reciprocals of the cost (US$k-1) of the best solutions found in 
S2-1 and S2-2 (Table IV) that developed from the candidate, 
multiplied by 106. Table IV shows the values of input and 
outputs of each strategy. 

 
TABLE IV 

FOR EACH SOLUTION P1 – P5: INPUT AND OUTPUT VARIABLES; DEA AND 

MDEA EVALUATION  
 

Candidate 
 in S1 

Input Outputs DEA MDEA 
X Y1 Y2 RE Rank RE Rank 

P1 613.6 728.9 645.5 1.00 1 1.04 1 
P2 630.3 685.3 659.6 1.00 1 0.98 2 
P3 662.4 702.1 656.0 0.94 2 0.93 3 
P4 663.0 721.1 628.1 0.92 3 0.91 4 
P5 688.6 770.2 615.7 0.94 2 0.89 5 

 
Here, it is assumed that the planner can judge that the 

probability of scenario S2-1 occurring is between 0.4 and 0.8. 
The scenarios are mutually exclusive and the weighting 
factors for the outputs depend on the relative probability of the 
scenarios 12

minW  and 12
maxW . The ratio of weighting factors 

assigned to Y1 and Y2 are within the range 0.67 (=0.4/0.6) to 
4 (=0.8/0.2). The RE of each strategy is calculated by the DEA 
and MDEA with the results presented in Table IV. 

Both stage 1 plans P1 and P2 yield the maximum RE 
calculated by DEA. Since the planning cost under S2-1 is 
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cheaper than S2-2 for all candidates, DEA tends to assign a 
much larger weighting factor to Y1 than Y2; as a consequence 
P5 appears to be an attractive strategy to adopt due to its 
excellent performance in S2-1. However, MDEA is able to 
further distinguish between P1 and P2, indicating P1 as the 
better strategy. By limiting the ratio of the output weighting 
factors based on the relative probability of occurrence of S2-1 
and S2-2 using the MDEA, P5 becomes the least efficient 
strategy to adopt. As a result, P1 is the best network planning 
strategy in this case and could be adopted to solve the problem 
in S1. Fig. 6 shows the best expansion planning choices for 
S2-1 and S2-2 based on first stage plan P1 (thicker lines). 

 

 

 
Fig. 6. The best expansion plans in (a) S2-1 (b) S2-2 based on P1. 

V.  DISCUSSION 

Approaches, such as this, that provide better understanding 
of the robust cost-effective expansion plans are highly 
desirable to distribution planners. In addition, the use of 
industry-standard power flow software driven by advanced use 
of its programming capability provides a robust method that 
lends itself to direct application in network planning. While 
the analysis here is limited to checking voltage and thermal 
limit feasibility using the power flow engine, additional 
aspects such as fault level checks, can be considered. The 
method lends itself to capturing the uncertainties brought 
about by incorporating distributed generation (DG) within the 
expansion planning process. This is particularly the case as 
availability of resources, planning and financial incentives 
drive the location and size of DG plant. Work is ongoing to 
consider DG within this framework. 

This work demonstrates the effectiveness of using a 
balanced genetic algorithm combined with modified data 
envelopment analysis to provide the distribution planner with 
a minimum-cost set of network configurations that are robust 

to uncertainty. While the method is applied here to a 
greenfield cases, it is expected that problems involving highly 
developed distribution networks with smaller search spaces 
due to limited new paths can also benefit, particularly using 
the MDEA approach. While only a pathway search was 
demonstrated here, the methodology can handle alternative 
expansion options, such as reconductoring, needed to cope 
with local demand growth. With few modifications the 
approach is also applicable to transmission planning problems.  

There is no fundamental restriction to the use of the 
approach on larger scale problems. Additionally, the solution 
filtering and MDEA process are applicable as an add-on to 
other meta-heuristic or classical expansion planning methods. 
It is important to note that in common with all meta-heuristic 
or classical optimization methods, the BGA cannot universally 
guarantee a globally optimal solution to a non-linear problem. 

The novelty in the work arises from (1) the development of 
the balanced GA that uses strict limits on crossover and 
solution substitution to promote higher intensity searching; (2) 
the filtering of solutions and excluding those that are 
insufficiently unique; and (3) the combination of a multistage 
approach with MDEA to allow differentiation between 
alternatives under uncertainty. 

It would be interesting to compare BGA with other 
algorithms designed to improve the quantity of optimal and 
suboptimal solutions. However, the results showed that BGA 
only requires simple modification from a conventional GA to 
achieve the purpose. Nevertheless, BGA will suffer from a 
certain degree of stochastic errors and could be still trapped 
into a local optimum, despite more subtle information addition 
and elimination in the crossover and solution substitution 
phases. To counter this potential disadvantage, a large pool 
size would be normally required to ensure good information 
diversity in the initial solutions. However, the technique used 
in [25] can be used in the phase of initial solution generation 
in the BGA for effectively generating limited numbers of 
initial solutions with good information diversity. Another 
improvement perceived from the current BGA is the limit on 
the number of genes allowed to crossover (k) can be flexibly 
changed to adjust the search intensification through the 
process to yield good results in a satisfactory time frame.  

The solution filtering process not only assists in identifying 
distinct solutions but also promotes radial network solutions. 
The degree of uniqueness setting is crucial: if the value is too 
large few very different solutions pass through, increasing the 
chance of missing competitive solutions; if the value is too 
small, large numbers of solutions (including meshed) would 
increase the computational time. For a multi-objective 
problem in which a better solution does not necessary mean 
the cheapest with fewest branches, a constraint of radiality 
may still be required to be inserted into the algorithm. 

VI.  CONCLUSIONS 

The paper presents an approach to tackle network expansion 
planning under uncertainty, guiding the planner from 
generation of expansion plans, through evaluation of the plans 
under various future uncertain scenarios, to the selection of the 
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best strategy. The balanced genetic algorithm (BGA) and 
modified data envelopment analysis (MDEA) were introduced 
to generate optimal planning strategies and evaluate the 
performances against identified uncertainties. Here, 
uncertainties are treated as different future scenarios. The 
approach is applied to a green-field distribution expansion 
planning problem considering possible future demand sites. 
By enhancing the intensification of the searching procedure, 
BGA produces better range of quality planning solutions than 
a conventional GA. MDEA allows a distinction to be made 
between two high performing solutions based on their 
probability of occurrences and the judgment of the planner, 
allowing more flexible evaluation of each planning candidate 
compared with conventional methods. 

VII.  APPENDIX 

A.  Line Characteristics 
TABLE A.I 

CHARACTERISTICS OF LINE OPTIONS AT STAGE 1 (S1) 
 

From To Distance (km.)  From To Distance (km.) 
1 8 2.802  7 11 1.931 
6 8 2.530  10 11 1.503 
5 6 1.709  11 14 2.247 
2 5 1.063  3 9 2.247 
2 6 2.309  9 10 1.616 
5 15 2.900  10 14 3.360 
2 15 3.046  14 16 3.448 
6 15 1.487  12 14 3.622 
6 7 1.140  3 13 3.384 
6 11 2.508  9 13 2.600 
8 11 3.106  9 16 1.836 
8 14 3.863  13 16 2.062 
3 15 8.932  12 16 0.671 
9 15 2.220  12 13 1.612 
7 15 5.39  4 12 2.907 

10 15 1.924  4 13 1.803 
7 10 1.879  10 16 1.166 

 
TABLE A.II 

CHARACTERISTICS OF LINE OPTIONS AT STAGE S2-1 (LEFT) AND S2-2 (RIGHT) 
 

From To Distance (km.)  From To Distance (km.) 
5 17 2.508  8 17 1.603 
6 17 1.746  11 17 2.702 
8 17 0.806  14 17 2.500 

11 17 2.546  14 19 0.985 
13 18 0.707  12 19 2.816 
12 18 0.949  3 18 2.773 
8 19 3.138  9 18 1.924 

10 19 2.731  13 18 0.707 
12 19 3.437     
14 19 0.922     

B.  Efficiency of BGA vs GA 

Other measures of algorithm efficiency include the number 
of feasible solutions generated in each trial and how many of 
these are different. Table B.1 shows that on average the BGA 
visited 4218 different solutions per trial compared with 1494 
solutions in GA; this shows that the BGA explored the 
solution space more thoroughly. The GA experiences rapid 
degradation in information diversity in the solution pool, 
limiting the potential for new solutions and increasing the 
chance of finding existing solutions. The BGA’s greater 
intensification and restrained randomness creates a more 
consistent search towards final solutions. Fig. B.1 shows the 
frequency of occurrence of the top 10 solutions across all 
trials. Apart from the best solution, the chance of getting other 

solutions is up to 50% with the GA, compared with at least 
70% for the BGA. 

In terms of the computations performance, using an Intel 
Core2 2.13 GHz PC, the BGA solved the stage 1 problem in 
around 9 minutes (with the GA slightly faster). The larger 
stage 2 problem with its stricter stopping criteria saw the 
duration increase to 45 minutes. 

 
TABLE B.I 

FEASIBLE SOLUTIONS AND DIFFERENT FEASIBLE SOLUTIONS GENERATED IN 

EACH OF THE 10 TRIALS IN BGA AND GA 
 

Algorithm Feasible solutions Different feasible solutions 
High Low Average High Low Average 

BGA 8564 5627 7237 4430 4053 4218 
GA 11990 7991 9724 1805 1148 1494 

 

 
Fig. B.1. Number of trials in which GA and BGA find the top 10 solutions. 
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