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ABSTRACT 25 

 Results of studies involving numerous cores and ODP holes along the Great Barrier Reef 26 

(GBR) margin and adjacent Queensland Trough and Queensland Plateau have challenged the use 27 

of a reciprocal sedimentation model to describe the sedimentary response of slope and basin 28 

settings to glacioeustatic sea level fluctuations.  Upper slope sedimentation results from the 29 

relationships between sea-level fluctuations, antecedent topography, and regional climate that 30 

play an important role in the type and amount of sediment deposited on the upper slope during 31 

glacial, deglacial, and interglacial times.  During the Last Glacial Maximum (LGM, > 20 ka ago) 32 

upper slope sediments generally lacked siliciclastic material and are characterized by very low 33 

accumulation rates, whereas early deglacial-time (Termination I, TI) deposits are dominated by a 34 

siliciclastic and neritic carbonate pulse.  Siliciclastic sedimentation was significantly reduced in 35 

the Holocene, while carbonate sedimentation remains elevated.  A new borehole, IODP 36 

Expedition 325 Hole M0058A (Hole 58A), recovered 82% of a 40.4 m hole on the upper slope 37 

east of Noggin Passage on the central GBR margin near Cairns, Australia.  Hole 58A provides a 38 

detailed sedimentary record during Termination II (TII), Marine Isotope Stage 6/5e (MIS-6/5e), 39 

deglacial transition, and through most of interglacial MIS-5.  This hole, along with two others 40 

(ODP Leg 133 Holes 820A and 819A from the upper slope east of Grafton Passage), show 41 

carbonate-siliciclastic cyclicity as the result of glacioeustatic change with the GBR shelf.  42 

Sedimentation at Hole 58A is consistent with that of previous studies along the GBR margin 43 

(focusing on the LGM to present), and extends the upper slope sedimentary record back to TII 44 

and interglacial MIS-5.  A siliciclastic pulse similar to the one during TI occurred during the 45 

penultimate deglaciation, TII; however, the maximum neritic aragonite export to the upper slope 46 

occurred not during peak MIS-5e highstand when sea level was a few meters above modern 47 
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position, but subsequently during a time (MIS-5d to 5a) when lowered sea level fluctuated 48 

between 30 and 50 m below present sea level.  Siliciclastic sediments were reworked and 49 

exported to the upper slope when the lowstand fluvial plain was re-flooded, whereas neritic 50 

carbonate export to the slope reaches a maximum when sea level fell and much of the mid to 51 

outer shelf re-entered the photic zone, subsequent to a drowning interval.  Thus, this analysis 52 

refines the mixed sedimentation models of upper slope sedimentation along the central GBR 53 

margin during the penultimate deglacial transgression and subsequent interglacial early and late 54 

highstand.  This study provides further evidence that mixed carbonate-siliciclastic margins do 55 

not always behave in a predictable manner and that mixed margins both modern and ancient 56 

would benefit from detailed study of sediment transport in the context of sea level rise and fall. 57 

 58 

INTRODUCTION 59 

Low latitude mixed carbonate-siliciclastic depositional systems occur globally where 60 

tropical neritic environments line continental shelf edges.  Major mixed systems are found today 61 

in northeast Australia and Papua New Guinea (Davies et al. 1989; Tcherepanov et al. 2008), 62 

Panama (McNeill et al. 2013) as well as Belize (Esker et al, 1998; Ferro et al 1999; Purdy and 63 

Gischler 2003; Gischler et al. 2010).  Sedimentation on the modern upper slope of the central 64 

Great Barrier Reef (GBR) margin comes from carbonates (in situ benthic species, pelagic 65 

foraminifers and pteropods, and transported neritic fine and coarse detritus) and siliciclastics 66 

(transported fine silts and clays, Harris et al. 1990; Dunbar et al. 2000; Francis et al. 2007).  67 

Areas in close proximity to reefs record intervals of exposure and calcium carbonate production 68 

with the accumulation of fine neritic sediments (Dunbar et al. 2000).  Upper slope sediments 69 

may be reworked and redistributed by physical processes such as currents, tides, and sediment 70 
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density flows.  The relatively smooth uppermost slope is typically free of gravity flow erosion, 71 

whereas the gullied deeper slope areas and locations such as the Ribbon Reefs are more prone to 72 

erosion by sediment gravity flows (Dunbar et al. 2000; Webster et al. 2012; Puga-Bernabéu et 73 

al., 2014).   74 

  Mixed carbonate-siliciclastic systems have been described by the reciprocal 75 

sedimentation model, often based on ancient examples from outcrop: the maximum and 76 

minimum mass accumulation rates (MAR) of siliciclastic material to the upper slope occurring 77 

during sea level lowstand and highstand, respectively, whereas maximum carbonate sediment 78 

delivery to the upper slope occurs during sea-level highstand (Wilson 1967; Sarg 1988; Dolan 79 

1989; Handford and Loucks 1993; Schlager et al. 1994).  This model has been challenged and 80 

shown to be inadequate for describing GBR margin sedimentation rates by several studies 81 

focusing on the last glacial-interglacial transition along the GBR margin (Peerdeman and Davies 82 

1993; Dunbar et al. 2000; Dunbar and Dickens 2003a; Dunbar and Dickens 2003b, Page et al. 83 

2003; Page et al. 2005; Francis et al. 2007; Bostock et al. 2009; Webster et al. 2012).  These 84 

studies found that during the Last Glacial Maximum (LGM) lowstand, siliciclastic and carbonate 85 

sedimentation rates were consistently low from the slope into the basin.  However, during late 86 

transgression (Termination I, TI), siliciclastic and carbonate sedimentation rate increased 87 

dramatically on the upper slope, and declined to near lowstand rates within the Queensland 88 

Trough.  During the Holocene interglacial, highstand siliciclastic sediment accumulation rate 89 

declined, whereas carbonate sedimentation remained elevated (highstand shedding) along the 90 

slope.   91 

The highstand shedding concept is a response of carbonate platforms to sea level flooding 92 

and highstand conditions (Schlager and Chermark, 1979; Boardman and Neumann, 1984; 93 
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Droxler et al., 1985; Grammer and Ginsburg 1992; Schlager et al., 1994; Betzler et al. 2000; 94 

Slowey et al., 2002; Andresen et al. 2003; Jorry et al. 2010; Paul et al. 2012).  Although the 95 

highstand shedding concept is consistent with Holocene sediment accumulation along the GBR 96 

margin, neritic carbonate accumulation and export appear to have been already initiated during 97 

the late transgression (Dunbar et al. 2003b; Page et al. 2005; Jorry et al. 2010).  Neritic carbonate 98 

production and export can also be triggered when sea level on a carbonate platform, drowned 99 

during a relative sea level highstand, starts to fall (Droxler et al. 1993).   100 

The aim of this study is to characterize the mixed carbonate-siliciclastic sediment record 101 

along the central GBR margin during the penultimate deglacial and interglacial time as an 102 

example of mixed system sea level response that is not consistent with the reciprocal 103 

sedimentation model.  Mixed carbonate-siliciclastic systems have been common throughout the 104 

geologic past (Dorobek 2008); however, few outside of the GBR and Belize have been studied in 105 

the context of well-established sea level curves.  In almost all cases, with the exception of the 106 

Late Pliocene Queensland Plateau (Droxler et al. 1993), postulated for some Campanian-107 

Maastrichtian deposits (Shanmugam and Moiola 1983), and Early Cretaceous platform in the 108 

French Alps (Jacquin et al. 1990), the presence of carbonates is assumed to be the result of 109 

highstand shedding and a reflection of a period of elevated sea level (Schlager et al. 1994).  This 110 

is, however, a potentially false assumption as this study of the central GBR shows.  Chronologic, 111 

compositional, and sedimentological analysis of upper slope long sediment cores: IODP 112 

Expedition 325 Hole M0058A (Hole 58A), in conjunction with ODP Leg 133 Holes 819A and 113 

820A on the central GBR, as well as piston core MD05-2949 (MD-49) on the northern GBR 114 

margin are used together published sea level curves to test the reciprocal sedimentation model, 115 

the concepts of transgressive siliciclastic shedding (Dunbar et al. 2000; Dunbar and Dickens 116 
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2003a; Page and Dickens 2005) and highstand carbonate shedding (Schlager et al. 1994).  117 

Additionally, carbonate shedding has been shown to cease when the bank-top is exposed during 118 

sea level fall, resulting in the shut off or large reduction of neritic carbonate on the adjacent 119 

slopes such as in the Gulf of Papua (Jorry et al. 2010), Maldives (Paul et al. 2012), Caribbean 120 

(Jorry et al., 2010), Bahamas (Droxler and Schlager 1985), and other locations globally in the 121 

Pliocene and Quaternary (Schlager et al. 1994).   122 

The results of this study show that siliciclastic sedimentation is consistently follows the 123 

transgressive shedding model along the GBR during TI and TII; however, carbonate off-bank 124 

transport in relation to sea level fluctuations in highly variable not only between TI to MIS-1 and 125 

TII to MIS-5, but also from north to south along the GBR margin.  If “highstand shedding” so 126 

variable along the GBR margin spatially and temporally, it stands to reason that other mixed 127 

systems may experience variability.  Variability that is missed if highstand shedding alone is 128 

assumed.  Furthermore, when sea level is poorly constrained and the presence and lack of neritic 129 

carbonate on slopes is used to identify periods of time when the bank is flooded and then 130 

exposed (respectively), the alternative of drowning (lack of carbonate) and photic zone re-entry 131 

during sea level fall (presence of carbonate) is often neglected.  Finally, this study also serves as 132 

a modern analog for ancient mixed systems that appeared to not fit the concepts of highstand 133 

shedding and reciprocal sedimentation.  134 

 135 

STUDY AREA 136 

The GBR margin is ~2,500 km long extending in latitudes from 9.5° S to 24.5° S (Fig. 1).  137 

The majority of the GBR lies offshore the northeastern coast of Australia, mostly along the 138 

Queensland continental middle shelf and shelf edge with some reefs located in coastal fringing 139 
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environments.  In contrast, along the most northern extremity, reefs lines the eastern side of the 140 

Torres Strait within the Gulf of Papua (GoP).  The Queensland shelf is ~250 km at its widest 141 

near 21° S and narrows markedly north of Cairns to only ~50 km.  From the Queensland shelf 142 

edge, the sea floor deepens towards the east into the Queensland Trough.  In the GoP, the GBR 143 

bounds a broader ~150 km-wide shelf that deepens into the Ashmore Trough east of the Torres 144 

Strait (Francis et al. 2008; Tcherepanov et al. 2008).  The Ashmore Trough is bounded on its 145 

northern and eastern sides by three isolated carbonate platforms (Ashmore, Boot, and Portlock 146 

atolls) and on its western side by the northern extremity of the GBR.  Tropical monsoonal high 147 

precipitation climate coupled with very high topographic relief generate 1.7 x 109 tons of 148 

sediment discharged annually by the Fly River, making up more than half of the sediment 149 

discharged by the rivers draining into the GoP (Milliman 1995). Conversely, high rainfall near 150 

Cairns, Australia, leads to high riverine discharge, however this runoff is associated with low 151 

sediment loads due to the extensive plant cover and low topographic relief of the uplands 152 

flanking the northern Queensland continental shelf (Gagan et al. 1987; Neil et al. 2002). 153 

This study focuses on dataset samples collected from the site of Hole 58A  and published 154 

datasets from Hole 819A (Davies et al. 1991), Hole 820A (Peerdeman and Davies 1993), and 155 

MD-49 (Jorry et al. 2010).  Hole 58A is located on the upper slope of the central GBR east of 156 

Noggin Passage (146° 35.357’ E, 17° 5.8356’ S) at a water depth of 170.31 m, ~1 km from the 157 

shelf edge (Figs. 1A and 1B).  Hole 58A was drilled to a depth of 41.40 mbsf and recovered 158 

33.94 m of sediment (81.98% recovery).  ODP Leg 133 Holes 820A/B and 819A are located 159 

along a transect on the upper slope of the GBR east of Grafton Passage (146° 18.229’ E, 16° 160 

38.221’ S and 146° 19.486’ E, 16° 37.439’ S) at water depths of 280.6 m and 565.2 m, 161 

respectively (Fig. 1A and 1B).  Piston core MD05-2949 (MD-49) is located at the northern 162 
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extent of the GBR within the GoP, on Ashmore Trough upper slope (144°79.82'E, 10°04.07'S), 163 

at water depth of 657 m (Fig. 1A and 1C). 164 

 165 

SAMPLES AND METHODS 166 

A total of 319 core samples were collected in 2 cm thick slabs, taken at 10 cm intervals 167 

down Hole 58A. These samples were analyzed for grain size, carbonate content, light 168 

reflectance, physical properties (Webster et al. 2011), elemental composition by X-ray 169 

fluorescence (XRF) analysis, and stable oxygen isotopes.  In addition, 63 samples from Hole 170 

58A were collected every 50 to 100 cm and analyzed for mineralogy by X-ray diffraction 171 

(XRD).   172 

The following steps were conducted in the systematic sample analytical preparation.  Six 173 

grams of material were taken from each sample for detailed laser particle size analysis.  174 

Subsequently samples were oven-dried at 70°C for 24 hours and then weighed to obtain dry 175 

weight.  Dried samples were placed in a phosphate-buffered solution (pH 7.5) for 24 hours and 176 

then washed over a 63 μm sieve to separate fine fraction (< 63 μm) from coarse fraction (> 63 177 

μm).  The coarse size fraction was oven-dried at 70°C and then weighed and subtracted from the 178 

bulk sample to determine coarse- and fine-grained sediment percentages.  The fine fraction was 179 

settled out in a 2000 mL beaker, dried, and collected for carbonate content analysis. The dried 180 

coarse fraction was split and sieved with a 250 and 300 μm screen.   181 

The portion separated between 250 and 300 μm was examined using a Wild Heerbrugg 182 

stereomicroscope for the extraction of twenty to twenty-five Globigerinoides ruber (G. ruber) 183 

(white) specimens for stable isotope analysis and foraminiferal biostratigraphy.  Once picked, 184 

each sample was placed in a small glass vial, filled partially with methanol and placed in a 185 
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sonicator for 8 seconds to remove fine sediment that might have adhered to the foraminiferal 186 

tests.  The foraminifera were then placed in another glass vial and sent for stable isotope 187 

(oxygen, carbon) analysis using a GV Instruments Optima mass spectrometer.  The isotope 188 

values are reported relative to V-PDB in delta notation with an analytical precision of ±0.04‰. 189 

Downhole variations of oxygen stable isotopes of planktic foraminifera in Hole 58A were 190 

compared with the LR04 stacked record of Lisiecki and Raymo (2005), and served as the main 191 

basis to establish a detailed chronology in Hole 58A.  Sea surface temperatures did not change in 192 

the western Coral Sea more than ~1.5°C over the last ~800 ky between glacial and interglacial 193 

stages (Lawrence and Herbert 2005), and thus the planktic oxygen isotope variations mostly 194 

records ice sheet accumulation and ablation and, therefore, a proxy for sea-level change related 195 

ice volume change. 196 

Six AMS radiocarbon dates were obtained, out of which three were beyond the 197 

radiocarbon dating limits (see methods in Linick et al. 1986).  The dates were obtained on 198 

selected species of planktic foraminifera (G. ruber, G. sacculifer, and N. dutertrei; size range: 199 

250-420 µm; each sample sent to the AMS lab weighed around 10 mg) because sufficient 200 

foraminifera from a single species were not present to carry out monospecific dating (Linick et 201 

al., 1986).  The radiocarbon ages were calibrated via the program CALIB 7.0.2 (Reimer et al. 202 

2013) with a reservoir age correction of 400±13 years using the ‘Marine13’ calibration curve.  203 

The Marine Isotope Stage 6-5e transition (~125 ka) was identified by the systematic 204 

disappearance of pink-pigmented G. ruber as it occurs in Indo-Pacific cores (Thompson et al. 205 

1979).  Archives of core sections from Hole 58A were run through a XRF core scanner for rapid 206 

non-destructive chemical composition analysis.  Hole 58A cores were scanned using an 207 

AVAATECH Scanner (Areva Group).  The core surface was smoothed and coated with a 6 μm 208 
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polypropylene film to avoid drying of the core and contamination of the XRF scanner.  209 

Elemental composition data were collected every 1 cm and only down core variations of 210 

Strontium (Sr) and Silica (Si) are presented in this study.   211 

Sixty samples in Hole 58A were selected and analyzed for mineralogy (carbonates and 212 

non-carbonates) using XRD.  All XRD measurements were performed on a Philips X’Pert Pro 213 

MD X-ray diffractometer equipped with a Cu tube (Kα, λ 1.541), 15-sample changer, secondary 214 

monochromator, fixed divergence slit (¼ °2θ), and the X’Ceelerator detector system as described 215 

by Vogt (2009). 216 

 Carbonate content was measured from the fine sediment fraction.  Approximately 0.5 g 217 

of this fine material was powdered with a mortar and pestle and analyzed for carbonate content 218 

using a modified Müller and Gastner’s (1971) “Karbonat-Bombe” technique.  0.2-0.5 g of 219 

material instead of 1 g, and 10 ml 20% 2.3 N HCl were used instead of 5 ml concentrated HCl.  220 

Resulting pressure was calibrated frequently with a reference curve generated using varying 221 

amounts of pure carbonate material to calculate percent carbonate of sample material. 222 

 Mass accumulation rate (MARSil, Carb, or Arag) was calculated to determine the amount of a 223 

specific sediment deposition by mass over time.  Percent carbonate content was used with linear 224 

sedimentation rate (LSR) and bulk density (ρb) to calculate carbonate MAR and by subtraction 225 

siliciclastic MAR (Eq. 1).  Density data was published in Webster et al. (2011). 226 

Eq. 1   MARSil or Carb ൌ  ሺ100 െ  carbonate %ሻ כ  LSR כ  ρb 227 

 Three lithoclastic packstone to grainstone samples were selected from a core interval 228 

(core 4 section 1 of Hole 58A, 9.1, 9.3, and 9.5 mbsf) thought to correspond to the Last Glacial 229 

Maximum (LGM) for petrographic examination.  The thin-sections were analyzed for grain 230 

types, cementation, and diagenetic processes by counting 300 points under a LEICA petrographic 231 
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microscope (van der Plas and Tobi, 1965; Gischler et al., 2013). Relative amounts of carbonate 232 

minerals were measured by XRD as described by Milliman (1974, p. 21-27). Insoluble residue 233 

was determined by weighing sub-samples before and after dissolution in 10% HCl.  234 

 235 

RESULTS 236 

Sedimentology 237 

 Visual Description.---The sediment composition in Hole 58A on the upper fore reef 238 

slopes off the Central Great Barrier Reef exhibit parts of three fining upward successions.  Seven 239 

lithostratigraphic units are distinguished based on color and grain size in Hole 58A, with Unit 1 240 

located at the top and Unit 7 at the base (Fig. 2;Webster et al. 2011).  Throughout the hole, 241 

neritic and pelagic skeletal carbonate grains vary in dominance in the coarse sediment fraction 242 

(>63 µm).  Coral fragments commonly are not large enough to be visually observed and are only 243 

a very minor constituent.  These lithologic units generally fit with the more detailed 244 

compositional analysis of Hole 58A sediments.  In general, Units 7, 4, and 1 (Webster et al. 245 

2011) include high proportions of the fine fraction, high carbonate content, high light reflectance, 246 

and low magnetic susceptibility (Fig. 3).   247 

 Thin-sections of three lithoclasts within Units 2 and 3 (located at 9.25, 9.44 and 9.585 248 

mbsf) consist of lithified fine to medium mostly carbonate sand, commonly encrusted by non-249 

geniculate coralline algae and serpulids (Table 1).  The lithoclasts selected from Unit 2 within 250 

Hole 58A consist of mollusk-foraminifera-bryozoan packstone to grainstone with marine high-251 

Mg-calcite cement (peloidal cement predominating) and display no evidence of meteoric 252 

diagenesis. Bioclast specific constituents and amounts vary (Table 1).   253 
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 Grain Size. The fine fraction (<63 μm) of Hole 58A shows a wide range of roughly 254 

cyclic variations, from 0% to 94% (Fig. 3).  Three intervals of 50% to 94% fines are separated by 255 

two coarse intervals, the lower of which occurs from 32.5 – 28.8 mbsf, though much of the 256 

interval is not recovered between 30.5 and 42.4 mbsf.  The top of the upper coarse interval is 257 

defined at 7.1 mbsf, but its lower boundary is poorly defined due to non-recovery between 14.6 258 

and 9.9 mbsf (Fig. 2, Fig. 3).  259 

Carbonate Content. Carbonate content values from the Hole 58A fine fraction (<63 μm) 260 

range from between 30% and 85%, with two specific intervals of lower than 60% carbonate (Fig. 261 

3).  The lower interval is between 32.5 – 28.8 mbsf, while the upper low carbonate interval falls 262 

between 18.5 – 6.0 mbsf.  In these intervals with carbonate content lower than 60%, the coarse 263 

fraction grains are dominated by carbonate particles: larger benthic foraminifera, mollusk and 264 

gastropod skeletal fragments, echinoid fragments, and planktic foraminifera with low amounts of 265 

frosted quartz grains.  The bulk carbonate content of the three grainstone and packstone 266 

lithoclasts from the upper low carbonate content interval ranges from 90 – 98%, based on mass 267 

of insoluble residue (Table 1).  Throughout the core, the coarse fraction dominantly consists of 268 

planktic and benthic foraminifers along with varying amounts of whole and fragmented 269 

pteropods, gastropods, pelecypods, bryozoans, echinoids, green algae, and peloids.  Coarse 270 

grains (>63µm) are comprised almost completely of carbonate grains, thus downhole variations 271 

away from pure carbonate in the carbonate content is a reflection of fine fraction sediment 272 

composition.  In the high carbonate content intervals, the overall values increase upwards 273 

whereas fine grained material decreases.   274 

Physical Properties 275 
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 Color Reflectance. Reflectance data values varies from 34 to 62 L* with low and high 276 

reflectance arbitrarily separated at 48 L*(Fig. 3).  Sediment color, measured as light reflectance, 277 

is associated with sediment composition - high reflectance values corresponding with light 278 

colored carbonate intervals and low values with dark colored terrigenous siliciclastic material.  279 

The overall shape matches well with the shape of the carbonate content curve.  Two intervals 280 

less than 48 L* at depths of 32.6 – 26.8 mbsf and 18.6 – 5.9 mbsf align well with the two low 281 

carbonate content intervals.  In addition to these two intervals, the overall variations of light 282 

reflectance match well with the shape of carbonate content variation.  Correlation between 283 

carbonate content and light reflectance yields a statistically significant (P-value = 5.28 x 10-16) 284 

R2 value of 0.73. 285 

 Magnetic Susceptibility. Magnetic susceptibility (MS) values from U-channel data 286 

(Herrero-Bervera and Jovane 2013) range from -0.22 x 10-5 to 52.74 x 10-5 SI and most of the 287 

values do not exceed ~10 x 10-5 SI (Fig. 3).  Three low MS intervals (<10 x 10-5 SI), correspond 288 

with intervals of high light reflectance and high carbonate content, and are separated by two 289 

intervals of MS higher than 10 x 10-5 SI located between 32.6 – 27.0 mbsf and 9.6 – 6.9 mbsf.   290 

 Density.---MSCL (multi-sensor core logger) Bulk Density increases with depth 291 

downhole from 1.60 to 2.00 g/cm3 reaching 2.32 g/cm3
 within the hard ground ~10 mbsf.   292 

Discrete dry bulk density (DBD) measurements follow the same trend, though consistently lower 293 

than MSCL values, ranging from 1.57 to 1.86 g/cm3 with a peak of 2.62 g/cm3
 at the hard ground 294 

interval (Webster et al. 2011).  It is important to note that there is no density anomaly found 295 

within TII and MIS-5 (the time of focus).  The core liner was not full within core 2 and a portion 296 

of core 3 resulting in the underestimation of WBD by the MSCL.  DBD measurements were not 297 

affected by the core liner issue.   298 
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Mineralogy 299 

 The most abundant minerals from discrete bulk sediment samples analyzed by XRD are 300 

aragonite, low-Mg-calcite, high-Mg-calcite, quartz, feldspar, and clay minerals (Figs. 4 and 5).  301 

Throughout Hole 58A, aragonite and quartz are the main contributors to the carbonate 302 

siliciclastic sediments, respectively.  Strontium (Sr) and silica (Si) variations in Hole 58A, 303 

obtained by XRF core scanning and used as proxies for aragonite and siliciclastics respectively, 304 

yield high resolution records of aragonite and siliciclastic sedimentation (Fig. 4).   305 

 X-Ray Diffraction.  Analyzed samples show reciprocity between carbonate and 306 

siliciclastic minerals.  With a few exceptions, carbonate minerals make up the majority of the 307 

bulk composition within Hole 58A, ranging from 28% to 76%, whereas siliciclastics range the 308 

inverse from 24% to 72% of bulk sediments.  XRD of the bioclasts show average mineral 309 

compositions of 39% aragonite, 51.5% high-Mg-calcite, and 9.5% low-Mg-calcite. 310 

 In the bulk sediment, aragonite ranges from 9% to 41%, high-Mg-calcite from 0% to 311 

33%, and low-Mg-calcite from 5% to 24% (Fig. 4).  Three high aragonite content intervals 312 

(>25%), peaks occurring at 34 mbsf (40%), 23.8 mbsf (41%), and at the sea floor (37%), are 313 

separated by two intervals  of low aragonite between 31-27 mbsf and 19-8 mbsf (Fig. 4). With 314 

only a few aragonite constituents (mostly pteropod fragments) identified within the coarse 315 

fraction, fine aragonite is expected to be found dominantly within the fine grained carbonate at 316 

Hole 58A.  High-Mg-calcite in bulk sediments rarely exceeds 15%; the two exceptions are from 317 

31-29 mbsf with a peak of 24% and 9.5-9.3 mbsf peaking at 33% which correspond with 318 

intervals of coarse sediment (Fig. 4).  XRD from the three grainstone to packstone lithoclasts 319 

contained ~50% high-Mg-calcite related to skeletal grains and cement.  In general, lower 320 

amounts of low-Mg-calcite compared to aragonite, exhibit similar cyclicity with lower 321 
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amplitudes.  Intervals characterized by low proportions of low-Mg-calcite (<12%) occur from 322 

31-26.2 mbsf and 16.5-3.2 mbsf; these low-Mg-calcite intervals extend to slightly shallower 323 

depths than aragonite.  Variation and peak intensity is uniformly low within the three high low-324 

Mg-calcite intervals (>12%), with values rarely exceeding 22% (Fig. 4).  325 

 Siliciclastic minerals (quartz, feldspars, and clays) are present in varying amounts and 326 

generally follow similar trends with some notable exceptions.  The bulk abundance of quartz 327 

ranges from 8% to 40%, feldspars from 0% to 22%, and clay minerals from 5% to 24% (Fig. 5).  328 

High bulk quartz quantities (>20%) are present within two intervals from 31.0-25.6 mbsf 329 

(peaking at 40%) and 16.9-3.7 mbsf (peaking at 37%) (Fig. 5).  These intervals of high quartz 330 

generally conform to the boundaries of low carbonate content and high magnetic susceptibility.  331 

Bulk feldspar comprises less than 10%, with two thin intervals where bulk feldspar range 332 

between 10 and 20% coinciding with highest quartz intervals.  The amount of clay minerals is 333 

consistently between 5-20%, with a major high interval between 21.0-26.5 mbsf where clay 334 

minerals are all between 13-23%.  335 

 X-Ray Fluorescence.---XRF scanning of Hole 58A, for strontium (Sr) and silica (Si), 336 

yield elemental data at 1 cm intervals as useful proxies for shelf derived neritic carbonate (Figs. 337 

4 and 6) and terrigenous siliciclastics (Fig. 5).  Other elements such as potassium and titanium 338 

are also useful for determining terrigenous input; however, their trends are very similar to Si and 339 

are not considered in this study.  Sr counts range from 2,000 to 11,000 with two intervals lower 340 

than 7,000 at the same depths as low carbonate content intervals, at 32.5 – 28.8 mbsf and at 18.5 341 

– 6.0 mbsf.  The substitution of Sr for Ca within the orthorhombic lattice of neritic aragonite 342 

(coral and green algae) is well established (Milliman 1974; Boardman and Neumann 1984; 343 

Dunbar and Dickens 2003a) and, as is the case at Hole 58A, plotted Sr counts and discrete bulk 344 
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percent aragonite displays a statistically significant fit (Fig. 6a) with R2 = 0.85 (P-value = 3.69 x 345 

10-8; Fig. 6b), establishing Sr as a reliable proxy for neritic aragonite. 346 

Sediment Chronology 347 

 Due to incomplete sediment recovery at Hole 58A, the planktic δ18O isotope record of 348 

Hole 58A has been compared to the complete record at nearby MD-49 (Jorry et al. 2010) to 349 

correlate between the two records and individual marine isotope stages (MIS) (Fig. 7).  The 350 

remarkably similar shape and amplitude of these records strengthen the interpretation of glacial-351 

interglacial MIS (well observed by the overlaying of the two records, Fig. 8).  Based on the MIS 352 

interpretation of MD-49, the base of the upper recovered interval at Hole 58A is interpreted to 353 

include part Termination I and MIS-1 (Fig. 7).  The Lisiecki and Raymo (2005) stacked benthic 354 

isotope record provided ages to marine isotope stage events identified within the Hole 58A and 355 

MD-49 records (Table 2).  The base of Hole 58A contains a portion of MIS-7, the well-356 

developed deglacial transition from the end of MIS-6 to MIS-5e, and most of MIS-5.  Much of 357 

the MIS-6, 4, 3, and 2 glacial intervals are missing due to problems with core recovery leading to 358 

glacial age uncertainty.  However, Hole 58A is well anchored during the Holocene by 14C age 359 

dating and within TII by biostratigraphy (Fig. 7).  Three 14C ages of 693 ± 4, 4460 ± 58, and 360 

6560 ± 90 yr-bp fit well within the second half of MIS-1 or the Holocene.  The disappearance of 361 

G. ruber (pink-pigmented) during the MIS-6/5e transition 125 ka (Thompson 1979) anchors 362 

Termination II in Holes 58A, 820A, and MD-49, whereas this disappearance is more transitional, 363 

but still useful to identify Termination II in Hole 819A, (Fig. 7).   364 

The same method was applied to develop a new depth-age model within the upper 55 m 365 

at Holes 820A (Peerdeman and Davies 1993) and upper 30 m at Hole 819A (Davies et al. 1991; 366 

Alexander et al. 1993; Fig. 7).   Both Holes 820A (planktic G. ruber) and 819A (benthic 367 
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Cibicidoides spp.) include curves very similar in shape to Hole 58A and MD-49 (Fig. 7).  368 

Interpretations of δ18O at Hole 820A by Peerdeman and Davies (1993) do not account for the 369 

fact that, between 8-21 mbsf, δ18O values (between 1.5-2.0 ‰) are more consistent with MIS-5d 370 

to 5a than with MIS-3 (between 1.0-1.5 ‰)  as at Hole 58A and MD-49.  Additionally, based 371 

upon four radiocarbon dates between 7-7.5 mbsf available in Dunbar et al. (2000) (the youngest 372 

at14.8 ka, and the three oldest 31, 41, and 43 ka (essentially carbon dead)), as at Hole 58A, most 373 

of MIS 4-3 and 2 are missing, and as such stable isotope chronology is the best method for 374 

determining sediment age between 8 and 30 mbsf at Hole 820A.   MIS-5d to 5a is potentially 375 

difficult to discern as isotope variations are not as dramatic as those during TII.  The validation 376 

of these depth-age models are clear once the four δ18O records for Holes 58A, 820A, 819A, and 377 

MD-49 are plotted in time beside one another and compared to the stacked LR04 δ18O record 378 

(Fig. 8). Moreover, once plotted on top of another, the δ18O records on time for Hole 58A and 379 

MD-49 fit well (Fig. 8). By establishing a depth-age model for Hole 58A, physical parameters 380 

and sediment composition can be plotted with respect to time instead of core depth and lithologic 381 

units (Fig. 9).   382 

Sediments in Time 383 

The fine fraction roughly matches glacial-interglacial stages, highest values of fines 384 

correspond with interglacial times (MIS-5e and Holocene) and the lowest values occur during 385 

glacial times (MIS-6 and MIS-2; Fig. 9).  High fine fraction values are also evident during late 386 

MIS-7 and early MIS-6.  Contrarily, the carbonate content of the fine fraction is not in phase 387 

with glacial-interglacial cycles.   388 

Low carbonate content (36%) occurs at the beginning of MIS-5e and increases to a 389 

maximum (84%) at the end of MIS-5e.  A similar trend is observed during MIS-1 with carbonate 390 
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content increasing from a minimum values (45%) to maximum (78%) at present.  During the 391 

remainder of MIS-5, carbonate content remains high until the beginning of MIS-5b where it 392 

decreases to a local minimum at the beginning of MIS-5a.  Fine carbonate content values 393 

increase from an average of 65% at the end of MIS-7 to above 80% in early MIS-6, surprisingly, 394 

with values as high as late MIS-5e.  Light reflectance and magnetic susceptibility, well 395 

established proxies for carbonate content, mimic the trends observed in the carbonate content 396 

(Fig.9).  As most of the sediments are fine-grained and nearly all of the coarse grains are 397 

identified as low and high-Mg-calcite producers, Sr-rich (neritic) aragonite must be the dominant 398 

mineralogy through most of Hole 58A.   399 

Only bulk carbonate was measured at Holes 820A and 819A; the carbonate content 400 

trends are remarkably similar to the ones observed in Hole 58A (Fig. 10).  The dramatic 401 

carbonate increase within MIS-5e is observed in the three Holes and the carbonate values remain 402 

high throughout MIS-5d-b and drop to a minimum during early MIS-5a and increase to a 403 

maximum at the end of 5a.  Not only are carbonate content trends strikingly similar at Holes 404 

58A, 820A, and 819A, but the relative magnitude of carbonate content fluctuations are very 405 

similar and display many of the same smaller scale variations (Fig. 10).  This MIS-5 trend, 406 

particularly well observed at Holes 58A and 819A (Fig. 10), contrasts with the carbonate 407 

variation roughly in phase with glacial-interglacial cycles observed in MD-49.  The MIS-5e is 408 

well characterized by carbonate content values ranging between 80 and 90%, whereas the values 409 

at the end of MIS-6 and the beginning of MIS-5d barely reach 10%. Carbonate content reaches 410 

the lowest values during the second half of MIS-5, in particular at the beginning of MIS-5d and -411 

5b, out of phase with the trend observed in Holes 58A, 819A, and 820A. 412 

Siliciclastic Mass Accumulation Rates 413 
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 MARSil (units of g*cm-2
*kyr-1

 not repeated in section for brevity) at Hole 58A (Fig. 11) 414 

illustrate how terrigenous-based sediment flux to the upper slope is variable in time, as a result to 415 

climate change and sea level fluctuations.  During rising sea level at Termination II, MIS-6 to 416 

MIS-5e, MARSil transitioned from low ~8 to ~60 between 133 ka and 130 ka (Fig. 11).  At the 417 

MIS-6/5e boundary (130 ka), MARSil dropped suddenly to ~10-12 until the MIS-5e interglacial 418 

peak (123 ka).  During the subsequent sea-level fall, MARSil increase to ~27, and then decline to 419 

~10 at 115 ka.  MARSil remain low throughout MIS-5d and 5c, but rapidly increase to over 50 420 

within MIS-5b (87.5 ka) peaking at nearly 80 in early MIS-5a (83 ka) and then decline to ~60 at 421 

the end of recovery.   422 

At Hole 820A, MARSil is very similar to Hole 58A.  MARSil rises from ~5 to ~28 by 140 423 

ka and decreases gradually to ~20 at 123 ka, followed by a significant increase to ~50 at 123 ka 424 

followed by a slow decline until MIS-5b (Fig. 11).  MD-49 begins in a similar manner with 425 

increasing MARSil from ~10 to 20 at 140 ka.  However, at 133 ka MARSil declines to ~5 where it 426 

remains until 115 ka when MARSil increases gradually to ~25.  At 96 ka, MARSil increases 427 

significantly to nearly 60 before slowly falling off towards the peak of MIS-5a (Fig. 11). 428 

Aragonite/Carbonate Mass Accumulation Rates 429 

 The fine-grained neritic sediment flux to the upper slope is described by the variations of 430 

MARArag at Hole 58A compared to sea level fluctuations (Figs. 11 and 12; Rohling et al. 2008).  431 

During Termination II, MARArag values reach ~20 g*cm-2
*kyr-1 (units not repeated in section for 432 

brevity) locally from 133 to 131 ka and then decline to minimum values of ~1-3 during the peak 433 

sea level of MIS-5e (130 – 123 ka) (Fig. 12).  The MARArag increase to 21 during the second half 434 

of MIS-5e and peak at ~25 during the transition from MIS-5e to MIS-5d, when sea level drops 435 

by as much as 55 m.  During the late MIS-5d to early MIS-5b interval, MARArag drop to ~13 and 436 
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reach a minimum of ~8 during MIS-5b when sea level fell from ~-40 m to ~-70 m, largely 437 

exposing the shelf, respectively.  MARArag increase to a maximum of ~30 during the transition 438 

from MIS-5b to MIS-5a when sea level rose back to ~-30 m.   439 

Aragonite content data are not available at Hole 820A, thus MARArag cannot be 440 

calculated.  MARCarb was calculated at Hole 820A and shows striking similarities with MARCarb 441 

at Hole 58A (Fig. 11).  The MARArag are very similar in shape to MARCarb at Hole 58A, thus we 442 

use MARCarb as a general tentative trend for MARArag at Hole 820A.  In general, MARCarb at Hole 443 

820A are higher than at Hole 58A.  During TII, MARCarb rise to ~30 by early MIS-5e, then 444 

MARCarb become low (10-15) before increasing to over 70 in the second half of MIS-5e, 445 

followed by a consistently lower interval until 87 ka.  During much of MIS-5a, MARCarb at Hole 446 

820A increase but less pronounced, compared with Hole 58A.  Although MAR is not available 447 

for Hole 819A, the similarity of its carbonate content with Holes 58A and 820A (Fig. 10) 448 

suggests that MAR at this location will exhibit the same patterns as found at Holes 58A and 449 

820A (Fig. 11).   450 

  451 

DISCUSSION 452 

The results at Hole 58A, as well as Holes 820A and 819A, are focused on the interval 453 

(150 – 75 ka) spanning the penultimate glacial (MIS-6), Termination II (transition from MIS-6 to 454 

MIS-5e), and the last interglacial (MIS-5).  These successions display a distinctly cyclical 455 

accumulation of siliciclastic and carbonate sediments that largely are the result of interactions 456 

among sea level, shelf bathymetry, and variations in monsoon intensity.   457 

GBR Margin Sedimentation over the Last 30 kyr 458 
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Sedimentation along the GBR margin has been shown to be increasingly dynamic with 459 

increasing proximity to the reef.  According to Dunbar et al. (2000) and Dunbar and Dickens 460 

(2003b) LSR (cm ky-1) and MAR, Mt yr-1) varied according to sea level and distance from the 461 

GBR platform over an area of ~32000 km2.  During the LGM, when sea level was generally 462 

below the GBR shelf break in the study area (-70 to -80 m) from 14.7 – 31 ka, MAR were 463 

consistently low from shelf to basin (0.27 and 0.38 Mt yr-1) and dominated by carbonate 464 

sediments.  During transgression when the shelf was flooded (6.5 – 14.7 ka), sedimentation 465 

increased dramatically along the central GBR upper slope (2.1 Mt yr-1) but was only slightly 466 

more elevated within the basin (0.5 Mt yr-1).  Siliciclastic and carbonate sedimentation were 467 

nearly equal in rate on the slope (1.0 and 1.1 Mt yr-1 respectively), although carbonates 468 

dominated basin sedimentation (0.4 to 0.1 Mt yr-1).  Sedimentation rates during the subsequent 469 

highstand (0 – 6.5 ka) along the slope remained high with respect to carbonates (1.4 Mt yr-1) with 470 

a marked decline in siliciclastic sedimentation rates (0.3 Mt yr-1).  Basin sedimentation rates 471 

continued to remain low during the highstand.  Presently, outer shelf, slope, and basin 472 

(Queensland Trough) sediments are dominated (> 70 – 80%) by carbonate grains with the 473 

exception of a siliciclastic tongue (40 – 60% siliciclastics) extending from the Ribbon Reef 474 

portion of the GBR to the south into the Queensland Trough (Dunbar and Dickens 2003a; 475 

Francis et al. 2007).  From these studies (Dunbar et al. 2000; Dunbar and Dickens 2003b; Page et 476 

al. 2003; Page and Dickens 2005), it is clear that the sedimentary response of the GBR to sea 477 

level is best recorded on the slope where sediment variation is greatest.  Dunbar and Dickens 478 

(2003a) have also shown that the amount of aragonite and high-Mg-calcite (generally neritic 479 

carbonate sourced) within the upper slope sediments is much higher at positions proximal to the 480 

reef than positions within the basin. Most of the carbonate variation over time likely is tied to 481 
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increased neritic carbonate production on the GBR shelf, when the shelf is flooded and sediment 482 

is exported to the upper slope.  In contrast, the carbonate MAR in the basin is mostly sourced 483 

from a consistent flux of planktic and in situ benthic carbonate production.   484 

Data from the northern GBR suggest a MAR distribution over the time since the last 485 

LGM similar to the central GBR.  Carson et al. (2008) and Jorry et al. (2010) have shown that 486 

during the lowstand conditions leading up to the TI transition, carbonate and siliciclastic 487 

sedimentation rates were extremely low, followed by substantial increases in carbonate and 488 

siliciclastic accumulation on the northern GBR upper slope when the shelf was flooded at ~11 ka 489 

(as seen at many cores in the area MD-49, MD-34, MV74, MV-07/06, MV-17, and MV-13; 490 

Francis 2007; Carson et al. 2008; Jorry et al. 2010).  Neritic carbonate highstand shedding 491 

commonly is reported during the Holocene along the GBR margin (Dunbar and Dickens 2003a), 492 

and consistent with the recent concepts of the ‘re-flooding window’ (Jorry et al. 2010) and 493 

‘production window’ (Maldives Inner Sea – Paul et al. 2012) that occur when carbonate 494 

platforms are flooded and production is initiated.  Though core recovery in the upper part of 495 

Hole 58A, representing the last 20 ky, is not continuous and MSCL density errors within the 496 

upper 8 m make accurate MAR calculation difficult, recovered sediments are consistent with 497 

published observations in the GBR of increased siliciclastic sedimentation during TI, especially 498 

as seen at Hole 820A (Figs. 9 and 10).  There is a pronounced increase in fine siliciclastics at 499 

(Figs. 5 and 9) that is consistent with an increase in fine siliciclastics at Hole 820A from 6-7 500 

mbsf (Peerdeman and Davies 1993). At Hole 820A, this increase in fine siliciclastics is related to 501 

the increased MARSil that occurred during TI, and therefore, we infer that a similar high MARSil 502 

during also occurred at Hole 58A during T1.   503 

Siliciclastic Sediment Flux to the Upper Slope from 150 ka to 75 ka 504 



23 
 

The pulse of siliciclastic sediment to the upper slope during the last sea level rise could 505 

be explained either by the reworking of siliciclastic material trapped on the exposed shelf during 506 

times of relatively low sea level or the increase in the Australian monsoon during deglacial time 507 

resulting in increased weathering and transport of terrigenous material to the slope through the 508 

water column (Dunbar et al., 2000; Dunbar and Dickens, 2003a)  At Hole 58A, similar processes 509 

might have caused the large siliciclastic pulse that occurred during Termination II and 510 

interglacial MIS-5.   511 

During sea level rise from MIS-6 to MIS-5e, the shelf is re-flooded and siliciclastic 512 

sediments stored on the shelf during MIS-6 would have been reworked by transgressive 513 

ravinement and transported to the upper slope (Fig. 13b) resulting in the large increase in MARSil 514 

(Fig. 11) that has been described in sequence stratigraphic terms as healing phase deposition 515 

(Posamentier and Allen 1999).  Dunbar et al. (2000) favored reworking as they found sediment 516 

fluxes to be too great for precipitation alone coupled with a large amount of mangrove pollen 517 

(Grindrod et al. 1999; Moss and Kershaw 2007), suggested the reworking of marine sediments.  518 

However, as sea level reached maximum during MIS-5e, reworking would cease, and 519 

siliciclastic material would be restricted to the coastline (Fig. 13c) High carbonate and 520 

siliciclastic sedimentation rates during TII and during transgression into MIS-5a also occurred in 521 

the southern GBR (Page and Dickens 2005).  Based on Lake Eyre shorelines (Magee et al. 522 

2004), maximum monsoon intensity over the last 150 ky occurred during MIS-5e and would 523 

have dramatically increased precipitation and potentially sediment transport to the shelf.  Pollen 524 

data from Lynch’s Crater, northeastern Queensland, confirms that precipitation was high during 525 

MIS-5, low during MIS-4 to 2, and high again during TI (Kershaw 1986).  As for late Holocene 526 

GBR system (Dunbar and Dickens, 2003a; Francis et al., 2007), the relatively narrow GBR shelf 527 
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would have allowed part of the fine siliciclastic material to bypass and accumulate on the upper 528 

slope during late MIS-5e.  The increased sediment supply to the slope is not evident in the upper 529 

slope of the northern GBR, probably as the GoP shelf is large enough (> 150 km wide) to capture 530 

increased siliciclastic flux within an inner shelf mud clinoform, as observed in the present GoP 531 

shelf (Slingerland et al. 2008; Tcherepanov et al. 2010).   532 

Interestingly, the maximum MARSil values along the central GBR occur as a large pulse 533 

during late interglacial MIS-5a (Fig. 11).  From MIS-5d to MIS-5b, sea level was between 40 534 

and 50 m lower than today.  This extended period of low sea level exposed most of the inner 535 

shelf during MIS-5b and allowed siliciclastic sediments to accumulate on the middle shelf, much 536 

like the early Holocene, when large amounts of siliciclastics accumulated on the middle shelf 537 

within a coastal setting ~10 ka (Heap et al. 2002).  As sea level rose during MIS-5a to -20 m, 538 

levels not achieved since MIS-5e (Rohling et al. 2008; Dorale et al. 2010), siliciclastic sediment 539 

within the middle shelf was reworked once again, resulting in transgressive shedding to the 540 

central GBR upper slope.  Dunbar et al. (2000) made note of this increase of siliciclastic 541 

sediments during MIS-5b to 5a, but did not provide a compelling explanation.  This 542 

interpretation contrasts with data from the northern GBR, where major siliciclastic pulses are 543 

associated with periods of lower sea level, especially MIS-5b, that lead to the reworking of the 544 

inner GoP shelf prograding clinoform (Jorry et al. 2010). 545 

Neritic Carbonate Shedding to the Upper Slope 546 

 From the LGM to Holocene interglacial, the MARCarb follow closely the highstand 547 

shedding model, in which the re-flooding of a shelf or platform and the establishment of 548 

optimum sea level conditions allows coralgal reefs to form on submerged topographic highs 549 

leading to increased production of neritic carbonate (Webster et al. 2011), which is then shed to 550 
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the nearby upper slope (Schlager et al. 1994).  Highstand shedding, initiated at ~ 11.5 ka, is 551 

clearly observed during Termination I and II at MD-49 in the GoP (Jorry et al. 2010), in 552 

Ashmore (Francis 2007) and Pandora Troughs (Jorry et al. 2008) during Termination I.  It would 553 

be expected that the optimal growth conditions created during maximum sea level of MIS-5e 554 

would also result in prolific coralgal reef establishment and subsequent neritic carbonate 555 

shedding to the upper slope.  However, this situation is not the case for the central GBR, where 556 

neritic carbonate shedding during MIS-5 is out of phase with the highstand shedding model.  557 

 During Termination II sea-level rise from MIS-6 to MIS-5e, the GBR shelf was re-558 

flooded and incipient reefs formed, resulting, as expected, in the increase of MARArag, Carb at Hole 559 

58A (Figs. 12 and 13b).  However, when maximum sea level was reached during MIS-5e, 560 

MARArag, Carb values were at their lowest level (Figs. 12 and 13c).  This decline in neritic 561 

carbonate shed to the central GBR upper slope is attributed to the drowning of the GBR on the 562 

shelf edge during early MIS-5e (Fig.13c).  Based on detailed and systematic data (Montaggioni 563 

2005) and models (Kim et al. 2012), reefs can drown based on how fast sea level rises during the 564 

initial flooding without additional environmental stressors. However, the drowning of reefs is 565 

paradoxical as rates of sea-level rise are generally insufficient alone to drown carbonate 566 

platforms (Schlager, 1981), and that environmental factors such as increased turbidity and 567 

nutrients and decreased salinity can lead to reef growth rates falling below their accretion 568 

potential during times of particularly rapid sea level rise (Kiessling 2009).  During TII, sea level 569 

may have risen as rapidly as 6-9 mm/yr, which is 2-3 time higher than present yet half as much 570 

as Meltwater Pulse – 1A (Kopp et al. 2009).  For the central GBR, we propose a combined effect 571 

of very high sea level rise conditions together with diminished coral accretion due to 572 

environmental stressing factors to explain why MARCarb, Arag lags the highstand shedding model 573 



26 
 

prediction for MIS-5e by ~10-15 kyr (Fig. 11, 12).  The monsoons during MIS-5e (Kershaw 574 

1986; Magee et al. 2004) led to increased runoff, which conceivably resulted in the increase of 575 

nutrient transport to the GBR (Kleinman et al. 2006).  High MARSil during TII (Fig. 11, 12) 576 

suggest that turbid water may have been a stressor of the fledgling reef hindering its ability to 577 

keep up with sea level rise that may have been as rapid as 6-9 mm/yr (Kopp et al. 2009; 578 

Kiessling 2009).  Increased sedimentation from the Amazon River coupled with rapid sea level 579 

rise is suspected to have caused a similar reef demise during over time during the Miocene in the 580 

Foz do Amazonas Basin (Gorini et al. 2014).   581 

The five-fold increase in MARArag, Carb at Holes 58A and 820A indicate reef recovery 582 

occurred in the end of MIS-5e when sea level began to fall and drowned GBR highs re-entered 583 

the optimal euphotic zone (Fig. 13d).  Similar trend of nearly doubled MARArag during MIS-5a to 584 

5d over MIS-5e has been also recorded in the Maldives Inner Sea (Paul et al., 2012).  This result 585 

in the central GBR is in contrast with the northern GBR, where MARCarb are highest during peak 586 

interglacial, MIS-5e, and decline at the same time that carbonate production is increasing in the 587 

central GBR (Fig. 11).  The shallower bathymetry of the carbonate factory and clockwise 588 

currents on the GOP shelf that transport siliciclastic sediment and nutrients from GOP rivers 589 

away from the GBR to the northeast (Slingerland et al. 2008) may explain how MD-49, along the 590 

northern GBR within Ashmore Trough, displays high carbonate sedimentation rates during peak 591 

interglacial times consistent with classical carbonate highstand shedding, while carbonate 592 

sedimentation along the central GBR was not.  The drop in sea level following peak interglacial 593 

MIS-5e would have exposed nearly all of the northern GBR shelf and Ashmore Reef (Jorry et al. 594 

2010), cutting off carbonate sediment supply to the northern GBR upper slope.   595 
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 Highstand shedding has been a documented globally in the present in the Bahamas, 596 

Droxler and Schlager 1985; Boardman et al. 1986), Nicaragua Rise (Glaser and Droxler 1991), 597 

Maldives (Paul et al. 2012), Gulf of Papua and Caribbean (Jorry et al. 2010).  All of these cases 598 

have benefitted from well dated sediments in the context of sea level.  In the geologic past sea 599 

level is less certain, yet highstand shedding is used to describe carbonate sedimentation as part of 600 

the reciprocal sedimentation model in many outcrops (Wilson 1967; Sarg 1988; Dolan 1989; 601 

Handford and Loucks 1993).  Shanmugam and Moiola (1984) postulated that some Campanian-602 

Maastrichtian calciturbidites occurred during the lowering sea level or even lowstand.  603 

Additionally, there is evidence for regressive carbonate shedding having occurred in the Late 604 

Cretaceous Alps of France (Jacquin, 1990), though this has since come into question (Schlager et 605 

al., 1994).  This study of the modern GBR slope does not prove these interpretations as correct, it 606 

only provides a modern analog for the possibility of carbonates being shed off bank during the 607 

lowering of sea level or even lowstand. 608 

A major increase in MARArag, Carb within the central GBR, at Holes 58A and 820A, 609 

follows a period of slowly declining neritic carbonate shedding to the upper slope.  This pulse of 610 

neritic carbonate to the upper slope occurs at the end of MIS-5b and within MIS-5a when sea 611 

level is thought to have increased to levels not attained since MIS-5e (Rohling et al. 2008; 612 

Dorale et al. 2010), resulting in carbonate shedding during a brief period of rising sea level 613 

during a time interval of general falling sea level (Fig. 13d). 614 

 615 

CONCLUSIONS 616 

 Upper slope sediments at Holes 58A, 820A/B, and 819A along the tropical mixed 617 

carbonate-siliciclastic central GBR margin, consist of two dominant sediment sources: 618 
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alternating to coeval terrigenous siliciclastics and neritic carbonates.  The timing of this 619 

alternating accumulation has classically been described by the reciprocal sedimentation model 620 

and the highstand shedding concept, maximum accumulation of siliciclastic during lowstand and 621 

carbonates during highstand.  Based on the results of this study the maximum accumulation rates 622 

of carbonates and siliciclastics are out-of-phase with the prediction of these models from the last 623 

150 to 75 ka.  The sequence of events occurred as follows: 624 

During sea level rise, glacial-interglacial transition MIS-6/5e (Termination II), 625 

sedimentation rates increased significantly and were dominated by fine-grained siliciclastics as 626 

the result of either ravinement of terrigenous material previously trapped within alluvial plains 627 

during shelf exposure or by increased siliciclastic sediment supply due to the increase of 628 

monsoons following long periods of drought. 629 

During peak sea level, interglacial MIS-5e, highstand shedding was minimal, whereas 630 

siliciclastic sediments dominated this period of lowest mass accumulation rates; these 631 

observations can be explained by a largely drowned central GBR and, therefore, unexpectedly 632 

low neritic production and export to the upper slope. 633 

During the interval of falling sea level, last 2/3 of interglacial MIS-5 (MIS-5d/a), sea 634 

level fluctuated between 20 and 50 m below present sea level.  This time interval is characterized 635 

by the highest accumulation rates on the upper slope.  During MIS-5d to 5a, the central GBR 636 

reentered the photic zone, resulting in maximum neritic production and large export of reef 637 

derived fine sediment to the upper slopes.   Moreover, the reworking of siliciclastics, temporarily 638 

stored on the inner and middle shelf, and their export to the upper slopes added to the large 639 

export of neritic carbonate. 640 
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 Mixed margins are common both in the past and in the present; however, many of these 641 

systems have been studied without the constraint of well-established sea level curves.  These 642 

results provide a case study for sea level related off-shelf sediment transport along a mixed 643 

margin that is in opposition to aspects of both the reciprocal sedimentation model and carbonate 644 

highstand shedding.  Some ancient examples of carbonate shedding are believed to have 645 

occurred not at maximum sea level but as sea level lowered, this study validates this possibility.  646 

Carbonate off-bank transport occurs not necessarily during maximum highstand but when the 647 

bank top is flooded to a depth within the photic zone.  These exceptions to the conceptual rules 648 

suggest that sedimentation of many ancient and modern mixed systems may be more 649 

complicated than previously thought. 650 

 651 

ACKNOWLEDGEMENTS 652 

We are thankful for the Integrated Ocean Drilling Program for providing us with cores 653 

from Hole M0058A, and especially the Cruise 325 Scientific Party and Officers and Crew of the 654 

Great Ship Maya.  We would like to thank Christoph Vogt for his work obtaining the XRD 655 

measurements from Hole.  We would also like to thank Kazuyo Tachikawa for allowing the use 656 

of strontium for core scans at MD-49.  Additionally, we would also like to thank Gerald R. 657 

Dickens for his discussions and insights about sedimentation on the central GBR slopes.  We 658 

would also like to thank our reviewers: John Reijmer, Gregor Eberli, Gavin Dunbar, and editor: 659 

Gene Rankey for their thoughtful comments and suggestions. 660 

This research was partially funded by IODP through a grant from the USSSP program 661 

from the Consortium for Ocean Leadership to Droxler and ARCD Grant (DP1094001) to 662 

Webster. TOTAL (Cecile Pabian-Goyheneche, Patrick Sorriaux, and Aurelien Virgone) provided 663 



30 
 

the major financial support through a grant to Rice University (Droxler), in addition to a Mills 664 

Bennett Fellowship at Rice University for Harper’s PhD research.  665 

 666 

REFERENCES  667 

Alexander, I., Kroon, D., and Thompson, R., 1993, Late Quaternary paleoenvironmental  668 
change on the northeast Australian margin as evidenced in oxygen isotope stratigraphy, 669 
mineral magnetism, and sedimentology: Proceedings of the Ocean Drilling Program, 670 
Scientific Results, v. 133, p. 130-161. 671 

 672 
Andresen, N., Reijmer, J.J.G., and Droxler, A.W., 2003, Timing and distribution of  673 

calciturbidites around a deeply submerged carbonate platform in a seismically active 674 
setting (Pedro Bank, Northern Nicaragua Rise, Caribbean Sea): International Journal of 675 
Earth Science, v. 92, p. 573-592. 676 

 677 
Beaman, R.J., 2010, Project 3DGBR: a high-resolution depth model for the Great Barrier Reef  678 

and Coral Sea: Marine and Tropical Sciences Research Facility Project 2.5i, The Final 679 
Report, MTSRF, Cairns, Australia, p. 13 plus Appendix 1. 680 

 681 
Betzler, C., Pfeiffer, M., and Saxena, S., 2000, Carbonate shedding and sedimentary cyclicities  682 

of a distally steepened carbonate ramp (Miocene, Great Bahama Bank): International 683 
Journal of Earth Science, v. 89, p. 140-153. 684 

 685 
Boardman, M.R. and Neumann, A.C., 1984, Sources of periplatform carbonates: northwest  686 

Providence Channel, Bahamas: Journal of Sedimentary Petrology, v. 54, no. 4, p. 1110-687 
1123. 688 

 689 
Boardman, M.R., Neumann, A.C., Baker, P.A., Dulin, L.A., Kenter, R.J., Hunter, G.E., and  690 

Kiefer, K.B., Banktop responses to Quaternary fluctuations in sea level recorded in 691 
periplatform sediments: Geology, v. 14, p. 28-31. 692 

 693 
Bostock, H.C., Opdyke, B.N., Gaga, M.K., and Fifield, L.K., 2009, Late Quaternary  694 

siliciclastic/carbonate sedimentation model for the Capricorn Channel, southern Great 695 
Barrier Reef province, Australia: Marine Geology, v. 257, p. 107-123. 696 

 697 
Carson, B.E., Francis, J.M., Leckie, R.M., Droxler, A.W., Dickens, G.R., Jorry, S.J., Bentley,  698 

S.J., Peterson, L.C., and Opdyke, B.N., 2008, Benthic foraminiferal response to sea level 699 
change in the mixed siliciclastic-carbonate system of southern Ashmore Trough (Gulf of 700 
Papua); Journal of Geophysical Research, v. 113, F01S20, 20 p. 701 

 702 
Daniell, J.J., 2008, Development of a bathymetric grid for the Gulf of Papua and adjacent areas:  703 

a note describing its development: Journal of Geophysical Research, v. 113, F01S15., 704 
15p. 705 



31 
 

 706 
Davies, P.J., McKenzie, J.A., Palmer-Julson, A., et al., 1991, Site 819: Proceedings of the Ocean  707 

Drilling Program, Scientific Results, v. 133, p. 451-508. 708 
 709 
Davies, P.J., Symonds, P.A., Feary, D.A., Pigram, C.J., 1989. The evolution of the carbonate  710 

platforms of Northeast Australia, in Crevello, P.D., Wilson, J.L., Sarg, J.F., and Read 711 
eds., Controls on Carbonate Platform and Basin Development: SEPM, Special 712 
Publication 44, p. 233-258. 713 
 714 

Dolan, J.F., 1989, Eustatic and tectonic controls on deposition of hybrid siliciclastic/carbonate  715 
basinal cycles: Discussion with examples: AAPG Bulletin, v. 73, p. 1233-1246. 716 
 717 

Dorale, J.A., Onac, B.P., Fomós, J.J., Ginés, J., Ginés, A., Tuccimei, P., and Peate, D.W., 2010,  718 
Sea-level highstand 81,000 years ago in Mallorca: Science, v. 327, p. 860-863. 719 

 720 
Droxler, A.W., Schlager, W., and Whallon, C.C., 1983, Quaternary aragonite cycles and oxygen-721 

isotope record in Bahamian carbonate ooze: Geology, v. 11, p. 235-239. 722 
 723 

Droxler, A.W., and Schlager, W., 1985, Glacial versus interglacial sedimentation rates and  724 
turbidite frequency in the Bahamas: Geology, v. 13, p. 799-802. 725 
 726 

Droxler, A.W., Haddad, G.A., Kroon, D., Gartner, S., Wei, W., and McNeill, D., 1993, 17. Late  727 
Pliocene (2.9 Ma) partial recovery of shallow carbonate banks on the Queensland 728 
Plateau: signal of bank-top reentry into the photic zone during a lowering in sea level, in 729 
McKenzie, J.A., Davies, P.J., Palmer-Julson, A., et al., 1993: Proceedings of the Ocean 730 
Drilling Program, Scientific Results, v. 133, p. 235-254. 731 
 732 

Dunbar, G.B., Dickens, G.R., and Carter, R.M., 2000, Sediment flux across the Great Barrier  733 
Reef Shelf to the Queensland Trough over the last 300 ky: Sedimentary Geology, v. 133, 734 
p. 49-92. 735 

 736 
Dunbar, G.B., and Dickens, G.R., 2003a, Late Quaternary shedding of shallow-marine carbonate  737 

along a tropical mixed siliciclastic-carbonate shelf: Great Barrier Reef, Australia: 738 
Sedimentology, v. 50, p. 1061-1077. 739 
 740 

Dunbar, G.B., and Dickens, G.R., 2003b, Massive siliciclastic discharge to slopes of the Great  741 
Barrier Reef Platform during sea-level transgression: constraints from sediment cores 742 
between 15°S and 16°S latitude and possible explanations: Sedimentary Geology, v. 162, 743 
p. 141-158. 744 
 745 

Esker, D., Eberli, G.P., and McNeill, D., 1998, The structural and sedimentological controls on  746 
the reoccupation of Quaternary incised valley, Belize Southern Lagoon: AAPG Bulletin, 747 
v. 82, p. 2075-2109. 748 

 749 
Ferro, C.E., Droxler, A.W., Anderson, J.B., and Mucciarone, D.A., 1999, Late Quaternary shift  750 



32 
 

of mixed siliciclastic-carbonate environments induced by glacial eustatic sea level in 751 
Belize, in Harris, P.M., Saller, A., and Simo, T., eds., Advances in Carbonate Sequence 752 
Stratigraphy: Applications to Oil Reservoirs, Outcrops, and Models: SEPM: Special 753 
Publication 63, p. 385-411. 754 

 755 
Francis, J.M., 2007, Late Quaternary sediment dispersal and accumulation on slopes of the Great  756 

Barrier Reef mixed siliciclastic-carbonate depositional system, Gulf of Papua, Papua 757 
New Guinea and North Queensland Margin, Australia: Rice University, Dissertation, p. 758 
304. 759 

 760 
Francis, J.M., Dunbar, G.B., Dickens, G.R., Sutherland, I.A., and Droxler, A.W., 2007,  761 

Siliciclastic sediment across the north Queensland margin, (Australia): a Holocene 762 
perspective on reciprocal versus coeval deposition in tropical mixed siliciclastic-763 
carbonate systems: Journal of Sedimentary Research, v. 77, p. 572-586. 764 

 765 
Francis, J.M., Daniell, J.J., Droxler, A.W., Dickens, G.R., Bentley, S.J., Peterson, L.C., Opdyke,  766 

B.N., and Beaufort, L., 2008, Deep water geomorphology of the mixed siliciclastic-767 
carbonate system, Gulf of Papua: Journal of Geophysical Research, v. 113, F01S16. 768 

 769 
Gagan, M.K., Sandstrom, M.W., and Chivas, A.R., 1987, Restricted terrestrial carbon input to  770 

the continental shelf during Cyclone Winifred: implications for terrestrial runoff to the 771 
Great Barrier Reef Province: Coral Reefs, v. 6, p. 113-119. 772 

 773 
Gischler, E., Ginsburg, R.N., Herrle, J.O. and Prasad, S., 2010, Mixed carbonates and  774 

siliciclastics in the Quaternary of southern Belize: Pleistocene turning points in reef 775 
development controlled by sea-level change: Sedimentology, v. 57, p. 1049-1068.  776 
 777 

Gischler, E., Thomas, A.L., Droxler, A.W., Webster, J.M., Yokoyama, Y., and Schöne, B.R.,  778 
2013, Microfacies and diagenesis of older Pleistocene (pre-last glacial maximum) reef 779 
deposits, Great Barrier Reef, Australia (IODP Expedition 325): A quantitative approach: 780 
Sedimentology, v. 60, p.1432-1466. 781 

 782 
Gorini, C., Haq, B.U., Tadeu dos Reis, A., Silva, C.G., Cruz, A., Soares, E., and Grangeon, D.,  783 

2014, Late Neogene sequence stratigraphic evolution of the Foz do Amazonas Basin, 784 
Brazil: Terra Nova, v. 26, p. 179-185. 785 

 786 
Grammer, G.M. and Ginsburg, R.N., 1992, Highstand versus lowstand deposition on carbonate  787 

platform margins: insight from Quaternary foreslopes in the Bahamas: Marine Geology, 788 
v. 103, p. 125-136. 789 

 790 
Grindrod, J., Moss, P., and van der Kaars, 1999, Late Quaternary cycles of mangrove  791 

development and decline on the north Australian continental shelf: Journal of Quaternary 792 
Science, v. 14, p. 465-479. 793 

 794 
Handford, C.R. and Loucks, R.G., 1993, Carbonate depositional sequences and systems tracts –  795 



33 
 

responses of carbonate platforms to relative sea-level changes, in Loucks, R.G., and Sarg, 796 
J.F., eds., Carbonate Sequence Stratigraphy; Recent Developments and Applications: 797 
AAPG Memoir 57, p. 3-41. 798 

 799 
Harris, P.T., Davies, P.J., and Marshall, J.F., 1990, Late Quaternary sedimentation on the Great  800 

Barrier Reef continental shelf and slope east of Townsville, Australia: Marine Geology, 801 
v. 94, p. 55-77. 802 

 803 
Heap, A.D., Dickens, G.R., Stewart, L.K., and Woolfe, K.J., 2002, Holocene storage of  804 

siliciclastic sediment around islands on the middle shelf of the Great Barrier Reef 805 
Platform, north-east Australia: Sedimentology, v. 49, p. 603-621. 806 

 807 
Herrero-Bervera, E., and Jovane, L., 2013, On the palaeomagnetic and rock magnetic constraints  808 

regarding the age of IODP 325 Hole M0058A: Geological Society, London, Special 809 
Publications, v. 373, p. 279-291. 810 

 811 
Jacquin, T., 1990, Systems tracts and depositional sequences in a carbonate setting: a study of  812 

continuous outcrops from platform to basin at the scale of seismic liens: Marine and 813 
Petroleum Geology, v. 8, p. 122-139. 814 

 815 
Jorry, S.J., Droxler, A.W., Mallerino, G., Dickens, G.R., Bentley, S.J., Beaufort, L., Peterson,  816 

L.C., and Opdyke, B.N., 2008, Bundled turbidite deposition in the central Pandora 817 
Trough (Gulf of Papua) since Last Glacial Maximum: linking sediment nature and 818 
accumulation to sea level fluctuations at millennial timescale: Journal of Geophysical 819 
Research, v. 113, F01S19. 820 

 821 
Jorry, S.J., Droxler, A.W., and Francis, M.F., 2010, Deepwater carbonate deposition in response  822 

to re-flooding of carbonate bank and atoll-tops at glacial terminations: Quaternary 823 
Science Reviews, v. 29, p. 2010-2026. 824 

 825 
Kershaw, A.P., 1986, Climatic change and Aboriginal burning in north-east Australia during the  826 

last two glacial/interglacial cycles: Nature, v. 322, p. 47-49. 827 
 828 
Kiessling, W., 2009, Geologic and biologic controls on the evolution of reefs: Annual Review of 829 

Ecology Evolution and Systematics, v. 40, p. 173-192. 830 
 831 
Kim, W., Fouke, B.W., Petter, A.L., Quinn, T.M., Kerans, C., and Taylor, F., 2012, Sea-level 832 

rise, depth-dependent carbonate sedimentation and the paradox of drowned platforms: 833 
Sedimentology, v. 59, p. 1677-1694.  834 

 835 
Kleinman, P.J.A., Srinivasan, M.S., Dell, C.J., Schmidt, J.P., Sharpley, A.N., and Bryant, R.B.,  836 

2006, Role of rainfall intensity and hydrology in nutrient transport via surface runoff: 837 
Journal of Environmental Quality, v. 35, p. 1248-1259. 838 

 839 
Kopp, R.E., Simons, F.J., Mitrovica, J.X., Maloof, A.C., and Oppenheimer, M., 2009,  840 



34 
 

Probabilistic assessment of sea level during the last interglacial stage: Nature, v. 462, p. 841 
863-867. 842 

 843 
Lawrence, K.T., and Herbert, T.D., 2005, Late Quaternary sea-surface temperatures in the  844 

western Coral Sea: Implications for the growth of the Australian Great Barrier Reef: 845 
Geology, v. 33, p. 677-680. 846 

 847 
Lisiecki, L.E., and Raymo, M.E., 2005, A Pliocene-Pleistocene stack of 57 globally distributed  848 

benthic δ18O records: Paleoceanography, v. 20, PA1003. 849 
 850 
Linick, T.W., Jull, A.J.T., Toolin, L.J., and Donahue, D.J., 1986, Operation of the NSF-Arizona  851 

facility for radioisotope analysis and results from selected collaborative research projects: 852 
Radiocarbon, v. 28, p. 522-533. 853 
 854 

Magee, J.W., Miller, G.H., Spooner, N.A., and Questiaux, D., 2004, Continuous 150 k.y.  855 
monsoon record from Lake Eyre, Australia: Insolation-forcing implications and 856 
unexpected Holocene failure: Geology, v. 32, p. 885-888. 857 

 858 
McNeill, D.F., Klaus, J.S., O’Connell, L.G., Coates, A.G., and Morgan, W.A., 2013,  859 

Depositional sequences and stratigraphy of the Colón carbonate platform: Bocas Del 860 
Toro Archipelago, Panama: Journal of Sedimentary Research, v. 83, p. 183-195. 861 

 862 
Milliman, J.D., 1974, Marine carbonates: Recent sedimentary carbonates part 1: Springer- 863 

Verlag, New York, Heidelberg, & Berlin, p. 375. 864 
 865 
Milliman, J.D., 1995, Sediment discharge to the ocean from small mountainous rivers: The New  866 

Guinea example: Geo-Marine Letters, v. 15, p. 127-133. 867 
 868 
Montaggioni, L.F., 2005, History of Indo-Pacific coral reef systems since the last glaciation: 869 

development patterns and controlling factors: Earth-Science Reviews, v. 71, p. 1-75.  870 
 871 
Moss, P.T., and Kershaw, A.P., 2007, A late Quaternary marine palynological record (oxygen  872 

isotope stages 1 to 7) for the humid tropics of northeastern Australia based on ODP Site 873 
820: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 251, p. 4-22. 874 

 875 
Müller, G., and Gastner, M., 1971, The “Karbonat-Bombe”, a simple device for the  876 

determination of the carbonate content in sediments, soils, and other materials: Neues 877 
Jahrbuch für Mineralogie Monatshefte, v. 10, p. 466-469. 878 

 879 
Neil, D.T., Orpin, A.R., Ridd, P.V., and Bofu, Y., 2002, Sediment yield and impacts from river  880 

catchments to the Great Barrier Reef lagoon: Marine Freshwater Research, v. 53, p. 733-881 
752. 882 

 883 
Page, M.C., Dickens, G.R., and Dunbar, G.B., 2003, Tropical view of Quaternary sequence  884 

stratigraphy: siliciclastic accumulation on slopes east of the Great Barrier Reef since the 885 
Last Glacial Maximum: Geology, v. 31, no. 11, p. 1013-1016. 886 



35 
 

 887 
Page, M.C. and Dickens, G.R., 2005, Sediment fluxes to Marion Plateau (southern Great Barrier  888 

Reef province) over the last 130 ky: new constraints on ‘transgressive-shedding’ off 889 
northeastern Australia: Marine Geology, v. 219, p. 27-45. 890 

 891 
Paul, A., Reijmer, J.J.G., Fürstenau, J., Kinkel, H., and Betzler, C., 2012, Relationship between  892 

Late Pleistocene sea-level variations, carbonate platform morphology and aragonite 893 
production (Maldives, Indian Ocean): Sedimentology, v. 59, p. 1640-1658. 894 

 895 
Peerdeman, F.M., and Davies, P.J., 1993, Sedimentological response of an outer-shelf, upper- 896 

slope sequence to rapid changes in Pleistocene eustatic sea level: Hole 820A, 897 
northeastern Australian margin: Proceedings of the Ocean Drilling Program, Scientific 898 
Results, v. 133, p. 303-313. 899 

 900 
Peerdeman, F.M., Davies, P.J., Chivas, A.R., 1993, The stable oxygen isotope signal in shallow- 901 

water, upper slope sediments off the Great Barrier Reef (Hole 820A): Proceedings of the 902 
Ocean Drilling Program, Scientific Results, v. 133, p. 163-173. 903 

 904 
Posamentier, H.W. and Allen, G.P., 1993, Variability of the sequence stratigraphic model:  905 

effects of local basin factors: Sedimentary Geology, v. 86, p. 91-109.  906 
 907 
Purdy, E.G., and Gischler, E., 2003, The Belize margin revisited: 1. Holocene marine facies: 908 

International Journal of Earth Sciences, v. 92, p. 532–551. 909 
 910 
Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk, R.C.,  911 

Buck, C.E., Burr, Cheng, H., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, 912 
T.P., Hajdas, I., Hatté, C., Heaton, T.J., Hoffmann, D.L., Hogg, A.G., Hughen, K.A., 913 
Kaiser, K.F., Kromer, B., Manning, S.W., Niu, M., Reimer, R.W., Richards, D.A., Scott, 914 
E.M., Southon, Staff, R.A., Turney, C.S.M., van der Plicht, J., 2013, IntCal13 and 915 
Marine13 radiocarbon age calibration curves, 0–50,000 years cal BP: Radiocarbon, v. 55, 916 
p. 1869-1887. 917 
 918 

Rohling, E.J., Grant, K., Hemleben, C.H., Siddall, M., Hoogakker, B.A.A., Bolshaw, M., and  919 
Kucera, M., 2008, High rates of sea-level rise during the last interglacial period: Nature 920 
Geoscience, v. 1, p. 38-42. 921 

 922 
Sarg, J.F., 1988, Carbonate sequence stratigraphy, in Wilgus, C.G., Hastings, B.S., Ross, C.A.,  923 

Posamentier, H.W., Van Wagoner, J.C., and Kendall, S.C., eds., Sea-level Changes, an 924 
Integrated Approach: SEPM, Special Publication 42, p. 155-181. 925 

 926 
Schlager, W. and Chermark, A., 1979, Modern sediment facies of platform-basin transition,  927 

Tongue of the Ocean, Bahamas, in Doyle, L. and Pilkey, O.H., eds., Geological 928 
Continental Slopes: Special Publication, Soc. Econ. Paleontol. Mineral., v. 27, p. 193-929 
208. 930 

 931 
Schlager, W., 1981, The paradox of drowned reefs and carbonate platforms, GSA Bulletin, v. 92,  932 



36 
 

p. 197-211. 933 
 934 
Schlager, W., Reijmer, J.J.G., and Droxler, A.W., 1994, Highstand shedding of carbonate  935 

platforms: Journal of Sedimentary Research, v. 64, p. 270-281. 936 
 937 
Shanmugam, G., and Moiola, R.J., 1983, Eustatic control of calciclastic turbidites: Marine  938 

Geology, v. 56, p. 273-278. 939 
 940 
Slingerland, R., Driscoll, N.W., Milliman, J.D., Miller, S.R., and Johnstone, E.A., 2008,  941 

Anatomy and growth of a Holocene clinothem in the Gulf of Papua: Journal of 942 
Geophysical Research, v. 113, F01S13. 943 
 944 

Tcherepanov, E.N., Droxler, A.W., Lapointe, P., Dickens, G.R., Bentlesy, S.J., Beaufort, L.,  945 
Peterson, L.C., Daniell, J., and Opdyke, B.N., 2008, Neogene evolution of the mixed 946 
carbonate-siliciclastic system in the Gulf of Papua, Papua New Guinea: Journal of 947 
Geophysical Research, v. 113, F01S21, 21 p. 948 
 949 

Thompson, P.R., Be, A.W.H., Duplessy, J., and Shackleton, N.J., 1979, Disappearance of pink- 950 
pigmented Globigerinoides ruber at 120,000 yr BP in the Indian and Pacific Oceans: 951 
Nature, v. 280, p. 554-557. 952 

 953 
van der Plas, L., and Tobi, A.C., 1965, A chart for judging the reliability of point-counting 954 

results: American Journal of Science, v. 263, p. 87-90. 955 
 956 
Vogt, C., 2009, Data report: semiquantitative determination of detrital input to ACEX sites  957 

based on bulk sample X-ray diffraction data, in Backman, J., Moran, K., McInroy, D.B., 958 
Mayer, L.A., and the Expedition 302 Scientists, Proceedings IODP, 302: Edinburgh 959 
(Integrated Ocean Drilling Program Management International, Inc.). 960 
doi:10.2204/iodp.proc.302.203.2009 (12 pages).  Open Access at IODP website Online 961 
since 05.05.2009. 962 

 963 
Webster, J.M., Yokoyama, Y., Cotterill, C., and the Expedition 325 Scientists, 2011,  964 

Proceedings, IODP, 325: Tokyo (Integrated Ocean Drilling Program Management 965 
International, Inc.). doi:10.2204/iodp.proc.325.2011. 966 

 967 
Webster, J.M., Beaman, R.J., Puga-Bernabéu, Á., Ludman, D., Renema, W., Wust, R.A.J.,  968 

George, N.P.J., Reimer, P.J., Jacobsen, G.E., and Moss, P., 2012, Late Pleistocene history 969 
of turbidite sedimentation in a submarine canyon off the northern Great Barrier Reef, 970 
Australia: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 331-332, p. 75-89. 971 

 972 
Wilson, J.L., 1967, Cyclic and reciprocal sedimentation in Virgilian strata of southern New  973 

Mexico: Geological Society of America Bulletin, v. 78, p. 805-818. 974 
 975 
 976 

Figures and Table 977 



37 
 

 978 

FIG. 1.---Maps of Great Barrier Reef and the Gulf of Papua showing land elevation and 979 

bathymetry in the areas of Holes 58A, 820A, 819A and core MD-49.  (A) overview of the entire 980 

study area.  (B) shelf and slope bathymetry at the locations of Holes 58A, 820A, and 819A along 981 

the central GBR shelf and upper slope.  (C) location of MD-49 on the upper slope of Ashmore 982 

Trough with the northern GBR to the west, Ashmore Reef to the east, and the GoP shelf edge to 983 

the north.  Bathymetry combined and modified from GoP (Daniell 2008) and GBR-Coral Sea 984 

(Beaman 2010) data sets. 985 

 986 

FIG. 2.---Stratigraphic column at Hole 58A displaying individual cores, recovered intervals 987 

(black), non-recovered intervals (crossed out white boxes), lithologic unit designation, grain size 988 

(s = silt, vf = very fine sand, f = fine sand, m = medium sand, c = coarse sand, vc = very coarse), 989 

Munsell color code, fabric, and nature of coarse grains.   Units are described by grain size and 990 

some  grain type data sets are from this study, remainder from Proceedings of the IODP Volume 991 

325 (Webster et al. 2011). 992 

 993 

FIG. 3.---Hole 58A sediment physical properties in depth with lithologic units (Figure 2) 994 

designated by alternating blue and white bands.  Fine weight percent (red), carbonate content in 995 

fine fraction (blue circles), light reflectance log (green circles), and magnetic susceptibility log 996 

(black circles).  Red dashed lines mark selected values separating high and low intervals of fine 997 

weight percent, carbonate content, light reflectance, and magnetic susceptibility (see text). 998 

 999 
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FIG. 4.---Hole 58A; down-hole variations of carbonate content and mineralogy in addition to 1000 

strontium counts from XRF core scans, blue and white bars identify the different lithologic units 1001 

(Fig. 2), red dashed line defines our separation of relatively high and low values.  Calcium 1002 

carbonate trends and carbonate mineral trends: carbonate content (blue circles), strontium counts 1003 

from XRF core scan (pink line) with overlying 5-pt mean (dark pink line), aragonite (light blue 1004 

line), high-Mg-calcite (violet line), and calcite (dark blue line) from bulk XRD. 1005 

 1006 

FIG. 5.---Hole 58A; down-hole variations of siliciclastics in depth, blue and white bars identify 1007 

the lithologic units (Fig. 2), location of high and low intervals separation value (red dashed line).  1008 

Siliciclastic mineralogy trends compared to carbonate content (blue circles): silica counts from 1009 

XRF core scan (light orange line) with overlying 5-pt mean (dark orange line), quartz (light 1010 

orange line), feldspar minerals (dark orange line), clay minerals (red line) from bulk XRD. 1011 

 1012 

FIG. 6.---Correlation of Hole 58A Sr counts (XRF) and bulk aragonite percent (XRD).  (A) 1013 

Down-hole variations of Sr counts and aragonite.  (B) Regression of aragonite percent versus Sr 1014 

counts yield an R2 = 0.8488 and P-value = 3.69 x 10-8. 1015 

 1016 

FIG. 7.---Depth and age conversion at Holes 58A, 820A, 819A, and core MD-49.  Selected 1017 

events on LR04 benthic stack (Lisiecki and Raymo 2005) are identified as tie-points along the 1018 

oxygen isotope records of the studied holes and core.  Marine isotope stage events are shown as 1019 

labeled (name, age) red circles on LR04.  Corresponding MIS events at Holes 58A, 820A, 819A, 1020 

and core MD-49 (from Jorry et al. 2010) as well as age tie points are shown in as labeled (name 1021 

or age) red circles.  Radiocarbon dates at Hole 58A shown as red diamonds.  Radiocarbon dates 1022 
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at Hole 820A from are shown as yellow diamonds with red outlines (see Peerdem and and 1023 

Davies 1993 for dates).  Occurrence of Globigerinoides ruber (pink variety) is shown at Hole 1024 

58A, Hole 820A (Peerdeman et al. 1993), Hole 819 (from Alexander et al. 1993, with a 1025 

transitional and not sharp disappearance level), and core MD-49 (Jorry et al. 2010) as a shaded 1026 

pink area. 1027 

 1028 

FIG. 8.---Variation of oxygen isotopes at Holes 58A, 820A, 819A, and core MD-49 compared 1029 

with LR04 benthic stack.  Hole 58A oxygen isotope record, in red, overlays MD-49 to 1030 

demonstrate close fit of the two records.  Interglacial and glacial/interstadial marine isotope 1031 

stages (Lisiecki and Raymo 2005) are displayed as blue and grey bands respectively.   1032 

 1033 

FIG. 9.---Hole 58A sediment physical properties displayed in time with, in the background, 1034 

interglacial and glacial marine isotope stages (Lisiecki and Raymo 2005) shown as blue and grey 1035 

intervals, respectively (see Fig. 8).  Data plotted: fine weight percent (red), carbonate content 1036 

(blue circles) from fine fraction, light reflectance log (green circles), and magnetic susceptibility 1037 

log (black circles).  Dashed red dashed line denotes value used for separation of high and low 1038 

intervals (see text). 1039 

 1040 

FIG. 10.---Variation in time of carbonate content at Holes 58A, 820A, 819A, and core MD-49 1041 

plotted with each respective oxygen isotope record (pink lines).  In the background, interglacial 1042 

and glacial marine isotope stages (Lisiecki and Raymo 2005) designated by blue and grey (see 1043 

Fig. 8).   1044 

 1045 
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FIG. 11.---Comparison of mass accumulation rates (MAR – g*cm-2ky-1) at Holes 58A, Hole 1046 

820A, and MD-49 (Jorry et al. 2010) from 150 – 75 ka.  KL11+1017 Red Sea sea level curve 1047 

(Rohling et al. 2009) is shown as a dashed pink line, carbonate MAR (blue line), siliciclastic 1048 

MAR (red line), and aragonite MAR (green line) displayed for each studied hole and core 1049 

location, when available.  Hole 820A MAR data calculated from carbonate content and density 1050 

data from Peerdeman et al. (1993). 1051 

 1052 

FIG. 12.---Comparison of mass accumulation rates (MAR – g*cm-2ky-1) and strontium counts 1053 

from XRF core scans at Hole 58A and MD-49 (Jorry et al. 2010; Sr counts from Kazuyo 1054 

Tachikawa, Personal Communication) for a time interval spanning 145 – 100 ka, including 1055 

Termination II and MIS-5e to 5d, blue background is MIS-5e and grey background is MIS-6.  1056 

Hole 58A MAR aragonite (dark blue), Hole 58A strontium (light blue), MD-49 MAR aragonite 1057 

(Red), MD-49 strontium (orange), with KL11+1017 sea level curve (Rohling et al. 2009) shown 1058 

as a black dashed line.   1059 

 1060 

FIG. 13.---Conceptual models for environmental change on the central Great Barrier Reef shelf 1061 

and sediment transport variation to the upper slope during the penultimate glacial-interglacial 1062 

cycle from MIS-6 to MIS-5a.  Green rectangle shows sea level (Rohling et al. 2009) conditions 1063 

at each time interval.  (A) Glacial: late MIS-6, low sea level exposes shelf.  (B) Deglaciation: 1064 

Termination II, MIS-6/5 a transition with sea level rising.  (C) Peak interglacial: MIS-5e when 1065 

shelf is completely re-flooded and the GBR is mostly drowned.  (D) Late Interglacial: MIS-5d to 1066 

5a interval of falling sea level and re-entry of reef substrate into the euphotic zone. 1067 

 1068 
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Table 1.---Composition of three grainstone-packstone samples from Unit 2 at Hole 58A, 1069 

including: grain nature, bulk mineralogy, and cement mineralogy. 1070 

 1071 

Table 2.---Hole 58A chronostratigraphic tie points based on marine isotope stage events used to 1072 

create age depth model with associated depth age plot implying sedimentation rates. 1073 
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