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Dispersive shock waves in nematic liquid crystals

Noel F. Smytha,∗

aSchool of Mathematics, University of Edinburgh,

Edinburgh EH9 3FD, Scotland, U.K.

Abstract

The propagation of coherent light with an initial step intensity profile in a nematic liquid
crystal is studied using modulation theory. The propagation of light in a nematic liquid
crystal is governed by a coupled system consisting of a nonlinear Schrödinger equation for
the light beam and an elliptic equation for the medium response. In general, the intensity
step breaks up into a dispersive shock wave, or undular bore, and an expansion fan. In
the experimental parameter regime for which the nematic response is highly nonlocal,
this nematic bore is found to differ substantially from the standard defocusing nonlinear
Schrödinger equation structure due to the effect of the nonlocality of the nematic medium.
It is found that the undular bore is of Korteweg-de Vries equation-type, consisting of
bright waves, rather than of nonlinear Schrödinger equation-type, consisting of dark
waves. In addition, ahead of this Korteweg-de Vries bore there can be a uniform wavetrain
with a short front which brings the solution down to the initial level ahead. It is found
that this uniform wavetrain does not exist if the initial jump is below a critical value.
Analytical solutions for the various parts of the nematic bore are found, with emphasis
on the role of the nonlocality of the nematic medium in shaping this structure. Excellent
agreement between full numerical solutions of the governing nematicon equations and
these analytical solutions is found.

Keywords: Modulation theory; Dispersive shock wave; Undular bore; Liquid crystals;
Nematicon

1. Introduction

Solitary waves, or solitons for integrable equations, are thought of as the defining so-
lution of many nonlinear wave equations, such as the Korteweg-de Vries (KdV) equation,
the nonlinear Schrödinger (NLS) equation and the Sine-Gordon equation [1]. However,
such equations also possess a generic solution which is just as characteristic as the soliton
solution, which arises in many applications and is just as widely observed. This solution
is the undular bore, or dispersive shock wave. The term undular bore arises from their
first observation as wave structures in fluids and as this is the first name applied, it will
be used in this work, rather than the term dispersive shock wave. For nonlinear waves
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governed by dispersive equations, undular bores arise when an initial jump, or near jump,
linking two levels is smoothed by the action of dispersion, resulting in a smooth wave-
train linking these two levels. The generic structure of an undular bore is that it has one
edge consisting of solitary waves with the opposite edge consisting of linear, dispersive
waves. An undular bore is the dispersive equivalent of a gas dynamic shock, for which
viscous effects smooth out the jump [1], as opposed to the dispersive effects smoothing
out an undular bore. For this reason, an undular bore is also termed a dispersive shock
wave. An undular bore is a non-steady wavetrain which continually expands in length.
It should be noted that there is another, steady bore arising in water wave theory, a
viscous bore [1, 2]. This bore is steady due to the effect of viscosity. This work will deal
with undular bores in a nonlinear optical system, for which there is no equivalent of fluid
viscosity. Therefore, the bores dealt with in the present work are all undular bores.

As a viscous bore is steady, it is relatively straightforward to obtain a solution for it
[3]. The unsteady nature of an undular bore made finding a solution for it more difficult.
Whitham [1, 4–6] developed modulation theory, or the method of averaged Lagrangians,
as a method to analyse dispersive wavetrains slowly varying in both space and time.
This method is related to the method of multiple scales in perturbation theory [7]. In
particular, Whitham derived the modulation equations for the KdV equation [1, 5]. As
the periodic (cnoidal) wave solutions of the KdV equation are stable, these modulation
equations form a hyperbolic system for the parameters of the modulated cnoidal wave.
Furthermore, these modulation equations could be set in Riemann invariant form. It
was subsequently realised that a simple wave solution of these hyperbolic modulation
equations corresponds to an undular bore solution of the KdV equation [8, 9]. A major
advance occurred when it was shown using functional analysis that the ability to set
the modulation equations for the KdV equation in Riemann invariant form was linked
to the KdV equation having an inverse scattering solution [10], which meant that it
was then clear how to calculate the modulation equations for other nonlinear dispersive
wave equations having an inverse scattering solution. As few nonlinear dispersive wave
equations have an inverse scattering solution, the utility of using Whitham modulation
theory to find undular bore solutions of nonlinear dispersive wave equations was greatly
extended when a method was found to determine the leading and trailing edges of an
undular bore in the absence of the full modulation equations and for equations for which
there is no inverse scattering solution to enable the modulation equations to be found
using standard techniques [11, 12]. Bore solutions for a variety of nonlinear dispersive
equations have now found use in a wide range of physical applications, for example water
waves [13–15], oceanography [16], meteorology [17–19], geophysics [20–23] and nonlinear
optics [24–28].

The present work is concerned with determining the undular bore solution for the
equations governing a specific class of nonlinear optical media, the nematic liquid crys-
tal [29–31] in the defocusing regime [32] for the usual experimental parameter range.
Nematic liquid crystals are a nonlinear optical medium which support solitary waves
[30, 31, 33], termed nematicons. They are usually a focussing medium, so that the
nematicons are bright waves and the resulting modulation equations for the nematic
equations are elliptic and so do not have an undular bore solution. However, nematic
liquid crystals can be made defocusing through the addition of azo-dyes [32]. The orig-
inal applications of undular bores were in fluid mechanics and water waves, hence their
name, but they have recently found extensive application in nonlinear optics. Both ex-
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perimental and numerical investigations have shown that undular bores can be generated
in thermal nonlinear optical media [34–37] and nonlinear crystals [38, 39], among other
defocusing nonlinear optical media. As these undular bores form in defocusing media, the
bores are dark bores, that is dips in a background carrier wave. Nematic liquid crystals
are termed nonlocal media as in the usual experimental regime the elastic response of
the nematic to an optical beam extends far beyond the beam [30, 31]. While structures
with some resemblance to undular bores can form in focussing nonlinear optical media
[34, 39], such as nematic liquid crystals, and some approximate analytical theory has
been developed for these [40, 41], there has been no theory developed for undular bores
in defocusing nonlinear, nonlocal media, such as nematic liquid crystals and thermal
media, which is valid for experimental parameter ranges. In this context the equations
governing nonlinear beams in defocusing thermal nonlinear media [34–37] are the same
as those governing nonlinear beams in defocusing nematic liquid crystals [30, 31]. In the
so-called local limit the equations for optical beams in a nematic liquid crystal reduce to
the standard NLS equation, for which there is an known undular bore solution [42], but,
as stated, this is not the usual experimental regime.

In the present work, the undular bore solution for the equations governing nonlinear
optical beam propagation in a defocusing nematic liquid crystal will be developed. It
is found that the undular bore is of KdV-type, even though the equation governing the
electric field of the light beam is of NLS-type. The bore then consists of bright waves,
rises above a background level, rather than the dark waves, dips in a background level, of
a defocusing NLS bore [42]. The method of El [11, 12] is used to show the non-existence of
an NLS-type bore in the nonlocal limit. For an initial light intensity jump above a critical
height, ahead of the KdV bore is a uniform wavetrain with a short front which brings
the solution down to the initial level ahead. This wavetrain is generated by a phase mis-
match between the KdV bore and the initial state. A phase and group velocity argument
is used to find the leading and trailing edges of this uniform wavetrain. This argument
predicts a minimum jump height for the uniform wavetrain to exist, which is confirmed
by numerical solutions. Outside of the KdV bore and uniform wavetrain regions, the
solution is given by the non-dispersive limit of the nematic equations. These various
parts of the analytical solution for the nematic bore are compared with full numerical
solutions of the governing equations and good to excellent agreement is found, depending
on the initial jump height.

Previous experimental [34] and numerical [34–37] studies of undular bores in defo-
cusing nonlinear, nonlocal thermal media were for O(1) or O(10) values of the nonlocal-
ity parameter, and so were not in the highly nonlocal regime typical of nematic liquid
crystals for which the nonlocality parameter is O(100), and were generated by gradient
catastrophes of finite initial conditions. True undular bores cannot be generated from a
finite initial condition as true bores require the continual generation of waves as the bore
spreads. Breaking finite initial conditions give an approximation to an undular bore for
finite propagation distances as the inverse scattering solution of the NLS equation, both
focussing and defocusing, shows that a finite initial condition generates a finite number of
solitons plus dispersive radiation [1]. However, some of these experimental and numerical
results show evidence of the KdV-bore type structure found in the present work [34, 36],
as will be discussed in more detail below.
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2. Dark nematicon equations

Let us consider the propagation of polarised coherent light through a cell filled with
a nematic liquid crystal. The light is taken to propagate in the z direction and the x
direction is taken as the direction of polarisation of the electric field of the light. The
light beam is taken to be (1 + 1) dimensional, which is a valid approximation for light
in a nematic liquid crystal cell due to the widely different aspect ratios of the cell in the
directions transverse to propagation [44]. To overcome the optical Freédericksz threshold
[29], an external low frequency electric field is applied in the polarisation direction to
pre-tilt the nematic molecules [33]. With this pre-tilting field, optical solitary waves
in the nematic liquid crystal, termed nematicons [30, 31], and other nonlinear optical
waves can be formed with milliwatt power beams. If the beam power is high, undesirable
physical effects can occur, even to the extent of the nematic phase becoming unstable [33].
Nematic liquid crystals usually form a focussing medium, so that they support bright
optical solitary waves, bright nematicons [30, 31]. However, a nematic liquid crystal can
become a defocusing medium through the addition of azo-dyes [32], so that dark optical
solitary waves, dark nematicons, can be supported. In the paraxial, slowly varying
envelope approximation, the non-dimensional equations governing the propagation of
the optical beam through the defocusing nematic liquid crystal are [30–32, 45]

i
∂u

∂z
+

1

2

∂2u

∂x2
− 2θu = 0, (1)

ν
∂2θ

∂x2
− 2qθ = −2|u|2. (2)

Here, u is the complex valued envelope of the electric field of the light and θ is the extra
rotation of the nematic molecules from their pre-tilt value due to the light beam. The
parameter ν measures the elasticity of the nematic and is usually large, O(100) [43]. The
parameter q is proportional to the square of the pre-tilting electric field [30–32, 43, 45].
The defocusing nematic equations then consist of an NLS-type equation (1) for the
electric field of the light beam and an elliptic equation (2) for the nematic response.
While these equations have been introduced in the context of the nonlinear optics of
nematic liquid crystals, they apply to a diverse range of optical applications. They also
apply to optical beam propagation in nonlinear thermal media [34, 37, 46], such as lead
glasses [47–49], and certain photorefractive crystals [50]. In general, a system of equations
similar to the nematic equations applies to optical beam propagation in any medium
for which the nonlinear response is accompanied by some diffusive mechanism [51]. In
addition, equations similar to (1) and (2) arise in certain models of fluid turbulence
[52, 53] and in quantum gravity as the Schrödinger-Newton equations [54].

Since the electric field equation (1) is a defocusing NLS-type equation, it possesses
undular bore, or dispersive shock wave, solutions [42]. The simplest initial condition
which will generate an undular bore is a discontinuous jump in the electric field intensity
between two values, as for the classic undular bore solution of the KdV equation [8, 9],

u(x, 0) =

{

u3, x < 0
u1, x > 0

, (3)

where u3 > u1 ≥ 0. The director equation (2) shows that the consistent initial condition
4
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Figure 1: (Color online) Comparison between numerical solution of dark nematicon equations (1) and
(2) and theoretical solution for initial jump condition (3). The lower curves are θ and the upper curves
are |u|. Initial condition for |u|: red (solid) line; initial condition for θ: green (long dash) line; numerical
solution for |u| at z = 300: blue (short dashed) line; numerical solution for θ at z = 300: pink (dotted)
line; theoretical solution: black (dot-dot-dash) line. KdV bore and uniform wavetrain limits: light blue
(dot-dash) line. The parameter values are u3 = 1.0, u1 = 0.5, ν = 200 and q = 2.

for the director is

θ(x, 0) =

{

u2

3

q , x < 0
u2

1

q , x > 0
. (4)

3. Undular bore theory

A typical numerical solution of the nematic equations (1) and (2) for the initial
condition (3) for an experimental value of ν is shown in Figure 1. It can be seen that
the two initial levels are linked by a backward expanding expansion wave to the level u3,
a flat shelf with a modulated wavetrain on it which resembles a KdV bore and, lastly, a
nearly uniform wavetrain bringing the solution back to u = u1. Except for the wavetrain
region, the spatial derivatives of u and θ are small and so the solution is non-dispersive
in these regions. This structure is similar to that for the defocusing NLS undular bore
[42]. Indeed, the nematic equations (1) and (2) reduce to the defocusing NLS equation in
the limit ν → 0. However, experimental values of ν are large, O(100) [43]. While outside
the wavetrain region the derivatives of u and θ are small, it should be noted that the
derivative θxx in the director equation (2) is multiplied by the large quantity ν, which
could mean that νθxx is O(1). This is not the case for large z as it will be shown below
that, apart from the wavetrain region, θxx = O(z−2) for large z, so the neglect of νθxx
outside the dispersive wave region is valid in this limit. The structure of the undular
bore is very different in the limits ν → 0 and ν large, as can be seen on comparing the
solution for ν = 200 shown in Figure 1 with the solution for ν = 0.1 shown in Figure
2. The solutions for the two values of ν are similar away from the bore, which will be
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taken up below. However, the bore for large ν has a lead wavetrain consisting of waves of
nearly equal amplitude with a small front which brings the solution down to the initial
level u1, together with bright waves on the shelf linking the levels ahead and behind the
bore. The solution in the non-dispersive regions are easiest to determine and will be
taken up first.

The structure of the bore in the local (ν small) and nonlocal (ν large) regimes is then
distinct, with a key difference being the KdV-type bore wavetrain on the intermediate
shelf. Previous experimental work on two dimensional radially symmetric undular bores
in thermal nonlinear optical media [34] shows evidence of this KdV-type bore, see Figure
5 of this work, as do numerical solutions of the governing equations, which are the
same as the nematic equations (1) and (2), for an O(1) nonlocality parameter [34], see
Figure 4 of this work. Furthermore, other numerical solutions of the equations governing
optical beam propagation in a thermal nonlinear medium [36] show structures similar
to the undular bore solution of Figure 1 for an O(1) nonlocality, see Figure 11 of this
work. These numerical solutions show a KdV-type bore preceded by a nearly uniform
wavetrain. However, the solutions were generated from a finite initial condition via a
gradient catastrophe. Such finite initial conditions will not generate true undular bores,
but only approximations to such for low values of z, due to the finite initial condition
being unable to continually generate waves as the bore spreads, as is possible for the
initial step (3) due to it being non-zero as x → −∞.

To determine the solution in these non-dispersive regions the Madelung transforma-
tion [42]

u =
√
ρeiφ, v = φx (5)

is used to separate the dispersive and non-dispersive portions of the electric field equation
(1). Using this transformation, the nematic equations (1) and (2) become

∂ρ

∂z
+

∂

∂x
(ρv) = 0, (6)

∂v

∂z
+ v

∂v

∂x
+ 2

∂θ

∂x
− ∂

∂x

(

ρxx
4ρ

− ρ2x
8ρ2

)

= 0, (7)

ν
∂2θ

∂x2
− 2qθ = −2ρ, (8)

which is termed the hydrodynamic form of the nematic equations [11, 42] due to the
similarity of these equations with those for shallow water waves and compressible gas
dynamics [1].

It can be seen from Figure 1 that away from the bore, the derivative of θ is small, as
discussed above. Hence, away from the bore, the solution of the nematic equations (1)
and (2) for the initial condition (3) is governed by the hyperbolic dispersionless equations

∂ρ

∂z
+

∂

∂x
(ρv) = 0, (9)

∂v

∂z
+ v

∂v

∂x
+ 2

∂θ

∂x
= 0, (10)

θ =
ρ

q
. (11)
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Figure 2: (Color online) Numerical solution of dark nematicon equations (1) and (2) for initial jump
condition (3). The lower curve is θ and the upper curve is |u|. Initial condition for |u|: red (solid)
line; initial condition for θ: green (long dash) line; numerical solution for |u| at z = 300: blue (short
dash) line; numerical solution for θ at z = 300: pink (dotted) line. The parameter values are u3 = 1.0,
u1 = 0.5, ν = 0.1 and q = 2.

In Riemann invariant form, these equations are

v +
2
√
2√
q

√
ρ = constant on C+ :

dx

dz
= V+ = v +

√
2√
q

√
ρ (12)

v − 2
√
2√
q

√
ρ = constant on C− :

dx

dz
= V− = v −

√
2√
q

√
ρ, (13)

with θ given by (11). These dispersionless equations applying outside the bore region
are a scaled version of those for the standard NLS equation [27, 42]. Hence, the solution
of the nematic equations (1) and (2) outside the bore region will be the same as that for
the NLS equation outside the undular bore region.

The simplest solution of the dispersionless equations corresponds to the dam break
problem of shallow water wave theory [1], for which u1 = 0. The Riemann invariant form
(12) and (13) gives the simple wave solution

|u| = √
ρ =















u3,
x
z < −

√
2u3√
q

√
q

3
√
2

(

2
√
2u3√
q − x

z

)

, −
√
2u3√
q ≤ x

z ≤ 2
√
2u3√
q

0, 2
√
2u3√
q < x

z .

(14)

and

v =















0, x
z < −

√
2u3√
q

2
√
2u3

3
√
q + 2x

3z , −
√
2u3√
q ≤ x

z ≤ 2
√
2u3√
q

2
√
2u3√
q , 2

√
2u3√
q < x

z

(15)
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generated on the C− characteristics for this case. The solution of the nematic equations
(1) and (2) for the initial condition (3) is now complete for this simple dam break case
since, as for the defocusing NLS equation [42], no undular bore is generated, correspond-
ing to no shock (hydraulic jump) being generated for the dam break problem [1], as well
as no uniform wavetrain of the form seen in Figure 1 being generated. This solution will
be compared with full numerical solutions of the nematic equations (1) and (2) in the
next section.

When the level ahead u1 is non-zero, then as well as the simple wave on the character-
istics C−, there is an upstream propagating undular bore and an upstream propagating
uniform wavetrain if the jump height is large enough. The simple wave is separated from
the upstream level by a shelf of height u2 =

√
ρ2, so that u = u2e

iv2x on the shelf. The
Riemann invariant form (12) and (13) gives the simple wave solution

|u| = √
ρ =















u3,
x
z < −

√
2u3√
q

√
q

3
√
2

[

2
√
2u3√
q − x

z

]

, −
√
2u3√
q ≤ x

z ≤
√
2√
q

(

2u3 − 3
√
ρ2
)

√
ρ2,

√
2√
q

(

2u3 − 3
√
ρ2
)

< x
z ≤ v−

(16)

and

v =















0, x
z < −

√
2u3√
q

2
√
2u3

3
√
q + 2x

3z , −
√
2u3√
q ≤ x

z ≤
√
2√
q

(

2u3 − 3
√
ρ2
)

2
√
2√
q

(

u3 −
√
ρ2
)

,
√
2√
q

(

2u3 − 3
√
ρ2
)

< x
z ≤ v−

(17)

generated along the C− characteristics. It is then clear that

v2 =
2
√
2√
q

(u3 −
√
ρ2) . (18)

The speed v− is the speed of the trailing edge of the uniform wavetrain, as seen in Figure
1. Both this speed and the shelf height u2 are yet to be determined. The height u2 =

√
ρ2

is determined by the requirement that the Riemann invariant along the characteristic C−

is conserved through the bore [11, 12, 27]. Hence

v2 −
2
√
2√
q

√
ρ2 = −2

√
2√
q

√
ρ1 = −2

√
2√
q
u1, (19)

which on using expression (18) gives

u2 =
√
ρ2 =

u3 + u1

2
. (20)

This result is clear from the underlying directional symmetry. It was shown by El [11, 12]
that the Riemann invariant on the characteristic C− is conserved through the NLS bore
structure consisting of a (dark) bore linking two levels. It can be seen from Figures 1 and
2 that the wave structure for the nematic bore is more complicated than the simple NLS
structure. It will be shown in Section 4 that there is a KdV bore on the intermediate level
u2, which is preceded by a linear wavetrain, which is clear from Figure 1. The conser-
vation of the Riemann invariant on the characteristic C− across this combined structure

8



then does not directly follow from the results of El [11, 12]. However, this Riemann
invariant is conserved as the wavetrain preceding the bore, to a first approximation, is
linear and so does not affect the modulations. The calculation of the next, nonlinear,
correction to the intermediate level u2 is then non-trivial as the Riemann invariant argu-
ment of El does not hold. This is an open question which deserves further investigation.
The gradient v of the phase φ of the wavetrain on the shelf is then, from (18),

v2 =

√
2√
q
(u3 − u1) . (21)

The velocity v− of the leading edge of the intermediate level u2 will be determined in
the next section.

The final parts of the solution for the initial condition (3) to determine are the
wavetrain preceding the intermediate mean level u2 and the wavetrain on the level u2,
as seen in Figure 1. This presents more difficulties than for the regions away from these
wavetrains. Undular bore solutions are found as simple wave solutions of the modulation
equations for the underlying governing equation. These simple wave solutions are easily
found when the modulation equations can be set in Riemann invariant form. If the
underlying equation is integrable with an inverse scattering solution, there is a standard
method to obtain this Riemann invariant form [10]. If there is no inverse scattering
solution, then finding the Riemann invariant form of any modulation equations is a non-
trivial task. In these situations, El [11, 12] developed a method by which the details of
the leading and trailing waves of the bore can be determined, but not the interior details
of the bore. This method will now be applied to try to determine the leading and trailing
edges of a bore linking the non-dispersive regions, as seen in Figure 1.

The work of El [11, 12, 25] shows that the leading edge of a bore is determined from
the (linear) dispersion relation for the governing equation. Linearising the nematicon
equations (6)–(8) about the background mean levels ρ̄ and v̄ with

ρ = ρ̄+ ρ̃, v = v̄ + ṽ, θ =
ρ̄

q
+ θ̃, (22)

where |ρ̃| ≪ ρ̄, |ṽ| ≪ |v̄| and |θ̃| ≪ ρ̄/q, gives the linearised nematicon equations

∂ρ̃

∂z
+ ρ̄

∂ṽ

∂x
+ v̄

∂ρ̃

∂x
= 0, (23)

∂ṽ

∂z
+ v̄

∂ṽ

∂x
+ 2

∂θ̃

∂x
− 1

4ρ̄

∂3ρ̃

∂x3
= 0, (24)

ν
∂2θ̃

∂x2
− 2qθ̃ = −2ρ̃. (25)

The dispersion relation for right propagating waves for these linearised equations is

ω = kv̄ +

√
ρ̄k

√

νk2 + 2q

[

νk2 + 2q

4ρ̄
k3 + 4k

]1/2

. (26)

In the present work we shall be interested in the experimental regime for which ν is large
[43]. For large ν, the dispersion relation (26) is

ω = kv̄ +
1

2
k2 +

4ρ̄

νk2
+O(ν−2). (27)
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In the opposite limit ν → 0 for which the nematicon equations (1) and (2) become the
defocusing NLS equation, the dispersion relation is

ω = kv̄ + k2
√

1

4
k2 +

2

q
ρ̄− νρ̄k3

2q2

[

1

4
k2 +

2

q
ρ̄

]−1/2

+O(ν2), (28)

which is the same to first order as that for the defocusing NLS equation [12, 25], as
required.

Let us now use the method of El [11, 12] to try to determine the leading, linear wave
edge of a bore linking the level u2 to the level u1. This method finds the mean values of ρ
and v, ρ̄ and v̄, respectively, at the leading and trailing edges of the bore. It is these mean
values which are given by Whitham modulation theory [1]. Let us take the dispersion
relation (27) to first order in ν−1. The mean phase gradient v̄ in this dispersion relation
needs to be determined. It was shown by El [11, 12] that the Riemann invariant on C−

(13) is conserved through the bore. Hence, we have

v̄ = 2

√

2

q

(√
ρ̄− u1

)

(29)

on linking to the initial state ρ̄ = u2
1 and v̄ = 0 ahead of the bore. We then have that the

wavenumber k at the leading edge of the bore is determined by the differential equation
[11, 12, 25]

dk

dρ̄
=

∂ω
∂ρ̄

V+(ρ̄, v̄)− ∂ω
∂k

=
k

ρ̄− k
√

qρ̄/2
(30)

to leading order in ν−1, with the boundary condition k(u2) = 0 to link the leading edge
of the bore with the trailing, (dark) solitary wave edge. The velocity V+(ρ̄, v̄) is the
characteristic velocity (12) evaluated at the mean height ρ̄ and mean phase gradient v̄.
The solution of this differential equation is

k = Cρ̄

(

1 +

√

q

2

k√
ρ̄

)2

, (31)

where C is a constant of integration. The boundary condition k(ρ2) = 0, where ρ2 = u2
2,

gives k ≡ 0. This result shows that there can be no undular bore linking the level u2

to the level u1 in the physical limit of ν large. This conclusion is consistent with the
numerical solutions for large ν and small ν shown in Figures 1 and 2. The non-existence
of a bore solution is due to there being no ρ̄ term in the dispersion relation (27) at first
order in ν−1, so that the dispersion relation does not support a change in mean level
that is the basis of a bore. Including higher order terms in 1/ν in the dispersion relation
(27) will not yield a valid bore solution as these higher order terms cannot result in an
O(1) change in k (and ρ̄) through a bore.

The nature of the wavetrain preceding the intermediate level u2 will be taken up in
the next section. It is linked to the KdV-type bore wavetrain seen on the level u2 in
Figure 1. The solution for this wavetrain needs to be found before the wavetrain ahead
of the intermediate level u2 can be determined.
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4. Korteweg-de Vries limit

The numerical solution displayed in Figure 1 shows that there is a wavetrain on the
intermediate level u2 given by (20) which closely resembles a KdV bore [8, 9]. The reason
for this wavetrain and its relation to the KdV bore will now be discussed.

It has been shown that in the limit of small amplitude long waves on a background
carrier wave, the defocusing NLS equation reduces to the KdV equation with the KdV
solitons waves of depression [55, 56]. Recent work has further shown that the nematic
equations (1) and (2) also reduce to the KdV equation in this limit [57]. If the background
carrier wave has amplitude u0, then the appropriate asymptotic expansions for small
amplitude waves about this carrier wave are

u =
[

u0 + ǫ2a1(ξ, η) + ǫ4a2(ξ, η) + . . .
]

e−2iu2

0
z/q+iφ(ξ,η), (32)

φ = ǫφ1(ξ, η) + ǫ3φ2(ξ, η) + ǫ5φ3(ξ, η) + . . . , (33)

θ =
u2
0

q
+ ǫ2θ1(ξ, η) + ǫ4θ2(ξ, η) + ǫ6θ3(ξ, η) + . . . , (34)

where 0 < ǫ ≪ 1 and
ξ = ǫ (x− Uz) , η = ǫ3z. (35)

The stretched variables ξ and η are the usual variables used to obtain the KdV equation
in standard form [1]. Substituting these expansions into the nematic equations (1) and
(2), we obtain at O(ǫ2) and O(ǫ3)

∂φ1

∂ξ
=

4u0

qU
a1 and U2 =

2u2
0

q
. (36)

At O(ǫ4) and O(ǫ5) two partial differential equations involving a2 and φ2 are obtained.
These equations are the same if a compatibility condition is satisfied, which is the KdV
equation

∂a1
∂η

+
6u0

qU
a1

∂a1
∂ξ

+

(

νU

4q
− qU

16u2
0

)

∂3a1
∂ξ3

= 0. (37)

In the NLS limit ν small of the nematic equations (1) and (2), soliton solutions of
this KdV equation are waves of depression, dark solitons, in agreement with the NLS
asymptotic analysis [55, 56]. As previously stated, for the usual experimental operating
regime for nonlinear optical beam propagation in nematic liquid crystals ν is large, ν =
O(100) [43], which is the regime considered in the present work. In this regime, KdV
soliton solutions of (37) are then waves of elevation, bright solitons. The KdV equation
(37) can be set in standard form

∂a1
∂T

+ 6a1
∂a1
∂X

+
∂3a1
∂X3

= 0 (38)

via the coordinate transformations

ξ = (2q)1/4
[

νU

4q
− qU

16u2
0

]1/2

X, η = (2q)3/4
[

νU

4q
− qU

16u2
0

]1/2

T. (39)
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Note that it has been assumed that the nematic cell is in the highly nonlocal regime with
ν large, so that these coordinate transformations are physical. For the present work, the
level u0 = u1, as is clear from Figure 1.

The KdV equation has a standard bore solution [8, 9] obtained as a centred simple
wave solution of the modulation equations for the KdV equation [1, 5]. This solution
shows that the KdV bore consists of solitons of amplitude 2∆ at its leading edge, where
∆ is the height of the initial jump generating the bore, and linear waves at its trailing
edge. Identifying ∆ = u2 − u1 = (u3 − u1)/2, we have that the total height of the lead
wave of the KdV bore on the intermediate level is

as = u3 (40)

as it rises from the background level u1. In the (X,T ) coordinates the KdV bore occupies
the region −6 (u2 − u1) ≤ X/T ≤ 4 (u2 − u1) [8, 9]. Transforming back to the physical
coordinates (x, z) using the scalings (39) which set the KdV equation in standard form,
the asymptotic coordinates given by (35) and noting that ξ andX are coordinates moving
with the velocity U =

√
2u0/

√
q =

√
2u1/

√
q, we have that the KdV bore on the shelf

u2 occupies the region
√

2

q

(

5

2
u1 −

3

2
u3

)

≤ x

z
≤

√

2

q
u3. (41)

It is then clear that the leading edge of the intermediate shelf has the velocity

v− =

√

2

q
u3. (42)

Now that the bore on the intermediate level u2 has been determined, the wavetrain
preceding it and bringing the solution down to u1 can be further considered.

As previously noted, the numerical solution for ν = 200 displayed in Figure 1, on
comparison with the standard bore solution for ν = 0.1 displayed in Figure 2, shows
that the mean level u2 is not preceded by a bore, but a wavetrain of constant amplitude
preceded by a short front taking it down to the original level u1. This wavetrain is
generated by a phase mismatch between the phase of the soliton at the leading edge of
the KdV bore and the phase v = 0 of the initial level ahead. The phase (36) for the KdV
expansion gives that

v̄ = 4

√

2

q
(u3 − u1) = 4v2 (43)

at the leading edge of the KdV bore. A wavetrain must then bring this phase down to
v̄ = 0, which is the initial state ahead. The position of the leading and trailing edges
of this uniform wavetrain can be found by a simple group and phase velocity argument,
as for the classical Kelvin ship wave problem [1]. The numerical solution displayed in
Figure 1 shows that the director under the uniform wavetrain is essentially constant at

θ = Θ1 =
u2
1

q
. (44)

The director is uniform in the region of the wavetrain due to the nonlocal response of
the director [45] to the rapid oscillation of |u| of the wavetrain. This nonlocality smooths
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Figure 3: (Color online) Comparison between numerical solution of dark nematicon equations (1) and
(2) and theoretical solution for initial jump condition (3). The lower curves are θ and the upper curves
are |u|. Initial condition for |u|: red (solid) line; initial condition for θ: green (dot-dash) line; numerical
solution for |u| at z = 300: blue (dash) line; numerical solution for θ at z = 300: pink (dotted) line;
theoretical solution: black (dot-dot-dash) line. The parameters are u3 = 1.0, u1 = 0.0, ν = 200 and
q = 2.

out the response of the director to the electric field, resulting in the director essentially
reacting to the mean of the rapid oscillation of |u|, as has been noted previously in studies
of bores in nematic liquid crystals [40, 58]. Hence, the electric field equation (1) in the
region of the uniform wavetrain can be approximated by

i
∂u

∂z
+

1

2

∂2u

∂x2
− 2Θ1u = 0, (45)

for which the dispersion relation for right propagating waves on a background u1 exp(−2iΘ1z)
is

ω =
1

2
k2 + 2Θ1. (46)

This restricted dispersion relation differs from the full dispersion relation (26) due to the
neglect of a linear wavetrain in the director θ. The phase c and group cg velocities for
the dispersion relation (46) are

c =
1

2
k +

2Θ1

k
and cg = k. (47)

The extent of the uniform wavetrain preceding the KdV bore can be determined from
the phase and group velocities (47). The wavetrain has the same phase velocity as the
velocity of the lead solitary wave of the KdV bore behind it, so that

1

2
k +

2Θ1

k
=

√

2

q
u3. (48)
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Noting that Θ1 = u2
1/q, we have that

k =

√

2

q

[

u3 +
√

u2
3 − 2u2

1

]

(49)

on taking the positive square root to give a sensible result for the group velocity as
u1 → 0. The group velocity of this wavetrain, which gives the position of the front of
the wavetrain, is then

cg = k =

√

2

q

[

u3 +
√

u2
3 − 2u2

1

]

. (50)

It can be seen that this uniform wavetrain can only exist if u1 < u3/
√
2. For u1 > u3/

√
2

the wavetrain ahead of the KdV bore will be evanescent [1].
The analytical results of this section will be compared with full numerical solutions

of the nematic equations (1) and (2) in the next section.

5. Comparison with numerical solutions

For the comparisons of the analytical results of the previous sections with numerical
solutions, the electric field equation (1) was solved numerically using a pseudo-spectral
method based on that of Fornberg and Whitham [9], which was originally used to find
the undular bore solution of the KdV equation. The pseudo-spectral method used here
differs from that of Fornberg and Whitham in that the electric field equation (1) is
advanced in z in Fourier space using a fourth order Runge-Kutta scheme, rather than
in real space using a leap frog scheme as in Fornberg and Whitham. Full details of this
modified pseudo-spectral scheme can be found in [59]. The elliptic director equation
(2) was solved numerically using a Fourier method whose details are given in [60]. The
director equation (2) has a large coefficient ν in front of the second derivative θxx, so that
it would appear to be a stiff equation numerically. This is not the case, however, as there
are no boundary layers at the ends of the computational domain due to the exponential
decay of the solution for θ to the value at the numerical boundaries where the boundary
condition θ = 0 was imposed.

The simplest solution of the nematic equations (1) and (2) for the initial condition
(3) is with the level ahead 0, u1 = 0, the dam break problem. The solution for this
case is shown in Figure 3. It can be seen, as predicted, that the solution consists solely
of expansion waves in the electric field u and the director θ, as for the defocusing NLS
equation [42]. The modulation theory solution in this case is (14) and (15). It can be seen
that there is near perfect agreement between the numerical and modulation solutions for
both the electric field and the director. There is slight disagreement where the expansion
waves join the initial levels ahead and behind. This is due to the discontinuity in the
derivatives being smoothed by dispersion [9].

Figure 1 shows the solution for a typical case for which u1 6= 0. As mentioned above,
the solution for the electric field u shows many similarities with the NLS bore, as shown
in Figure 2. The expansion waves are similar, but the bore structure is entirely different.
As noted in Section 4 there is a KdV bore on the intermediate level u2 which is preceded
by a uniform wavetrain which brings the solution down to the level u1, this wavetrain
being determined by a phase and group velocity argument, resulting in its leading edge
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Figure 4: (Color online) Comparison of the height of the lead soliton of the KdV bore as given by
the numerical solution of the dark nematicon equations (1) and (2) and the theoretical solution (40).
Numerical solution: (green) crosses; theoretical solution: (red) line. The parameter values are u3 = 1.0,
ν = 200 and q = 2.

being given by (50) and its trailing edge by (42). It can be seen from this figure that the
expansion wave solution (16) with θ = |u|2/q is in excellent agreement with the numerical
solution in the region between the levels u3 and u2, as for the dam break case of Figure
3. Again, there is some disagreement where this expansion wave joins to u3 and u2. This
is due to the discontinuities in derivative at the edges being smoothed out by dispersion,
resulting in the generation of dispersive wavetrains [9]. The height of the lead soliton
on the intermediate shelf u2 is as = 0.9688, which is in excellent agreement with the
theoretical value (40), as = 1.0. The waves in the KdV bore have a large wavelength.
This is due to the large nonlocality ν, as can be seen from the spatial scaling in (39).
Also shown in Figure 1 is a horizontal light blue (dot-dash) line giving the extent of the
uniform wavetrain and located under this wavetrain, the trailing edge being given by
(42) and the leading edge by (50). Again, there is excellent agreement for the extent of
this wavetrain as given by the phase and group velocity argument of the previous section.
The final comparison shown in Figure 1 is for the trailing edge of the KdV bore as given
by (41). The position of this trailing edge is shown by the vertical light blue (dot-dash)
line. The agreement between the numerical and analytical solutions is less clear for this
trailing edge position due to the interaction between the KdV bore and the expansion
wave linking the initial level u3 and the intermediate level u2.

Figure 4 shows a comparison between the height of the lead soliton of the KdV bore
on the intermediate shelf u2 as given by the numerical solution of the nematic equations
(1) and (2) and the KdV bore solution (40). The analytical and numerical amplitudes
are in excellent agreement for u1 ≥ 0.5, with the agreement decreasing as the initial jump
height increases. This increasing disagreement is expected as the KdV equation (37) was
derived in the limit of small deviations from a background level, which is equivalent to
small initial jumps.
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Figure 5: (Color online) Comparison between numerical solution of dark nematicon equations (1) and
(2) and theoretical solution for initial jump condition (3). The lower curves are θ and the upper curves
are |u|. Initial condition for |u|: red (solid) line; initial condition for θ: green (long dash) line; numerical
solution for |u| at z = 300: blue (short dash) line; numerical solution for θ at z = 300: pink (dotted)
line; theoretical solution: black (dot-dot-dash) line. KdV bore and uniform wavetrain limits: light blue
(dot-dash) line. The parameter values are u3 = 1.0, u1 = 0.3, ν = 200 and q = 2.

Figure 5 shows a similar comparison between the analytical and numerical solutions
as Figure 1, but for u1 = 0.3. For this value of u1 the solution is near the vacuum point
[42] at which the lead wavetrain reaches u = 0. There is, again, excellent agreement
between the numerical and modulation solutions for the expansion wave portions of the
solution. However, as noted from Figure 4, there is not good agreement for the amplitude
of the lead soliton of the KdV bore on the intermediate level u2 and the position of the
trailing edge of the KdV bore as given by (41). As noted previously, this is due to the
KdV equation (37) being derived in the limit of small deviations from a background level,
which is not the case for this Figure as the jump height is 0.7. Similarly, the leading and
trailing edges of the lead uniform wavetrain as given by (50) and (42) are in reasonable
agreement with the numerical solution, but the agreement is not as good as for the lower
jump height of Figure 1. Finally, as seen from the height comparison of Figure 4, the
height of the lead soliton of the KdV bore, given by (40) as as = 1, is not in good
agreement with the numerical solution. This is again due to the jump height u2−u1 not
being small as assumed in the derivation of the KdV equation (37).

The phase and group velocity argument of Section 4, resulting in the wavenumber
(49) and group velocity (50) of the uniform wavetrain, gave that the uniform wavetrain
ahead of the KdV bore ceases to exist for u1 > u3/

√
2. Numerical solutions showed that

the leading uniform wavetrain ceases to exist for u1 > 0.69 for u3 = 1.0, which is in
excellent agreement with the analytical prediction. Figure 6 shows a comparison for a
case just below the analytical cut-off point, u1 = 1/

√
2 for u3 = 1. The solution shown

in Figure 6 is just above the numerical cut-off u1 = 0.69 and there is a small wavetrain
ahead of the KdV bore. While the solution in this figure is just below the analytical cut-
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Figure 6: (Color online) Comparison between numerical solution of dark nematicon equations (1) and
(2) and theoretical solution for initial jump condition (3). The lower curves are θ and the upper curves
are |u|. Initial condition for |u|: red (solid) line; initial condition for θ: green (long dash) line; numerical
solution for |u| at z = 300: blue (short dash) line; numerical solution for θ at z = 300: pink (dotted)
line; theoretical solution: black (dot-dot-dash) line. KdV bore and uniform wavetrain limits: light blue
(dot-dash) line. The parameter values are u3 = 1.0, u1 = 0.7, ν = 200 and q = 2.

off, the light blue (dot-dash) line giving the limits of the wavetrain as predicted by (42)
and (50) shows that the theory predicts that the wavetrain is practically non-existent.
The trailing edge of the KdV bore as given by (41) and shown by the vertical light blue
(dot-dash) line is in good agreement with the numerical solution. As for the comparisons
of the previous figures, the expansion wave portion (16) of the analytical solution is in
good agreement with the numerical solution. Finally, as seen in the height comparison
of Figure 4, the height of the lead soliton of the KdV bore is in good agreement with the
analytical value as = 1.

6. Conclusions

The undular bore solution of the equations governing nonlinear optical beam prop-
agation in a defocusing nematic liquid crystal has been derived. These equations form
a coupled system of an NLS-type equation for the electric field of the light beam prop-
agating in the nematic medium and an elliptic equation for the response of the nematic
molecules to this light. While the electric field equation is of NLS-type, it is found that
the undular bore generated by an initial discontinuity in the intensity of the electric field
is of KdV-type, consisting of bright waves rather than the dark waves of an NLS bore,
in the usual experimental regime of a highly nonlocal response, that is ν large. Ahead
of this KdV bore is a uniform wavetrain with a front which brings this wavetrain down
to the initial state ahead. The leading and trailing edges of this uniform wavetrain are
given by a simple phase and group velocity argument. This argument also predicts a
minimum jump height cut-off for the uniform wavetrain to exist, which is found to be in
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excellent agreement with numerical solutions. In general, excellent agreement was found
between the derived analytical solutions and numerical solutions. This work is only a
preliminary study of undular bores in nematic liquid crystals in the nonlocal regime. The
wave structure linking the KdV bore to the uniform wavetrain ahead needs to be found,
the amplitude of this wavetrain derived and a better description of the KdV bore for a
non-small jump height needs to be found, among other matters. These further details
are currently under investigation.
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