

Edinburgh Research Explorer

Programming Abstractions for Software–Defined Wireless Networks

Citation for published version:
Riggio, R, Marina, M, Schulz-Zander, J, Kuklinski, S & Rasheed, T 2015, 'Programming Abstractions for
Software–Defined Wireless Networks', IEEE Transactions on Network and Service Management, vol. 12,
no. 2. https://doi.org/10.1109/TNSM.2015.2417772

Digital Object Identifier (DOI):
10.1109/TNSM.2015.2417772

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
IEEE Transactions on Network and Service Management

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 23. Apr. 2024

https://doi.org/10.1109/TNSM.2015.2417772
https://doi.org/10.1109/TNSM.2015.2417772
https://www.research.ed.ac.uk/en/publications/7e98497f-70e5-4ec5-8b03-6322e6eb732d

146 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 12, NO. 2, JUNE 2015

Programming Abstractions for Software-Defined
Wireless Networks

Roberto Riggio, Member, IEEE, Mahesh K. Marina, Senior Member, IEEE, Julius Schulz-Zander,
Slawomir Kuklinski, Member, IEEE, and Tinku Rasheed, Member, IEEE

Abstract—Software-Defined Networking (SDN) has received, in
the last years, significant interest from the academic and the
industrial communities alike. The decoupled control and data
planes found in an SDN allows for logically centralized intelligence
in the control plane and generalized network hardware in the
data plane. Although the current SDN ecosystem provides a rich
support for wired packet–switched networks, the same cannot
be said for wireless networks where specific radio data-plane
abstractions, controllers, and programming primitives are still yet
to be established. In this work, we present a set of programming
abstractions modeling the fundamental aspects of a wireless net-
work, namely state management, resource provisioning, network
monitoring, and network reconfiguration. The proposed abstrac-
tions hide away the implementation details of the underlying
wireless technology providing programmers with expressive tools
to control the state of the network. We also present a Software-
Defined Radio Access Network Controller for Enterprise WLANs
and a Python–based Software Development Kit implementing the
proposed abstractions. Finally, we experimentally evaluate the
usefulness, efficiency and flexibility of the platform over a real
802.11-based WLAN.

Index Terms—Network management, programming abstrac-
tions, software-defined wireless networks, WLANs.

I. INTRODUCTION

MANAGING modern wireless networks is an increasingly
complex task. To cope with the dramatic increase in

data traffic generated by modern mobile applications, opera-
tors are currently deploying denser and heterogeneous mobile
networks. Network management platforms are then required to
deal with a multitude of technologies characterized by signif-
icantly diverse protocols stacks and vendor-specific interfaces.
This growing complexity calls for novel abstractions and tools
to control and manage both the wired and the wireless parts
of a network. Software-Defined Networking (SDN) has already
delivered on such programmatic interfaces to the switching
fabric. While several attempts have been made to apply sim-
ilar concepts to the cellular [1]–[3] and to the WiFi [4], [5]
networks, there is very little by way of programming abstrac-

Manuscript received February 8, 2015; revised March 23, 2015; accepted
March 24, 2015. Date of publication March 30, 2015; date of current version
June 12, 2015. The associate editor coordinating the review of this paper and
approving it for publication was L. Granville.

R. Riggio and T. Rasheed are with CREATE-NET, 38123 Trento, Italy
(e-mail: rriggio@create-net.org; trasheed@create-net.org).

M. K. Marina is with the School of Informatics, University of Edinburgh,
Edinburgh EH8 9Y, U.K.

J. Schulz-Zander is with the Technische Universität Berlin (TU–Berlin),
10623 Berlin, Germany.

S. Kuklinski is with Orange Polska, 96-100 Warsaw, Poland.
Digital Object Identifier 10.1109/TNSM.2015.2417772

tions specifically tailored for wireless networks. In a true SDN
philosophy, programmers shall be exposed with just enough
information about the state of the network to implement the
task at hand and shall be able to focus on defining the expected
behavior of the network rather than dealing with technology-
dependent implementation details. Meeting the latter require-
ment is vital if features and services are to be ported seamlessly
across different link-layer technologies.

In this work we take a step in this direction by focusing
on the definition of reusable high level programming abstrac-
tions for managing wireless networks. Said abstractions tackle
state management, resource provisioning, network monitoring,
and network reconfiguration. Moreover, we also introduce a
proof-of-concept implementation of a SD-RAN Controller re-
alizing the proposed primitives and a Python-based Software
Development Kit (SDK) allowing programmers to create and
deploy new applications and services as Network Apps over
it. Although our discussion will focus mainly on WiFi due to
the fact that the proof-of-concept currently supports only this
technology, we believe that the proposed abstractions can also
be useful in meeting the requirements of current and future
cellular technologies. This paper extends our previous works
[6], [7] on programming abstractions for Enterprise WLANs
by: (i) extending the APIs with additional interference model-
ing primitives; (ii) studying the usefulness of the primitives in
realistic settings; and (iii) reporting on a number of Network
Apps implemented using the SDK.

The entire software stack, named EmPOWER, encompass-
ing: a data-path implementation for 802.11-based networks, the
reference SD-RAN Controller, and the Python-based SDK have
been released under a permissive BSD-like license for academic
use. These components along with documentation and tutorials
are available on the official web-site.1

The next section introduces the programming abstractions
proposed in this work together with the rationale behind their
design. The SD-RAN Controller implementation details to-
gether with an overview of the main SDK features are provided
in, respectively, Section III and Section IV. Section V reports on
the benefit of the proposed abstractions for seamless handovers
and on the characterization of the signaling overhead of the
system. A number of WLAN applications and services imple-
mented using our SDK are presented in Section VI. Finally, we
discuss the related work in Section VII and then we draw our
conclusions in Section VIII.

1http://empower.create-net.org/

1932-4537 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

RIGGIO et al.: PROGRAMMING ABSTRACTIONS FOR SOFTWARE-DEFINED WIRELESS NETWORKS 147

II. WIRELESS SDN ABSTRACTIONS

In this section we identify the common aspects concerning
resource management in wireless access networks. We will do
so by first acknowledging the difference between control and
management and then by analyzing the requirements imposed
by wireless networks.

Programming wireless networks requires identifying how net-
work resources are exposed (and represented) to software mod-
ules written by developers and how software modules can affect
the network state. Although, OpenFlow [8] provides a practical
forwarding abstraction for packet-switched networks, it has
been argued that programming current networks using Open-
Flow is equivalent to programming applications in assembler,
i.e., the interface is too low-level and exposes the programmers
with too many implementation details. As a result, we have wit-
nessed a plethora of efforts in recent years aimed at providing
developers with higher level interfaces to their SDN [9]–[15].

The works above, however, aim at enabling programmability
in wired networks and typically rely on OpenFlow as the
data-plane control API. In contrast, our aim is to investigate
which kind of abstractions can be effectively used to implement
control and coordination tasks in wireless networks. In fact, a
straightforward extension of current programming techniques
would fail to capture the peculiarities of the radio environment.
In particular, the flow abstraction on which OpenFlow relies
does not account for: (i) the stochastic nature of wireless
links (which are not equivalent to ports in Ethernet switches);
(ii) the resource allocation granularity (the flow abstraction
is too coarse for wireless networks); and (iii) the significant
heterogeneity in the link and radio layer technologies (state
management for network elements can differ significantly even
across currently deployed technologies).

In this work we draw a clear line between network control
and network management. The former (control) deals with fast
timescale operations executed by the elements at the edges of
the network, such as scheduling in LTE networks or transmis-
sion rate adaptation in WiFi networks. The latter (management)
is in charge of checking whether the operating conditions for
a certain policy are still met, and, if this is not the case, of
reconfiguring or replacing the policy. For example a certain
scheduling algorithm could be optimized for a uniform distri-
bution of clients across the sectors of a mobile cell. However, if
the clients distribution is not uniform, a different policy could
be required [16].

A. Overview

The abstractions proposed in this work address four control
aspects of wireless networks, namely: state management, re-
source allocation, network monitoring, and network reconfig-
uration. Let us analyze the requirements imposed by each of
them on the control plane:

• State management. The abstractions shall allow pro-
grammers to describe the desired behavior of the net-
work leaving to the underlying run-time system the task
of implementing it by configuring the individual net-
work elements. Programmers shall not be exposed with

technology-dependent details such as how to implement
handover for a particular link-layer technology.

• Resource allocation. The abstractions shall allow devel-
opers to leverage a global view of the network resources.
The programming abstractions shall be general enough
to accommodate for resource allocation models ranging
from random access to scheduled access.

• Network monitoring. The abstractions shall allow network
developers to gather the status of the network using high-
level querying primitives. Such information shall include
network statistics and topology changes. The network
programmer shall not be exposed to the system-level
details of polling network elements, aggregating statistics,
and detecting network events.

• Network reconfiguration. The programming abstractions
shall go in the direction of separating fast timescale
operations running at the edges of the network, i.e., near
the air interface, from tasks running at the controller.

Fig. 1 sketches the reference network architecture and in-
troduces the terminology used throughout the paper. We use
the term Wireless Termination Points (WTPs) to refer to the
physical devices that form the Radio Access Network (RAN)
providing clients with wireless connectivity. WTPs basically co-
incide with Access Points (APs) in a WiFi network or eNodeBs
(eNBs) in a LTE network. A secure channel connects the WTPs
to the remote SD-RAN Controller. The SD-RAN Controller can
run multiple virtual networks, or slices, on top of the same
physical infrastructure. A slice is a virtual network with its
own set of WTPs. Network Apps run on top of the SD-RAN
Controller in their own slice of resources and exploit the
programming primitives through either a REST API or a na-
tive Python API (bindings for other languages can be added).
The SD-RAN Controller ensures that a Network App is only
presented a view of the network corresponding to its slice.
Notice that, in this architecture, the term Network App is
used to address any consumer of the SD-RAN Controller API.
Examples includes, but are not limited to, OpenDaylight and
Openstack. Finally, although OpenFlow is a candidate backhaul
technology, the abstractions proposed in our work do not rely
on it and are effectively backhaul agnostic.

In the next subsections we will introduce four key abstrac-
tions for wireless networks, namely the Light Virtual Access
Point (LVAP) abstraction, the Resource Pool abstraction, the
Channel Quality and Interference Map abstraction, and the
Port abstraction. Fig. 2 depicts the relationship between LVAP,
Resource Pool, Channel Quality and Interference Map, and
Port using an UML class-diagram. Here, a Resource Block
represents the minimum chunk of wireless resources that can
be assigned to a wireless client while the LVAP represents the
state of a wireless client scheduled on a set of Resource Blocks.
Both LVAPs and WTPs support a set of Resource Blocks, named
Resource Pool. The Port abstraction models the dynamic and
reconfigurable characteristics of the link between WTP and
LVAP on a set of Resource Blocks. A relationship exists between
LVAPs and WTPs and between WTPs modeling the link quality
between the two entities. These relationships are captured by
the Channel Quality Maps.

148 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 12, NO. 2, JUNE 2015

Fig. 1. The reference network architecture [6].

Fig. 2. Relationship between the different programming abstractions.

B. Light Virtual Access Point

Different link layer technologies, or as a matter of fact
even different releases of the same technology, can differ
significantly in how a client’s state is handled. For example,
QoS and handover management changed significantly over the
lifespan of the IEEE 802.11 family of standards. Nevertheless
exposing the programmer with the implementation details of
the technology being used would severely limit the adoption of
a certain solution. On the contrary what we want to achieve is
true Network App portability from one RAN to another, e.g.,
from a WiFi network to an mixed WiFi/LTE deployment.

The LVAP abstraction [4], [17] provides a high-level interface
for wireless clients state management. The implementation of

such an interface handles all the technology-dependent details
such as association, authentication, handover, and resource
scheduling. A client attempting to join the network, will trigger
the creation of a new LVAP. Specifically, in WiFi, an LVAP
is a per-client virtual access point which simplifies network
management and introduces seamless mobility support, i.e., the
LVAP abstraction captures the complexities of the IEEE 802.11
protocol stack such as handling of client associations, authenti-
cation, and handovers. More specifically, every newly received
probe request frame from a client at a WTP is forwarded to the
controller which may trigger the generation of a probe response
frame through the creation of an LVAP at the requesting WTP.
The LVAP will thus become a potential candidate AP for the

RIGGIO et al.: PROGRAMMING ABSTRACTIONS FOR SOFTWARE-DEFINED WIRELESS NETWORKS 149

client to perform an association. The controller can also decide
whether the network has sufficient resources left to handle the
new client and might suppress the generation of the LVAP.
Similarly each WTP will host as many LVAPs as the number of
wireless clients that are currently under its control. Such LVAP
has an ID that is specific to the newly associated client (in a
WiFi network the LVAP can be thought as a Virtual AP with its
own BSSID). Removing a LVAP from a WTP and instantiating
it on another WTP effectively results in a handover.

C. Resource Pool

Programming wireless networks mandates for a way to ex-
pose the programmer with a consistent view of the network
resources. Broadly speaking, there are two main family of
strategies to allocate resources in a wireless network: scheduled
access and random access. In the former case, resources for a
wireless link are allocated in the time, frequency, and space2

domains. In the latter case, a common random access scheme
for medium access is used by all participating wireless clients
to reduce collisions. LTE belongs to the former family and uses
OFDMA as (scheduled) medium access scheme while WiFi
belongs to the latter family and exploits CSMA/CA as (random)
medium access scheme.

The Resource Pool abstraction is tightly coupled with the
LVAP abstraction and goes in the direction of abandoning the
concept of cell and exposing the network programmer with
the collective resources in time, frequency, and space that are
available in the network. The minimum allocation unit in the
Resource Pool is the Resource Block identified by a frequency
band, a time interval, and the WTP at which it is available. The
Resource Pool is exposed to the programmer through a set P
where each Resource Block i ∈ P is a 2-tuple 〈f, t〉, where f
is the frequency band, and t is the time slot. A frequency band
is a 2-tuple 〈c, b〉 where c and b are, respectively, the center
frequency and the bandwidth. Notice that the proposed model
does not forbid the same Resource Block to be assigned to
multiple LVAPs in that this could in general result in a valid
resource allocation scheme if, for example, the LVAPs are suf-
ficiently separated in space or if suitable Inter-Cell Interference
Coordination (ICIC) schemes are employed. Similarly, wireless
networks using random access protocols, such as CSMA/CA,
effectively schedule multiple transmissions on the same re-
sources in frequency and time with the aid of suitable back-off
and retransmission schemes to handle collisions.

For example, the Resource Pool made available by an 802.11n
AP tuned on channel 36 and supporting 40 MHz-wide channels
is represented by the tuple ((36, HT40),∞). The prefix HT
is used to indicate that this band supports the High Through-
put MCS. Resource Blocks can also be blacklisted preventing
applications from using them. This could be the case of highly
interfered blocks in an LTE network.

The same formulation is also exploited to model the resource
requests coming from the clients or more precisely from the
LVAPs mapping those clients. For example, a resource request

2Notice that, for spread spectrum-based technologies, such as UMTS, the
code space shall also be considered.

TABLE I
NETWORK AND LVAP RESOURCE POOLS

could be represented by the following tuple ((1, 20),∞). This
allows us to express resource allocation problems as an inter-
section between the Resource Blocks available in the network,
and the Resource Blocks supported/requested by a client. Infor-
mation on the link quality experienced by the requesting LVAP
on the matching Resource Blocks can be used to further filter
the set of candidate Resource Blocks according to application-
level parameters. A non-empty intersection set of Resource
Blocks signifies that a valid solution for the resource allocation
problem has been found.

Notice that, the final set could be composed of multiple Re-
source Blocks possibly scheduled at different WTPs and on dif-
ferent frequency bands/timeslots. The support for such scenario
depends on the actual implementation of the LVAP interface.
For example, in a LTE network, an LVAP could accept multiple
Resource Blocks possibly scheduled at different eNBs and on
different frequencies modeling the technique known as Coop-
erative Multi-Point, or CoMP [18]. This model also effectively
decouples uplink and downlink allowing clients to be scheduled
at different WTPs on the uplink and on the downlink directions
(if the feature is supported by the link-layer technology).

An example of a simple resource allocation scenario for a
WiFi WLAN is shown in Table I. Here PN is the network Re-
source Pool and PL is the Resource Pool supported by an LVAP.
It is easy to see that the intersection PN ∩ PL produces a non-
empty set composed of two Resource Blocks scheduled at two
different WTPs (W1,W2). Due to the fact that WiFi does not
allow to schedule one LVAP on more than one WTP, the final
resource allocation decision will be a single Resource Block
selected using criteria such as the channel quality experienced
by the LVAP on the matching Resource Blocks and/or the
specific application-level requirements.

D. Channel Quality and Interference Map

From the perspective of an LVAP, it is not important to which
WTP it is attached but what communication QoS it can obtain.
Such information translates, at the physical layer, into the
transmission efficiency of the radio channel linking interference
with parameters such as packet error rate. The Channel Quality
and Interference Map allows the control logic to reason about
the channel quality and interference experienced by clients and
to assign resources accordingly.

The Channel Quality Map abstraction provides network pro-
grammers with a full view of the network state in terms of
channel quality between LVAPs and WTPs over the available
Resource Blocks. Let G = (V,E) be a directed graph, where
V = VWTP ∪ VLV AP is the set of v1 = |VWTP | WTPs and
v2 = |VLV AP | LVAPs in the network, and E is the set of edges

150 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 12, NO. 2, JUNE 2015

Fig. 3. Examples of Channel Quality Map and Interference Map. WTP s
and LV AP s are represented as, respectively, squares and circles. (a) Channel
quality map. (b) Interference map.

or links. An edge en,m,i ∈ E with n,m ∈ V exists if m is
within the communication range of n over the Resource Block
i ∈ P . A weight q(en,m,i) is assigned to each link en,m,i ∈
E : q(en,m,i) ∈ N

+ represents the channel quality of the link
between the two nodes.

A link interference (conflict) graph or Interference Map
GI = (V I , EI) can be also constructed in such a way that we
have a vertex vI ∈ V I for each communication link in E. A
directed edge eIn,m,i ∈ EI if the transmitter of the link n ∈ V I

is within the interference range of the receiver of the link
m ∈ V I over the Resource Block i ∈ P . A weight qI(eIn,m,i)

is assigned to each link eIn,m,i ∈ EI : qI(eIn,m,i) ∈ N
+ repre-

sents the potential interference caused by a transmission on link
n to link m.

An example of the Channel Quality and Interference Map
for a WiFi network is sketched in Fig. 3. Here the dashed lines
are the weighted directed edges in the Channel Quality Map
for a given Resource Block (weights are not shown to improve
readability). A partial Interference Map associated with this
Channel Quality Map is reported in Fig. 3(b). Notice that, in
this case, a conflict between two links exists if a transmitter
is within the carrier sense range of another transmitter or if
the transmission from one node interferes (collides) with the
reception of a packet at another node. In the conflict graph a
directed edge exist between the link a → A and the link B → b
modeling the fact that transmission from node a cause the node
B to defer its access to the medium. Similarly another edge
exists between the link b → B and the link a → A because
node b can cause interference at A.

The Channel Quality Map abstractions can be used to select
the Resource Blocks that can satisfy the requirements of an
LVAP by intersecting the set of available Resource Blocks in the
network (PN) with the requested Resource Blocks (PL). The
set of available Resource Blocks is obtained as: PN = W1 ∪
W2 ∪ · · · ∪WN The matching Resource Blocks M are then
given by: M = PN ∩ PL The list of Resource Blocks M ′ that
satisfy a certain interference level condition, such as the signal
to interference plus noise ratio (SINR) between the LVAP n and
the WTP m on the Resource Block i being greater than a certain
threshold t, is given by: M ′ = {i ∈ M : SINR(en,m,i) > t}
where SINR(en,m,i) can be estimated via the edge weights in
the Channel Quality and Interference Map. M ′ is the empty set
if a valid resource allocation is not found. Allocating resources
is simply a matter of assigning one or more Resource Blocks
from M ′ to the LVAP, which may result in a handover if the
new Resource Block(s) are handled by a different WTP.

E. Port

Links in a wired network, e.g., a switched Ethernet LAN, are
essentially deterministic and the status of a port in a switch is
binary, i.e., active or not active. While some Ethernet switches
can select the transmission rate (10, 100, 1000 Mb/s), this fea-
ture is aimed at reducing power consumption when the traffic
load is low and not as a mechanism for coping with fluctuations
in the channel quality. In contrast, links in a wireless network
are stochastic and, as a result, the physical layer parameters that
characterize the radio link between an LVAP and a WTP, such
as transmission power, modulation and coding schemes, and
MIMO configuration must be adapted according to the actual
channel conditions.

Such level of adaptation requires real-time coordination be-
tween LVAPs and WTPs and can only be implemented near the
air interface. The Port abstraction allows the SD-RAN Con-
troller to reconfigure or replace a certain control policy if its
optimal operating conditions are not met.

A port is defined by a 3-tuple 〈p,m, a〉 where p is the
transmission power, m is the set of available Modulation and
Coding Schemes (MCS), and a is the MIMO configuration
(number of spatial streams). For example, in the case of an

802.11n network, assigning the port configuration: l
〈30,(0:7),1〉←−−−−−−−

M ′ to a LVAP means that the WTP will use a fixed transmission
power of 30 dBm, the set of MCS between 0 and 7, and single
antenna configuration for its communication with the LVAP.
The port abstraction allows fast timescale adaptations (MCS
adaptation in this example) to be delegated to a local controller
located near the WTP [19], [20] or to the WTP itself. In this
work we assume the latter. Finally, since a Port specifies the
configuration of the link between a WTP and a LVAP, a WTP
will have as many Port configurations as the number of LVAPs
it is currently managing.

III. EmPOWER PROTOTYPE IMPLEMENTATION

To demonstrate the usefulness of the proposed abstractions in
real-world settings, we implemented: (i) a SD-RAN controller,
(ii) a programmable WiFi data-plane, and (iii) a Python-based
SDK. In this section we shall describe in detail the first two
components while the features of the SDK are described in
the next section. As the implementation of SD-RAN Controller
in its current form only supports WiFi-based WTPs, Resource
Blocks are identified by the 2-tuple 〈c, b〉 (i.e.: no temporal
dimension). A high level view of the EmPOWER system ar-
chitecture is depicted in Fig. 4.

A. SD-RAN Controller

The SD-RAN controller implementation leverages the Tor-
nado Web Server as the web framework [21]. The main reason
for choosing Tornado is its non-blocking network I/O which
allows to continue serving incoming requests while the others
are being processed. In the following, we elaborate on some of
the main features of the SD-RAN Controller.

— Slicing: The SD-RAN Controller can accommodate mul-
tiple virtual networks or slices on top of the same physical

RIGGIO et al.: PROGRAMMING ABSTRACTIONS FOR SOFTWARE-DEFINED WIRELESS NETWORKS 151

Fig. 4. The EmPOWER system architecture.

infrastructure. A network slice is a virtual network with a
specific SSID and its own set of WTPs. Clients can opt-in
a certain slice by associating to its SSID.

— Soft State: The only persistent information stored at the
controller are the clients’ authentication method (cur-
rently only ACLs are supported) and the list of currently
defined slices. LVAP’s state is kept within the network in
a distributed fashion and is synchronized when the WTP
connects to the SD-RAN Controller. As a result the SD-
RAN Controller can be hot-swapped with another instance
without affecting the active clients. Moreover, the network
itself can still function in its last known state even if the
controller becomes unavailable.

— Modular Architecture: With the exception of the logging
subsystem, every other task supported by the controller
is implemented as a plug-in (i.e., a Python module) that
can be loaded at runtime. Examples of such plug-ins are
the modules implementing the LVAP control protocol,
the Statistics Manager, and the Channel Quality Map
Manager.

B. Wireless Termination Points

Each WTP consists of two components: one OpenvSwitch
[22] instance managing the communication over the wired
backhaul; and one Click modular router [23] instance imple-
menting the 802.11 data-path. Click is a framework for writing
multi-purpose packet processing engines and is being used
to implement just the WTPs/LVAP frame exchange while all
the decision logic is implemented at the SD-RAN controller.
Communications between Click and the SD-RAN controller
take place over a persistent TCP connection.

The WTPs in our deployment are a mix of PCEngines ALIX
(x86) and Gateworks Cambria (ARM) embedded platforms
running the OpenWRT operating system. WTPs are equipped
with two WiFi interfaces both leveraging a patched ath9k driver
for their operations. Such patch includes the LVAP logic and
the per-packet configuration of parameters such as transmission
rate and power.

C. Light Virtual Access Point

The Click agent on the WTP implements a WiFi split-MAC
architecture together with the SD-RAN Controller. The state
associated with each LVAP hosted by the EmPOWER Agent is
minimal (approximately 54 bytes).

ACK Generation: The agent needs to ensure that an ACK is
generated for each unicast data frame that the client sends to its
LVAP. However, due to their strict timing constraint ACK frame
generation is handled in hardware by the WiFi cards. Specifi-
cally, Atheros WiFi cards implement this using a BSSID mask
register which indicates the common bits of all the BSSIDs for
the WiFi card.

Whenever the WiFi card receives a valid 802.11 frame, it
matches the destination address against the BSSIDs it is host-
ing, i.e., check against the bits set in the BSSID mask. If it
matches, an ACK frame is generated. However, a practical limi-
tation exists with this approach. Consider the following two
BSSIDs 02:00:00:00:00:02 and 02:00:00:00:00:01 which dif-
fer only in last two bits. In this case, the generated mask
would be ff:ff:ff:ff:ff:fc. This leads to the hardware ignoring the
last two bits of the destination address of an incoming frame
to decide whether to generate an ACK frame. Consequently,
a frame destined to 02:00:00:00:00:03 will also cause the
hardware to generate an ACK, even though it is not hosting a
BSSID with that value: a false positive.

Since LVAPs are per-client virtual APs, i.e., client gets one
BSSID assigned, this needs to be handled carefully. One way to
overcome this issue is to assign BSSIDs to client LVAPs such
that the mask on the AP where the LVAP is being assigned re-
tains as many set bits as possible and remains orthogonal to the
masks of neighboring APs. This can be achieved in software by
the controller. Limiting the number of LVAPs per NIC or spread-
ing them over multiple NICs and APs will also alleviate the
problem. Another approach is to suppress spurious ACKs by
modifying the check that the hardware performs upon receiving
a frame. Today’s low-end Broadcom WiFi cards support custom
firmware such as OpenFWWF [5] (which is not available for
Atheros hardware). However, we conjecture that a program
mable content-addressable memory for matching incoming

152 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 12, NO. 2, JUNE 2015

TABLE II
PYTHON CONSTRUCTS USED BY THE SDK

frames in hardware enables possibilities beyond just selective
ACK generation, with little increase in cost and performance
impact. This is particularly important as 802.11ac adoption
is increasing, which supports throughput on the order of
6.77 Gb/s. Recent work on software radios such as OpenRadio
[24] will also aid in this direction.

AP Discovery: As per IEEE 802.11, clients can perform
active scans by broadcasting probe request messages on all
possible channels at the same time. An agent receiving such a
probe request frame forwards it to the SD-RAN Controller. The
latter then generates an LVAP with a BSSID unique to the client
if not already done, and retrieves the list of SSIDs to announce
(the union of SSIDs across all slices that the WTP belongs to).
It then instructs the agent to generate a probe response for each
of these SSIDs, through the client-specific BSSID. At this point
the client can authenticate and associate to its LVAP as per IEEE
802.11 procedures. If a client does not associate to its LVAP
within a configurable amount of time, the LVAP is removed
from the agent. The agent process maintains a lookup table with
the mappings of the client’s MAC address to the LVAPs state.
It then makes use of this per client state to prepare the right
802.11 frames.

IV. SOFTWARE DEVELOPMENT KIT

A Python-based SDK mapping the abstractions introduced in
Section II to Python constructs is made available to developers
(see Table II). In this section we shall briefly summarize some
of the SDK’s most interesting features. The comprehensive list
of Python primitives can be found in Table III. Primitives can
operate in polling or trigger mode. In the former mode (polling)
the SD-RAN Controller periodically polls one or more WTPs for
a specific information, e.g., the number of packets received by
and LVAP. In the latter mode (trigger) a thread is created at one
or more WTPs. Such thread is identified by a firing condition,
e.g., the RSSI of one LVAP going below a certain threshold.
When such condition is verified a message is generated by
the WTP. A termination condition can also be specified. All
primitives are non-blocking and, as such, they immediately
return control to the calling Network App. An optional callback
method can be provided specifying a method to be executed
when the primitive returns a result. A Python dictionary, whose
structure depends on the actual primitive, is passed as parameter
to the callback. Moreover, all primitives require at least one
parameter named ssid specifying the name of the slice on which
they shall operate.

A. Light Virtual Access Point

The LVAP is exposed to the programmer through a Python
object mapping properties to operations. These properties are:
(i) the Resource Block(s) on which the LVAP is currently sched-
uled, (ii) the list of Resource Blocks supported by the LVAP,
and (iii) the counters tracking the incoming/outgoing traffic.
Such an interface allows programmers to fetch the Resource
Block(s) a certain LVAP is currently scheduled at, by accessing
the assigned_to property field of an LVAP object. Similarly,
performing a handover is as simple as assigning a new list of
Resource Blocks to the same field. It is worth stressing that,
each Resource Block contains implicitly the information of the
WTP at which it is available.

The following Python routine schedules an LVAP on a ran-
dom Resource Block whose RSSI to the LVAP is greater than
or equal to −65 dBm. The routine then configures the WTP
transmission power toward the LVAP (in dBm):

Listing 1. Handoff a LVAP to a WTP to Which RSSI is at Least −65 dB.

The method accepts two input parameters, a LVAP (lvap)
and a list of WTPs (wtps). The method initializes the network
Resource Pool with the Resource Blocks available at every
WTP. An intersection of the network’s Resource Pool with
the resource blocks supported by LVAP is then computed. The
resulting set is then traversed filtering-out the Resource Blocks
whose RSSI to the LVAP is above −65 dBm. Finally, one
random Resource Block matching such condition is assigned to
the LVAP and the Port configuration for that Resource Block is
updated. Notice that, for the sake of simplicity, error handling

RIGGIO et al.: PROGRAMMING ABSTRACTIONS FOR SOFTWARE-DEFINED WIRELESS NETWORKS 153

TABLE III
PROGRAMMING PRIMITIVES IN THE PYTHON-BASED SDK

has been omitted. For example, if the valid Resource Block set
is empty it is up to the application to decide to either lower the
RSSI threshold or to handover the LVAP to best available WTP
regardless of the link quality.

Packet counters allow programmers to track the traffic ex-
changed by a certain LVAP and to use binning to aggregate such
information by frame length (useful in wireless networks due to
the fact that short packets incur higher transmission overheads).
For example:

Listing 2. Accessing packet counters for a LVAP.

The statement above instructs the controller to track the
packets transmitted and received by a certain LVAP and to
aggregate the information into the specified bins. The WTP
currently hosting the LVAP is polled every 5000 ms. It is also
possible to issue a single query by specifying −1 as polling
period. Notice that the query is executed only if the LVAP
is associated to the specified SSID (Guests in this example)
otherwise the packet counters are not updated.

Access to the downlink transmission statistics is possible
using the link_stats primitive. For each supported MCS the
average delivery probability and the expected throughput in the
last observation window are reported. Moreover, also the total
number of successful and failed transmissions since the LVAP
was moved to the WTP are reported.

Listing 3. Accessing link transmission statistics to a LVAP.

B. Channel Quality and Interference Maps

The Channel Quality Map is exposed to the network pro-
grammer by means of two data structures: the User Channel
Quality Map (UCQM) and the Network Channel Quality Map
(NCQM). Both are 3-dimensional matrices where each entry is
the channel quality over one Resource Block between: an LVAP
and a WTP in the case of the UCQM; and between two WTPs
in the case of the NCQM.

In our implementation of the Channel Quality Map we use
the RSSI measured at each WTP as an approximation of the
channel quality. A monitor interface created on top of each
physical radio available at a WTP is used to extract the signal
strength field present in the radiotap header of every decoded
WiFi frame. To separately build the UCQM and the NCQM,
the To-DS, From-DS, frame type, and frame sub-type fields
present in the 802.11 header are used. For each neighbor within
the decoding range, the WTPs compute the average of the
RSSI over windows of 500ms, an exponential weighted moving
average and a N -points smoothed moving average are also
maintained. The latter two filters have been selected because
they can reduce the noise while being responsive to RSSI
changes. Such property is useful when dealing with fast-fading
affected RSSI signals. At the same time, fast response allows to
promptly react to changes in the channel conditions.

The code below periodically queries the specified WTP for
its neighboring stations (the RSSI from neighboring APs can
be tracked using the ncqm primitive):

Listing 4. UCQM query creation.

The query is executed periodically with the period set by the
every parameter (in ms). Specifying every = −1 will result
in a single query being issued. In the above example specifying
ff:ff:ff:ff:ff:ff will return the RSSI of any station
within the decoding range of WTP 04:F0:21:09:F9:96 on
channel 36.

It is worth noticing that, we are using the general term
stations and access points instead of, respectively, LVAPs and
WTPs, since the Channel Quality Map tracks the RSSI level
of any active WiFi device including the ones belonging to
networks that are not under the administrative domain of the
SD-RAN Controller. This includes also wireless clients that are
not associated to any network but have their wireless interface
active (WiFi clients periodically broadcast Probe Request mes-
sages to discover available networks).

A sample output of the ucqm primitive is reported be-
low. In this case the station a0:d3:c1:a8:e4:c3 is a neighbor
of the WTP 04:f0:21:09:f9:96 on the 802.11a channel 36.
The report includes, besides the previously described av-
erages, also the total number of frames received since
the query was created (hist_packets) together with

154 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 12, NO. 2, JUNE 2015

the average (last_rssi_avg), the standard deviation
(last_rssi_std), and the number (last_packets) of
RSSI measurements taken during the last observation window.

Listing 5. UCQM query output.

The Channel Quality Map can be accessed at the frame-level
granularity providing the network programmer with a real-time
picture of all link-layer events. Each WTP tracks the following
meta-data associated to link-layer events:

• Transmitter Address. The MAC address of the transmitter.
• TSFT . The 802.11 MAC’s 64-bit Time Synchronization

Function Timer. Each frame received by the radio inter-
face is timestamped with a 1 μsec resolution clock by the
802.11 driver.

• Sequence, The 802.11 MAC’s 16-bit sequence number.
This counter is incremented by the transmitter after a
successful transmission.

• The frame RSSI (in dB), Rate (in Mb/s), Length (in bytes),
and Duration (in μsec).

The collected traces are then periodically delivered to the
SD-RAN Controller where they are synchronized to a common
time reference. Notice that, only successful unique frames
transmissions are recorded, i.e. frames with incorrect check-
sum and/or PLCP header as well as retransmitted frames are
ignored. The collected meta-data can be exploited for several
purposes. In Section VI we report on a simple implementation
of a trace merging system. The link-layer events and the asso-
ciated meta-data can be accessed using the summary primitive:

Listing 6. Collect link-layer meta-data.

The statement above generates a periodic callback when a
traffic trace has been received from a WTP. The traffic traces
includes all the link-layer events within the decoding range of
the WTP. The keep parameter allows the network programmer
to specify how many events must be stored by the controller.
Specifying −1 results in the controller storing all events. Spec-
ifying a positive integer will result in the controller flushing
the stored events when their number exceed the specified value.
The limit parameters instructs the WTP to send only a specified

number of traces after which the operation is stopped and all
the allocated data structures on the WTP are freed. Specifying
−1 results in the WTP sending traffic traces forever. It is also
possible to filter link-layer by transmission rates. In the example
above only transmission happening at 6 or at 54 Mb/s are
recorded. Specifying ff:ff:ff:ff:ff:ff as lvaps will
trigger the callback for any station in the network.

Notice that the entire data structure containing a frame meta-
information is 18-bytes long. A saturated 54-Mb/s channel
can deliver up to 2336 frames/s.3 In such scenario the system
would generate 42048 bytes of meta-data per second per radio
interface which correspond to a signaling bandwidth between
the WTP and SD-RAN Controller of about 336 kb/s which
is negligible considering the widespread adoption of Gigabit
Ethernet in enterprise networks. Due to channel contention, col-
lisions, and retransmissions the actual number of unique frames
that can be practically received by a WTP is typically smaller.

Finally, the rssi primitive allows the programmer to trigger
a callback the first time the RSSI of a LVAP verifies a certain
condition at any WTP in network. For example:

Listing 7. Create an RSSI trigger.

After the trigger has fired the first time and as long as the RSSI
remains below −70 dBm, the callback method is not called
again by the same WTP, however the same callback may be
triggered by other WTPs. Specifying ff:ff:ff:ff:ff:ff
as lvaps will trigger the callback when the RSSI of any LVAP
at any WTP is below −70 dBm.

C. Port

Programmers can fetch the Resource Block(s) on which an
LVAP is currently scheduled together with its Port configuration
by accessing the assigned_to property of an LVAP object:

>>>lvap.assigned_to
{(04:F0:21:09:F9:96, 36, L20):

(0C:3E:9F:57:1A:B6, 〈6,12,24,36,48,54〉, 27 dBm, 1)}

As it can be seen, the dictionary above contains a single
entry mapping a Resource Block with a Port configuration.
In this example, the LVAP 0C:3E:9F:57:1A:B6 has been as-
signed to the Resource Block 〈36, L20〉 scheduled at the WTP
04:F0:21:09:F9:96. The Port configuration specifies which

3At 54 Mb/s an 802.11a radio encodes 216 bits/symbol. The OFDM encod-
ing then add 6 more bits at the end of the frame, so a maximum length frame of
1536 bytes becomes a string of 12288 bits plus 6 trailing bits. The total 12294
bits can be encoded with 57 symbols each requiring 6 μsec for transmission.
As a result, ignoring backoff, the minimum time required for transmitting this
frame is: DIFS (34 μsec) + DATA(248 μsec) + ACK(24 μsec) = 322 μsec,
which corresponds to 2336 frames/second.

RIGGIO et al.: PROGRAMMING ABSTRACTIONS FOR SOFTWARE-DEFINED WIRELESS NETWORKS 155

range of parameters the WTP can use for its communication
with the LVAP, in this case: single spatial stream, fixed trans-
mission power, and adaptive transmission rates selection (with
a constraint on the possible MCS). The current implementation
of the Port abstraction supports the following parameters:

• TX Power. Fixed transmission power (in dB).
• Modulation and Coding Scheme (MCS). List of MCS

values that can be used by the rate selection algorithm.
• MIMO Configuration. Number of spatial streams.
• RTS/CTS Threshold. Frame length value above which the

RTS/CTS handshake must be used.
• No ACK. The WTP will not wait for ACKs.

D. Network Apps

In our SDK, Network Apps are Python modules loaded either
when the SD-RAN Controller is started or using the controller
REST interface. Every module is required to implement a
launch method called when the Network App is loaded to
perform initialization tasks. The launch method must return an
instance of the base class EmpowerApp. The parameters ac-
cepted by the launch method are defined by the Network App.
A mandatory ssid parameter must always be provided to specify
on which slice the module shall operate. An optional period
parameter can be used to specify the period of the control loop.
The complete code of a simple mobility management Network
App is reported below.

Listing 8. Sample mobility management Network App.

As it can be seen, this example Network App consists of a sin-
gle Python class instantiated during the module initialization.
The class implements just two methods: (i) the loop method
which periodically checks if a LVAP should be handed-over to
another WTP; and (ii) the callback method which is invoked
when the RSSI of a LVAP at its hosting WTP is going below
a certain threshold (−70 dB in this example). Notice how a
RSSI trigger matching all LVAPs in the network is created
in the class constructor. Notice also that, as it can be seen
for the rssi call, all the primitives described in the previous

Fig. 5. Network setup for the LV AP evaluation experiment.

sections can be invoked as class methods without specifying the
ssid parameter. Finally, to reduce the verbosity, error handling
and logging code have been omitted. Moreover, this Network
App does not take into account the actual traffic generated by
the clients and as result could overload some WTPs. A more
refined implementation would also implement load balancing
functionality spreading the traffic across the network possibly
using as input the LVAPs’ packet counters.

V. EVALUATION

This section is divided into two parts. In the first part our
aim is to demonstrate the usefulness of the LVAP concept. In
the second we quantify the signaling overhead associated with
the statistics subsystem. Notice that, although overhead char-
acterization results are reported only for the packet counters,
the general trends apply also to the other subsystem, namely
interference maps and triggers. The system has been evaluated
over a simple testbed composed of three WTPs. Each WTP
is equipped with two wireless NICs each tuned to a different
channel, specifically 6 (2.4 GHz band), and 36 (5 GHz band).
In our testbed (a typical office environment) channel 36 is not
shared with any other network, while channel 6 is used by
several other networks. The network controller is a Dell Laptop
equipped with a quad core Intel i7 CPU and 8 GB of RAM.4

Iperf [25] is used for synthetic traffic generation.

A. Seamless Handovers via LVAP Abstraction

To assess the effectiveness of the LVAP abstraction we imple-
mented a simple Network App which periodically hands over a
wireless client between two WTPs. The WTPs are 5 m apart
and share the same backhaul (an Ethernet LAN), the wireless
client is equidistant from the two WTPs. The network setup
is sketched in Fig. 5. Note that, in addition to the SD-RAN
Controller presented in this work, also an OpenFlow controller,
namely POX [26], has been used to pre-configure the Ethernet
switch before each handover.

Client mobility is emulated by progressively reducing the
transmission power of the serving AP. We consider a standard
WiFi network as the baseline scenario. Recall that, in a standard
WiFi network, handovers are triggered by the wireless clients
and that the network has no way of controlling wireless clients’
mobility. As a result, a WiFi client that sees a progressively
decreasing RSSI, will, at some point, handover to another AP
(if available). Such process is not deterministic and can take a
variable amount of time.

4Note however that the Python interpreter used to run the controller can
leverage only one CPU core.

156 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 12, NO. 2, JUNE 2015

Fig. 6. Distribution of the goodput at the receiver’s side when the client is
performing a handover every 10 s. (a) 5 Mb/s flow. (b) 25 Mb/s flow.

Fig. 7. Instantaneous goodput at the receiver’s side when the client is perform-
ing a handover every 10 s. (a) WiFi Legacy. (b)LV AP -based handover.

The traffic is generated at the wireless client towards a fixed
node which shares the backhaul with the two WTPs and is made
up of a single UDP flow with constant payload size (1472 bytes)
and constant bitrate (5, or 25 Mb/s). Fig. 6 shows the distri-
bution of the goodput at the receiver’s side when the client is
performing a handover every 10s in both the baseline and the
LVAP-based scenarios. The figure is the result of a 600s-long
measurement with goodput samples taken every 1s. As it can
be seen, in the baseline scenario almost 20% and 40% of the
samples are below the target bitrate for, respectively, the 5 and
the 25 Mb/s flows.

The instantaneous bitrate in both the baseline and the LVAP
(SDN) scenario for the 5 Mb/s flow is shown in Fig. 7. As it

Fig. 8. Wireless client throughput with an increasing handover rate using the
LV AP -basedhandover. The client is generating a saturated TCP stream toward
a remote host. The client throughput is not affected by the handover rate.

can be seen, the non-deterministic and uncoordinated nature of
the standard WiFi handover can lead to a significant throughput
degradation. In particular during our measurements we noticed
that, when a client fails to re-associate with the new AP during
a handover a full network scan followed by a DHCP exchange
is triggered. This procedure can take up to 1–2 seconds to
complete. As this procedure is triggered by the client, it can ef-
fectively lead to scenarios where the client is bouncing between
two APs. On the other hand, the LVAP abstractions allows for
completely seamless handovers.

We also tested the LVAP-based handover performance with
TCP traffic. Fig. 8 shows the throughput at the receiver’s side
for an increasing handover rate from 1 handover every two
seconds up to 10 handovers per second. As it can be seen, the
link capacity is not significantly affected by the handover rate.
Results are the average of 10 runs. Each run was 600-seconds
long. 95% confidence intervals are shown as error-bars.

B. Signaling Overhead Characterization

To demonstrate the minimal overhead nature of the querying
subsystem at both the WTPs and the controller we implemented
a simple application which periodically requests uplink and
downlink statistics for a LVAP. The polling period is increased
from 1 request every two seconds to 10 requests per second.
Fig. 9(a) shows the throughput attained by the wireless client
under an increasing polling rate. It can be seen that the client
throughput is only marginally affected by statistics requests.
This result is obtained through the use of shredded counters at
the WTP and non-blocking I/O between WTPs and controller.

Fig. 9(b) shows the average bandwidth used for the signal-
ing related traffic between WTPs and the controller under an
increasing polling rate. Although the bandwidth consumption
increases as the square of the polling rate, the actual value
does not exceed 500 kb/s even in the most extreme case of 10
requests per second. This amount of signaling overhead can be
easily accommodated by modern Gigabit Ethernet deployments
found in enterprise networks.

We also evaluated the network statistics subsystem in terms
of controller CPU utilization and signaling overhead with a
large number of wireless clients. To simulate a deployment with
tens of clients we artificially created an increasing number of
LVAPs at the 3 WTPs in our testbed. Although not associated
to an actual client, such LVAPs are, from the perspective of
the controller, equivalent to a scenario where an equivalent

RIGGIO et al.: PROGRAMMING ABSTRACTIONS FOR SOFTWARE-DEFINED WIRELESS NETWORKS 157

Fig. 9. Signaling overhead and its impact on client perceived performance
(throughput). The client is generating a saturated TCP stream toward a remote
host. The client throughput is unaffected by the polling frequency (a) even
while the required signaling bandwidth rises sharply with the polling rate (b).
(a) Throughput. (b) Signaling related bandwidth consumption.

Fig. 10. CPU Utilization (a) and signaling overhead (b) for an increasing
number of clients. (a) CPU utilization. (b) Signaling related bandwidth con-
sumption.

number of clients are active and continuously communicating.
We performed this experiment using an increasing number of
virtual clients as well as an increasing network statistics polling
rate. Results are shown in Fig. 10. It can be seen that the CPU
utilization increases with the polling rate and with the number
of clients. However even with 180 active clients and with a
polling rate of 1 req/s the CPU utilization remains between 50%
and 60%. Similarly the aggregate signaling related bandwidth
consumption even in an extreme case is only around 300 kb/s.

Fig. 11. FSM for the energy management Network App.

Fig. 12. Network-wide power consumption with varying number of active
clients. The reduction in power consumption is due to the joint energy and
mobility management Network App.

VI. APPLICATIONS

In this section we describe three Network Apps implemented
using our SDK and tested over a 20-nodes indoor testbed de-
ployed at CREATE-NET premises. The code of these Network
Apps is omitted for brevity.

A. Energy-Aware Mobility Management

A simple energy management Network App targeting dual
bands (2.4/5 GHz) enterprise WLANs has been implemented.
In this scenario APs are partitioned into clusters each with
a single Master AP and multiple Slaves APs. Masters are
chosen in such a way to provide full coverage and must remain
always active while Slaves can be selectively turned on/off.
Fig. 11 depicts the Finite State Machine (FSM) implemented
by this Network App. Here in the Online (Dual band) mode,
an AP and all its wireless interfaces are on. The Online (Single
band) mode represents the case when the 5 GHz interface is
turned off. A Slave AP belonging to a cluster with less than N
clients and that has been inactive for at least Tidle seconds is
transitioned to the Offline state. Here, inactive means that no
LVAP is hosted by the WTP. The transition from the Online
(Dual band) to Online (Single band) modes and vice-versa is
triggered according to the presence of clients supporting the
5 GHz band in the cluster. Finally, if there are more than N
clients in the cluster then the WTP is brought back to the
Online mode. As this Network App is a simple proof-of-concept
aimed at demonstrating the capabilities of our wireless SDN
framework, it does not take into account other relevant factors
like as traffic patterns and/or channel quality.

Fig. 12 plots the real time energy consumption of a simple
network composed of 3 WiFi APs and 5 clients. We assume that
all APs are in the same cluster and that the Master has been se-
lected manually to provide sufficient coverage. Clients joining
the network are handed over to the AP that provides the best
performance in terms of SNR. A constraint on the maximum

158 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 12, NO. 2, JUNE 2015

Fig. 13. Actual and estimated uplink frame loss at the three WTP s for different transmission rates when the client has a good link to all the WTP s (≈ 0.95
frame delivery ratio). (a) WTP 1. (b) WTP 2. (c) WTP 3.

number of clients that can be allocated to the same AP is also
introduced to avoid overloading APs. During this measurement
campaign the value for that parameter has been set to 2.
Moreover only 2 out of 5 clients support the 5 GHz band.

Initially all 5 wireless clients are active streaming a low
bitrate video from YouTube. After 20 seconds one client sched-
uled on the 5 GHz band leaves the network. As a result the
remaining 4 clients are consolidated on 2 APs and the third
one is turned off resulting in a significant power consumption
reduction. After 20 seconds one of the clients scheduled on the
2.4 GHz band leaves the network resulting in a sensible power
consumption reduction. Clients continue to leave the network
thereafter (one client every 20 seconds). Eventually, no client is
active in the network and only the master AP is kept powered
to preserve network coverage.

B. Uplink Monitoring

Performing handover decisions using as an input only the
RSSI strength between clients and APs may lead to suboptimal
performance as RSSI may not always be a good indicator of
link layer performance. Uplink and downlink frame loss rates
together can be better alternative metrics. While the downlink
frame loss can be easily tracked by the AP to which a client is
currently associated, tracking the uplink frame loss rate is much
harder if client modifications are not allowed. This is essentially
due to the fact the amount of frames actually sent by a client is
an unknown variable at the network side.

This Network App exploits the frame tracking capabilities
supported by our framework to build a globally synchronized
view of all link-layer events in the network. The Network App
implements a passive synchronization algorithm that does not
require the WTPs to share a common clock (which would be
impractical for μsec-level precision). The Network App exploits
the broadcast nature of a wireless link and in particular the
fact that the same transmission can be recorded by multiple in-
range WTPs. Moreover, at least for indoor deployments, we can
assume simultaneous receptions at the different WTPs since the
propagation delay even for a 500 m link is less than 1 μsec.

This Network App implements a synchronization mechanism
similar to the one used by Jigsaw [27]. The algorithm looks for
simultaneous receptions of the same frame (identified using the
802.11 sequence number) at different WTPs to synchronize the
clock of the other WTPs to a common reference point. Clock
adjustment is performed at the SD-RAN Controller where frame
summaries are merged into a single globally synchronized traf-
fic trace. Such operations are performed in real-time with low

overhead and without requiring network downtime. Once the
global clock synchronization has been achieved, the Network
App can track in real-time the frame delivery rates between one
or more LVAPs and all the WTPs in the network. Frame deliv-
ery statistics are computed every 500 ms and are aggregated
by transmission rate. An exponential moving average is also
maintained.

To evaluate the accuracy of the Network App we exploited
a network setup composed of a single client and three WTPs.
Traffic is injected from the wireless client as a single UDP
stream. Packet transmission rate and payload are kept fixed
at, respectively, 100 packets/s and 1472 bytes. Measurements
are taken for different frame transmission rates. Finally, im-
pairments on the link between client and WTPs are simulated
by randomly dropping received frames with probability p.
For all measurements a total of 6000 frames were generated.
Confidence intervals were very small for all the data points and
have therefore be omitted to improve readability.

Fig. 13 reports the actual and estimated frame delivery rates
at the three WTPs in the network for different transmission
rates. During this campaign the dropping probability has been
set for all links to p = 0.05 simulating good channel conditions.
As it can be seen the estimated frame delivery rates are very
close to the actual values.

Fig. 14 reports the outcomes of the second measurement
campaign. In this case the dropping probability of two links
has been set to p = 0.8 simulating poor channel condition
while the dropping probability of the third link has been set
to 0.05 simulating good channel condition. This scenario is
representative of the case where at least one of the in-range
receivers of a given wireless client is experiencing a good
channel condition. This situation is at least needed to allow the
Network App to have a good estimate of the number of frames
transmitted by the client. As it can be seen also in this case
the Network App can closely track the actual link delivery rates
for all the transmission rates. Note that, measurements have
been taken separately for each supported rate and that the links
experiencing poor channel conditions are randomly selected
at the beginning of the measurements. As a result, for each
supported transmission rate the WTPs which are experiencing
poor channel conditions are different.

Fig. 15 and Fig. 16 reports the actual and estimated frame de-
livery rates for different payload lengths and for different loads.
In both cases the transmission rate was kept fixed at 36 Mb/s.
The payload size for Fig. 16 was also kept fixed at 1472 bytes. It
can be seen that the estimated frame delivery rates are very
close to the actual values.

RIGGIO et al.: PROGRAMMING ABSTRACTIONS FOR SOFTWARE-DEFINED WIRELESS NETWORKS 159

Fig. 14. Actual and estimated uplink frame loss at the three WTP s for different transmission rates when the client has a good link to at least one of the WTP s
(≈ 0.95 frame delivery ratio). (a) WTP 1. (b) WTP 2. (c) WTP 3.

Fig. 15. Actual and estimated uplink frame loss at the three WTP s for an increasing payload length. (a) WTP 1. (b) WTP 2. (c) WTP 3.

Fig. 16. Actual and estimated uplink frame loss at the three WTP s for an increasing offered load. Transmission rate and payload length were kept fixed at
36 Mb/s and 1472 bytes, respectively. (a) WTP 1. (b) WTP 2. (c) WTP 3.

C. Interference-Aware Channel Assignment

An efficient channel assignment can dramatically improve
network performance in dense WLANs. In this section we
demonstrate how the Channel Quality and Interference Map
abstractions can be leveraged for this purpose. Note that the
definition of Interference Map from Section II-D can be ex-
tended to result in a more realistic interference map including
external but nearby WiFi APs and stations. A simple Network
App leveraging the SDK’s RSSI tracking primitives has been
implemented to achieve such a goal.

The Network App periodically traverses all the possible LVAP
pairs (an LVAP identifies the bi-directional link between a client
and its WTP). For each pair the Network App checks if a conflict
exists between the uplink/downlink of the first LVAP and the
second LVAP. In such a case the pair is added to the Interference
Map. Fig. 17(a) sketches the Channel Quality Map for the setup
used in this experiment whereas a graphical representation of
the Interference Map is shown in Fig. 17(b).

The dashed lines in Fig. 17(a) represent the weighted directed
edges in the UCQM and the NCQM for a given Resource
Block. As it can be seen given the fact that all the nodes are
within decoding range the resulting conflict graph depicted in
Fig. 17(b) is almost fully connected. No edge exists between
the link A → a and the link B → b in Fig. 17(b) because due

Fig. 17. Interference-aware channel assignment. WTP s are represented as
squares while LV AP s are represented as circles. (a) Channel quality map.
(b) Interference map.

to limitations in the current implementation it is not possible to
gather the list of interfering devices at the client.

The knowledge contained in the conflict graph can be ef-
fectively leveraged to improve network performance by im-
plementing suitable load-balancing and channel assignment
algorithms. A simple implementation of the DSATUR [28]
algorithm has been implemented as proof-of-concept. The sys-
tem performance has been tested before and after the channel
assignment. Traffic consists of two saturated TCP connections
generated at the two clients toward a node which shares the
backhaul with the two WTPs. Fig. 18 reports the instanta-
neous aggregated client throughput before (w/o CF) and

160 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 12, NO. 2, JUNE 2015

Fig. 18. Instantaneous aggregated client throughput before (w/o CF) and
after (w/CF) channel assignment. Performance improvement is result of
channel assignment.

Fig. 19. Distribution of the throughput before (w/o CF) and after (w/CF)
channel assignment. Performance improvement is result of channel assignment.

after (w/CF) channel assignment. As expected given the very
simple topology, when channel assignment is performed the
aggregated throughout improves significantly and it is also
stable. The latter aspect can be better seen in Fig. 19 where
the empirical CDF of the throughput samples is plotted.

VII. RELATED WORK

In this section we review and discuss the most relevant works
on: (i) wireless SDNs, (ii) high-level programming primitives
for SDNs, and (iii) interference modeling.

A. Wireless and Mobile SDNs

In [29], Murty et al. present a software architecture address-
ing the problem of extensibility in wireless LANs. The authors
define a set of APIs allowing clients and APs to be managed
by a centralized controller. Odin [4] is a SDN framework
for controlling and managing enterprise WLANs. Odin allows
network applications and services to be deployed as Networks
Apps on top of a centralized controller.

In [30], [31] the authors argue that SDN can simplify the
design and management of mobile networks, while enabling
new services. This work is extended in [2], where SoftCell,
an architecture supporting fine-grained policies for the mobile
core network, is presented. Cloud-RAN (C-RAN) [3] aims at
making deployment of 5G systems cheaper, faster and more
flexible. C-RAN is composed by a system of distributed an-
tennas connected using high bandwidth links to servers respon-
sible for their baseband processing. A distributed hierarchical
architecture for heterogeneous RANs based on OpenFlow is
presented in [32]. Similarly, in [33] an OpenFlow-based control
plane for LTE/EPC is presented. SoftRAN [1] proposes a

fundamental redesign of the cellular RAN by introducing a
big base station abstraction mapping the resources of all base
stations in a certain area.

Although the above works demonstrate continuing interest
in addressing the complexity of future mobile networks using
SDN principles, none of them put the focus on providing
programmers with a high-level interface to control the next-
generation RANs. Some of these works tackles the challenges
from the architectural perspective [3], [30]–[33]. Some attempts
at providing a more high-level view of the network can be found
in [2], [4] but these works either address the challenges in the
mobile core (EPC) or focus only on wireless clients.

Closest by goals and principles to our work is SoftRAN [1]
and CoAP [34]. In the former work the authors introduce the
big base station abstraction to address the challenges raised by
the densification of the cellular RAN while in the latter work
the authors tackle the challenge of orchestrating the operation
of a multitude of residential wireless gateways. Both works
however do not elaborate on the primitives to be exposed to
the programmers, the focus of our work.

B. Languages and Abstractions for SDNs

Several recent works have put their focus on applying high-
level programming primitives and techniques to SDN [9]–[15],
[35]. Their target however is to enable programmability in
wired networks typically relying on OpenFlow as data-plane
control API. In contrast our work focuses on modeling the most
critical aspects of a WiFi-based RAN (gathering network state,
interference-aware resource allocation and network reconfigu-
ration and adaptation) and exposing them to the network pro-
grammers through a set of technology agnostic programming
primitives.

Finally, the argument for handling fast timescale events as
close as possible to the place where they are originated is
made in [19], [20]. However, both works do not address the
way global channel quality information shall be exposed to the
network programmer (as we do via the Channel Quality Map
abstraction) nor they propose a viable network reconfiguration
model (the Port abstraction).

C. Interference Modeling and Management

Given the vast amount of literature on this topic our dis-
cussion here focuses on empirical approaches with a real-
world evaluation. For a broad survey on interference modeling
techniques in 802.11 networks we refer the reader to [36].
Passive and/or active measurements are leveraged by several
authors to derive either the conflict graph or the interference
graph of a wireless network. In [37], [38] active measurements
are exploited to study how mutual link interference affects
packet delivery ratio and throughput. In [39] micro-probing
(i.e., active measurements lasting few milliseconds) is used
to detect conflicts between links. Passive interference graph
construction techniques are presented in [40], [41]. WIT [42]
and Jigsaw [27] are two other examples of passive interference
monitoring techniques aimed at modeling cross-link interfer-
ence. A framework capable of performing root cause analysis
in WiFi networks is presented in [43].

RIGGIO et al.: PROGRAMMING ABSTRACTIONS FOR SOFTWARE-DEFINED WIRELESS NETWORKS 161

Conflict graphs are leveraged in [44] to manage the effect
of interference when multiple transmitters employ variable
channel widths. An architecture using micro-probing to jointly
address channel assignment and transmission power control is
presented in [45]. Centralized scheduling is exploited in [46]
to mitigate hidden and exposed terminals issues in WiFi-based
networks. Interference modeling plays a key role in the client
scheduling problem.

VIII. CONCLUSION

This paper aims at lowering the barrier for developing and
deploying the next generation application and services for
wireless and mobile networks. Towards this end, we propose
a set of programming primitives that empower the developers
with expressive tools to control the network while hiding away
the implementation details of the underlying technology. The
proposed primitives have been exposed to the network pro-
grammer through a Python-based SDK and have been used
to implement a number of applications ranging from energy-
consumption-aware load balancing to channel assignment. The
declarative nature of the primitives allows for a powerful yet
concise programming language.

The proposed abstractions address four wireless networks
control aspects, namely: wireless clients state management,
resource allocation, network monitoring, and network reconfig-
uration. Our architecture specifically accounts for the stochastic
nature of the wireless links and for the significant heterogeneity
in term of radio layer technologies that characterize modern
wireless networks. This essentially translates to separating poli-
cies (e.g., the set of transmission rates for use in link adapta-
tion), from mechanisms, i.e., the way knobs need to be turned
to obtain the desired behavior, and to putting the former in
the hands of the network programmers who are not necessarily
network experts while leaving the latter to equipment vendors.

Our current work aims at enhancing the runtime system
to improve system performances, extending the language to
support QoS-related primitives, and investigating how to prop-
erly address more advanced applications and services such as
content caching and and edge computing. Moreover, the entire
stack including the datapath implementation, the reference
SD-RAN Controller, and the Python-based SDK have been
released under a permissive license making it available to the
broad research community. Finally, we also plan to extend
and validate the proposed programming abstractions in a mo-
bile network scenario by adding support for LTE and LTE-
Advanced technology.

REFERENCES

[1] A. Gudipati, D. Perry, L. E. Li, and S. Katti, “SoftRAN: Software defined
radio access network,” in Proc. ACM HotSDN, 2013, pp. 25–30.

[2] X. Jin, L. Li, L. Vanbever, and J. Rexford, “SoftCell: Scalable and flex-
ible cellular core network architecture,” in Proc. ACM CoNEXT , 2013,
pp. 163–174.

[3] M. HadZialic, B. Dosenovic, M. Dzaferagic, and J. Musovic, “Cloud-
RAN: Innovative radio access network architecture,” in Proc. IEEE
ELMAR, 2013, pp. 115–120.

[4] L. Suresh, J. Schulz-Zander, R. Merz, A. Feldmann, and T. Vazao,
“Towards programmable enterprise WLANs with Odin,” in Proc. ACM
HotSDN, 2012, pp. 115–120.

[5] G. Bianchi et al., “MAClets: Active MAC protocols over hard-coded
devices,” in Proc. ACM CoNEXT , 2012, pp. 229–240.

[6] R. Riggio et al., “Programming software-defined wireless networks,” in
Proc. IEEE CNSM, 2014, pp. 118–126.

[7] R. Riggio, T. Rasheed, and M. K. Marina, “Interference management
in software-defined mobile networks,” in Proc. IEEE IM, Ottawa, ON,
Canada, 2015, to be published.

[8] N. McKeown et al., “OpenFlow: Enabling innovation in campus
networks,” SIGCOMM Comput., vol. 38, no. 2, pp. 69–74, Mar. 2008.

[9] T. L. Hinrichs, N. S. Gude, M. Casado, J. C. Mitchell, and S. Shenker,
“Practical declarative network management,” in Proc. ACM WREN, 2009,
pp. 1–10.

[10] C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker, “Composing
software-defined networks,” in Proc. USENIX NSDI, 2013, pp. 1–14.

[11] A. Voellmy and P. Hudak, “Nettle: Taking the sting out of programming
network routers,” in Proc. ACM PADL, 2011, pp. 235–249.

[12] N. Foster et al., “Frenetic: A network programming language,” SIGPLAN
Notices, vol. 46, no. 9, pp. 279–291, Sep. 2011.

[13] A. Voellmy, H. Kim, and N. Feamster, “Procera: A language for high-level
reactive network control,” in Proc. ACM HotSDN, 2012, pp. 43–48.

[14] A. K. Nayak, A. Reimers, N. Feamster, and R. Clark, “Resonance:
Dynamic access control for enterprise networks,” in Proc. ACM WREN,
2009, pp. 11–18.

[15] C. Monsanto, N. Foster, R. Harrison, and D. Walker, “A compiler and run-
time system for network programming languages,” in Proc. ACM POPL,
2012, pp. 217–230.

[16] R. Cohen and G. Grebla, “Joint scheduling and fast cell selection
in OFDMA wireless networks,” IEEE/ACM Trans. Netw., vol. 23, no. 1,
pp. 114–125, Feb. 2015.

[17] J. Schulz-Zander et al., “Programmatic orchestration of WiFi networks,”
in Proc. USENIX ATC, 2014, pp. 347–358.

[18] D. Lee et al., “Coordinated multipoint transmission and reception in
LTE-advanced: Deployment scenarios and operational challenges,” IEEE
Commun. Mag., vol. 50, no. 2, pp. 148–155, Feb. 2012.

[19] S. H. Yeganeh and Y. Ganjali, “Kandoo: A framework for efficient and
scalable offloading of control applications,” in Proc. ACM HotSDN, 2012,
pp. 19–24.

[20] J. Schulz-Zander, N. Sarrar, and S. Schmid, “Towards a scalable and
near-sighted control plane architecture for WiFi SDNs,” in Proc. ACM
HotSDN, 2014, pp. 217–218.

[21] “Tornado Web Server.” [Online]. Available: http://www.tornadoweb.
org/

[22] B. Pfaff et al., “Extending networking into the virtualization layer,” in
Prof. ACM HotNets, 2009, pp. 1–17.

[23] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The click
modular router,” ACM Trans. Comput. Syst., vol. 18, no. 3, pp. 263–297,
Aug. 2000.

[24] M. Bansal, J. Mehlman, S. Katti, and P. Levis, “OpenRadio: A program-
mable wireless dataplane,” in Proc. ACM HotSDN, 2012, pp. 109–114.

[25] “Iperf.” [Online]. Available: http://iperf.sourceforge.net/
[26] “POX.” [Online]. Available: http://www.noxrepo.org/pox/about-pox/
[27] Y.-C. Cheng et al., “Jigsaw: Solving the puzzle of enterprise 802.11

analysis,” in Proc. ACM SigComm, 2006, pp. 39–50.
[28] P. San Segundo, “A new DSATUR-based algorithm for exact vertex col-

oring,” Comput. Oper. Res., vol. 39, no. 7, pp. 1724–1733, Jul. 2012.
[29] R. Murty, J. Padhye, A. Wolman, and M. Welsh, “Dyson: An architecture

for extensible wireless LANs,” in Proc. USENIX ATC, 2010, pp. 1–14.
[30] L. Li, Z. Mao, and J. Rexford, “Toward software-defined cellular net-

works,” in Proc. EWSDN, 2012, pp. 7–12.
[31] H. Ali-Ahmad et al., “CROWD: An SDN approach for DenseNets,” in

Proc. EWSDN, 2013, pp. 25–31.
[32] G. Sun, G. Liu, H. Zhang, and W. Tan, “Architecture on mobility manage-

ment in openflow-based radio access networks,” in Proc. IEEE GHTCE,
2013, pp. 88–92.

[33] S. Ben Hadj Said et al., “New control plane in 3GPP LTE/EPC architec-
ture for on-demand connectivity service,” in Proc. IEEE CloudNet, 2013,
pp. 205–209.

[34] A. Patro and S. Banerjee, “COAP: A software-defined approach for home
WLAN management through an open API,” in Proc. ACM MobiArch,
2014, pp. 31–36.

[35] M. Casado, N. Foster, and A. Guha, “Abstractions for software-defined
networks,” Commun. ACM, vol. 57, no. 10, pp. 86–95, Sep. 2014.

[36] P. Cardieri, “Modeling interference in wireless ad hoc networks,”
IEEE Commun. Surveys Tuts., vol. 12, no. 4, pp. 551–572, 4th Quart.
2010.

[37] D. Niculescu, “Interference map for 802.11 networks,” in Proc. ACM
IMC, 2007, pp. 339–350.

162 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 12, NO. 2, JUNE 2015

[38] C. Reis, R. Mahajan, M. Rodrig, D. Wetherall, and J. Zahorjan,
“Measurement-based models of delivery and interference in static wire-
less networks,” in Proc. ACM SIGCOMM, 2006, pp. 51–62.

[39] N. Ahmed, U. Ismail, S. Keshav, and K. Papagiannaki, “Online estimation
of RF interference,” in Proc. ACM CoNEXT , 2008, p. 4.

[40] V. Shrivastava, S. Rayanchu, S. Banerjee, and K. Papagiannaki, “PIE in
the sky: Online passive interference estimation for enterprise WLANs,”
in Proc. USENIX NSDI, 2011, pp. 337–350.

[41] M. Vutukuru, K. Jamieson, and H. Balakrishnan, “Harnessing exposed ter-
minals in wireless networks,” in Proc. USENIX NSDI, 2008, pp. 59–72.

[42] R. Mahajan, M. Rodrig, D. Wetherall, and J. Zahorjan, “Analyzing
the MAC-level behavior of wireless networks in the wild,” SIGCOMM
Comput. Commun. Rev., vol. 36, no. 4, pp. 75–86, Aug. 2006.

[43] D. Giustiniano, D. Malone, D. Leith, and K. Papagiannaki, “Measuring
transmission opportunities in 802.11 links,” IEEE Trans. Netw., vol. 18,
no. 5, pp. 1516–1529, Oct. 2010.

[44] S. Rayanchu, V. Shrivastava, S. Banerjee, and R. Chandra, “Fluid:
Improving throughputs in enterprise wireless lans through flexible
channelization,” in Proc. ACM MobiCom, 2011, pp. 1–12.

[45] N. Ahmed and S. Keshav, “SMARTA: A self-managing architecture for
thin access points,” in Proc. ACM CoNEXT , 2006, p. 9.

[46] V. Shrivastava et al., “CENTAUR: Realizing the full potential of central-
ized WLANs through a hybrid data path,” in Proc. ACM MobiCom, 2009,
pp. 297–308.

Roberto Riggio (M’07) received the Ph.D. degree
in communications engineering from the Univer-
sity of Trento, Trento, Italy, in 2008. He is cur-
rently a Senior Researcher of the Future Networks
team at CREATE-NET, Italy and Guest Lecturer
at the University of Trento. His research interests
include performance isolation in multi-tenants data-
centers, software defined mobile networking, and
programmable 5G networks. He has co-authored
more than 50 papers in internationally refereed jour-
nals and conferences. He serves on the TPC of

leading conferences in the networking field, including, e.g., IEEE INFOCOM,
IEEE IM/NOMS, IEEE ManFI, and IEEE ManSDN/NFV. He is a member of
the ACM.

Mahesh K. Marina (SM’13) received the Ph.D.
degree in computer science from the State University
of New York at Stony Brook, Stony Brook, NY,
USA. He is a Reader in the School of Informatics at
the University of Edinburgh, Edinburgh, U.K. Prior
to joining the University of Edinburgh, he spent two
years as a Postdoctoral Researcher in the Computer
Science Department at the University of California
at Los Angeles (UCLA), Los Angeles, CA, USA.
During 2013, he was a Visiting Researcher at ETH
Zurich and at Ofcom London.

Julius Schulz-Zander is a Research Assistant in
Prof. Feldmann’s Internet Network Architectures
group, pursuing the Ph.D. degree in computer sci-
ence from the Technische Universität Berlin, Berlin,
Germany, where he previously received the diploma
degree in computer science. His research is centered
around Wi-Fi, SDN, and NFV, i.e., software-defined
wireless networking. Previously, he was a Visiting
Scholar in Prof. McKeown’s group at Stanford Uni-
versity, Stanford, CA, USA, where he brought Open-
Flow to OpenWrt-enabled wireless routers. Since

2007, he has been a member of the Berlin Open Wireless Lab which operates
over 100 OpenFlow-enabled APs indoor and outdoor. From 2007 to 2013, he
was affiliated with Deutsche Telekom Innovation Laboratories. He was awarded
a Software Campus grant from the German Federal Ministry of Education and
Research to pursue his studies.

Slawomir Kuklinski (M’96) received the M.Sc.
and the Ph.D. degrees from Warsaw University of
Technology, Warsaw, Poland, in 1985 and 1994,
respectively, where he has been an Assistant Pro-
fessor since 1994. Since 2003, he also worked for
Orange Labs Polska S.A. as a research expert. He
has spent the decade working on Future Internet, mo-
bile systems, wireless mesh networks, and VANET.
Currently, he is focusing on autonomic and cognitive
network management, SDN, and 5G. In his career he
was involved in several European projects, including

MIDAS, 4WARD, and EFIPSANS. He also led many national research projects
as a principal investigator, published many conference papers, was TPC mem-
ber of many conferences, and served as a reviewer to many conferences and
journals.

Tinku Rasheed (M’05) received the Bachelor’s de-
gree in telecommunications from University of Ker-
ala, India, in 2002, the M.S. degree from Aston
University, Birmingham, U.K., in 2003, and the
Ph.D. degree from the Computer Science Depart-
ment of the University of Paris-Sud XI in 2007. He is
a Senior Research staff member, heading the Future
Networks Area within CREATE-NET. Before join-
ing CREATE-NET, he was a Research Engineer with
Orange Labs for 4 years. Dr. Rasheed has extensive
industrial and academic research experience in the

mobile wireless communication area, end-to-end network architectures and
services. He has several granted patents and has published more than 60 articles
in major journals and conferences. He is a member of the ACM.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

