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Rational Construction of Stochastic Numerical Methods

for Molecular Sampling

Benedict Leimkuhler and Charles Matthews ∗

March 24, 2012

Abstract

In this article, we focus on the sampling of the configurational Gibbs-Boltzmann
distribution, that is, the calculation of averages of functions of the position coordinates
of a molecular N -body system modelled at constant temperature. We show how a formal
series expansion of the invariant measure of a Langevin dynamics numerical method can
be obtained in a straightforward way using the Baker-Campbell-Hausdorff lemma. We
then compare Langevin dynamics integrators in terms of their invariant distributions and
demonstrate a superconvergence property (4th order accuracy where only 2nd order would
be expected) of one method in the high friction limit; this method, moreover, can be
reduced to a simple modification of the Euler-Maruyama method for Brownian dynamics
involving a non-Markovian (coloured noise) random process. In the Brownian dynamics
case, 2nd order accuracy of the invariant density is achieved. All methods considered are
efficient for molecular applications (requiring one force evaluation per timestep) and of a
simple form. In fully resolved (long run) molecular dynamics simulations, for our favoured
method, we observe up to two orders of magnitude improvement in configurational
sampling accuracy for given stepsize with no evident reduction in the size of the largest
usable timestep compared to common alternative methods.

keywords: molecular dynamics; sampling; Langevin dynamics; Brownian dynamics; stochastic

dynamics; diffusion equation.
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1 Introduction

Let U : RN → R be the potential energy function of a classical model for a molecular

system. A fundamental challenge is to sample the configurational Gibbs-Boltzmann (canonical)

distribution with density

ρ̄β(x) = Z−1 exp(−βU(x)), (1)

where β−1 = kBT where kB is Boltzmann’s constant, T is temperature, and Z is a normalization

constant so that ρ̄β has unit integral over the entire configuration space. A wide variety of

methods are available to calculate averages with respect to ρ̄β , among these some of the most

popular are based on Brownian dynamics or Langevin dynamics (defined in the phase space of

positions and momenta) [1, 2, 3, 4, 5]. (Note: in this article we focus exclusively on molecular

dynamics techniques; molecular models can also be sampled using Monte-Carlo methods, and,

more generally, using hybrid algorithms which combine molecular dynamics with a Metropolis-

Hastings test in order to correct averages. For a recent review of such schemes see [6].) Recall

that Brownian dynamics (overdamped Langevin dynamics) is a system of Itō-type stochastic

differential equations of the form

dx = −M−1∇U(x)dt +
√

2β−1M−1/2dW, x(0) = x0, (2)

where dW (t) is the infinitesimal increment of a vector of stochastic Wiener processes W (t), and

M is a positive (we assume here diagonal) mass matrix.1 A simple and popular method for

numerical solution of (2) is the Euler-Maruyama method

xn+1 = xn − hM−1∇U(xn) +
√

2kBThM
−1/2Rn,

where Rn is a vector of random variables with standard normal distribution. This produces a

sequence of points x0, x1, x2, . . ., which, following a certain relaxation period, are approximately

distributed according to the canonical invariant distribution. Euler-Maruyama has the property

that the time averages along discrete trajectories, in the limit of large time ( under appropriate

conditions on the potential U(x) and assuming no effects from floating point rounding error),

have error proportional to h. One of the observations of this article is that the simple

modification

xn+1 = xn − hM−1∇U(xn) +
√

kBTh

2
M−1/2(Rn +Rn+1) (3)

provides a second order approximation of stationary averages.

1In terms of sampling the Gibbs distribution, M is in fact arbitrary, but it may be useful to allow for
coordinate scaling.
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We arrive at this scheme by considering the large friction limit in a particular numerical

method for Langevin dynamics. Recall that Langevin dynamics is a stochastic-dynamical

system involving both positions and momenta p of the form

dx =M−1pdt, dp = [−∇U(x) − γp]dt+ σM1/2dW, (4)

where W = W (t) is again a vector of N independent Wiener processes, and γ > 0 is a free

parameter, the friction coefficient. The methods that are in fact the primary focus of this

paper are splitting integrators that decompose the stochastic vector field of Langevin dynamics

into simpler vector fields which can be solved exactly. The composition method that results

cannot be directly related to a stochastic differential equation, so the analogy with backward

error analysis for deterministic problems [16, 17] is incomplete, but nonetheless the invariant

measure associate to the numerical method can be derived, using the Baker-Campbell-Hausdorff

(BCH) expansion, as an asymptotic series in two parameters: the stepsize and the reciprocal

of the friction coefficient. The superconvergence result alluded to above is then obtained in

the high friction limit. The Langevin stepsize must be understood to be proportional to the

square root of the stepsize that appears in Eq. 3, so in Langevin dynamics an effective 4th order

approximation is obtained, but only for the marginal configurational invariant distribution, Eq.

1. Our approach also provides a simple method for comparative assessment of the invariant

measure of a class of Langevin integrators.

In large scale simulations, it must be acknowledged that the statistical error (dependent on

the number of samples used) is typically the dominant concern. Our approach focuses instead

on the truncation error of the invariant distribution, thus the greatest benefit would be seen

only when the statistical error is well controlled. Nonetheless we observe in our numerical

experiments that the least biased scheme from the point of view of the bias introduced in

configurational sampling is also as efficient as the alternatives and the most robust with respect

to variation of the parameters (stepsize, friction coefficient), thus there is effectively no price

for the improvement in accuracy. Moreover, it would be possible to complement the methods

proposed here by procedures such as importance sampling [7] to further reduce the statistical

error.

With regard to the approximation of canonical averages, methods have previously been

constructed for Brownian dynamics with order > 1 and for Langevin dynamics with order > 2

[2, 4], but these require multiple evaluations of the force; for this reason they are not normally

viewed as competitive alternatives for molecular sampling [8]. By contrast all of the methods

described in this article use a single force evaluation at each timestep.

The approach used here may be compared to other recent works on stochastic numerical

methods, and, in particular [9, 10, 11, 12, 13, 14, 15]. Our technique differs from these in (i)
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the direct focus on the stationary configurational distribution, and (ii) the use of the BCH

expansion. Other articles (see e.g. [5]) which address the invariant measure in Langevin-type

stochastic differential equations do not use the backward error analysis (and do not find the

superconvergent scheme).

The rest of this article is as follows. In Section 2 we review necessary background on

stochastic differential equations for sampling from the Gibbs measure. Section 3 presents our

expansion of the associated perturbed invariant measure and calculations involving the use of

the Baker-Campbell-Hausdorff theorem. Section 4 describes the reduction of the methods in

the case of overdamped Langevin Dynamics. Section 5 demonstrates the theory obtained using

numerical experiments to verify the results.

2 Background

The Ornstein-Uhlenbeck (OU) stochastic differential equation is an Itō equation of the form

du = −γudt + σdW,

where we assume that U is a random variable defined for each time t, γ and σ are positive

parameters and dW represents the infinitesimal increment of a Wiener process. Langevin

dynamics (Eq. 4) combines the Ornstein-Uhlenbeck stochastic vector field with conservative

dynamics.

For stochastic differential equations, the density evolves according to an evolution equation

(the Fokker-Planck or forward Kolmogorov equation) of the form

∂ρ

∂t
= L∗ρ,

where L∗ is a second order differential operator. In the case of Langevin dynamics, the relevant

Kolmogorov operator is defined by its action on a function φ of the variables of the system by

L∗

LDφ = −M−1p · ∇xφ+∇U(x) · ∇pφ+ γ∇p · (pφ) +
σ2

2
∆pφ,

where ∆p is the mass-weighted Laplacian in the momenta: ∆p =
∑

imi
∂2

∂p2
i

. By choosing

σ =
√
2kBTγ one easily checks that the Gibbs distribution with density ρβ = Z̃−1 exp(−βH)

is a steady state of the Kolmogorov equation, where Z̃ is a normalising constant and H(x, p) =

pTM−1p/2 + U(x) represents the Hamiltonian energy function. For later reference, we define

averages with respect to the Gibbs distribution by

E (φ(x, p)) =

∫

φ(x, p)ρβ dx dp.
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It is possible to demonstrate that the operator L∗

LD is hypoelliptic by using Hörmander’s

criterion [18] based on iterated commutators, and this implies that the Gibbs measure is the

unique steady state (up to normalization). Even stronger is the result of [19] which demonstrates

the existence of a spectral gap for the operator LLD, under certain conditions on U . Many of

the challenges related to obtaining formal analytical results for stochastic differential equations

relate to singularities of the potential and unboundedness of the solution domain. However, with

periodic boundary conditions and strong repulsive potentials (e.g. Lennard-Jones potentials)

we observe that configurations typical evolve in a bounded set and remain far from singular

points (the radial distribution vanishes in a large interval around the origin). For the purpose of

deriving practical methods we assume that (i) the positions are confined to a periodic simulation

box Ω = LxT× LyT× LzT, where T = R/Z is the one-dimensional torus, and (ii) U is C∞ on

Ω. These assumptions, which are realistic in most molecular dynamics applications, allow us

to use recent results in hypocoercivity [20, 21] to establish the regularity properties of LLD.

Specifically, we have as a consequence of these articles, that

• L∗

LD has a compact resolvent [22],

• L∗

LDf = 0 has a unique solution in C∞(Ω), i.e., the Gibbs density ρβ.

Note that, if, for some given g, there are two solutions of L∗

LDf = g then, using the linearity

of the operator these may differ only in a constant scaling of the Gibbs density.

2.1 Timestepping Methods.

In a splitting method for a deterministic system ż = f(z), one divides the vector field f into

exactly solvable parts, i.e. f = f1 + f2, which are treated sequentially within a timestep.

An example of such a splitting method for the Hamiltonian system with energy H(x, p) =
∑

i p
2
i /(2mi) + U(x1, x2, . . . , xN ) is the “symplectic Euler” method defined by f1 =

∑

im
−1
i pi∂xi

,

f2 = −∑

i
∂U
∂xi
∂pi . By dividing the vector field as f = 1

2
f1 + f2 +

1
2
f1, solving each vector field

in turn, we obtain the so-called position Verlet method, and by switching the roles of f1 and

f2 we obtain the velocity Verlet method. Splitting methods like these are explicit and this

feature is of particular importance in molecular dynamics, where the force calculation is the

usual measure of per-timestep computational complexity.

In a similar way, Langevin dynamics may be treated by splitting [9, 12, 13]. For example,

one may divide the Langevin system (Eq. 4) into three parts

d

[

x

p

]

=

[

M−1p

0

]

dt

︸ ︷︷ ︸

A

+

[

0

−∇U

]

dt

︸ ︷︷ ︸

B

+

[

0

−γpdt + σM1/2dW

]

,

︸ ︷︷ ︸

O

(5)
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and each of the three parts may be solved ‘exactly’. In the case of the OU part (labelled here

simply as O) we mean by this that we realize the stochastic process by the equivalent formula

p(t) = e−γtp(0) + σ
√

(1− e−2γt)β−1M1/2R(t), (6)

where R(t) is a vector of uncorrelated independent standard normal random processes (white

noise). One method based on the splitting (Eq. 5) is defined by the composition

ψδt
ABAO = exp((δt/2)LA) exp(δtLB) exp((δt/2)LA) exp(δtLO),

where exp(δtLf) represents the phase space propagator associated to the (deterministic or

stochastic) vector field f , and we use δt as the timestep in Langevin dynamics (later we use h

for the timestep of an associated Brownian dynamics). The deterministic part is approximated

by the position Verlet method. This is referred to as a Geometric Langevin Algorithm of order

two (GLA-2) following [13]; an alternative is to use velocity Verlet for the Hamiltonian part

(ψδt
BABO). A simple generalization of GLA methods is obtained by interspersing integrators

associated to parts of the Hamiltonian vector field with exact OU solves, thus we have

ψδt
ABOBA = exp((δt/2)LA) exp((δt/2)LB) exp(δtLO) exp((δt/2)LB) exp((δt/2)LA),

and ψBAOAB defined in an analogous way.

An alternative integrator termed the Stochastic Position Verlet (SPV) method [9, 12], relies

on the splitting

d

[

x

p

]

=

[

M−1p

0

]

dt +

[

0

−∇Udt− γpdt+ σM1/2dw

]

.

SPV is not a (generalized) GLA-type method, although it, as each of the generalized GLA

schemes, is quasisymplectic in the language of [10]. Likewise the commonly used method of

Brunger, Brooks and Karplus (BBK) [1] is not of the (generalized) GLA family. Details of all

methods examined are given in the Appendix.

To slightly simplify the presentation that follows, we make the change of variables

q →M−1/2q, p→M+1/2p, with a corresponding adjustment of the potential; this is equivalent

to assuming M = I.

3 Expansion of the Invariant Measure

We shall work here with formal series expansions, however we expect that our derivation could

be rigorously founded using techniques found in [23] and [24]. Associated to any given
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splitting-based method for Langevin dynamics, we define the operator L̂∗ that characterises

the propagation of density by an expansion of the form:

L̂∗ = L∗

LD + δtL∗

1 + δt2L∗

2 +O(δt3), (7)

For example, for the method labelled by the string ABAO, we have

exp(δtL̂∗

ABAO) = exp((δt/2)L∗

A) exp(δtL∗

B) exp((δt/2)L∗

A) exp(δtL∗

O).

The perturbation series may be found by successive applications of the BCH expansion [16] and

linearity properties of the Kolmogorov operator. However, unlike in the deterministic case,

the terms that appear in the series cannot be associated to modified vector fields or even SDEs

[25].

Note that, when iterated n+ 1 times, the method ABAO produces a sequence of the form

e
δt

2
LAe

δt

2
LB[ψδt

BAOAB]
ne

δt

2
LBe

δt

2
LAeδtLO

thus, with a minor coordinate transformation, the dynamics sample the same invariant density

as BAOAB. Similarly BABO and OBAB are essentially the same method as ABOBA. For this

reason we concentrate in the remainder of this article on ABOBA and BAOAB. For these two

methods, the symmetry implies that the odd order terms in (7) vanish identically using the

Jacobi identity in the BCH expansions.

After deriving L̂∗ in this way, we seek the invariant distribution which satisfies L̂∗ρ̂ = 0.

For the BAOAB and ABOBA methods, we make the ansatz that the invariant measure of the

numerical method has the simple form

ρ̂ ∝ exp(−β[H + δt2f2 + δt4f4 + . . .]). (8)

We may rewrite this as

ρ̂ ∝ ρβ
(
1− βδt2f2(x, p) +O

(
δt4

))
.

This means that the equation L̂∗ρ̂ = 0 becomes

(
L∗

LD + δt2L∗

2 + . . .
) (
ρβ − δt2βρβf2 + . . .

)
= 0.

Equating second order terms in δt gives

L∗

LD (ρβf2) = β−1L∗

2ρβ. (9)

The equation L∗

LDg = 0 has unique solution g = ρβ, up to a constant multiple. Hence

the homogeneous solution to the above PDE is f2(x, p) = c, for some constant c; we therefore
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require a particular solution f2 of (9). By the Fredholm Alternative, the equation has a solution

provided the solution of

LLDg = 0

satisfies ∫

gL∗

2ρβ = 0.

As the only solutions of LLDg = 0 are the constants, we require

∫

L∗

2ρβ = 0.

3.1 Calculation of the inhomogeneity

For a symmetric splitting method such as the BAOAB method, recall that we can use the

Baker-Campbell-Hausdorff [16] formula to find the overall one-step perturbation operator for

the scheme. For linear operators X , Y and Z, we have that

e
δt

2
Xe

δt

2
Y eδtZe

δt

2
Y e

δt

2
X = eδtS ,

such that

S =X + Y + Z +
δt2

12
([Z, [Z, Y +X ]] + [Y, [Y,X ]] + [Z, [Y,X ]] + [Y, [Z,X ]]

−1
2
[Y, [Y, Z]]− 1

2
[X, [X,Z]]− 1

2
[X, [X, Y ]]

)
+O(δt4).

where δt > 0 and [X, Y ] = XY − Y X is the commutator of Y and X .

In the case of the BAOAB method, we use

X = L∗

B = ∇U(x) · ∇p, Y = L∗

A = −p · ∇x,

and

Z = L∗

O = γ∇p · (p·) +
σ2

2
∆p,

to compute the perturbed operator for the method. A similar analysis can be conducted for

the other generalised GLA-type methods considered in this paper.

To compute L̂∗ we simply plug in our choices into the BCH formula to obtain:

L̂∗ = L∗

LD + δt2L∗

2 +O
(
δt4

)
,

= L∗

LD +
δt2

12
([L∗

O, [L∗

O,L∗

Det]] + [L∗

A, [L∗

A,L∗

B]]

+ [L∗

O, [L∗

A,L∗

B]] + [L∗

A, [L∗

O,L∗

B]]− 1
2
[L∗

A, [L∗

A,L∗

O]]

−1
2
[L∗

B, [L∗

B,L∗

O]]− 1
2
[L∗

B, [L∗

B,L∗

A]]
)
+O(δt4),
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where recall that

L∗

Det = L∗

A + L∗

B,

and

L∗

LD = L∗

Det + L∗

O.

The calculation of the inhomogeneity in (8) then amounts to a straightforward computation of

the commutator series applied to ρβ . The commutators needed are:

[L∗

A, [L∗

A,L∗

B]] ρβ =2βpTU ′′(x)∇U(x)ρβ − ρββ p · ∇xp
TU ′′(x)p,

[L∗

B, [L∗

B,L∗

A]] ρβ =− 2βpTU ′′(x)∇U(x)ρβ ,

[L∗

O, [L∗

A,L∗

B]] ρβ =2γ
(
∆xU(x)− βpTU ′′(x)p

)
ρβ,

[L∗

A, [L∗

O,L∗

B]] ρβ =γβ
(
|∇U(x)|2 − pTU ′′(x)p

)
ρβ,

[L∗

A, [L∗

A,L∗

O]] ρβ =2γ
(
β|∇U(x)|2 −∆xU(x)

)
ρβ ,

[L∗

B, [L∗

B,L∗

O]] ρβ =0

[L∗

O, [L∗

O,L∗

Det]] ρβ =0,

where we have abbreviated the Hessian ∇x∇T
xU(x) =: U ′′(x).

Hence we can see directly that

12L∗

2ρβ = 3γ
(
∆xU(x)− βpTU ′′(x)p

)
ρβ + 3βpTU ′′(x)∇U(x)ρβ − ρβ βp · ∇xp

TU ′′(x)p,

giving

L∗

2ρβ = ρβ

[
γ

4

(
∆xU(x) − βpTU ′′(x)p

)
+
β

4
pTU ′′(x)∇U(x)− β

12
p · ∇xp

TU ′′(x)p

]

. (10)

Observe that the condition of the Fredholm Alternative is satisfied since the average of the first

term is equivalent to a canonical average which vanishes

E
(
∆xU(x)− βpTU ′′(x)p

)
= 0.

The other terms in Eq. 10, being canonical averages of terms which are odd-order in p,

necessarily also average to zero.

An analogous computation can be performed for the ABOBA method, giving a slightly

(but crucially) different perturbation operator L∗ (ABOBA), where

L∗ (ABOBA)
2 ρβ = −ρβ

[
1

4
γ
(
∆xU(x)− βpTU ′′(x)p

)
+

1

4
βpTU ′′(x)∇U(x) − 1

6
β p · ∇xp

TU ′′(x)p

]

Here U ′′ is the Hessian matrix of U and ∆x =
∑N

i=1
∂2

∂x2
i

is the partial Laplacian in x. Again the

Fredholm Alternative condition is easily seen to be satisfied.
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3.2 Expansion in powers of γ−1

Although we are not able to give the general analytical solution to the partial differential

equation of Eq. 9, we can find a solution in an important limiting case: the high friction regime.

To do this, we expand the invariant density of the numerical method further, viewing both δt

and ε = γ−1 as small parameters:

ρ̂ = exp(−β[H + δt2(f2,0 + f2,1ε+O(ε2)) +O(δt4)]). (11)

Dividing by γ, we may reduce Eq. 9 to

[L∗

0 + εL∗

1](f2,0 + εf2,1 +O(ε2)) = g0 + εg1,

where

L∗

0 =
1

β
∆p − p · ∇p, L∗

1 = ∇U(q) · ∇p − p · ∇x,

and, for BAOAB,

g0 =
1
4

(
β−1∆xU(x)− pTU ′′(x)p

)
,

g1 =
1
4
pTU ′′(x)∇U(x) − 1

12
p · ∇xp

TU ′′(x)p.

Note that this is a singularly perturbed system as L0 is degenerate and it is only the combined

operator that has the necessary regularity to define a unique solution. Nonetheless, as explained

below it is possible to find the leading term f2,0 by substituting a truncated expansion of fixed

degree and solving the resulting equations.

Equating powers of ε, we find

L∗

0f2,0 = g0, L∗

1f2,0 + L∗

0f2,1 = g1,

and

L∗

1f2,n−1 = −L∗

0f2,n (for n > 1).

Truncating at n = 2, for example, we find the following solution of these equations:

f2,0 ≡ fBAOAB
2,0 = 1

8

(
pTU ′′(x)p− β−1∆U(x)

)
,

f2,1 ≡ fBAOAB
2,1 = 1

24
β−1pT∇x∆xU(x)− 1

72
pT∇xp

TU ′′(x)p,

f2,2 ≡ fBAOAB
2,2 = 1

296
pT∇xp

T∇xp
TU ′′(x)p− 1

48
∇U(x) · ∇xp

TU ′′(x)p.

For ABOBA, f2,0 the solution would change to

fABOBA
2,0 = −1

8

(
pTU ′′(x)p− 2β−1∆U(x)

)
.
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3.3 Marginal distribution

We now turn out attention to the configurational marginal distribution obtained by integrating

the density expansion (11) with respect to the momenta. Our interest is only in the leading

term of this expansion, which defines the sampling behavior for large γ. Ignoring higher order

terms in δt and ε, we would have the distribution

ρ̂ = ρ̃× (1 +R),

where, for BAOAB, ρ̃ = ρβ × exp
(

−β
[
δt2

8

(
pTU ′′(x)p− β−1∆U(x)

)])

, and R = O(εδt2) +

O(δt4).

Noting that the leading term in the exponent of ρ̃ is quadratic in momenta, we integrate

out with respect to p to obtain

∫

ρ̃ dNp =

∫

exp

(

−β
[
1

2
pT (I +

δt2

4
U ′′)p+ U − β−1δt

2

8
∆U

])

dNp

=

√

2πkBT/ det

(

I +
δt2

4
U ′′

)

exp

(

−β
[

U − β−1 δt
2

8
∆U

])

Using the identity det(M) = exp(trace(log(M))), we find

∫

ρ̃ dNp ∝ exp

(

−1

2
trace

(

log

(

I +
δt2

4
U ′′

)))

× exp

(

−β
[

U − β−1 δt
2

8
∆U

])

.

We then Taylor expand the logarithm of I + δt2

4
U ′′ and take the trace to obtain a cancellation

of the δt2 terms, giving ∫

ρ̃ dNp ∝ exp(−βU +O(δt4)).

The contribution to the configurational distribution error due to ρ̃ is O(δt4). This means that

the overall error in the marginal distribution of ρ̂ (which includes the neglected factor 1 +R)

will be O(εδt2) +O(δt4).

If ε is small (or δt is relatively large), the error will be dominated by the quartic term in

δt and we will observe 4th order accuracy in configurational averages. For small δt the method

is always eventually second order.

In the case of the ABOBA method, the remarkable cancellation of the second order errors

does not occur and the method always exhibits 2nd order configuration distribution error.

4 The Limit Method

We now consider the limit γ → ∞, where the exact solution of the vector OU process reduces to

p =
√
kBTM

1/2R, where R is a vector whose components have a standard normal distribution

11



(Gaussian white noise). Alternatively, we could consider the limit of the particle mass going

to 0, although this requires a reformulation of Eq. 4 so that the friction is proportional to

the velocity instead of the momentum [6]. Whichever limit is taken, we would expect the

ultimate result to be the same. (Here we have reintroduced the masses in order to present the

method, since they may be useful scaling parameters in simulation.) In the configurations it is

straightforward to show that the BAOAB method therefore becomes

xn+1 = xn +
δt2

2
M−1F (xn) +

δt

2
M−1(pn + pn+1)

= xn +
δt2

2
M−1F (xn) +

δt

2

√

kBTM
−1/2(Rn +Rn+1),

where the Rn are vectors of i.i.d. standard normal random variables. Replacing δt2/2 by h we

arrive at Eq. 3. Since the Langevin scheme gives 4th order accurate configurational averages

in this limit, we expect the method of Eq. 3 to be second order accurate in modified timestep

h. Moreover, since we completely remove the second order term in the Langevin dynamics

configurational density expansion, we expect to observe this behaviour across all values of h.

By contrast the ABOBA scheme gives a much more complicated limit method as γ → ∞
which is not in one-step form.

In the Euler-Maruyama method, the random perturbations introduced at each step are

independent. In the method of Eq. 2, the random perturbation is a scaling of Zn =

(Rn + Rn+1)/
√
2; the components Z

(i)
n of these are independent of each other and decay linearly

with timestep:

〈Z(i)
n , Z(i)

n 〉 = 1

2
(〈R(i)

n+1, R
(i)
n+1〉+ 〈R(i)

n , R
(i)
n 〉) = 1

〈Z(i)
n , Z

(i)
n−1〉 = 〈R(i)

n , R
(i)
n 〉 = 1/2

〈Z(i)
n , Z

(i)
n−k〉 = 0, k = 2, 3, . . .

Thus, in this new method, we use a colored noise which has characteristics that directly depend

on the stepsize, although the noise decorrelates in just a couple of timesteps. This is therefore

no longer a Markov process, however it can be reformulated as such if one considers the

appropriate extended space (eg. yn = [xn, Rn, Rn+1]).

5 Numerical Experiments

We implemented the methods ABOBA, BAOAB, SPV and BBK and compared the accuracy

of configurational sampling for different values of γ and a range of timesteps. A brief analysis

shows that the use of the harmonic oscillator leads to special cancellations in the BCH series of

the splitting schemes, making it a poor test subject. Hence, in order to compare the order of

12
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Figure 1: The graphs show the comparison of four different Langevin dynamics methods when
applied using different stepsizes. The configurational distribution errors are plotted against
the stepsize in a log-log scale. Here kBT = 1. The simulation time was fixed for all runs at
t = 6.4× 107, and five runs were averaged to further reduce sampling errors. At left, γ = 1, at
right γ = 50. The graphs are entirely in keeping with the theory presented in the article.

accuracy of the different schemes, we first considered an oscillator model in 1D with potential

U(x) = x4/4 + sin(1 + 5x). This was accomplished by introducingM intervals (‘bins’) of equal

length, and comparing the observed probability frequency with the exact frequency (obtained

by integration of the probability density), using the Euclidean norm. If the observed frequency

in bin i is α̂i, and the exact expected frequency is αi, then the error calculated is

Error =

√
√
√
√

M∑

i=1

(αi − α̂i)
2. (12)

In this one-dimensional example, we used 20 bins to cover the interval from −3.5 to 3.5. The

configurational density error is plotted against stepsize in log-log scale. If Error ∝ δtr then we

expect this graph to be a line of slope r. Due to the relative simplicity of this model, we

were able to perform highly resolved simulations to calculate accurate error estimates for the

configurational distribution. The exact expected value that we compare experimental results

against can be computed to arbitrary prescision, and we are able to run as many simulations

as needed in order to drive the variance of results to a minimum. The variance in our results

where the stepsize was less than 0.3 was consistently below 10−8. Above this threshold some

methods were found to be unstable. The results of our simulations are summarized in Figure

1.
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As we can see, when γ is small, the methods perform somewhat similarly, at least in

the qualitative sense, with all showing a 2nd order error in configurational sampling, and the

ABOBA and SPV methods essentially identical. As γ is increased, the substantial difference

between BAOAB and the other methods becomes apparent. In the limit of large γ the SPV

method effectively annihilates the force which results in poor sampling. In the graph for γ = 1,

we can see that for larger values of the stepsize, the graph steepens (indicating that the fourth

order term is dominant); as the stepsize is decreased the method exhibits a 2nd order asymptotic

decay. With γ = 50 the fourth order behavior is seen for for all indicated data points, although,

again, this becomes second order for smaller values of δt. Note that the limit method Eq.

2 (with the substitution h = δt2/2) gives an essentially identical behavior to the γ = 50 case.

We also give a comparison of the actual computed configurational distributions, at different

stepsizes using each method, for γ = 20 in Figure 2. .

To examine the performance of the limit method in more detail, we next considered small

molecular clusters consisting of seven atoms (motion restricted to the plane), with both Morse

(ϕM) and Lennard-Jones (ϕLJ) potentials, given by

ϕM(r) = (1− exp(−a(r − rm)))
2,

ϕLJ(r) = ε

((rm
r

)12

− 2
(rm
r

)6
)

,

where a = 2, ε = 1 and rm = 1. The Morse potential gives a smoother dynamics compared to

Lennard-Jones (the Morse forces were on average three times smaller than those for Lennard-

Jones) and allows a more satisfying determination of the error scaling behavior with stepsize. To

quantify the error in configurational sampling, we calculated the radial density G(r) by binning

the instantaneous interatomic distances at each step into 20 compartments and compared to

a calculated reference value (Figure 3). Though not exact, the errors in the reference will be

negligible compared with configurational distribution errors at higher stepsizes. For the Morse

cluster the reference stepsize we used was href = 0.001, whereas for the Lennard-Jones cluster,

we used href = 0.00025, both with the same integration time that was used in their respective

test runs. In both cases the cluster was initialized with 6 particles placed on a regular hexagon

and with the remaining particle in the centre. Initial velocities were randomly drawn from the

canonical distribution.

Our results, presented in Figure 4, are entirely consistent with our analysis and show the

second order dependence of the configurational sampling error on h (equivalent to fourth order

in δt), as compared to the Euler-Maruyama’s first order behavior. The results for the Morse

cluster demonstrate a good agreement with our theoretical results. However the Lennard-Jones

experiments, on the right of Figure 4, are not as well converged, owing to the difficulty in
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Figure 2: Computed distributions of the 1D model problem are compared for γ = 20. The
three curves for each of the four methods show the results for three different stepsizes: δt = 0.1
(circles), δt = 0.2 (crosses), δt = 0.3 (dashed), compared to the dark, solid curve representing
the exact distribution. The graph shows that the generalized GLA methods are superior to
SPV and BBK in the moderate γ regime.

sampling this system accurately. (We are currently applying the method to more complicated

systems with steep potentials, and with extensive use of computing power.) Nonetheless, in

both cases, we observe a significant reduction in the error compared to Euler-Maruyama.

It might be a suggested that the improved accuracy seen in the high γ regime could

potentially come at the price of a slower convergence to equilibrium due to a reduced rate of

transition between metastable states, hence overall sampling of the configurational distribution

might be impaired in favour of local sampling. To address this point, we have plotted in

Figure 5 the error computed in our Lennard-Jones simulation as a function of the number of

force evaluations (vertical) against the friction value γ used for the simulation (horizontal).

Gridpoints in the plot are coloured according to the configurational error, computed using Eq.

12. The results indicate that the convergence rate for the BAOAB method is not diminished
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Figure 3: The diagrams illustrate the distributions of interatomic distances, G(r), for Morse
(left) and Lennard-Jones (right) clusters. They also show the choice of bins used in calculating
the numerical distributions.

for large friction coefficient, so it does not appear that we are sacrificing sampling accuracy

using this scheme. Note that the performance of ABOBA is also robust in the limit of large γ,

but the achievable accuracy is reduced as it is only second order, consistent with what we have

presented in this article.
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Figure 4: The radial distribution errors are plotted in log-log scale against stepsize, demon-
strating the first order decay of the error in the case of Euler-Maruyama and the second-order
behavior of the BAOAB limit method (in modified timestep h). Left: Morse potential; Right:
Lennard-Jones. For Morse we used a temperature of kBT = 0.1, a fixed time interval of t = 105,
with stepsizes ranging from 0.0075 to 0.0264; each simulation was repeated 5 times. For
Lennard-Jones the temperature was kBT = 0.15, t = 2.6× 105 and stepsizes ranged from .0011
to 0.0021. Around two orders of magnitude of improvement are observed in the accurate regime,
but, perhaps even more important, the BAOAB limit method is usable at substantially larger
stepsizes than Euler-Maruyama in the Lennard-Jones case.
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(a) BBK
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(b) SPV
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(c) ABOBA
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(d) BAOAB

Figure 5: The diagrams illustrate the performance of the different algorithms (labelled) by
showing the error in the computed radial distribution functions as a function of both γ and
the number of timesteps (samples) taken, in the case of the 7 atom Lennard-Jones model.
The graphs address the potential concern that the larger values of γ needed to give the
superconvergence property may reduce the rate of convergence to equilibrium (it does not,
in the case of BAOAB). The same stepsize of δt = 0.044 was used for all these simulations.

6 Conclusions

Our results confirm the theoretical results of Sections 3 and 4, in particular showing the higher

order configurational sampling of the BAOAB method. The order in its Langevin formulation

is effectively four in the large γ limit and large values of γ do not impair its stability due to the

use of exact Ornstein-Uhlenbeck solves. Not only is the order of the method high, the constant

multiplying the leading term must be, in the cases looked at here, of modest magnitude, since

the errors are relatively small also at the large stepsize stability threshold. Since, in the context

of molecular dynamics, BAOAB is a ‘cheap’ and easy to implement scheme using only a single

force vector per timestep, we stress that there is no price to pay for its improved accuracy.
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In molecular modelling, there are other errors that play important roles, most importantly

errors in the force fields (or, more fundamentally, the errors due to not modelling quantum

mechanics properly) and sampling errors. Obviously these errors may dominate the overall

method error and limit the relative benefit to be gained by using one integrator as compared to

another, but it is also clear that both of the other types of errors are constantly being reduced

through the design of better models and the use of more powerful computers. More important,

one can ask the question: how can a practitioner know which part of the error in a given

complicated simulation is due to sampling error and which part due to the truncation errors

addressed here? In our experiments with molecular models, even where there was substantial

sampling error still present, we nonetheless found the accuracy to be noticeably higher for the

BAOAB method; it is likely that this improvement in sampling accuracy would be of direct

benefit in many real world simulations. Finally we point out that the BAOAB scheme and its

limit method (Eq. 2) was, in each case studied, stable at a larger stepsize than the alternatives,

meaning that longer time intervals are made accessible. This was particular dramatic in the

case of the Lennard-Jones system.
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Appendix: Langevin Dynamics Integrators

The Langevin dynamics methods used for the numerical experiments in this paper are given

here. Ri is an N−vector of i.i.d. Normal random numbers, with mean 0 and variance 1.

The diagonal mass matrix is denoted M , and we assume a timestep δt is provided. Given the

parameter γ, we define useful constants

c1 = e−γδt, c2 = γ−1(1− c1),

and

c3 =
√

kBT (1− c21).
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‘BAOAB’ method

pn+1/2 = pn − δt∇U(xn)/2;

xn+1/2 = xn + δtM−1pn+1/2/2;

p̂n+1/2 = c1pn+1/2 + c3M
1/2Rn+1;

xn+1 = xn+1/2 + δtM−1p̂n+1/2/2;

pn+1 = p̂n+1/2 − δt∇U(xn+1)/2;

‘ABOBA’ method

xn+1/2 = xn + δtM−1pn/2;

pn+1/2 = pn − δt∇U(xn+1/2)/2;

p̂n+1/2 = c1pn+1/2 + c3M
1/2Rn+1;

pn+1 = p̂n+1/2 − δt∇U(xn+1/2)/2;

xn+1 = xn+1/2 + δtM−1pn+1/2;

Stochastic Position Verlet (SPV)

xn+1/2 = xn + δtM−1pn/2;

pn+1 = c1pn − c2∇U(xn+1/2) + c3M
1/2Rn+1;

xn+1 = xn+1/2 + δtM−1pn+1/2;

The Method of Brunger-Brooks-Karplus (1982) (BBK)

pn+1/2 = (1− δtγ/2)pn − δt∇U(xn)/2 +
√

δtkBTγM
1/2Rn/2;

xn+1 = xn + δtM−1pn+1/2;

pn+1 = [pn+1/2 − δt∇U(xn+1)/2 +
√

δtkBTγM
1/2Rn+1/2]/(1 + δtγ/2);

Euler-Maruyama

xn+1 = xn − δtM−1∇U(xn) +
√

2kBTδtM
−1/2Rn;

‘BAOAB’ - Limit Method

xn+1 = xn − δtM−1∇U(xn) +
√

kBTδt

2
M−1/2(Rn +Rn+1);
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