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Abstract 

The purpose of this study was to determine whether the breathing action in front crawl (FC) sprint 

swimming affects the ipsilateral upper limb kinematics relative to a non-breathing stroke cycle (SC). 

Ten male competitive swimmers performed two 25m FC sprints: one breathing to their preferred side 

(Br) and one not breathing (NBr). Both swim trials were performed through a 6.75m
3
 calibrated space 

and recorded by six gen-locked JVC KY32 CCD cameras. A paired t-test was used to assess statistical 

differences between the trials, with a confidence level of p<0.05 accepted as significant. Swimmers 

were slower (3%) when breathing. Within the entry phase, swimmers had a slower COM horizontal 

velocity (3.3%), less shoulder flexion (8%), abduction (33%) and roll (4%) when breathing. The pull 

phase was longer in duration (14%) swimmers had a shallower hand path (11%), less shoulder 

abduction (11%), a slower hand vertical acceleration (30%) and slower centre of mass (COM) 

horizontal velocity (3%) when breathing. In the push phase, swimmers had a smaller elbow range of 

motion (ROM) (38%), faster backwards hand speed (25%) and faster hand vertical acceleration (33%) 

when breathing. Swimmers rolled their shoulders more (12%) in the recovery phase when breathing. 

This study confirms that swim performance is compromised by the inclusion of taking a breath in 

sprint FC swimming. It was proposed that swimmers aim to orient their ipsilateral shoulder into a 

stronger position by stretching and rolling the shoulders more in the entry phase whilst preparing to 

take a breath. Swimmers should focus on lengthening the push phase by extending the elbow more 

and not accelerating the hand too quickly upwards when preparing to inhale. 

 

Key words: Freestyle swimming; three-dimensional; breath-holding; ipsilateral, technique. 
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Introduction 1 

Researchers have often recommended that swimmers limit the number of breaths taken during a race 2 

due to the possible adverse effects that the front crawl breathing action may have on stroke mechanics 3 

and hydrodynamic drag (Di Prampero et al., 1974; Pendergast et al., 1977; Town and Vaness, 1990; 4 

Cardelli et al., 1999; Formosa et al., 2014). However the literature does not conclusively support the 5 

premise that breathing in front crawl swimming has a negative effect on swim performance. Some 6 

studies have reported reduced swim velocity and/or stroke frequency as a result of breathing 7 

compared to not breathing (Pedersen and Kjendlie, 2006; Psycharakis and McCabe, 2011), whereas 8 

other researchers have reported no differences (Castro et al., 2006; Vezos et al., 2007; Seifert et al., 9 

2008). The disparity within the literature may be attributed to methodological issues such as whether 10 

the centre of mass (COM) or hip joint was utilised to quantify the above variables, which 11 

mathematical approach was implemented, and the range of swim speeds assessed within these studies. 12 

Nevertheless, as breathing is a fundamental skill within front crawl swimming, it is imperative to 13 

further assess what effect it may have on a swimmer’s sprint performance.    14 

 15 

As the arms contribute to propulsion more than the legs in front crawl swimming (Di Prampero et al., 16 

1974; Watkins and Gordon, 1983), this study will focus on examining the effect breathing has on 17 

various key upper limb kinematic variables linked to swim performance. Shoulder and hip roll 18 

rotations have been strongly related to front crawl swim performance (Payton et al., 1999; Castro et 19 

al., 2002; Psycharakis and Sanders, 2010). Swimming at a 200m pace, Payton et al. (1999) reported 20 

that swimmers rolled their shoulders 9degs more during a breathing trial compared to a non-breathing 21 

trial. More recently Psycharakis and McCabe (2011) found that although the total magnitude of 22 

shoulder and hip roll angles did not differ between breathing conditions, male sprinters rolled their 23 

shoulders and hips to the breathing side significantly more (9.5° or 18.8%) relative to the non-24 

breathing side.  Previous studies have tended to examine shoulder and hip roll angles in terms of the 25 

total magnitudes within the SC. The aim of this study will be to investigate shoulder and hip roll 26 

angles within the integral phases of the SC in order to provide a more comprehensive insight as to 27 

how these parameters may, or may not, be influenced by the breathing action.   28 

*Manuscript
Click here to view linked References

http://ees.elsevier.com/bm/viewRCResults.aspx?pdf=1&docID=16142&rev=2&fileID=887020&msid={872B4703-771C-41BA-B395-24FB5F57346C}
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 29 

The motion of the shoulders, in terms of flexion/extension, abduction/adduction internal/external 30 

rotation and elevation have been associated with determining upper limb propulsion. However, 31 

shoulder kinematics are more commonly discussed within aquatic literature in relation to injury and 32 

rarely with respect to swim performance within an ecological environment. Consequently, it is 33 

unknown whether incorporating a breath within the SC causes alterations of the shoulder movements 34 

and thus influences the swimmer’s overall performance.  35 

 36 

The shoulder motion has often been linked to the hand-path throughout the underwater stroke cycle 37 

(SC) which consists of horizontal, vertical and lateral motions in order to achieve forward propulsion 38 

of the body (Schleihauf et al., 1983; Deschodt et al., 1996a; Deschodt et al., 1999).  To date, only two 39 

studies have investigated the influence the breathing action has on hand-path trajectory. Payton et al. 40 

(1999) reported that the front crawl breathing action did not interfere with the underwater hand-path, 41 

in terms of maximum depth and width when elite male swimmers swam at a 200m pace. However 42 

Vezos et al. (2007) found that the breathing action caused significant modifications in hand-path when 43 

investigating a group of female front crawl sprinters at a submaximal pace. Vezos et al. (2007) 44 

speculated that the discrepancies with Payton et al. (1999) were due to anthropometric differences 45 

associated with opposing genders sampled, yet did not consider the differing swim pace. Because 46 

Payton et al. (1999) analysed swimmers at a 200m pace, it is unknown whether male swimmers adjust 47 

their hand-path between breathing and non-breathing conditions when swimming at a sprint pace. 48 

Such knowledge is beneficial in terms of how the breathing action may, or may not, alter a swimmer’s 49 

hand-path when maximally swimming, thus ultimately influencing their forward propulsion and 50 

performance.   51 

 52 

The elbow angle magnitude during the underwater phase of the SC has been proposed to influence the 53 

hand-path trajectory (Hay et al., 1993) whilst also affecting the propulsive actions of the upper limbs 54 

(Cappaert, 1998; Haffner and Cappaert, 1998). Payton et al. (1999) is the only study to examine the 55 

elbow angle between breathing and non-breathing conditions, reporting that the breathing action did 56 
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not influence the elbow angle range of motion (ROM) during the pull phase (breathing: 44 ± 15°; non-57 

breathing: 45 ± 14°). Therefore, with the exception of only the pull phase, no study has examined the 58 

elbow angle magnitudes throughout the underwater SC between breathing conditions when front 59 

crawl sprinting, which could affect the capability of the upper limbs to generate propulsion.  60 

 61 

The pull and push phases are regarded as propulsive and the entry and recovery phases are regarded 62 

non-propulsive (Chollet et al., 2000). Payton et al. (1999) noted that male swimmers had a longer 63 

duration of the underwater phase during the breathing trials (1.11 ± 0.15s) vs. non-breathing trials 64 

(1.05 ± 0.12s) but did not comment whether this observed difference was significant. Vezos et al. 65 

(2007) found similar results within a female sprint group (breathing: 1.25 ± 0.17s vs. breath-holding: 66 

1.16 ± 0.15s; p<0.05), but added that the longer duration within breathing trials was the result of a 67 

prolonged entry phase compared to the non-breathing trials. Payton et al. (1999) did not report the 68 

durations of the discrete phases between breathing conditions. Thus, it is important to explore whether 69 

the breathing action affects the duration of the propulsive and/or non-propulsive stroke phases in front 70 

crawl sprint swimming as ultimately any changes are likely to affect swim performance.  71 

 72 

The velocity of the swimmer’s COM has become a valuable tool as it indicates when and to what 73 

extent phases of the SC are effective in propelling the body forwards (Maglishco et al., 1989; Alves et 74 

al., 1994). To date, no study has investigated the COM velocity magnitude within the integral phases 75 

of the SC in relation to breathing vs. non-breathing conditions. The literature further indicates that the 76 

COM velocity is strongly influenced by swimmers accelerating their hands (Schleihauf, 1984), yet no 77 

study has examined these characteristics between breathing conditions within a male sprinting 78 

population.  79 

 80 

In summary, it is unclear to what extent breathing affects performance in terms of, shoulder/hip roll, 81 

shoulder kinematics, hand-path, elbow angle magnitudes, stroke phase durations, COM velocity 82 

profile, hand velocity and acceleration throughout the SC. The purpose of this study was to investigate 83 

whether the breathing action in front crawl sprint swimming affects the ipsilateral upper limb 84 
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kinematics (same side as breathing side) relative to a non-breathing stroke cycle and to assess any 85 

changes in swimming performance. The rationale to analyse the ipsilateral hand was to compare 86 

datasets in relation to previous studies and its action may be constrained by the breathing rotation 87 

whereas there is no a priori reason to expect that the hand motion on the non-breathing side would be 88 

affected. 89 

 90 

Materials and Methods 91 

Participants 92 

Ten male front crawl swimmers (age: 18.4 ± 2.6 years; mass: 72.9 ± 10.2 kg; height: 182.7 ± 7.9 cm) 93 

volunteered to participate in this study. These athletes competed at a national/international level and 94 

registered a personal best time of 25.31 ± 0.98s (long course) for 50m front crawl sprint. The test 95 

procedures were approved by the University Ethics Committee and all swimmers provided written 96 

informed consent.   97 

 98 

Testing Procedure 99 

Following an individualised warm-up each participant swam two randomised maximal 25m front 100 

crawl sprints: one 25m sprint breathing once to their preferred side (Br) and one 25m sprint with no 101 

breathing (NBr) throughout the 25m.  102 

 103 

The testing set-up was similar to Psycharakis et al. (2010) with all swim trials performed through a 104 

6.75m
3 

pre-calibrated volume (orthogonal axes: 4.5m [X- horizontal], 1.5m [Y- vertical], 1.0m [Z- 105 

medio-lateral]). Based on previous accuracy and reliability calculations for this frame (Psycharakis et 106 

al., 2005), 20 control points were used for calibration. Reconstruction errors were calculated 107 

following 10 repeated digitisations by the same operator (20 control points and 10 different points 108 

representing the ‘markers’), which were found as low in all three directions (2.4mm-4.5mm absolute 109 

errors; 3.3mm-5.2mm root mean square errors; 0.1%-0.5% of the calibrated space). Six gen-locked 110 

JVC KY32 CCD cameras (four below and two above water) sampling at a frequency of 50 fields per 111 
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second and a shutter speed of 1/120s were positioned similar to Psycharakis et al. (2010) so that all 112 

cameras captured the swimmer throughout the pre-calibrated space. 113 

 114 

To enable subsequent calculation of the whole body COM using the ‘eZone’ method (Deffeyes and 115 

Sanders, 2005) each swimmer had 19 markers applied to the following anatomical landmarks: vertex 116 

of the head, the right and left of the: 3
rd

 distal phalanx tip (hand), wrist axis, elbow axis, shoulder axis, 117 

hip axis, knee axis, ankle axis, 5
th
 metatarsophalangeal joint, and the tip of 1

st
 phalanx (big toe). 118 

 119 

Data Processing 120 

One SC, defined as the period between the instant of hand entry to the instant of entry of the same 121 

hand, was selected for analysis. Whilst the full stroke cycle was digitised, only the pulling arm on the 122 

same side that the swimmer took the breath was analysed (ipsilateral upper limb to breathing side), 123 

representing the first hand entry of the SC. The Ariel Performance Analysis System (APAS-2000 124 

Ariel Dynamics, San Diego, CA) software was used to manually digitise the 19 anatomical landmarks 125 

from all camera views. Incorporating the direct linear transformation (DLT) algorithms in APAS, 3-126 

dimensional coordinates of the anatomical landmarks were obtained  and smoothed using a Fourier 127 

series transform (Bloomfield, 1976) retaining six harmonics.  128 

 129 

The average X swimming velocity (Vav) was calculated by dividing the swimmer’s mean COM X 130 

displacement by the time to complete one SC. The COM X velocity (ms
-1

) was obtained by 131 

differentiating the COM displacement using the first central difference formula. Stroke frequency 132 

(SF) was the inverse of the time (seconds) to complete one SC which was then multiplied by 60 to 133 

yield units of strokes per minute. Stroke length (SL) was the X displacement of the COM during one 134 

SC.  135 

 136 

Shoulder and hip roll angles were each determined as the angle between the unit vector of the line 137 

joining the shoulders and hips respectively, projected onto the yz plane (i.e. the plane perpendicular to 138 

the swimming direction) and the horizontal. Computationally, this is: arc-tangent (Sz/Sy) and arc-139 
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tangent (Hz/Hy); where Sz and Sy are the z and y components of the shoulder unit vector and Hz and Hy 140 

are the z and y components of the hip unit vector.    141 

 142 

To assess the orientation of the shoulder to elbow joint, the longitudinal axis of the segment was 143 

expressed with respect to an internal frame of reference. The internal frame of reference consisted of 144 

the Xint being the unit vector in the direction of the vector joining the midpoint of the shoulder axes to 145 

the midpoint of the hip axes; the Yint axis being the unit vector formed by the cross product of Xint and 146 

the unit vector in the direction of the vector joining the shoulder joints and Zint the unit vector formed 147 

as the cross product of Xint and Yint. A Cardan angle to each of the reference axes was then quantified 148 

as the arc-cosine of the dot product of the arm unit vector and the reference axis unit vector. Flexion 149 

and extension of the shoulder was indicated by the Cardan angle between the arm segment and the Xint 150 

axis. The angle was adjusted by subtracting 90 degrees so that 0 degrees corresponded to the 151 

transition between the pull and the push, the angle at entry was close to -90 degrees and approached 152 

90 degrees of flexion at exit. Abduction refers to the angle of the arm axis to the Z axis with 153 

correction so that alignment with the Zint axis is 90 degrees of abduction and -90 degrees represents 90 154 

degrees of adduction.  155 

 156 

The Y and X motion of the hand was represented by the displacement (m) of the 3
rd

 distal phalanx 157 

(with respect to a pool-fixed Cartesian reference system). Similar to Vezos et al. (2007) the 158 

underwater pull length (X) was defined as the backward displacement of the hand from its most 159 

forward position to its most backward position. The lateral motion of the hand, with respect to the 160 

swimmer’s COM, was calculated as the absolute Z displacement (m) of the 3
rd

 distal phalanx.  161 

 162 

The elbow angle was determined as the arc-cosine of the dot product of the upper and lower arm unit 163 

vectors and was quantified at four instants throughout the underwater SC in accordance with McCabe 164 

et al. (2011). The first instant (‘first back’) was defined as the moment the finger began to move 165 

horizontally backward. The second instant (‘shoulder x’) as the moment the finger was vertically 166 

aligned with the shoulder. The third instant (‘end back’) was defined as the moment the finger stopped 167 
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moving horizontally backwards and the fourth instant (‘re-entry’) when the hand entered the water. 168 

On identification of these four instants the corresponding time was noted and the elbow angles 169 

calculated accordingly. This process also allowed the identification of the stroke phases: entry phase - 170 

period between hand entry to ‘first back’ position; pull phase - period between ‘first back’ to 171 

‘shoulder x’; push phase - time between ‘shoulder x’ and ‘end back’; recovery phase - period from 172 

‘end back’ to ‘re-entry’. The stroke phase durations were expressed as a percentage of the SC (%SC).  173 

 174 

Hand velocity was calculated in the X and Y axis (with respect to an external reference point) 175 

throughout the underwater SC.  Hand speed was quantified as the resultant of the X, Y and Z hand 176 

velocity components. Since acceleration is the second derivative of position, the X and Y acceleration 177 

of the hand was obtained by double differentiating positional data of the hand throughout the 178 

underwater SC.   179 

 180 

Errors due to manual digitisation were assessed through 10 repeated digitisations of a SC by the same 181 

operator. The standard deviation (SD) and coefficient of variation (CV) showed small and acceptable 182 

errors for all variables (CV: 0.22 to 4.92%). 183 

 184 

Statistical Analysis 185 

The assumption of normality was verified through the Shapiro–Wilk test. A paired t-test was used to 186 

assess statistical differences between breathing conditions, with a confidence level of p<0.05 accepted 187 

as significant, using the Statistical Package for Social Sciences (SPSS) version 22.0. Taking into 188 

account the increased possibility of type 1 or type 2 errors (large number of variables tested), effect 189 

size (d) calculations (mean difference between the conditions relative to the pooled standard 190 

deviation) were performed across all variables using Cohen’s (1992) criteria for interpreting the 191 

results.  192 

 193 

Results 194 
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Race Parameters 195 

Swim velocity was significantly greater during the NBr (1.82 ± 0.08ms
-1

) compared to Br (1.77 ± 196 

0.07ms
-1

) trials (t(9)=2.78; p=0.02; d=0.67). There were no significant differences between 197 

conditions for SL (NBr: 1.98 ± 0.14m; Br: 1.96 ± 0.18m; t(9)=0.52; d=0.12) and SF (NBr: 55.2 ± 4.1 198 

cyclesmin
-1

; Br: 54.6 ± 4.5 cyclesmin
-1

; t(9)=0.63; d=0.14).  199 

 200 

Shoulder and Hip Roll 201 

Figure 1 illustrates the finding that average shoulder roll angle was 4 degs (11%) greater within the 202 

entry phase of the NBr trial compared to Br trial (p=0.03; d=1.04). The magnitude of maximum 203 

shoulder roll was found to be 12% (7.6degs) greater during the recovery phase of the Br vs. NBr trial 204 

(p=0.02; d=0.97) (Table 1). Shoulder and hip roll magnitudes at all other instances did not differ 205 

between breathing conditions (Table 1).  206 

 207 

Shoulder Angle 208 

Within the entry phase, it was found that the shoulder was flexed 6degs (8%) more during the NBr vs. 209 

Br trial (p=0.01; d=1.14) (Table 1). Figure 2 illustrates that the shoulder abducts further within both 210 

the entry (7degs; 33%) and pull (7degs; 11%) phases during the NBr compared to the Br trial (Table 211 

1). There were no other significant differences between breathing conditions in relation to shoulder 212 

flexion/extension and abduction/adduction (Table 1).  213 

 214 

Hand Path  215 

Maximum depth (Y) of the ipsilateral hand was found to be significantly greater by 0.04m (6%) 216 

during NBr vs. Br trial. Figure 3 illustrates the ipsilateral hand travelled deeper during the NBr vs. Br 217 

trial mostly during the pull phase (0.07m, 11%). Neither the X or Z average hand displacements 218 

throughout the SC differed significantly between breathing conditions (Table 1).  219 

 220 

Stroke Phase Durations 221 
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The durations of the entry and recovery phases were not significantly different between Br and NBr 222 

(Figure 4). The difference in duration of the pull and push phases between the two breathing 223 

conditions was significant with a large effect size (t(9)=2.85; p=0.02; d>0.80). Figure 4 illustrates that 224 

during the breathing trial, swimmers spent 14% longer in the pull phase and 16% less time in the push 225 

phase compared to when they did not breathe. 226 

 227 

Elbow angle 228 

The elbow extension angle at the ‘end back’ position was 11.4° (8%) greater during the NBr than Br 229 

trial (p=0.02; d=0.76) (Table 1). It was also found that the elbow ROM within the push phase  had a 230 

17.3° (38%) greater extension during the NBr trial compared to the Br trial (p=0.02; d=0.99). The 231 

magnitudes of elbow angle at all other specified instants throughout the SC were not significantly 232 

different between breathing conditions (Table 1).     233 

 234 

Hand Speed & Acceleration 235 

Table 1 indicates that  X hand velocity during the push phase was 0.5ms
-1 

(25%) faster during the Br 236 

vs. NBr trial (p=0.01; d=1.51). Y acceleration of the hand was found as 4.8ms
-2

 (30%) faster within 237 

the pull phase when NBr compared to Br (p=0.04; d=1.21). In contrast, within the push phase, the Y 238 

hand acceleration was approx 7.8ms
-2 

(33%) faster during the breathing trial (p=0.03; d=0.96). 239 

Differences between breathing conditions in relation to the X hand acceleration during the pull and 240 

push phases approached significance (p=0.06) with large effect sizes (d>0.80).  241 

 242 

COM Horizontal Velocity   243 

During both the entry and pull phases, swimmers’ COM X velocity was 0.6ms
-1 

(3.3-3.4%) faster 244 

during the NBr vs. Br trial (p<0.02; d≥0.70; Table 1). There was no difference between conditions in 245 

relation to the COM X velocity within the push or recovery phases.   246 

 247 

Discussion 248 
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When incorporating a breath into the SC, swimmers were overall slower. For the entry phase, 249 

swimmers had a slower COM horizontal velocity, less shoulder flexion, abduction and roll during the 250 

breathing trial. The pull phase was longer in duration, swimmers had a shallower hand path, less 251 

shoulder abduction, a slower hand vertical acceleration and slower COM horizontal velocity when 252 

breathing. The push phase was shorter in duration, swimmers had a smaller range of elbow extension, 253 

faster hand horizontal velocity and greater hand vertical acceleration when breathing. Finally, in the 254 

recovery phase, swimmers displayed greater maximum shoulder roll in the breathing trial.  255 

 256 

The finding that incorporating a breath into the front crawl SC resulted in a 0.05ms
-1 

decrement in 257 

swim velocity compared to not taking a breath is in agreement with Pedersen and Kjendlie, 2006but in 258 

contrast to Vezos et al. (2007), who reported no difference in swim velocity between breathing 259 

conditions within a female sprint population. The discrepancy between studies is perhaps due to 260 

findings that elite male swimmers experience significantly higher net drag forces than their female 261 

counterparts (26% vs. 16%) during breathing compared to non-breathing trials at a maximal pace 262 

(Formosa et al., 2014). The authors suggested that female participants demonstrated similar 263 

swimming technique regardless of the breathing condition compared to male swimmers (which 264 

contributed to the increased drag force), recommending further investigation in relation to kinematic 265 

changes between breathing conditions which will be explored within this discussion. While the 266 

changes in both SL and SF did not reach statistical significance, their combined effect meant that 267 

swim velocity between conditions was significantly different. Moreover, since SL did not differ 268 

between breathing conditions, it is estimated that the breathing action in front crawl sprinting results 269 

in a loss of 0.02s per SC. Interestingly, Pedersen and Kjendlie (2006) reported a loss of 0.03s within 270 

the SC when breathing. These studies affirm that incorporating a breath into the front crawl SC costs 271 

time.  Therefore with such fine margins defining success, it is recommended that 50m/100m sprinters 272 

limit the number of breaths taken. 273 

 274 

Entry Phase 275 
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Weldon & Richardson (2001) suggested that shoulder abduction and increased body roll enhances 276 

shoulder joint stability and net humeral joint reactive force. Consequently, the finding that swimmers 277 

rolled (4%) and abducted (33%) the ipsilateral shoulder more within the entry phase of the non-278 

breathing trial, suggests that the shoulder is in a more stable and perhaps stronger position whilst 279 

breath-holding. Increased shoulder roll and abduction have also been linked to greater muscle 280 

activation from the supraspinatus and anterior/middle deltoids (Pink et al., 1991). As the ipsilateral 281 

shoulder within the NBr trial abducts further from the swimmer’s COM, it creates a longer moment 282 

arm; combined with a greater muscle recruitment may provide an increased potential to produce 283 

greater torque and thus propulsion. It is recommended that kinetic and EMG analyses are combined in 284 

future studies to confirm the above assumption. As shoulder strength and swim speed are directly 285 

related (Weldon & Richardson, 2001), it is therefore possible that the actions of the shoulder between 286 

breathing conditions may have contributed to the finding that the COM X velocity was 3.3% faster 287 

during the entry phase of the NBr trial compared to the Br trial. To test this assumption, the 288 

researchers conducted a post-hoc analysis investigating the changes in COM X velocity within the 289 

entry phase. It was found that COM X velocity increased during the entry phase, but equally for both 290 

the breathing (0.09 ± 0.16ms
-1

) and non-breathing cycles (0.09 ± 0.26ms
-1

), with the difference 291 

between breathing conditions not significant (p=0.99). Therefore, it is unlikely that differences of 292 

shoulder kinematics within this phase during the non-breathing SC were beneficial in terms 293 

generating propulsion.  294 

 295 

Pull Phase  296 

The finding that the COM X velocity was greater during the pull phase of the NBr trial compared to 297 

the Br trial was further explored to minimise any possible ‘knock-on’ effect from the preceding entry 298 

phase, since COM X velocity was higher at the beginning of the pull phase within the NBr vs. Br trial. 299 

It was found that COM X velocity decreased during the pull phase within both breathing (-0.16 ± 300 

0.16ms
-1

) and non-breathing cycles (-0.10 ± 0.10ms
-1

), with the difference between breathing 301 

conditions not significant (p=0.49). Therefore, it is unlikely that the kinematic differences (described 302 

below) during the non-breathing SC were more beneficial in terms of generating higher propulsion.  303 
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 304 

Within the pull phase, the ipsilateral shoulder was further abducted from the COM (11%) and the 305 

hand trajectory was deeper (11%) when not breathing, yet the duration of this phase was shorter by 306 

14% compared to the breathing trial. Lerda and Cardelli (2003) reported that stroke phase durations 307 

are associated with the accelerative actions of the upper limbs, which was confirmed in this study by 308 

the ipsilateral hand accelerating faster in the vertical direction (30%) and horizontal direction (35%) 309 

within this phase when not incorporating a breath into the SC. It seems that the actions of the 310 

ipsilateral hand travelling deeper, yet accelerating faster can account for the shorter duration of the 311 

pull phase within the NBr vs. Br trial. It is assumed that any reduction in its duration would not be 312 

beneficial in terms of production of impulse. Therefore it is questionable whether this action 313 

contributed to the faster non-breathing vs. breathing trial.    314 

 315 

Push Phase 316 

This study reported that all swimmers reduced elbow extension by 8% at the end back position and 317 

the elbow extension ROM during the push phase by 38% when Br compared to the NBr trial. 318 

Deschodt et al. (1996b) reported that a greater elbow displacement throughout the underwater SC was 319 

strongly linked to swim performance, thus it is suggested that the greater elbow extension within the 320 

push phase during the NBr trial may have contributed to this trial being faster than the Br trial. The 321 

reduced elbow extension range during the push phase may have also contributed to the 16% shorter 322 

duration when Br vs. NBr. As discussed previously, findings that the ipsilateral hand vertically 323 

accelerated 33% faster and 25% faster horizontal hand velocity within the push phase of the Br vs. 324 

NBr trial is also a contributing factor to the reduced phase duration. Whereas these factors may all 325 

account/contribute towards a shorter push phase duration within the breathing trial, they do not appear 326 

to influence the propulsive output as observed via the post hoc analysis that the change in COM X 327 

velocity within the push phase between breathing conditions (NBr: 0.10±0.06ms
-1

; Br: 0.14±0.10ms
-328 

1
; p=0.57) was not significantly different.   329 

 330 

Recovery Phase 331 
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Finally within the recovery phase the finding that maximum shoulder roll was 12% (7.6degs) greater 332 

during the Br vs NBr trial is unsurprising and most likely as a consequence to facilitate the breathing 333 

action. Payton et al. (1999) reported a similar increase in body roll (9degs) during breathing trials 334 

when male swimmers swam at a 200m pace. Since the difference in COM X velocity during the 335 

recovery phase did not differ between conditions (NBr:-0.02±0.12ms
-1

 vs. Br: -0.20±0.35 ms
-1

; 336 

p=0.21) it is suggested that the greater turning motion of the shoulders did not cause considerable 337 

resistance to affect swim performance.  338 

 339 

Conclusion 340 

Taking a breath in sprint front crawl swimming resulted in a decrement in performance compared to 341 

not taking a breath. Overall, as swimmers prepare to incorporate a breath into the stroke cycle, the 342 

ipsilateral shoulder remains closer to the COM during both the entry and pull phases thus potentially 343 

reducing the magnitude of torque applied compared to the faster non-breathing trial. Swimmers 344 

should ‘stretch’ and roll the shoulders more within the entry phase of a breathing trial as this should 345 

bring the arm into a position to apply more force. Most kinematic differences between breathing 346 

conditions occurred within the push phase. Swimmers are advised to focus on lengthening the push 347 

phase by extending the elbow more and not accelerating the hand too quickly upwards when 348 

preparing to inhale. Not all the kinematic changes found between breathing conditions could account 349 

for the differences in swim performance, therefore it is suggested that the combined effect of other 350 

contributing factors such as the activities of the opposite upper limb and/or leg kick should be 351 

considered to assess the overall impact and constraint of breathing.  352 
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Table 1. Data and statistical comparisons of the differences between non-breathing (NBr) and 475 

breathing (Br) conditions for the following variables: upper limb displacement, elbow angle 476 

magnitudes, hand speed, and hand acceleration on the ipsilateral (breathing) side and COM velocity.  477 

Variables NBr  Br t- Value P-Value Effect Size 

Maximum Hand Y Depth (m) -0.67 ± 0.06 -0.63 ± 0.06 2.41 0.04* 0.78† 

Av. Hand Y  Depth (m) -0.40 ± 0.06 -0.36 ± 0.05 2.87 0.02* 0.89† 

Av. Hand Y Depth- Entry (m) -0.21 ± 0.06 -0.17 ± 0.07 1.85 0.10 0.61 

Av. Hand Y Depth- Pull (m) -0.62 ± 0.06 -0.55 ± 0.08 2.55 0.03* 0.99† 

Av. Hand Y Depth- Push (m) -0.37 ± 0.07 -0.34 ± 0.11 0.78 0.45 0.33 

Av. Hand Z Width- Entry (m) 0.23 ± 0.06 0.20 ± 0.07 1.33 0.22 0.46 

Av. Hand Z Width- Pull (m) 0.36 ± 0.13 0.36 ± 0.13 0.10 0.93 0.00 

Av. Hand Z Width- Push (m) 0.15 ± 0.06 0.17 ± 0.07 0.58 0.58 0.31 

Av. Hand X– Entry (m) -0.51 ± 0.17 -0.53 ± 0.24 0.42 0.68i 0.10 

Av. Hand X – Pull (m) 0.25 ± 0.05 0.28 ± 0.11 0.73 0.49 0.35 

Av. Hand X – Push (m) 0.29 ± 0.05 0.25 ± 0.08 1.25 0.24 0.60 

Av. Total Hand X Pull Length (m) 0.55 ± 0.06 0.53 ± 0.08 0.64 0.54 0.28 

Elbow Angle: 1
st
 Back (degs) 147.6 ± 8.4 151.7 ± 11.4 0.99 0.35 0.41 

Elbow Angle: Shoulder X (degs) 105.4 ± 7.3 111.2 ± 8.3 1.60 0.14 0.74 

Elbow Angle: End Back (degs) 151.2 ± 11.7 139.8 ± 17.7 2.96 0.02* 0.76† 

Elbow Angle: Range of Pull (degs) 42.2 ± 9.8 40.5 ± 13.8  0.27 0.79 0.14 

Elbow Angle: Range of Push (degs)  45.8 ± 15.4  28.5 ± 19.2  2.88 0.02* 0.99† 

Av. Shoulder flex/ext – Entry (degs)  -65.79 ± 4.62  -71.76 ± 5.22 4.46 0.01* 1.14† 

Av. Shoulder flex/ext – Pull (degs) -2.90 ± 10.00 -2.91 ± 13.64 0.01 0.99 0.01 

Av. Shoulder flex/ext – Push (degs) 65.22 ± 3.70 63.25 ± 9.82 0.59 0.57 0.27 

Max Shoulder Flexion (degs) -80.37 ± 7.20 -82.06 ± 4.41 1.08 0.31 0.28 

Max Shoulder Extension (degs) 78.23 ± 2.47 78.23 ± 7.28 0.01 0.99 0.01 

Av. Shoulder Abd –Entry (degs) 21.14 ± 6.46 14.14 ± 6.07 3.89 0.01* 1.12† 
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Av. Shoulder Abd  - Pull (degs) 59.72 ± 5.94 52.90 ± 5.41 3.30 0.01* 1.20† 

Av. Shoulder Abd – Push (degs)  14.03 ± 3.54 16.75 ± 9.57 0.91 0.39 0.38 

Hand X Speed – Entry (ms
-1

) 1.47 ± 0.26 1.50 ± 0.36 0.31 0.76 0.10 

Hand X Speed – Pull (ms
-1

) 1.27 ± 0.17 1.34 ± 0.30 0.80 0.44 0.29 

Hand X Speed – Push (ms
-1

) 1.54 ± 0.26 2.04 ± 0.39 3.50 0.01*  1.51† 

Hand Y Speed – Entry (ms
-1

) 1.48 ± 0.41 1.35 ± 0.42 1.69 0.12 0.31 

Hand Y Speed – Pull (ms
-1

) 1.22 ± 0.14 1.17 ± 0.21 0.46 0.65 0.28 

Hand Y Speed – Push (ms
-1

) 2.56 ± 0.38 2.89 ± 0.91 1.15 0.28 0.47 

Res. Hand Speed – Entry (ms
-1

) 2.33 ±  0.14 2.34 ± 0.17 0.23 0.82 0.06 

Res. Hand Speed – Pull (ms
-1

) 2.52 ± 1.03 2.19 ± 0.18 1.01 0.34 0.45 

Res. Hand Speed – Push (ms
-1

) 3.57 ± 0.80 3.32 ± 0.46 0.88 0.40 0.38 

Res. Hand Speed – Recovery (ms
-1

) 6.25 ± 1.34 6.76 ± 0.60 1.25 0.24 0.49 

Hand X accel. – Entry (ms
-2

) -7.62 ± 1.95 -7.25 ± 2.22 0.37 0.72 0.18 

Hand X accel. - Pull (ms
-2

) -4.73 ± 2.60 -7.29 ± 3.5 2.12 0.06 0.83† 

Hand X accel. - Push (ms
-2

) 13.87 ± 5.59 20.09 ± 8.67 2.11 0.06 0.85† 

Hand X accel. - Recovery (ms
-2

) -7.95 ± 9.27  -6.64 ± 12.35 0.44 0.67 0.12 

Hand Y accel. - Entry (ms
-2

) -3.54 ± 1.87 -3.61 ± 2.64 0.13 0.89 0.03 

Hand Y accel. - Pull (ms
-2

) 16.37 ± 4.54 11.54 ± 4.06 2.40 0.04* 1.12† 

Hand Y accel. - Push (ms
-2

) 15.86 ± 5.56 23.66 ±10.11 2.52 0.03* 0.96† 

Hand Y accel.- Recovery (ms
-2

) -14.43 ± 4.15 14.38 ± 6.18 0.03 0.97 0.01 

COM X velocity – Entry (ms
-1

) 1.84 ± 0.09 1.78 ± 0.08 2.94 0.02* 0.70 

COM X Velocity – Pull (ms
-1

) 1.79 ± 0.08 1.73 ± 0.08 3.21 0.01* 0.75† 

COM X Velocity – Push (ms
-1

) 1.82 ± 0.10 1.85 ± 0.11 0.68 0.51 0.27 

COM X Velocity – Recovery (ms
-1

) 1.81 ± 0.08 1.76 ± 0.09 2.19 0.06 0.59 

Av. Shoulder roll – Entry (degs) 36.67 ± 3.74 32.81 ± 3.69 2.68 0.03* 1.04† 

Av. Shoulder roll – Pull (degs) 35.81 ± 8.73 35.62 ± 5.52 0.09 0.93 0.03 

Av. Shoulder roll – Push (degs) 32.38 ± 6.93 35.67 ± 9.13 0.80 0.44 0.41 
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Av. Shoulder roll – Recovery (degs) 41.19 ± 4.70 45.95 ± 9.97 1.85 0.10 0.61 

Max Shoulder roll – Entry (degs) 52.02 ± 7.15 52.07 ± 7.91 0.03 0.98 0.01 

Max Shoulder roll – Pull (degs) 50.87 ± 6.48 48.92 ± 6.85 0.69 0.51 0.29 

Max Shoulder roll – Push (degs) 50.19 ± 7.39 53.96 ± 8.87 0.90 0.39 0.46 

Max Shoulder roll – Recovery (degs) 54.49 ± 5.10 62.06 ± 9.73 2.92 0.02* 0.97† 

Av. Hip Roll – Entry (degs) 12.77 ± 4.57 12.70 ± 5.46 0.03 0.98 0.01 

Av. Hip Roll – Pull (degs) 8.15 ± 3.85 10.83 ± 3.47 2.14 0.06 0.73 

Av. Hip Roll – Push (degs)  11.20 ± 4.75 14.46 ± 6.97 1.46 0.18 0.55 

Av. Hip Roll – Recovery (degs) 14.34 ± 3.32 18.39 ± 9.33 1.90 0.09 0.58 

Max Hip Roll – Entry (degs) 20.49 ± 6.67 20.49 ± 5.09 0.01 0.99 0.01 

Max Hip Roll – Pull (degs) 17.71 ± 7.51 19.40 ± 6.31 0.84 0.42 0.24 

Max Hip Roll – Push (degs) 17.84 ± 5.05 21.18 ± 7.58 1.94 0.08 0.52 

Max Hip Roll – Recovery (degs) 22.73 ± 3.99 28.74± 11.90 1.68 0.13 0.68 

Data are expressed as mean (± SD), p value and effect size. * indicates a significant difference 478 

between conditions, †
 
indicates a large effect size. X – Horizontal; Y – Vertical; Z – Mediolateral; Av. 479 

– Average; accel. – acceleration; Res. – resultant; Max – maximum.   480 

  481 

 482 

 483 

484 
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Figure Legends 485 

Figure 1: Average shoulder roll throughout the stroke cycle for both breathing conditions. As the hand 486 

entry was not always the same for each swimmer, the absolute shoulder roll angles are plotted. Peaks 487 

represent maximum shoulder rotation and troughs that the swimmer is neutral in the water (i.e. no 488 

shoulder rotation). Breathing (Br) trial: A - beginning of finger moving horizontally backward; B - 489 

finger vertically aligned with the shoulder; C - end of finger backwards movement; D – finger water. 490 

A→B = pull phase; B→C = push phase; C→D = recovery phase. Non-breathing (NBr) trial was 491 

defined similarly as Br with an added annotation (e.g. A’) to distinguish between conditions. 492 

 493 

Figure 2: Average ipsilateral shoulder abduction throughout the stroke cycle for both conditions. 494 

Increased magnitudes represent the shoulder abducting further away from the swimmer, whereas 495 

decreased magnitudes represent the shoulder moving towards the swimmer. Breathing (Br) trial: A - 496 

beginning of finger moving horizontally backward; B - finger vertically aligned with the shoulder; C - 497 

end of finger backwards movement; D – finger water. A→B = pull phase; B→C = push phase; C→D 498 

= recovery phase. Non-breathing (NBr) trial was defined similarly as Br with an added annotation 499 

(e.g. A’) to distinguish between conditions. 500 

   501 

Figure 3: Ipsilateral hand vertical displacement throughout the stroke cycle for both breathing 502 

conditions. Breathing (Br) trial: A - beginning of finger moving horizontally backward; B - finger 503 

vertically aligned with the shoulder; C - end of finger backwards movement; D – finger water. A→B 504 

= pull phase; B→C = push phase; C→D = recovery phase. Non-breathing (NBr) trial was defined 505 

similarly as Br with an added annotation (e.g. A’) to distinguish between conditions.  506 

 507 

Figure 4: Stroke phase durations for non-breathing (NBr) and breathing (Br) trials. Mean stroke phase 508 

duration data are indicated. Bars represent standard deviation. * Significant at p<0.05.  509 

 510 
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