Experimental Validation of Wave Induced Disturbances for Predictive Station Keeping of a Remotely Operated Vehicle

Kyle L. Walker\textsuperscript{1}, Student Member, IEEE, Roman Gabl\textsuperscript{2,3}, Simona Aracri\textsuperscript{2,3}, Yu Cao\textsuperscript{4}, Member, IEEE, Adam A. Stokes\textsuperscript{3}, Member, IEEE, Aristides Kiprakis\textsuperscript{5}, Senior Member, IEEE, Francesco Giorgio-Serchi\textsuperscript{6}

Abstract—Predictive control methods can substantially improve the performance of Unmanned Underwater Vehicles (UUVs), particularly in shallow water environments or near the free surface where wave induced disturbance are of magnitude comparable to the vehicle characteristic inertia. To facilitate the adoption of these methods, a fast estimation of the time evolution of hydrodynamic forces acting on a vehicle is required. To this end, we perform experiments in a wave tank with an ROV to validate the use of Linear Wave Theory (LWT) to capture the time history of surge, heave and pitch wave induced forces and moments. Validation is performed for various sea states, reconstructed with a mean correlation of 0.9138 in comparison to experimental measurements, displaying a maximum normalised mean error deviation of 0.16 between simulation and experimental data for pitch moment. The effectiveness of employing real-time wave disturbance forecasting for the purpose of anticipatory control is then assessed by incorporating the predicted loads within a Model Predictive Controller. Results display a mean RMS positional error reduction of 47.32\% in comparison to a standard PD controller. This presents evidence that accurate, near real-time predictions of the wave-generated forces and moments on an ROV can be produced, laying the foundation for developing model-based predictive control strategies that better suit operation in harsh environments.

Index Terms—ROV, experimental validation, hydrodynamic forces, underwater robotics, force estimation, shallow water.

I. INTRODUCTION

A current trend in the offshore energy industry is the shift towards fully autonomous operation, one aspect of which is the deployment of underwater vehicles for tasks such as inspection, maintenance and decommissioning of marine renewable energy devices [1], [2]. To reduce the overall operating costs of the plant, accurate sensor deployment and systematic maintenance must be undertaken in a cost-efficient manner through the adoption of relevant technologies [3]–[5]. The oil and gas industry has previously utilised Remotely Operated Vehicles (ROV) for the aforementioned tasks [6], however, they are often not equipped to operate in a more dynamic environment where marine renewable energy devices are commonly situated [7]. In comparison to a deep water scenario with negligible disturbances, performing tasks in these daunting conditions presents situations where strong currents are coupled with high wave energy, which can greatly influence the vehicle behaviour [8].

Evolving from remote to fully autonomous operation gives rise to the particular challenge of accurately estimating the vehicle dynamic response when subjected to external forces and moments, applied to the body by sources such as surface waves or ocean currents [9]. This is particularly necessary for shallow water applications, where the highly dynamic and nonlinear nature of the ocean environment makes it critical that safe station keeping can be performed to facilitate autonomous operation in close proximity to submerged structures [10]–[12]. When operating in waves, typical dynamic positioning control aims at filtering out the first order, short timescale component of the wave, while rejecting disturbances from the wave drift component alone [9]. However, for manipulation tasks or visual inspection at close-quarters, both precise positional and attitude control is required for effective station keeping, thus requiring active disturbance rejection of the oscillatory wave component. For this type of control task, classic position/velocity feedback control or even acceleration feedback cannot offer a satisfactory level of performance, especially when exposed to large amplitude, quickly varying disturbances [13]–[15]. This highlights the need for control strategies which incorporate estimation of the highly unsteady disturbance in an anticipatory fashion [16]–[18].

Fast prediction of fluid forces on submerged bodies is commonly performed via potential flow-based approximations. One such example broadly employed for bodies operating in waves is represented by Response Amplitude Operators (RAOs), which are used extensively for studying the force and motion response of complex geometries in the frequency domain [14]. Similarly, by approximating the body shape...
to elementary geometrical units and relying on suitable coefficients for the hydrodynamic parameters, Linear Wave Theory (LWT) can provide an estimate of local flow features, thus enabling a solution of the body dynamics in the time domain. While this approach has been employed extensively for design practice [19], it also lends itself to employment for control purposes due to its very limited computational cost. Nonetheless its usage in real-time disturbance prediction for the purpose of feed-forward control remains sparse and its real applicability uncertain. Following this approach, in this letter the external forces and torques induced by a dynamically changing sea state acting on an ROV are simulated and validated against data collected during an experimental study conducted at the FloWave Ocean Energy Research Facility, University of Edinburgh [20], [21]. These estimations are then implemented within a Model Predictive Controller to simulate a station keeping scenario, drawing performance comparisons with a PD controller. The results aim to demonstrate the degree of accuracy which can be achieved with a low-order model in capturing the vehicle dynamics in highly-perturbed, wave-dominated environments and through this, justify the employment of such models for the purpose of predictive control in such scenarios.

II. THEORETICAL MODELLING

This section details the underlying theory and approximations which are applied to obtain an estimate of the hydrodynamic forces acting on the vehicle due to the surface activity. The simulated scenario is modelled in conjunction with the parameters of the experiments detailed in Section III.

A. Vehicle Dynamics

The ROV is modelled as a rigid, neutrally buoyant body. The concerned Degrees of Freedom (DOF) are the surge, heave and pitch, as this work concerns 2D planar waves and the disturbances induced in the same plane. Using SNAME notation, the vehicle dynamics in these 3DOF (surge, heave and pitch) can be represented by:

\[
\begin{align*}
\dot{m}_d[\dot{u} + wq - x_Gq^2 + z_Gq] &= X_d\dot{u} + X_w(\dot{w} + uq) \\
&+ X_q\dot{q} + Z_wwq + Z_qq^2 + X_{u|u|}u|u| - (W - B)\sin \theta \\
&+ T_x \cos \theta + T_z \sin \theta
\end{align*}
\]

\[
\begin{align*}
\dot{m}_d[\dot{w} - uq + x_G\dot{q} + z_Gq^2] &= Z_d\dot{w} + X_w(\dot{u} - wq) \\
&+ Z_q\dot{q} - X_uuq - X_qq^2 + Z_{u|w|}w|w| + (W - B)\cos \theta \\
&+ T_x \cos \theta + T_z \sin \theta
\end{align*}
\]

\[
\begin{align*}
I_{yy}\dot{q} + m_d[z_G(\dot{u} + wq) - x_G(\dot{w} - uq)] &= X_d(\dot{u} + wq) \\
&+ Z_q(\dot{w} - uq) + M_q\dot{q} - X_w(u^2 - w^2) - (Z_{u|w|} - X_u)uw \\
&+ M_{q|q}q|q| + M_{u|w|}w|w| - B_{GZ}W \sin \theta + \delta T_z
\end{align*}
\]

where \( u \) and \( w \) represent the relative velocities between the local flow speed and the vehicle, such that:

\[
u = u_p - u_v, \quad w = w_p - w_v \]

where subscript \( p \) and \( v \) represent the fluid particle and vehicle velocity, respectively. Also, \( T, B_{GZ}, W, B \) and \( \delta \) are the thrust produced by the propellers, the vector between the centre of gravity and centre of buoyancy in the heave, the vehicle dry weight, the vehicle buoyancy and the moment arm to the vertical thrusters, respectively. The terms \( X_d, Z_d, X_{u|u|}, Z_{u|w|} \) represent the linear added mass and viscous damping coefficients, while \( M_q, M_{q|q} \) are the coefficient of rotational drag and added moment of inertia for the pitch. The restoring moment is also considered in the pitch dynamics. The physical parameters of the simulation and the BlueROV2 are displayed in Table I following data from [23], [24].

B. Wave-induced flow prediction

Estimation of \( u_p \) and \( w_p \) is based on LWT, according to which the time history of the sea elevation \( \eta(x,t) \) at a prescribed location can be represented as a composition of \( N \)

---

### TABLE I: BlueROV2 dimensions and hydrodynamic parameters utilised in the simulations; data based on [23], [24].

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Nomenclature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density of Seawater</td>
<td>( \rho )</td>
<td>1025 kg/m³</td>
</tr>
<tr>
<td>Dry Mass</td>
<td>( m_d )</td>
<td>11 kg</td>
</tr>
<tr>
<td>Vehicle Length</td>
<td>( l )</td>
<td>457 mm</td>
</tr>
<tr>
<td>Vehicle Width</td>
<td>( b )</td>
<td>338 mm</td>
</tr>
<tr>
<td>Vehicle Height</td>
<td>( h )</td>
<td>254 mm</td>
</tr>
<tr>
<td>Rotational Inertia, ( q )</td>
<td>( I_{yy} )</td>
<td>0.16 kgm²</td>
</tr>
<tr>
<td>Added Mass, ( x )</td>
<td>( X_d )</td>
<td>5.5 kg</td>
</tr>
<tr>
<td>Added Mass, ( z )</td>
<td>( Z_w )</td>
<td>14.57 kg</td>
</tr>
<tr>
<td>Added Mass, ( q )</td>
<td>( M_q )</td>
<td>0.12 kgm²/rad</td>
</tr>
<tr>
<td>Restoring Moment Arm, ( q )</td>
<td>( B_{GZ} )</td>
<td>0.02 m</td>
</tr>
<tr>
<td>Maximum Output Thrust</td>
<td>( T_{max} )</td>
<td>40 N</td>
</tr>
<tr>
<td>Thruster Angle, ( x )</td>
<td>( \alpha_1, \alpha_2, \alpha_3, \alpha_4 )</td>
<td>45°</td>
</tr>
</tbody>
</table>
monochromatic waves of known wave height, $H$, period, $T$, and phase offset, $\phi$, thus yielding:

$$\eta(x,t) = \sum_{i=1}^{N} \frac{H_i}{2} \cos(\omega_i t + \phi_i)$$  \hspace{1cm} (4)

where $k$, $\omega$ and $\lambda$ represent the wave number, the angular frequency and the wavelength.

Knowledge of these characteristics for each wave component facilitates the reconstruction of the local flow field in the whole domain [8]:

$$u_p(x,z,t) = \frac{\pi H_i}{T_i} \frac{\cosh(k(z + d))}{\sinh kd} \cos(\omega_i t + \phi_i)$$  \hspace{1cm} (5)

$$w_p(x,z,t) = \frac{\pi H_i}{T_i} \frac{\sinh(k(z + d))}{\sinh kd} \sin(\omega_i t + \phi_i)$$  \hspace{1cm} (6)

where $g$, $z$ and $d$ are the gravitational constant, operating depth of the vehicle and total depth of the water column respectively.

C. Wave-induced hydrodynamic loads prediction

Estimation of quadratic drag and inertial fluid forces on the vehicle is straightforward, as the forces are considered as a simple superposition [9]. However, computation of the moment exerted by the wave on the vehicle requires an ad-hoc treatment, since it requires consideration of force variation over the body. In consideration of the need for fast prediction, a low-order integration of the hydrodynamic forces over the sagittal plane of the vehicle is employed. Whilst this approach stretches the validity of slender-body theory in the case of an ROV, it enables a degree of prediction within a time frame suitable for real-time control.

Having defined $x'$ and $z'$ the body-fixed coordinates of the vehicle, we refer to $v_t$ and $v_n$ as the flow velocity components tangential and normal to the vehicle, computed by projection of $\dot{v}_t$ and $\dot{v}_n$ along the local coordinates, see Fig. 2. This allows us to predict the local Morrison force exerted on the infinitesimal section of the vehicle’s $x'$ axis as:

$$F(x', t) = \rho V \ddot{v}_n(x', t) + \rho C_a V \dot{v}_n(x', t)$$

$$+ \frac{1}{2} \rho C_d A_i \dot{v}_n(x', t)|v_n(x', t)|$$  \hspace{1cm} (7)

where $V$ is the spanwise volume of the section, $C_a$ is the added mass coefficient, $C_d$ is the drag coefficient and $A_i$ is the section incident area to the flow. The above correlates with Eq. 3 such that the resulting moment can be expressed as the integral along $x'$, producing:

$$M_{q\dot{q}} = \frac{1}{2} \int F(x', t)x'dx'$$  \hspace{1cm} (8)

where $L$ is the vehicle longitudinal length. This methodology presents a basis for theoretically evaluating the resulting moment due to an non-constant flow arising from fluctuations at the sea surface. For the pitching of the vehicle, only the normal force acting on the vehicles local heave plane was considered to be sufficiently contributing to this motion.

D. Thrust Allocation

The BlueROV2 features six vectored thrusters, 4 horizontal and 2 vertical and is controllable in 5 DOF, the pitch being the only uncontrollable plane, see Fig. 4. If we consider the bilinear model, $\tau = B\mu$, where $B$ is an allocation matrix and $\mu$ is a vector of control inputs, the applied forces and moments from the thrusters can be deduced from their specifications and geometries in the vehicles local co-ordinate frame [9]. As the surge and heave are the two controllable planes in this letter, the vector of output thrusts is summarised as:

$$\tau = \begin{bmatrix} T_x \\ T_z \end{bmatrix} = \frac{T_{max}}{m_d} \begin{bmatrix} c_1 & c_2 & c_3 & c_4 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix} \mu$$

where $c$ is shorthand for $\cos$, the angles $\alpha_1 - \alpha_4$ are the horizontal thruster orientation with respect to the vehicles local $x$-axis and $\mu = \{\mu_1, \mu_2, \mu_3, \mu_4, \mu_5, \mu_6\}^T$. This model can be implemented within the simulation for evaluating the station keeping performance of different control architectures.
III. EXPERIMENTAL PROCEDURE

To facilitate the validation of the estimated hydrodynamic forces, experimental data was collected during an investigation undertaken at the FloWave facility at the University of Edinburgh. The vehicle utilised in this work was the BlueROV2 produced by Blue Robotics, a small scale ROV who’s physical and hydrodynamic parameters are displayed in Table I [23], [24].

The BlueROV2 was restrained within a purpose-built frame by eight tethers to minimise interference of the supporting structure with the flow around the ROV. Each tether was fitted with an in-line load cell to measure the force exerted on the body by the wave, as shown schematically in Fig. 3. The upper volume of the wave tank has a total depth of 2m and a diameter of 25m, with the vehicle situated in the centre at 1m depth for all experiments performed. The vehicle was subjected to varying degrees and formations of wave disturbances created by the surrounding wave makers and the force acting on the vehicle was monitored, as well as the very small motions in 6DOF, evaluated based on a Qualisys underwater motion capturing system. The disturbances are generated by specifying the parameters of the frequency spectrum, which are then transformed into a wave height time-history; this is transferred to the wave-makers, resulting in movement to produce the desired waveform. The test case conditions are listed with assigned case references in Table II. The load cells measure the inline force vector, which can be decomposed into the individual 3-dimensional force and moment components by considering the geometrical arrangement of the apparatus. The force vector orientation was determined based on two points (one on the frame and a virtual one calculated based on the rigid body of the ROV), measured with the underwater motion capturing system to an accuracy within the range of 1 mm. This processed data [28] can be used for validation against the estimated forces presented in this work. Each load cell is assigned a number for ease of analysis, ranging from LC1 up to LC8, shown in the experimental apparatus in Fig. 3. Further information regarding the collected data, processing of the data and the full experimental procedure can be found in [26].

Within the simulations, it was assumed that the vehicle remained perfectly stationary and the oncoming wave was assumed to be a perfect head sea. When the waves are generated in the FloWave Facility, a wave-height time history is first created by the software and then passed to the wave makers. It was possible to extract this time history for all of the experiments; therefore, Fourier analysis could be used to obtain the frequency components and their attributes ($H$, $T$ and $\phi$) to reconstruct each case in simulation, by applying the theory detailed in Section II-B. The simulations were per-

![Fig. 3: Experimental set-up used for collecting data, visualising the position of the load cells with their respective assignments and how the vehicle was restrained within the frame, with reference to the Still Water Line (SWL). Fig. 3a shows an image of the actual apparatus within FloWave (raised tank floor) and Fig. 3b schematically describes the arrangement, with the load cell number assignments shown.](image)

![Fig. 4: Comparison of the ideal JONSWAP spectrum’s sent to the wave-makers during the experiments and the reconstructed wave spectrum. Limitations of the wave-makers restricts the frequency to the range 0.2 - 2Hz.](image)
formed by implementing a fifth-order Runge-Kutta integration 
\cite{27} to solve the differential equations presented in Section 
\[1\] each case was ran for a total of 300s and compared with 
the corresponding data from the experiments. The complete 
processed dataset for the conducted experiments is available 
via the DataShare of the University of Edinburgh \cite{28}.

IV. RESULTS

By comparing the measurements with the experimental data 
for the surge force, heave force and pitching moment (based on 
the previous observations) an impression of how realistic the 
simulation is can be attained. For all cases, the sea state created 
by the wave makers was emulated; for the irregular cases, 
Fourier analysis was utilised to identify the JONSWAP fre-
quency components as previously mentioned. The frequency 
spectrum of the reconstructed waves in comparison to the 
ideal spectrum are shown in Fig. 4, showing an excellent 
representation in the frequency domain.

From these frequency components, the sea state was recon-
structed and the hydrodynamic forces estimated according to 
LWT; a section of the time histories for the fully developed 
wave in cases R02 and JS01-JS03 are depicted in Fig. 5-8. 
These show good correlation between the estimations and the 
experimentally collected data, demonstrating that the lower 
order model can provide a fair representation of the particle 
motions and resulting forces induced by surface waves. It 
should be noted that a Savitzky-Golay filter was applied to the 
experimental data to smooth the signal and reduce the amount 
of sensor noise; however, all plots still show some effect of 
noise on the resulting trace. This is mainly due to 2 of the load 
cells being rated higher, causing low magnitude wave eleva-
tions to be affected by a higher degree of background sensor 
fluctuation \cite{26}. There may also be components operating at a 
frequency similar to that of the wave associated with the frame 
and measurement gauges, which are difficult to segregate from 
the force signal. Furthermore, the motion capturing system 
documented very small rotations and translations, which are 
not reproduced in the LWT approach due to the assumption 
of a perfect still geometry. However, the overall behaviour can 
still be seen as consistent, particularly for case JS03 where the

Fig. 5: Comparison between simulation and experimental data 
for case R02, showing the time segment 50s - 70s. The sub-
plots display the (a) wave height, (b) surge force, (c) heave 
force and (d) pitching moment.

Fig. 6: Comparison between simulation and experimental data 
for case JS01, showing the time segment 50s - 70s. The sub-
plots display the (a) wave height, (b) surge force, (c) heave 
force and (d) pitching moment.

Fig. 7: Comparison between simulation and experimental data 
for case JS02, showing the time segment 50s - 70s. The sub-
plots display the (a) wave height, (b) surge force, (c) heave 
force and (d) pitching moment.

Fig. 8: Comparison between simulation and experimental data 
for case JS03, showing the time segment 50s - 70s. The sub-
plots display the (a) wave height, (b) surge force, (c) heave 
force and (d) pitching moment.
Fig. 9: Boxplot distribution comparing the simulated data to the experimentally collected data. The plots display the median, the interquartile range (IQR), outliers (points which fall ≥ 1.5x IQR above the third quartile or below the first quartile, individually marked by a ‘+’) and whiskers extending to the most extreme data points not considered outliers by mathematical definition.

Further analysis was conducted regarding the statistical similarity between the simulated data and the experimental data. The data is graphically represented in Fig. 9, which again demonstrates that the distribution of the data matches well for all cases. For the four variables considered here (wave height, surge/heave force and pitching moment), the correlation factors were also obtained to offer some quantitative insight into the simulation/experiment comparison, listed in Table III. This additional analysis presents insight into the deviation of the estimated forces with reference to the real-world case.

Finally, to demonstrate the applicability of the force estimation, we conclude our results with a station keeping performance comparison between a classic PD control and Model Predictive Control (MPC); the key parameters associated with both controllers can be found in Table IV, where the MPC objective is to minimise a cost function as in [17]. This analysis concerned cases JS01-JS03, where the vehicle was subjected to the surface waves and the controller attempted to hold the vehicle position at (0, −1) m, mimicking the experimental conditions; the simulations were ran for 300s, see Fig. 11 which depicts an example for case JS03 (showing only 0-60s for clarity), providing clear evidence that inclusion of disturbance estimations greatly improves the vehicles station keeping ability. Across all cases there was a mean reduction in Root Mean Squared (RMS) error of 47.32%, with the explicit RMS errors shown in Fig. 12.

V. DISCUSSION

Upon reflection of the results detailed in Section IV, it is shown that the modelled theory accurately represents the hydrodynamic forces under varying conditions. These results show that LWT is capable of closely matching a wave profile consistent with a complex wave series, such as that produced by the wave makers. With reference to Fig. 9, the moment value, Fig. 9(c), displays the largest deviation in range between

<table>
<thead>
<tr>
<th>Variable</th>
<th>Case</th>
<th>R01</th>
<th>R02</th>
<th>R03</th>
<th>JS01</th>
<th>JS02</th>
<th>JS03</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\eta$</td>
<td></td>
<td>0.9671</td>
<td>0.9423</td>
<td>0.8484</td>
<td>0.9403</td>
<td>0.9259</td>
<td>0.8585</td>
</tr>
<tr>
<td>$F_x$</td>
<td></td>
<td>0.925</td>
<td>0.9811</td>
<td>0.7207</td>
<td>0.9349</td>
<td>0.9661</td>
<td>0.9459</td>
</tr>
<tr>
<td>$F_z$</td>
<td></td>
<td>0.9205</td>
<td>0.9882</td>
<td>0.6567</td>
<td>0.9688</td>
<td>0.9707</td>
<td>0.9317</td>
</tr>
<tr>
<td>$M_\theta$</td>
<td></td>
<td>0.8728</td>
<td>0.8796</td>
<td>0.4570</td>
<td>0.6571</td>
<td>0.7637</td>
<td>0.6402</td>
</tr>
</tbody>
</table>

TABLE IV: Controller parameters for the PD and MPC controllers utilised for comparing station keeping performance, exclusive and inclusive of disturbance prediction.

<table>
<thead>
<tr>
<th>Controller</th>
<th>Parameter</th>
<th>Nomenclature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PD</td>
<td>Proportional Gain</td>
<td>$K_{P,x}$, $K_{P,z}$</td>
<td>1.4, 1.8</td>
</tr>
<tr>
<td></td>
<td>Derivative Gain</td>
<td>$K_{D,x}$, $K_{D,z}$</td>
<td>2.7, 3.2</td>
</tr>
<tr>
<td>MPC</td>
<td>Prediction Horizon</td>
<td>$\Delta t$</td>
<td>0.8s</td>
</tr>
<tr>
<td></td>
<td>Prediction Steps</td>
<td>$\Delta t$</td>
<td>4</td>
</tr>
</tbody>
</table>

Fig. 10: Normalised mean error magnitude for each case, relative to the maximum force recorded throughout the duration of the case relative to the significant height of the wave train.
the datasets, which correlates with the results displayed in Fig. 10; this suggests that the angular torques feature higher uncertainty. Due to the error analysis being a timewise point-to-point comparison, there will be occasions where the lower-order model and the experimental data largely differ, which will produce a larger error range, as demonstrated in Fig. 10. However, the overall model output closely follows the unsteady behaviour of the systems with remarkable accuracy, with the majority of the data falling within a small normalised error range. It can also be seen that the mean error is slightly positive, which could indicate some experimental errors, supported by a slight constant y-offset witnessed in Fig. 5, particularly Fig. 5(b). For all cases, the normalised mean error recorded is < 0.35 showing that the model is a fair general representation of the wave induced forces and moments. This is supported by the correlation factors listed in Table III, which are close to 1 for all parameters across the majority of cases.

One factor which contributes to the error is the assumption that the vehicle is held perfectly stationary and oriented perfectly head-on to the oncoming wave. However, unwanted small-scale displacements of the vehicle during the experiments were inevitable, yielding an unavoidable mismatch with the simulated case-scenario. Additionally, within the simulation only the forces arising from the added mass and viscous damping effects are considered and other forces, such as the Froude-Krylov force for example, are disregarded.

Considering the apparatus, the restraining cables were chosen as inextensible, lightweight Dyneema rope, however, there will still be some effect on the recorded moment due to the vehicle not being held perfectly stationary. Additionally, it’s possible that imperfect pre-tensioning or momentaneous misalignment of the supporting rig will cause discrepancies, as these could allow room for some unwanted small angular motions. This could be the reason that the comparison of recorded and simulated moments in Fig. 5(d)−5(d) do not match as closely as the linear forces, but the overall behaviour exhibited still shows good consistency. This could also account for the offset witnessed in the recorded moment, which appears to be shifted slightly for all cases tested. A clear factor effecting the correlation is that the emulated wave is not an identical match to the wave generated by the wave makers; the experimental case will feature imperfections and this will therefore cause deviations before any approximations are even considered. Limitations of LWT make it applicable only under various assumptions, such as the wave steepness \( H/\lambda \) remaining small and the sea floor having negligible impact on the sinusoidal nature of the wave. While these are satisfied for the cases tested and for a broad range of real-world scenarios, the validity of these assumptions will be stretched for waves which diverge from a pure swell [22].

Looking at the improved performance using MPC, there is a substantial reduction in RMS error for all tested cases; 18.58% for \( H_s = 0.2m \), 59.92% for \( H_s = 0.4m \) and 63.46% for \( H_s = 0.6m \) which was the largest significant wave height tested. Although promising, these results were achieved when assuming full knowledge of the wave spectrum at the vehicles location had been achieved through the prediction algorithm. Also, the thrust delivered was assumed to not suffer from any time delay, analogous to [17], while it can be expected that even small time lag in the thrust response signal can significantly affect controller performance [15].

With reference to the above, the estimated forces validated in this letter present a good approximation in comparison to those measured during the experiments. These estimations provide an understanding of the dynamic response of the vehicle subject to surface wave disturbances, and were shown to improve performance when incorporated into controller design, specifically for tasks such as station keeping in harsh environments. Furthermore, the model not only captures the complex dynamics with good accuracy but computes the hydrodynamic forces at a speed applicable for real-time applications (a 20s time history is analysed in ≈ 5s using MATLAB on a laptop with a 1.6GHz Dual-Core Intel Core i5 processor), strengthening the case for use in dynamic control applications.
VI. CONCLUSION

This letter presents experimental validation of the estimation of hydrodynamic forces acting on an ROV under regular and irregular waves of different significant heights. The resulting estimations have been subject to both qualitative and quantitative analysis, which has shown that the employed low-order model provides a good degree of accuracy at very limited computation cost. With reference to the irregular wave states tested, the wave elevation was consistently captured with a mean correlation factor of $\approx 0.9$, while the associated surge and heave forces were predicted with a mean correlation factor of 0.95 and 0.96 respectively. The model accurately forecasts the variation of these linear forces throughout the experiments, closely matching their spreading over the median and interquartile range, predicting the measured signal with a normalised mean error smaller than 0.17, see Fig. [10]; Prediction of the hydrodynamic pitching moment, despite requiring a coarse piecewise integration, correlated with the measured data with a 0.69 factor when averaged over the irregular cases. The normalised mean error between experiment and model fell below 0.34, and fell below 0.14 for the largest significant wave height tested. The model can also be executed at a speed which suggests it is applicable for real-time applications. These results give great confidence that low-order models can be deployed as predictive tools for both positional and attitude control; to prove this, the estimates from the model were incorporated within a predictive control architecture, ultimately showing station keeping performance was improved between 18 and 63 % across different sea states when compared to a typical PD controller.

While significant improvements are essential to successfully employ predictive control tools in real-world applications, these results constitute a solid foundation upon which the challenge of autonomous operation in harsh ocean environments can be addressed.

REFERENCES