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Original Article

Evidence of cerebral hemodynamic
dysregulation in middle-aged APOE e4
carriers: The PREVENT-Dementia study

Maria-Eleni Dounavi1 , Audrey Low1, Elizabeth F McKiernan1,
Elijah Mak1, Graciela Muniz-Terrera2, Karen Ritchie2,3,
Craig W Ritchie2, Li Su1 and John T. O’Brien1

Abstract

Accumulating evidence suggests vascular dysregulation in preclinical Alzheimer’s disease. In this study, cerebral hemo-

dynamics and their coupling with cognition in middle-aged apolipoprotein e4 carriers (APOEe4þ) were investigated.

Longitudinal 3 T T1-weighted and arterial spin labelling MRI data from 158 participants (40–59 years old) in the

PREVENT-Dementia study were analysed (125 two-year follow-up). Cognition was evaluated using the COGNITO

battery. Cerebral blood flow (CBF) and cerebrovascular resistance index (CVRi) were quantified for the flow territories

of the anterior, middle and posterior cerebral arteries. CBF was corrected for underlying atrophy and individual

hematocrit. Hemodynamic measures were the dependent variables in linear regression models, with age, sex, years

of education and APOEe4 carriership as predictors. Further analyses were conducted with cognitive outcomes as

dependent variables, using the same model as before with additional APOEe4� hemodynamics interactions. At baseline,

APOEe4þ showed increased CBF and decreased CVRi compared to non-carriers in the anterior and middle cerebral

arteries, suggestive of potential vasodilation. Hemodynamic changes were similar between groups. Interaction analysis

revealed positive associations between CBF changes and performance changes in delayed recall (for APOEe4 non-

carriers) and verbal fluency (for APOEe4 carriers) cognitive tests. These observations are consistent with neurovascular

dysregulation in middle-aged APOEe4þ.
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Introduction

Decreased cerebral perfusion especially in temporo-

parietal regions is a typical imaging finding in

Alzheimer’s disease (AD) patients,1,2 with a similar pat-

tern observed in subjects with mild cognitive impair-

ment (MCI).3–6 When considering the dominant

hypothetical model of AD progression, amyloid and

tau pathology are thought to be the earliest changes,

followed by downstream changes in metabolism, atro-

phy in the medial temporal lobe (MTL), and cognitive

decline.7 However, vascular risk factors are well recog-

nised as important risk factors for AD and limited

evidence suggests that vascular alterations could poten-

tially precede amyloidosis during the disease’s preclin-

ical stage.8–11 It is acknowledged that vascular changes

could be a key independent driver of the disease and
could potentially accelerate deterioration of the clinical
status.12 In fact at least 60% of AD patients at autopsy
demonstrate some sort of vascular pathology13,14 and

1Department of Psychiatry, School of Clinical Medicine, University of

Cambridge, Cambridge, UK
2Centre for Dementia Prevention, University of Edinburgh,

Edinburgh, UK
3INSERM, Montpellier, France

Corresponding author:

John T O’Brien, Department of Psychiatry, University of Cambridge,

School of Clinical Medicine, Box 189, Level E4 Cambridge Biomedical

Campus, Cambridge CB2 0SP, UK.

Email: john.obrien@medschl.cam.ac.uk

Journal of Cerebral Blood Flow &

Metabolism

0(0) 1–12

! The Author(s) 2021

Article reuse guidelines:

sagepub.com/journals-permissions

DOI: 10.1177/0271678X211020863

journals.sagepub.com/home/jcbfm

https://orcid.org/0000-0001-8287-346X
mailto:john.obrien@medschl.cam.ac.uk
http://uk.sagepub.com/en-gb/journals-permissions
http://dx.doi.org/10.1177/0271678X211020863
journals.sagepub.com/home/jcbfm
http://crossmark.crossref.org/dialog/?doi=10.1177%2F0271678X211020863&domain=pdf&date_stamp=2021-06-02


at least 30% of AD patients have some form of small
vessel disease (SVD).15

Subjects at high risk of future development of late
onset AD can be identified based on dementia family
history or carriership of the apolipoprotein gene epsi-
lon 4 (APOEe4) allele, which is the main genetic risk
factor for late-onset AD.16 The APOE gene is associ-
ated with vascular integrity, mitochondrial function,
synaptic plasticity and glucose metabolism.17 Studies
examining perfusion in APOEe4 carriers report mixed
observations, with evidence of both hypo-18,19 and
hyper-perfusion.20–22 Furthermore, studies on the
Dominantly Inherited Alzheimer’s Network (DIAN)
cohort (autosomal dominant forms of AD) have
reported hypometabolism observed with FDG-PET
approximately 19 years before the expected disease
onset23 and patterns of hyper-perfusion approximately
25 years from the expected onset.21 These opposing
findings could partly be attributed to different perfu-
sion imaging modalities and post-processing
approaches as well as on age differences of the exam-
ined cohorts. Apart from these potential interpreta-
tions, it has been suggested that these observations
could be a result of combined vascular dysregulation
and the concurrent build-up of a compensatory mech-
anism early on in the disease trajectory.2 The existence
of such a mechanism would therefore suggest that there
is a crucial break-point during the course of the disease,
whereby an early pattern of hyper-perfusion is suc-
ceeded by the more typical MCI/AD pattern of hypo-
perfusion.24 Hence, the trajectory of CBF changes in
AD might follow a similar pattern to cholesterol levels
and blood pressure, whereby higher values at midlife
and decreases later on, have been associated with a
higher risk of developing AD.25,26

Cerebral hemodynamics can be assessed using a
range of imaging modalities. Arterial spin labelling
(ASL) MRI is one such modality with growing popu-
larity due to its non-invasiveness, spatial resolution,
and potential to provide quantitative estimates of cere-
bral perfusion.27 The typical imaging metric derived
from standard ASL MRI protocols is cerebral blood
flow (CBF). Maintenance of a constant supply of blood
in the brain is modulated through adjustments in cere-
brovascular resistance (CVR) to account for changes in
blood pressure.28,29 A seemingly normal CBF might co-
exist with abnormal blood pressure, which, at midlife,
has been linked to a higher subsequent risk of develop-
ing AD.30,31 Hence, taking into account blood pressure
when proceeding to hemodynamic comparisons might
unravel early alterations of vascular origin in popula-
tions at risk of dementia.29 A way to incorporate blood
pressure in the analysis is by quantifying CVR, the
ratio of cerebral perfusion pressure to CBF.29

Changes in CVR can be observed due to changes in

the vessel diameter, for example higher vessel dilation
(reductions in CVR) to account for decreases in perfu-
sion pressure.32 A higher CVR as quantified using
transcranial Doppler and MRI-based techniques has
been observed in MCI,33 AD34 and amyloid positive
subjects.29

Investigation of cerebral hemodynamics and their
association with cognitive performance in APOEe4
carriers could potentially shed further light on the
downstream functional effects of the suspected neuro-
vascular dysregulation. To the best of our knowledge,
such studies have not been conducted yet in young or
middle-aged populations. A limited number of studies,
focused on cognitively normal APOEe4 carriers above
the age of 70, reported that higher CBF was associated
with poorer cognitive performances.35,36 Similarly,
higher baseline CVR has been found to predict acceler-
ated cognitive decline in amyloid positive individuals.29

In the present study, our aim was to investigate cere-
bral hemodynamics within vascular regions of interest
during midlife. In particular hemodynamic parameters
(CBF and CVR index – CVRi) were quantified for the
proximal, middle, and distal flow territories of the ante-
rior, middle and posterior cerebral arteries (ACA,
MCA, PCA). Their association with cognitive perfor-
mance in APOEe4 carriers was examined using longi-
tudinal data from the PREVENT-Dementia study.
Building on previous findings from our group,37 our
hypothesis was that we would observe evidence of
hyper-perfusion and reduced CVRi in APOEe4 carriers
at baseline. Furthermore, we hypothesised that signifi-
cant interactions between hemodynamic measures and
APOEe4 carriership in predicting cognitive scores
would be recorded (positive for CBF and negative for
CVRi for APOEe4 carriers), in line with our baseline
compensatory perfusion hypothesis. Longitudinally,
we hypothesised that we would observe further evi-
dence of hemodynamic dysregulation and evidence of
ineffective hemodynamic compensation. More specifi-
cally our hypothesis was that APOEe4 carriers would
demonstrate larger decreases in CBF and increases in
CVRi. We further hypothesised that we would observe
significant interactions between hemodynamic changes
and APOEe4 genotype in predicting changes in cogni-
tion; in particular that a negative association for CBF
and a positive for CVRi would be observed in APOEe4
carriers.

Materials and methods

Study participants

Full details of the study design and cohort have been
previously described.38,39 Participants aged between 40
and 59 years old without a dementia diagnosis and any
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MRI contraindications were recruited based on their

dementia family history, through the dementia register

database, the Join Dementia Research website and

based on information about the study on the Internet

and in study presentations. The study was approved by

the London-Camberwell St Giles National Health

Service Ethics Committee (REC reference: 12/LO/

1023), which operates according to the Helsinki
Declaration of 1975 (and as revised in 1983). Two hun-

dred and ten subjects were initially recruited; from these

193 completed a baseline MRI scanning session and 171

a 2-year follow-up. All subjects provided written

informed consent. Taqman genotyping was carried out

on QuantStudio12K Flex to establish APOE variants.

APOE information was not collected for two partici-

pants. Blood pressure and hematocrit values were

obtained as part of a detailed clinical examination.

MRI protocol

All scans were acquired at a 3T Siemens Verio scanner

at a single site. The MRI protocol comprised the follow-

ing scans: (a) a magnetization prepared rapid echo

(MPRAGE) acquisition (TE¼ 2.98ms, TR¼ 2300ms,

flip angle¼ 9 degrees, 160 slices, voxel size¼ 1mm3)

and (b) a Proximal Inversion with Control of Off-

Resonance Effects (PICORE) ASL scan (50 pairs of

control/tag images, one calibration image, TE¼ 11ms,

TR¼ 2500ms, inversion time¼ 1.8 s, bolus duration¼
700ms, voxel size 3.0� 3.0� 6.0mm, 14 slices, flip

angle¼ 90 degrees). MRI scans were visually evaluated

for the presence of pathological findings and MR-

related artifacts. Out of the 193 subjects scanned at base-
line, 6 were identified with incidental MRI findings and

were excluded from subsequent analysis. Data from 24

participants at baseline were excluded due to ASL-

related artifacts (e.g. excessive signal drop-out, labelling

asymmetry) leaving 161 for baseline analysis.

Cognitive assessment

The COGNITO test battery was used to evaluate cog-

nition at both study time-points.40 Four COGNITO

variables were chosen to assess episodic and spatial

memory (sensitive to preclinical changes) and verbal
fluency: the number of correctly remembered names

(immediate recall); delayed recall of name–face associ-

ations (delayed recall); descriptive recall (spatial

memory) and verbal fluency with a semantic cue. For

more details about the COGNITO battery the reader is

referred to the COGNITO manual: https://inserm-neu

ropsychiatrie.fr/sites/default/files/documents/

COGNITO_MANUAL.pdf. COGNITO was designed

to detect group differences in a research context; the

sub-tests used are based on similar tests already

validated within a clinical context. The battery has

been shown to have acceptable test re-test reliability.40

COGNITO variables were not collected for four sub-

jects at the follow-up.

Blood pressure measurement

After 5 min resting in a supine position three measure-

ments were taken in a supine position with 2 min

between each reading, the participant then stood for

3 min before a final reading was taken in a standing

position. An electronic A&D UA-767 device was used

to measure blood pressure, the machine is calibrated

and serviced annually. Blood pressure was measured

on the day of the full clinical examination of the par-

ticipants with a mean distance from the day of MRI

imaging of 27� 19 days at baseline and 20� 12 at

follow-up. Systolic and diastolic blood pressure were

calculated as the mean of the three readings (supine).

Structural analysis

Gray matter (GM), white matter (WM) and cerebrospi-

nal fluid segmentations were generated from the

MPRAGE scan using SPM12. Study-specific GM tem-

plates for the baseline and the follow-up separately were

generated using the DARTEL pipeline and the individ-

ual flow fields were retained.41 The generated flow fields

were used for registration of scans from the MPRAGE

subject space to MNI space and vice versa. The

MPRAGE scans were registered to the ASL calibration

images (M0) using FSL’s FLIRT.42 The individual GM

and WM maps were subsequently warped to the ASL

space using the generated registrations.

Cerebral blood flow and cerebrovascular resistance

quantification

FSL-BASIL was used for ASL data processing. In par-

ticular the ASL time-series were motion corrected and

spatial adaptive data-driven priors were used.43 The

CBF maps were calibrated based on an M0 acquisition.

Hematocrit correction was applied for the relaxation

time of the blood (T1b) (T1b¼ 1/(0.52 * Hctþ 0.38)),

since it has been shown that not accounting for hemat-

ocrit differences can induce potential perfusion over-

estimation in women, people with diabetes and

non-European ethnicities.44 Partial volume correction

was applied as part of the FSL processing to quantify

GM perfusion and account for underlying atrophy.45

Subjects with a GM CBF lower than 20ml/100 g/min

were excluded from the analysis (1 baseline; 2 follow-

up) since this is an abnormally low CBF value for a

healthy middle-age cohort.46 To account for potential

hyper-intense intravascular signal contamination, we
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used an upper voxel-wise CBF threshold of 120ml/
100 g/min.

Typically, cerebrovascular resistance is quantified as
the ratio of cerebral perfusion pressure (mean absolute
pressure-MAP minus intracranial pressure) to CBF.47

Intracranial pressure is assumed to be within the

normal range and substantially lower than MAP,
hence a cerebrovascular resistance index (CVRi) can
be quantified as the ratio of the MAP to CBF.29

MAP can be calculated using equation (1) based on
systolic and diastolic blood pressure (SBP, DBP).

MAP ¼ SBPþ 2DBP

3
(1)

A priori ROI selection

Hemodynamic analysis was focused on the flow territo-
ries of the proximal, middle and distal branches of the

ACA, MCA and PCA, hence the chosen ROIs were
directly linked to the underlying arterial supply.
Quantification within these relatively large macrovascu-
lar ROIs allowed to account by means of averaging for
the relatively low signal-to-noise ratio of ASL.

Anatomically, the ACA territory mainly covers the
medial parietal and temporal lobes, the MCA the fron-
tal, temporal and parietal lobes, while the PCA spans
the occipital and inferior temporal lobes.47 The utilised
vascular territory (VT) maps were available online as
part of a Mutsaerts et al.48 study and were based on

the Tatu et al. atlas.49 These VT maps were registered
to the DARTEL study-specific templates and subse-
quently to the CBF maps to extract ROI measurements
in native space, using the inverse transformations gener-
ated in the previous steps. Anatomical structures known

to be influenced at the early stages of AD are covered by
the following territories based on the VT maps: precu-
neus (ACA), posterior cingulate (middle/distal ACA),
hippocampus and parahippocampal gyrus (proximal
MCA and middle/proximal PCA), perirhinal cortex
(proximal MCA) and entorhinal cortex (proximal

MCA). Overlap of the VT maps with anatomical struc-
tures was determined by overlaying the VT maps with
the Harvard–Oxford anatomical atlas.50

Statistical analyses

Statistical analyses were conducted in Matlab 2019a
(R2019a, The MathWorks Inc., Natick, MA, USA).
Demographic characteristics were compared between
the groups using Wilcoxon rank sum test for continu-
ous variables and v2 test for categorical variables.
Linear regression models were used with age (mean-

centered), sex, years of education and APOEe4 carrier-
ship as independent variables and hemodynamic

metrics as the dependent variable. The interaction of

age and APOEe4 was added to the model as a covariate

and removed if not significant. Results were corrected

for multiple comparisons using false discovery rate

(FDR) per metric (i.e. CBF; CVRi).
Percentage changes in the examined hemodynamic

parameters between the study time-points were derived

using the formula: 100� (visit2 – visit1)/visit1. The

changes were then modelled using linear regression with

age, sex, years of education and APOEe4 as covariates.
For all conducted linear regression analyses, the

Shapiro Wilk test was used to evaluate the normality

of the standardized residuals, the Ljung–Box Q-test to

investigate residual autocorrelation and the Engle test

to investigate residual heteroscedasticity. When at least

one of the assumptions was violated, robust linear

regression was used instead.
Within every group paired t-tests or Wilcoxon rank

sum tests, depending on the normality of the distribu-

tion, were used to examine the pattern of longitudinal

changes in the markers of interest.
As a further exploratory analysis, the baseline values

for CBF and CVRi along with their percentage change

were examined in relation to cognitive markers. In par-

ticular the association of the examined cognitive tests

(Cogn) with hemodynamic measures (Hemm) and cova-

riates of interest were examined using linear regression

(equation (2)).

Cogn ¼ b0 þ b1sexþ b2educþ b3ageþ b4APOEe4
þ b5Hemm þ b6APOEe4 � Hemm þ e

(2)

To examine changes and associations between cogni-

tive variables and hemodynamic metrics, equation (2) was

modified to include the change between the follow-up

and the baseline cognitive scores (visit2 – visit1) as the

dependent variable and (a) the z-score of the percentage

change in the hemodynamic metric of interest (the raw

hemodynamic measures were used for the calculation of

the change) and (b) the baseline hemodynamic values as

independent predictors. For all our analyses, continuous

variables used as predictors were mean centered.

Results

Demographic details for the analytical sample can be

found in Table 1. Pre-processing steps failed for 3 par-

ticipants at the first study time-point, hence data from

158 subjects were analysed at baseline. Out of these,

125 subjects had a good quality follow-up ASL scan

with a mean scan interval of 2.01� 0.12 years. The

groups were matched for age, gender, years of educa-

tion and MAP. The number of participants with at
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least one parent diagnosed with dementia was higher in

the APOEe4 carrier group.

Cross-sectional CBF and CVRi differences

At baseline, APOEe4 carriers had higher CBF in the

proximal and middle branches of the ACA and MCA

vascular territories and the proximal PCA (Table 2,

Supplementary Figure 1). Following FDR correction,

the differences remained significant for the proximal

and middle ACA and MCA, these regions are

shown as an overlay to the generated baseline study-

specific GM template in Figure 1. Reduced CVRi in

APOEe4 carriers was observed in the proximal ACA

Table 1. Demographic specifications of the analysed cohort.

Baseline (158) Longitudinal data (125)

APOEe4- (97) APOEe4þ (61) p-Value APOEe4- (76) APOEe4þ (49) p-Value

Age (years) 52.5 (5.3) 51.5 (5.4) 0.22 54.3 (5.3) 53.5 (5.5) 0.43

Education (years) 15.6� 3.7 16.2 (3.1) 0.32 16.2 (3.4) 16.2 (3.1) 1

Gender (Female) 71.1% 70.5% 0.93 71.1% 73.5% 0.77

Dementia family history 44.3% 60.7% 0.05 47.4% 65.3% 0.05

SBP (mmHg) 121.0 (14.8) 119.9 (12.8) 0.61 120.4 (12.6) 119.5 (14.6) 0.51

DBP (mmHg) 73.6 (9.1) 72.9 (8.2) 0.47 73.1 (7.4) 73.8 (9.8) 0.72

MAP (mmHg) 89.4 (10.6) 88.6 (9.1) 0.49 88.9 (8.7) 89.0 (10.9) 0.95

Weight (kg) 76.4 (15.0) 74.8 (14.8) 0.32 75.0 (14.7) 74.3 (15.6) 0.75

Height (m) 1.67 (0.09) 1.68 (0.07) 0.47 1.67 (0.09) 1.68 (0.08) 0.34

BMI (kg/m2) 27.2 (4.8) 26.2 (4.1) 0.27 26.8 (5.0) 26.1 (4.4) 0.45

Ethnicity

Caucasian 91.8% 88.5% 0.61 90.8% 89.8% 0.2

Black 3.1% 3.3% 4.0% 2.0%

Asian 1.0% 1.6% 1.3% 0%

Indian 1.0% 4.9% 0% 6.1%

Other 3.1% 1.6% 4.0% 2.0%

Medication (absolute count)

Hypertension 7 5 7 5

Diabetes 1 1 1 1

Cholesterol 4 1 5 3

Hyperlipidemia 0 1 0 1

Values are presented as mean (standard deviation) or group percentage.

APOEe4: apolipoprotein e4; BMI: body mass index; DBP: diastolic blood pressure; MAP: mean absolute pressure; SBP: systolic blood pressure.

Table 2. Baseline differences between APOEe4þ and APOEe4–.

CBF (ml/100 g/min) CVRi (mmHg/(ml/100 g/min))

APOEe4– APOEe4þ b-APOE; p-value APOEe4– APOEe4þ b-APOE; p-value

ACA proximal 35.0� 7.5 38.5� 10.0 3.88; 0.01a 2.7� 0.7 2.5� 0.9 R –0.27; 0.02

ACA middle 41.1� 8.1 44.0� 9.3 3.31; 0.02a 2.3� 0.6 2.1� 0.6 R –0.14; 0.11

ACA distal 40.3� 8.6 41.8� 8.4 R 1.59; 0.28 2.3� 0.7 2.2� 0.6 R –0.07; 0.42

MCA proximal 37.2� 7.1 41.2� 9.4 4.36; <0.01a 2.5� 0.5 2.3� 0.6 R –0.23; 0.02

MCA middle 38.1� 8.5 41.4� 10.0 3.82; 0.01a 2.5� 0.6 2.3� 0.6 R –0.19; 0.07

MCA distal 37.9� 8.4 39.6� 9.3 2.13; 0.13 2.5� 0.7 2.4� 0.7 R –0.07; 0.51

PCA proximal 52.2� 9.2 55.3� 8.1 2.96; 0.04 1.8� 0.4 1.6� 0.3 R –0.10; 0.07

PCA middle 55.2� 9.9 57.1� 8.9 1.99; 0.21 1.7� 0.4 1.6� 0.3 R –0.07; 0.26

PCA distal 47.8� 9.1 49.1� 8.3 R 0.99; 0.52 1.9� 0.5 1.9� 0.4 R –0.04; 0.56

The shown values are mean� standard deviation along with the coefficient estimate for APOE and p-values emerging from the applied linear regression

models. Betas are the coefficient estimates from the conducted regression analyses.

R indicates that robust regression was used.
aIndicates findings that survived false discovery rate correction (p< 0.05).

ACA: anterior cerebral artery; APOEe4: apolipoprotein e4; CBF: cerebral blood flow; CVRi: cerebrovascular resistance index; MCA: middle cerebral

artery; PCA: posterior cerebral artery.
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and MCA regions, although these differences did

not survive FDR correction (Table 2, Supplementary

Figure 2).

Longitudinal changes in hemodynamic metrics

Paired tests between the baseline and the follow-up

within each group revealed significant CBF reductions

in both groups at the middle and distal ACA, proxi-

mal, middle and distal PCA (Supplementary Figures 1

and 2). Following FDR the changes remained signif-

icant for both groups for the distal ACA and all PCA

territories. Significant CVRi increases for both

APOEe4þ and e4� were recorded for the distal

ACA, proximal, middle, and distal PCA (p< 0.01).

Following FDR significant increases for both groups

were recorded only for the middle and distal PCA

(with the proximal PCA p � 0.05 for both groups).

Within the individual groups, CVRi in the distal ACA

increased significantly only for APOEe4– (p¼ 0.04;

APOEe4þ p¼ 0.07).
There were no differences in the percentage change

of hemodynamic metrics between the examined

groups. The intra-class correlation (ICC) coefficient

between baseline and follow-up GM CBF values

was 0.43.

Cross sectional and longitudinal associations

with cognition

Group-differences in cognitive performance at both

study time-points are shown in Table 3. Details about

the observed significant interactions between APOEe4
carriership and hemodynamic measures in predicting

cognitive scores can be found in Table 4. A single sig-

nificant interaction was recorded at baseline between

APOEe4 and proximal ACA CVRi in predicting verbal

fluency. Longitudinally, numerous significant interac-

tions were observed, especially between APOEe4 and

changes in hemodynamic metrics in predicting changes

in the verbal fluency, immediate and delayed recall

COGNITO tasks. Following FDR correction (thresh-

old of p< 0.05) the APOEe4� proximal ACA CBF

change interaction in predicting changes in delayed

recall and the APOEe4�proximal PCA CBF change

interaction in predicting changes in verbal fluency

remained significant (Figure 2).

Discussion

In this study we examined cerebral hemodynamics in a

cohort comprising middle-aged individuals at risk of

AD and controls, taking into account underlying

Figure 1. Overlay of the proximal and middle ACA and MCA on the baseline gray matter group template. Blue: proximal ACA; Red:
middle ACA; Green: middle MCA; Purple: proximal MCA.
ACA: anterior cerebral artery; MCA: middle cerebral artery.

Table 3. Cognitive scores per group for the four evaluated COGNITO variables.

Baseline Follow-up

APOEe4– APOEe4þ b-APOE; p-value APOEe4– APOEe4þ b-APOE; p-value

Immediate recall 6.5� 1.4 6.5� 1.4 R –0.07; 0.76 7.1� 1.3 6.9� 1.1 R –0.36; 0.10

Delayed recall 5.1� 2.3 5.7� 2.0 0.43; 0.19 5.6� 2.0 5.9� 1.9 0.28; 0.43

Verbal fluency 16.6� 4.0 17.7� 4.0 0.88; 0.15 17.5� 3.7 17.7� 4.1 R –0.29; 0.65

Description recall 11.9� 4.4 13.2� 4.0 R 0.78; 0.24 13.0� 4.6 13.9� 4.4 0.93; 0.23

The values shown are mean� standard deviations. b is the linear regression weight and p is the p-value. Maximum scores per test are: immediate and

delayed recall¼ 9; verbal fluency¼ number of vegetables in 1 min; description recall¼ 27. Betas represent the coefficient estimates from the conducted

regression analyses.

R indicates that robust regression was used.

APOEe4: apolipoprotein e4.
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Table 4. Significant interactions between APOEe4 carriership and (a) hemodynamic measures in predicting baseline cognitive scores;
(b) baseline hemodynamics in predicting changes in cognitive scores; (c) hemodynamic changes in predicting changes in cognitive
scores.

Baseline cognition–

baseline hemodynamics

Cognitive change–

baseline hemodynamics

Cognitive change–

hemodynamic change

Cognitive

metric

Measure/

territory

b-APOE;

p-value

Measure/

territory

b-APOE;

p-value Measure/territory

b-APOE;

p-value

Immediate recall – – CBF proximal

ACA

0.07; 0.03 CBF distal MCA R –0.59; 0.04

CVRi proximal ACA 0.56; 0.04

CVRi distal ACA 0.54; 0.04

CVRi distal MCA R 0.71; 0.01

Delayed recall – – – – CBF proximal ACA R –1.2; <0.01
CBF proximal MCA R –0.91; 0.03

CBF middle ACA R –0.84; 0.04

CBF middle MCA R –0.90; 0.03

CVRi proximal ACA R 0.95; 0.02

Verbal fluency CVRi proximal

ACA

–1.67; 0.04 CVRi proximal

PCA

3.95; 0.05 CBF proximal ACA R 1.32; 0.05

CBF proximal PCA 1.88; <0.01
CBF distal ACA R 1.46; 0.03

CBF distal MCA R 1.36; 0.05

CVRi proximal PCA R –1.98; 0.01

CVRi middle PCA R –1.49; 0.03

CVRi distal ACA –1.53; 0.02

Spatial memory – – CVRi proximal

PCA

R 5.8; 0.02 – –

CVRi middle

PCA

R 4.9; 0.04

Betas represent the coefficient estimates from the conducted regression analyses.

R indicates that robust linear regression was used; bold indicates values that survived an FDR at a level of 0.05.

ACA: anterior cerebral artery; CBF: cerebral blood flow; CVRi: cerebrovascular resistance index; MCA: middle cerebral artery; PCA: posterior

cerebral artery.

Figure 2. Within group associations between changes in COGNITO variables and hemodynamics. Red color is used for APOEe4
carriers and black for non-carriers. Results are shown for the interactions surviving FDR correction at a significance level of p< 0.05.
Polynomial fitting of first order was used within groups. At the bottom left the q and p-values from conducted Spearman correlations
within groups are shown. A positive association is observed between changes in the proximal ACA CBF and performance in the
delayed recall task in non-carriers of the APOE e4 gene, with an opposing association for carriers. APOE e4 carriers demonstrate a
positive association between proximal PCA CBF changes and changes in performance in a verbal fluency task.
ACA: anterior cerebral artery; PCA: posterior cerebral artery; CBF: cerebral blood flow.
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atrophy, blood pressure and individual hematocrit.
CVRi, a hemodynamic metric capturing aspects of
cerebrovascular resistance was also evaluated. We
found the following: (a) higher baseline perfusion pre-
dominantly in the proximal and middle ACA and
MCA territories in APOEe4 carriers, (b) lower CVRi
in a limited number of regions in APOEe4 carries at
baseline, (c) absence of longitudinal differences in
hemodynamics and (d) diametrically opposed associa-
tions of hemodynamic changes with changes in
cognitive performance between APOE e4 carriers and
non-carriers.

Cross-sectional group comparisons of hemodynamic
metrics revealed more areas of higher CBF between
APOEe4 carriers and non-carriers (proximal and
middle ACA and MCA) compared to areas of lower
CVRi (proximal ACA and MCA). In a study by Yew
and Nation29 it was found that CVRi revealed more
areas of difference between amyloid positive and neg-
ative subjects compared to CBF. The cohort in the Yew
study was approximately 18 years older than the
PREVENT-Dementia cohort and the observed pattern
of differences was towards the expected direction based
on the MCI/AD literature (lower CBF, higher CVRi).
We found evidence of higher CBF and lower CVRi in
APOEe4 carriers, however this does not imply that our
findings are opposing. The observed higher CBF sug-
gests that our subjects are (on average) placed before
the hemodynamic “break-point”, whereby patterns of
hyper-perfusion are succeeded by hypo-perfusion.
Hence, the limited differences in cross-sectional CVRi
may suggest that CVRi could be changing earlier com-
pared to CBF. The lower CVRi in APOEe4 carriers
could possibly be attributed to vasodilation, since
CVRi is connected with the inverse of the blood
vessel diameter.47 Longitudinally, we found no differ-
ences in the change of hemodynamics between APOE
e4-carriers and non-carriers, potentially suggesting that
vascular dysregulation is not accelerated within a time-
frame of two years at this age range.

Higher CBF and glucose metabolism in subjects at
risk of AD10,21,35,51 and subjects with subtle cognitive
decline52 have been reported previously. Typically, a
higher CBF is perceived as a positive finding, however
this notion might be challenged in the context of pre-
clinical AD. Several underlying pathological conditions
could provide a plausible explanation for the observed
higher CBF in APOEe4 carriers such as: impaired glu-
cose metabolism and uptake, characteristic of APOEe4
carriers;53 decreased capacity of erythrocytes to bind
oxygen, as observed in AD;54 increased blood transit
time and capillary dysfunction;24 endothelial dysfunc-
tion55 and altered water exchange rate in the blood-
brain barrier (BBB). BBB dysfunction56 and increased
permeability57 have been observed in APOEe4 carriers

prior to any cognitive symptomatology. Amongst these
plausible explanations, the capillary dysfunction
hypothesis suggests that increased heterogeneity in
the transit time of the blood leads to hemodynamic
dysregulation due to inefficient uptake of oxygen and
nutrients by the tissue.24 The increased perfusion in
APOEe4 carriers has also been attributed to the
build-up (and subsequent failure) of a neurovascular
compensatory mechanism to potentially account for
higher metabolic needs and allow the maintenance of
normal cognition.2,10,20 This mechanism could also
occur in relation to arterial stiffening which has been
observed in mid-aged APOEe4 carriers and is promi-
nent in MCI and AD.58

Associations between cognitive and hemodynamic
markers within the different groups were revealing
and in support of the hypothesis. Cross-sectionally,
higher baseline CVRi in the proximal ACA was con-
nected with lower performance in the verbal fluency
task in APOEe4 carriers with an opposing directional-
ity in non-carriers. Longitudinally, we have investigat-
ed how baseline hemodynamics related to cognitive
changes as well as how hemodynamic changes relate
to cognitive changes. Significant effects (positive direc-
tionality for APOEe4 carriers) were observed between
changes in immediate recall and baseline hemodynam-
ics (proximal ACA CBF), verbal fluency (proximal
PCA CVRi) and spatial memory (middle and proximal
PCA CVRi). When longitudinal hemodynamic changes
were investigated opposing effects were recorded for
the association of hemodynamic metrics and APOEe4
for the immediate recall (proximal and distal ACA,
distal MCA), delayed recall of name–face associations
(proximal and middle ACA and MCA) and verbal flu-
ency (proximal and distal ACA, proximal and middle
PCA, distal MCA). Out of these associations two sur-
vived FDR correction. Further exploratory analysis
revealed that in APOEe4 carriers, increases in CBF in
the PCA territory (typically perfusing the hippocampus
and parahippocampal gyrus), were associated with
improvements in verbal fluency. In APOEe4 carriers
increases in CBF in the ACA (perfusing areas such as
precuneus), were associated with worsening of the per-
formance in the delayed recall task, while the converse
association was observed for non-carriers. This obser-
vation is in line with previous studies, reporting nega-
tive associations between CBF and cognitive
performance in APOEe4 carriers35,36 and amyloid pos-
itive subjects in their 70s.59 Additionally, our findings
might further allude to regional vulnerabilities associ-
ated with the considered COGNITO tasks. The exam-
ined cognitive domains are known to be associated
with distinct brain regions. In particular, episodic
memory is connected with the MTL and hippocam-
pus,60 whereas semantic verbal fluency with the
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temporal cortex.61 Taken together, the observed inter-
actions could suggest that vascular compensation has
started failing for tasks linked to episodic memory,
whereas it is still compensating efficiently for verbal
fluency, a finding which could be considered in
tandem with reports of relative preservation of lan-
guage compared to other cognitive domains during
normal aging.62

Areas and cognitive domains known to be influ-
enced at the early stages of AD demonstrate differen-
tiated perfusion patterns and associations between
cognitive performance and hemodynamics in APOEe4
carriers compared to non-carriers. The earliest sites of
amyloid plaques accrual is usually the basal part of the
isocortex, with tau tangles first appearing in the trans-
entorhinal and perirhinal cortices, all of which are sup-
plied by the PCA and MCA.63,64 Here we observed
higher CBF in the MCA at baseline, especially in the
proximal area (covering partly the hippocampus, ento-
rhinal and perirhinal cortices and parahippocampal
gyrus). Higher CBF was also observed in the proximal
and middle ACA as well; areas covering amongst
others the precuneus and posterior cingulate. Both
areas are typically hypo-perfused in AD,10 with the
precuneus being one of the first sites to demonstrate
hemodynamic impairment either in the form of hypo-
perfusion approximately 17 years before the expected
disease onset,65 or hyper-perfusion approximately
25 years from the expected onset.21

The key strength of our study is the considered
cohort, which is relatively young and was followed lon-
gitudinally, allowing the joint observation of cross-
sectional differences and longitudinal associations
between cognitive performance and hemodynamics.
We chose to focus our analyses on regions that are
directly related to the underlying vascular supply to
unveil potential evidence of neurovascular dysregula-
tion. PVC allowed for the uncoupling of perfusion
alterations from structural changes and haematocrit
correction allowed to account for individual differences
in the relaxation time of the blood.66 Finally, the con-
sideration of blood pressure allowed us to evaluate sev-
eral aspects of cerebral hemodynamics. However,
several limitations were also present. The vascular ter-
ritories were defined based on a pre-existing atlas,
hence individual vascular anatomy was not taken into
account. An ASL technique such as vessel-encoded
ASL could allow for individual variations of the vas-
cular tree to be considered.67 Additionally, the utilised
single time-point ASL protocol did not allow for a
more detailed investigation of cerebral hemodynamics
or for the selective nulling of fast flowing (potentially
intravascular) spins,67 which could have given rise to
higher perfusion values. Future work will feature a
larger sample size (PREVENT-Dementia recruitment

target: 700) and investigation of further associations

between hemodynamics and well-established AD-

markers. Furthermore, pseudocontinuous ASL

sequences with higher signal-to-noise ratio and multi-

postlabeling delay acquisitions could provide further

insight on the underlying mechanisms giving rise to

the observed higher perfusion signal. Finally, given

emerging evidence of hemodynamic dysregulation and

BBB leakage in asymptomatic APOEe4 carriers at mid-

life, the association of the two factors warrants further

investigation in future studies.56,68

In conclusion, we found evidence of higher baseline

CBF in APOEe4 carriers and lower CVRi consistent

with the vascular compensation hypothesis. Contrary

to our hypothesis, longitudinal changes were similar

between the groups, suggesting that at this point in

the lifecourse, hemodynamic impairment is not accel-

erated. Cognitive performance was linked to underly-

ing hemodynamics in a diametrically opposed direction

in APOEe4 carriers and non-carriers, potentially sug-

gesting neurovascular dysregulation plays a part in

cognitive function. These initial findings from the

PREVENT-Dementia study suggest that longitudinal

investigation of hemodynamics in middle-aged subjects

at risk of AD using ASL has the potential to shed fur-

ther light on the cascade of pathophysiological altera-

tions during the preclinical stage of the disease.
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