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Abstract

This article presents a physical modeling synthesis environment for valved brass

instrument sounds. Synthesis is performed using finite-difference time-domain methods

which allow for flexible simulation of time varying systems. Users have control over the

instrument configuration as well as player parameters such as mouth pressure, lip

dynamics and valve depressions which can be varied over the duration of a gesture.

This article introduces the model used in the environment, the development of code

from prototyping in MATLAB and optimisation in C and then incorporation of the

executable file in the Soundloom interface of the Composers Desktop project. Planned

additions to the environment are then discussed. The environment binaries are available

to download online along with example sounds and input files.
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Introduction

Sound synthesis for brass instruments is a subject of longstanding interest, dating

back at least as far as the early additive synthesis experiments of Risset (1966), and the

application of FM methods, presented by Morrill (1977) in the very first issue of the

Computer Music Journal. Such synthesis methods may be characterised as

abstract—they are signal based and lacking in an underlying physical representation.

Although they may constitute relatively efficient means of producing isolated tones

which resemble those of brass instruments, progress towards a system capable of

emulating the subtlety and full expressive range of acoustic brass instruments is difficult.

Physical modeling techniques address this difficulty, and various techniques have

emerged. Perhaps the most successful have been digital waveguides (Smith 1986, 2004),

which were first used in the context of brass instrument synthesis by Cook (1991). These

efficient methods are based on the use of digital delay lines to model wave propagation

in tubes of cylindrical or conical cross section. Waveguide methods developed to the

point that they were incorporated into the Yamaha VL1 synthesizer in 1994 (Russ 1994);

further work along these lines has included the finer modeling of bore profiles through

the concatenation of multiple waveguide-like components (Berners 1999; van Walstijn

and Campbell 2003; Mignot et al. 2010). To model valve gestures, a simple waveguide

approach involves truncating the delay lines to change the instrument length but this

does not include the effects from other interacting tube sections. Other modeling

methods are based upon the use of modal representations for the instrument bore (Silva

et al. 2014). In all cases, the basic breakdown of the model into source and resonator

components follows the canonical description given by McIntyre et al. (1983). Extensions

to the case of nonlinear wave propagation leading to shock formation and increased

timbral brightness at high amplitudes have been incorporated into work on the BRASS

project (Vergez and Tisserand 2006).
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All the methods mentioned above rely on simplifying assumptions, in order to

obtain high computational speeds. In particular, in the digital waveguide formalism, a

possibly complex bore profile must be approximated by simplified cylindrical or conical

segments, and in a modal formalism, the set of modes corresponding to a given bore

profile must be computed beforehand. This can mean that complex time-variation in the

instrument body itself, as in the case of valved gestures, can become awkward. Given

that computational power is now abundant, one way of proceeding is to appeal to more

general numerical procedures which allow for complete modeling, with minimal

simplifying assumptions. The approach taken here will be to make use of direct

time-space integration techniques such as the finite-difference time-domain method

(FDTD). Such methods have seen use in synthesis for some time, dating back to early

work in string synthesis by Ruiz (1969) and Hiller and Ruiz (1971); recent work on FDTD

for the brass instrument bore appears in Bilbao and Chick (2013), and synthesis

employing the valve mechanism in Bilbao (2011). Though computational cost is higher

than for other methods, runtimes for most reasonable instrument geometries are real or

near-real-time.

This article is concerned with a synthesis environment for brass instruments, where

the user has complete control over the instrument design (i.e., the bore profile, as well as

the lengths and positions of valves), as well as several streams of control input: one set

for the mouth excitation, and another for the valve displacements. Some background

material on the basic operation of an FDTD scheme for the entire system is provided,

followed by a description of the development of the environment from protoyping using

MATLAB (MathWorks 2014) and then optimising in C, accompanied by benchmarking

results. Control and user interface details are then discussed, with particular reference to

use in ongoing experimental electroacoustic work. Finally, planned extensions to the

environment are introduced.
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Model

Sound production within a brass instrument can be broken down into three

sections: resonator, generator, and radiator (Fletcher and Rossing 1998). The resonator

consists of the acoustic bore and valve sections, and determines, grossly speaking, the

natural frequencies of the instrument. The generator consists of the player’s lips, driven

into oscillation by the pressure difference between the mouth and the entrance of the

instrument. The lips are therefore coupled to the instrument and oscillate near one of its

natural resonances. The radiator of a brass instrument is the flaring section at the end of

the instrument. This flaring section determines the efficiency of sound transfer from the

instrument to the acoustic space and also alters the frequencies and bandwidths of the

instrument’s resonances.

Wave Propagation

Linear, lossless wave propagation within an acoustic tube can be described using

Webster’s equation (Webster 1919) and are valid when the tube cross section varies

slowly and when the diameter of the tube is small relative to the wavelengths of interest.

The first order conservation equations leading to Webster’s equation can be written as:

S

ρc2
∂tp = −∂x (Sv) , ρ∂tv = −∂xp (1)

where p(x, t) and v(x, t) are the acoustic pressure and particle velocity as functions of

time t ∈ R+, and axial coordinate x ∈ [0, L], where L is the main bore length. S(x) is the

tube cross sectional area, ρ and c are the air density and speed of sound in air, and ∂t and

∂x represent first order differentiation with respect to time and the spatial coordinate.

See Figure 1 for a representation of a generalized bore profile.
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Figure 1. A generalized brass instrument bore with a variable cross sectional area, S(x), that
varies with spatial coordinate x.

To model energy losses associated with viscosity confined to a thin boundary layer

inside the tube, a modified frequency domain model of Webster’s equation is often used

and which can be transformed into the time domain. In this work the model presented

by Keefe (1984) for large tube radii is used as a starting point for further simplifications

which lead to equations using half derivatives with respect to time (Bilbao and Chick

2013). Further simplifications of this type lead to the Webster-Lokshin formulation

which is commonly modelled using digital waveguides (Hélie 2003).

Although brass instruments have complicated three dimensional geometries, this

one dimensional description is valid for instruments like the trumpet and trombone and

has shown good agreement with experimental measurements (Bilbao and Chick 2013;

Eveno et al. 2012).

Modeling Valves

A simplified model of a valve consists of a main tube that joins two pieces of tubing,

the default and bypass tubes, as shown in Figure 2. Under valve depression, the tubes

are shifted relative to the main tube, thus partitioning the volume flow between the

default and bypass sections. The default tube is the path the airflow can take when a

valve is not depressed; the bypass tube is engaged when the valve is fully depressed.

Usually the bypass tube is longer than the default path and therefore lowers the resonant
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p(J, t)

Main Tube

Default Tube

Bypass Tube

Umain−→

Udef ault−→

Ubypass−→

Figure 2. Schematic of a brass instrument valve. The dotted line denotes a junction connecting
the main tube to default and bypass tubes at x = J . The pressure is the same at the junction in all
three tubes and the signed volume velocities, U(x, t) = S(x)v(x, t), at the junction sum to zero.

frequencies of the instrument when fully engaged. When the valve is partially open, two

paths are available which, in general, creates a set of inharmonicaly spaced resonances,

leading to the production of multiphonic tonal timbres.

The valve is modeled as a new boundary condition within the instrument linking

pressure/velocity pairs in the three pieces of tubing. It is assumed that the pressure in all

three tubes at the valve junction is the same and that the signed volume velocities of air

sum to zero (Bilbao 2011), similarly to the case of junctions in the digital waveguide

formulation (Smith 2004).

pmain (J, t) = pdefault (0, t) = pbypass (0, t) , Umain (J, t) = Udefault (0, t) + Ubypass (0, t) (2)

where the subscripts denote the tube, U is a volume velocity and J denotes the length

along the main tube that the valve is positioned.
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Lip Dynamics

The lips of a brass player can be considered as an outward striking reed. This can be

modelled as a damped mass-spring system that is driven by the pressure difference

between the player’s mouth and the mouthpiece of the instrument (Adachi and Sato

1995), under assumptions of Bernoulli-type nonlinear flow. The lip dynamics are given

by

ÿ + σẏ + 4π2f 2
lipy = Sr∆p/µ (3)

where y is the lip displacement form its equilibrium position H , the single and double

dots denote first and second order derivatives with respect to time, σ and flip are the lips

damping and natural resonance frequency, µ is the lip mass and Sr is the surface area of

the lip which is acted on by the pressure difference, ∆p = pm (t)− p (0, t), between the

mouth and the entrance of the instrument. Air is injected into the instrument as a result

of the pressure difference across the entrance to the mouthpiece when the lips are open

and also due to the motion of the lips so that

S (0) v (0, t) = um + ur, um = max (y +H, 0) sign (∆p)w
√

2|∆p|/ρ, ur = Srẏ (4)

where w is the channel width. These properties can all be used to couple the lip model to

the instrument in a by-now standard manner (McIntyre et al. 1983).

Radiation

Radiation properties of a flared acoustic tube can be suitably described using a

model of an unflanged cylindrical pipe that was presented by Levine and Schwinger

(1948). Rational approximations can be applied to this model to ease the transformation

to a discrete time domain setting (Silva et al. 2009). The radiation model is expressed by
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the impedance

Zrad =
Lr (R1 +R2) jω + LrR1R2C (jω)2

R1 +R2 + (Lr +R1R2C) jω + LrR2C (jω)2
(5)

R1 = ρc, R2 = 0.505ρc, Lr = 0.613a, C = 1.111a/ρc2 (6)

where a is the radius of the instrument at the radiating end, j =
√
−1, and ω is the

angular frequency. R1, R2, Lr and C are the respective component values for an

equivalent electrical network that approximates this impedance model with two

resistors, an inductor and a capacitor. The network formulation of this impedance is

found in Bilbao and Chick (2013). This time domain approximation displays similar loss

and internal reflection characteristics to measured responses over the playing range of

interest.

FDTD Scheme Construction

FDTD methods allow for flexible simulation of time varying systems. The process

involves discretising the time and spatial fields and using approximations to differential

operators that lead to recurrence relations.

Grids and Field Sampling

The first step in the construction of a FDTD scheme is the definition of grids in

terms of a time step, k, and a grid spacing h. The time step, defined as the inverse of the

sample rate is not independent of the grid spacing, and must satisfy h ≥ ck for

numerical stability. This condition can be arrived at through energy methods (Bilbao

2009) and is the same as the Courant-Friedrichs-Lewy stability condition (Courant et al.

1928). Using this spatial step, the domain over which the instrument is defined over can

be divided evenly into N = floor(L/h) segments.
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In analogy with work in electromagnetism, an interleaved pair of grids is used (Yee

1966). The pressure field is sampled at integer multiples of k and h and the velocity field

is sampled at "half integer" multiples i.e. points half way between neighbouring integer

multiples. This can be notated as

pnl
∼= p(lh, nk), v

n+ 1
2

l+ 1
2

∼= v ((l + 1/2)h, (n+ 1/2) k)

The use of two grids requires distinct samplings of the cross sectional area S(x) of the

instrument bore. The cross sectional area grid function Sl+1/2 on the half-integer grid

locations may be set directly from the bore profile S(x) as Sl+1/2 = S(x =
(
l + 1

2

)
h). For

the maintenance of numerical stability, a useful choice of the dicrete cross sectional area

over the integer-valued grid S̄l is S̄l = 0.5
(
Sl+1/2 + Sl−1/2

)
(Bilbao and Chick 2013). See

Figure 3, showing the arrangement of the discrete pressure and velocity fields as well as

the sampling of the instrument bore.

The lip and radiation models are also sampled on the interleaved time grid; the

element values required in the radiation model lie on the integer multiple time grid and

the excitation values lie on the half integer multiple time grid. Other arrangements are of

course possible.

Finite-Difference Approximations

There are several approximations used in the construction of this FDTD scheme.

Time and space finite-difference operators are used to replace their continuous

counterparts to generate a scheme which is implemented as a recursive update in a loop

operating at the audio rate. Taking the simplified case of the lossless Webster’s equations
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Figure 3. Top: Grid arrangement and representation of the lossy pressure update scheme. Pressure
field grid points lie on solid line intersections, velocity field grid points lie on dotted line intersec-
tions. The current pressure value (indicated in black) can be calculated using previously computed
values of pressure (light grey) and velocity (dark grey). Bottom: Bore profile on interleaved spatial
grid. Solid lines lie across integer time and space grids. Dotted lines lie across half integer time
and space grids.

given in (1), the simplest “leap-frog" FDTD updates are

pn+1
l = pnl −

ρc2k

hS̄l

(
Sl+1/2v

n+1/2
l+1/2 − Sl−1/2v

n+1/2
l−1/2

)
v
n+1/2
l+1/2 = v

n−1/2
l+1/2 −

k

hρ

(
pnl+1 − pnl

)

All of the temporal difference operations can be interpreted as digital filters. This

idea is extended in the approximation of the fractional derivatives required in modeling

viscothermal loss; an M th order infinite impulse response filter is used to approximate
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the half derivative required to model viscothermal losses (Haddar et al. 2009). For audio

rates, a value of M = 20 is satisfactory (Bilbao and Chick 2013). This increases the

number of points required in the update equations and is highlighted at top in Figure 3

for the case of the pressure update. Temporal averaging is also necessary to centre the

lossy schemes.

Development

The brass instrument environment was developed using two programming

languages.

MATLAB Prototype

The brass instrument environment was originally prototyped using MATLAB, a

high level computing language primarily used for numerical computations (MathWorks

2014). Although this platform lacks the speed offered by lower level languages, such as

C, it gives users access to a library of built-in mathematical functions together with

visualisation tools.

Score and instrument files were written as MATLAB scripts that are run within the

main brass code, similar to the means of control of the early Music-N synthesis

procedures (Mathews 1961). Information from these files is then used to create arrays of

precomputed values that are used within the update equations. The pressure and

velocity values are each stored as separate two-dimensional arrays that store values at

the previous M time steps. The updates for the pressure and velocity equations are then

solved using both matrix and element-wise multiplication operators. Radiation elements

and lip positions also require extra updates and storage.
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C Port

The initial C implementation of the brass model was essentially a straight

translation of the MATLAB code into serial C, with some precomputed elements moved

into the main loop to reduce memory access. This runs around 4 to 7 times faster than

the MATLAB version; larger speed-ups were highly desirable.

As the FDTD scheme is a one-dimensional simulation the grid size is fairly small,

typically on the order of a few hundred elements at audio rates, and this limits the

potential for most types of parallelism; for example, a multi-threaded version would

spend more time synchronising between the threads than would be gained by having

multiple threads. However, a finer grained approach using vectorisation is possible. To

exploit this, the pressure and velocity update loops for the main and bypass tubes have

been accelerated using Intel AVX (Firasta et al. 2008). This is a 256-bit (4-way double

precision) vector instruction set available on newer Intel and AMD CPUs. The default

tube updates are typically too small to be worth vectorising. The AVX version of the

code runs around 1.5 to 2.5 times faster than the serial C and around 7 to 16 times faster

than the MATLAB version. This means that for instruments of dimensions to those of a

standard trumpet, real time performance is possible.

Table 1 shows total simulation run times for several instrument configurations: a

trumpet with one valve, a horn with three valves and a six metre long instrument with

three valves made using the custom instrument function (see next section). The total

simulation times are given for the three different versions of the code all run on an Intel

Core i5-4300U CPU. Test files

Rather than inventing new file formats for the C port, a parser capable of translating

1Simulations were run at a sample rate of 44.1kHz for 1s output.
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Run times in seconds for three different instrument definitions in each development
stage1

Instrument MATLAB C AVX
Trumpet (1.3m, 1 valve) 14.02 1.974 0.857

Horn (4.5m, 3 valves) 27.89 6.120 3.63
Custom (6m, 3 valves) N/A 19.223 7.946

Table 1

MATLAB formatted arrays was implemented, allowing the same instrument and score

definitions to be used both for the original MATLAB model and for the C port. In

addition to this, an XML file format is supported so that the brass environment can be

included in a larger synthesis project (NESS 2014).

Use of Environment

Use of the environment at the command line is as follows:

ness-brass -i instrumentfile -s scorefile

The necessary flags -i and -s refer to the instrument and score file names. Tables 2

and 3 show the structure of the instrument and score files using MATLAB vector

notation and give descriptions of each parameter. In MATLAB vector notation a comma

‘, ’ is used to separate individual column entries in each row and a semicolon ‘; ’ is used

to separate rows. Figure 4 shows a visual representation of a custom instrument as well

as a breakdown of the different custom instrument settings given in Table 2.

2Alternatively the bore can be manually defined by setting custominstrument=0 and replacing the
custom instrument section parameters with a two column array, bore=[position,diameter], that de-
fines the bore as a breakpoint function of the axial coordinate[mm]-diameter[mm] pairs which are then
linearly interpolated. Note that the custom instrument defined in this table is different from the one used

13



Structure and description of custom instrument file with three valves2

Instrument File Input Description
custominstrument=1; 1 uses custom instrument function, 0 requires manu-

ally entering bore profile.
FS=44100; Sample rate[Hz].
temperature=20; Temperature[◦C].
vpos=[600,630,660]; Position of valves[mm]. Must have the same number

of entries as the default and bypass tube lengths.
vdl=[20,20,20]; Default tube lengths[mm].
vbl=[130.7,57.5,199.8]; Bypass tube lengths[mm].
xmeg=50; Mouthpiece length[mm].
rmeg=10; Mouthpiece opening diameter[mm]. Opens at this di-

ameter and uses a raised cosine to ramp to the first
diameter given in the middle section.

x0eg=[100,200,200,100]; Middle section lengths[mm].
r0eg=[5,7,3;

7,7,1;
7,15,2;
7,5,1];

Definition of middle section profiles. Must have 3
columns and have the same number of rows as en-
tries for the middle section lengths. First and second
entries of each row are the diameters[mm] used in the
bore definition. The third entry specifies the type of
profile: 1 - linear ramp between the two diameters, 2 -
squared sine bulge whose entrance and exit diameters
are the first column entry and maximum is the second
diameter entry, 3 - cosine ramp between the two di-
ameters. See Figure 4 at right.

Leg=1000; Total length of instrument[mm]. Length of flare sec-
tion is taken as the difference between the total length
and the sum of the mouthpiece lengths and the mid-
dle section lengths.

rbeg=50; End diameter of instrument[mm].
fbeg=4; Exponent of flare curve. Flare is constructed using a

single power that goes from the final diameter of the
middle sections to end diameter of the instrument.

Table 2

The following sections present examples when the custom bore profile is used to

create a trumpet, illustrating some features unique to this particular environment. Black

lines in spectrograms denote peaks in the frequency spectrum. Most of the parameters

in Table 1.
3Time varying components are breakpoint functions of time[s]-value pairs that are linearly interpolated

and are explained further in the text. Note that for the valve parameters, each row must contain a time
entry and an entry corresponding to each valve.
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Layout and description of score file for a three valved instrument. 3

Score File Input Description
maxout=0.95; Normalised range of output
T=1; Length of gesture[s]
Sr=[0,1.46e-5]; Lip area[m2]
mu=[0,5.37e-5]; Lip mass[kg]
sigma=[0,5]; Lip damping
H=[0,0.00029]; Lip separation[m]
w=[0,0.01]; Lip width[m]
lip_frequency=[0,550]; Lip frequency[Hz]
pressure=[0,0;1e-3,5e3]; Mouth pressure[Pa]
vibamp=[0,0]; Vibrato amplitude. This specifies a fraction of the lip

frequency.
vibfreq=[0,0]; Vibrato frequency[Hz]
tremamp=[0,0]; Tremolo amplitude. This specifies a fraction of the

mouth pressure.
tremfreq=[0,0]; Tremolo frequency[Hz]
noiseamp=[0,0]; Noise amplitude. This specifies a fraction of the

mouth pressure.
valveopening=[0,1,1,1]; Valve openings. The fraction that the default tube is

open. Must have columns for each valve in instru-
ment. Likewise for valve modulation inputs.

valvevibfreq=[0,0,0,0]; Valve modulation frequency[Hz]
valvevibamp=[0,0,0,0]; Valve modulation amplitude. This is added to the

valve opening.

Table 3

1© 2© 3© 4© 5© 6©

Figure 4. Bore constructed using custom instrument function. Left: Visualisation of a three
valved custom instrument. Right: Functional structure of custom instrument given in Table 2
with sections labelled. Section 1 corresponds to the mouthpiece, and is constructed using a raised
cosine. Section 2 also uses a raised cosine. Section 3 is a straight piece of tubing with constant
diameter. Section 4 uses a squared sine function to add a bulge to the instrument profile. Section
5 linearly ramps between two diameters. Section 6 is the flare section which expands to a set
diameter for a given exponential power.
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for each example are the same as in Table 3, unless otherwise stated, and the lip

frequency has been adjusted in some examples to provide a better example. The

corresponding score, instrument and sound files along with other documentation and

examples can be found at http://www2.ph.ed.ac.uk/~s0916351/CMJBrass2014.html.

Finding Playable Notes

To find usable lip frequencies to "play" an instrument, particularly when the

instrument is constructed from scratch, a linear sweep can give an indication of the

playable regions. Using the MATLAB vector formatting this can be done by setting the

lip frequency as

lip_frequency = [0, 220; 3, 1000];

in the score file. This creates a lip frequency sweep from 220Hz to 1000Hz over a period

of 3s. Figure 5 shows the spectrogram of the output sound using this frequency sweep as

part of the score file. This can give a lower bound to which lip frequencies can be used to

produce a sound as well as give some indication into the instruments behaviour in

certain frequency ranges. For example, since no sound is produced before 0.25s this

shows that the lower frequencies in this example are unlikely to be able to produce a

sustained sound. However, due to the complex nature of the instrument-lip system these

kind of plots can only give a general idea of how the instrument works and must be used

alongside trial and error to determine how to get the best results from the instrument.

Lip Vibrato and Tremolo

Modulation of lip frequency and mouth pressure can be performed using the

vibrato and tremolo sections in the score file. These modulations are added to the

original signals as fractions of the original signal value. In the case of the vibrato
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Figure 5. Top: Spectrogram of output sound using a lip frequency sweep. Bottom: Lip frequency
as a function of time.

function, this modifies the lip frequency as follows

flip :→ flip (1 + Av sin (2πfvt))

where fv is the modulation frequency and Av is the amplitude of modulation which

defines a change of the original signal amplitude as a ratio. A similar transformation is

used to apply the tremolo function to the mouth pressure. Figure 6 show examples of

time varying vibrato and tremolo functions.
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Figure 6. Left Top: Spectrogram of output when a lip vibrato of amplitude 0.1 and rate 5Hz is
added to the end of a note using a lip frequency of 500Hz. Left Bottom: Lip frequency as a function
of time for this vibrato. Right Top: Output when a tremolo of amplitude 0.5 and rate 10Hz is added
to the end of a note where the static mouth pressure is 5kPa. Right Bottom: Mouth pressure as a
function of time for this tremolo. There is a 1ms ramp from 0 to the static pressure at the beginning
of the mouth pressure function.
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Valve Transitions and Multiphonics

A valve transition can be performed by varying the valve opening over time. For a

single valved instrument this is done as follows

valveopening = [0, 1; 1, 1; 2, 0; 3, 0];

This input holds the valve open for one second (the only path available is through the

default tubing), gradually closes over the next second, then is held closed for the final

second (the only path available is through the bypass section of tubing). Figure 7 shows

the spectrogram for this valve gesture. In the transition region, the lip model fails to lock

onto a normal resonance of the instrument and multiphonic sounds can be heard. This

effect can be explored more in depth by setting the valve opening to various other values

between 0 and 1.

Figure 7. Top: Spectrogram of output when a valve moves from one configuration to another.
Bottom: Valve opening as a function of time.

Valve Vibrato

Valve-opening signals can also be modulated in a manner similar to that of the

modulation of lip frequency and mouth pressure. In this case the modulation function is

added to the original signal rather than multiplying it. The modified valve opening

signals must also be clipped to lie between 0 and 1 so as to be physically plausible (and
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also to maintain stability, a more important concern). Figure 8 shows an example of the

use of such valve vibrato.

Figure 8. Top: Spectrogram of output for a valve configuration that is modulated in time. Bottom:
Valve modulation function and final valve signal. Static valve opening is set to 0.5, valve vibrato
amplitude is 0.5 and frequency is 5Hz.

Sound Loom Implementation

The Soundloom interface to the Composers Desktop Project (Forshee 2006) software

allows the user to run C-programs for transforming sounds from a graphic interface

written in TK/Tcl, hiding the mechanics of the process. The interface allows users to

create data-files, graphically or by writing text. Restraints are placed on interface value

ranges to prevent invalid data being entered and Help or Information buttons are

available to guide the user. In addition the Soundloom has an associated file parser,

allowing it to recognise and differentiate between various file types.

In order to run the brass physical modeling software from the Soundloom it was

decided to retain the original MATLAB format of the ascii textfiles, and therefore the

existing textile parsing needed to be extended for Soundloom to recognise the

instrument and score files. The internal parsing recognises the instrument and score file

formats at session start-up and between sessions retains an intelligent library of such

files; Soundloom knows which instrument is used by which score file. This library
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updates as files are created, destroyed or modified. These files can then be listed, viewed

and edited from the score and instrument interface in the Soundloom, and sound output

created. See Figure 9 for the bore profile creation interface and score interface.

Figure 9. Screen grabs from the interface of Soundloom using the brass environment. Left: Instru-
ment interface. Right: Score interface.

The bore profile and valve positions of the brass instrument can be entered

graphically. The user clicks on the screen to create new points which are automatically

joined up to create an instrument profile. Points can be dragged to new positions, or

deleted. The interface itself makes certain non-permitted shapes impossible to draw,

such as profiles which move left to right then right to left, and it also verifies that the user

has specified a correct number of points. It is also possible to interpolate values, creating

a smoother shape for the bell, the mouthpiece, the internal bore, or any combination of

these. For interpolation, the mouthpiece is assumed to be cosinusoidal whilst the bell

can be interpolated using a user specified power function which can produce concave,

convex or conical profiles. Internal points are interpolated using a combination of

sinusoids and cubic-splines to best retain the shape suggested by the marked points.

The profile is initially drawn in a window of fixed proportions which is then scaled
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by the user. Typical default values for a Trumpet, Trombone and Horn are also available

via a button press. The final profile can then be viewed to scale. This allows for all

possible instrument profiles, from the extremely long and thin to the extremely short

and fat, to be drawn on-screen.

As the score file format will most likely be unfamiliar to the user, the interface

displays and accepts new data as numbers or number-lists and then converts them into

appropriate MATLAB formatting. If required the files themselves can be viewed via

buttons on the score interface. As a start-up help for the new user, a Default button enters

default values for most parameters, and a Help button explains their nature and range.

As with other Soundloom programs, time-varying parameters can be entered

graphically, but now onto a blank display screen which resulted in the parameter values’

being sent to the appropriate entry box as lists of paired numbers.

Valve depression can also be entered graphically. Because of the nature of the

data-processing procedure valve changes are treated group-valve openingwise; at each

time where any valve reaches a new value, openings for all the valves at that time must

be specified. Thus in the interface the openings of the valve at each valve change time

are entered sequentially on the display. After information has been entered for all the

valves the timing of these valve changes is entered. At present this is done by tapping on

the mouse but MIDI entry and typed text would also be possible.

The user may also synchronise time-changing values to valve opening changes or

randomise values within a specified range. Time-warping of the data is also possible to

stretch time intervals, e.g. a warp value of two will multiply all time-values by two. As

the full-pressure onset time is often critical to making the instrument speak, this can

remain fixed while all other time-values are being warped.
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By the very nature of working in this score/instrument format the user will create a

large number of score files but may wish to retain/reuse data from previous scores.

Buttons on the interface therefore allow the user to grab values for a specific parameter

from an existing score.

Future Work and Conclusions

As the model for this environment is broken into generator, resonator and radiation

parts it is relatively straightforward to make modifications to the environment. The

simplest modification would be to choose from different generator models to simulate

different instruments whose resonator is an acoustic tube, such as a woodwind

instrument or the voice (Fletcher and Rossing 1998).

A modification to the radiation model would be to embed the instrument within an

acoustic space by coupling the resonator equations to the 3D wave equation:

∂tΨ (x, t) = ∇2
3DΨ (x, t)

where Ψ is the acoustic velocity potential, x is a three-dimensional position vector and

∇2
3D is the three-dimensional Laplacian operator. This would add spatialisation to the

sound as well as improve radiation behaviour. Energy methods can be employed to

couple the instrument model to the room model and boundary conditions can be set

within the room to model the flare walls. modeling an acoustic space significantly

increases the operation count, and therefore run time of simulations. Although the brass

instrument model presented in this paper is not suitable for parallelisation,

implementation of room simulations using Graphics Processing Units has been shown to

drastically improve performance (Webb 2014).
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To synthesise the characteristic ‘brassy ’sounds of brass instruments played at high

dynamic levels the resonator model must be changed so that it is described by a set of

nonlinear equations, e.g. the Euler equations (Rudenko and Soluyan 1977). However,

nonlinear equations do have problems with stability and energy methods used for the

current environment cannot be applied to this problem.

A further extension to the resonator model would be to include the action of a brass

instrument slide, such as those present in trombones. Use of a slide alters the overall

length of the air column, and therefore the instrument’s resonances, in a continuous

fashion. This is different from the act of a brass instrument valve which alters the

instrument resonances in a more discrete fashion by diverting air into other pieces of

tubing of differing length.

The brass environment binaries, user documentation, sound examples and example

score and instrument files can be found at

http://www2.ph.ed.ac.uk/~s0916351/CMJBrass2014.html. Files for Soundloom can be

found at www.trevorwishart.co.uk/slfull.html. Users have full control over how the

instrument is played and how the instrument is made which gives a great number of

possibilities for creating new musical sounds that are difficult or even impossible to

create in the real world. Control of the virtual instruments is intuitive as input

parameters are related to physical properties of the instrument system that musicians are

already familiar with. As with any real instrument, practice is required to become

familiar with what it is capable of doing but the end result is rewarding.

Although finite-difference methods are less efficient than other physical modeling

methods, e.g. waveguides, this is becoming less of a problem as modern computing

power continually increases. This particular algorithm has a relatively low computation

cost; sound synthesis for trumpet like instruments is real-time on modern laptops,
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therefore exploration of possible sounds can be done in a reasonably fluid manner.
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