Comprehensive Practical Evaluation of Wired and Wireless Internet Base Smart Grid Communication

Citation for published version:

Digital Object Identifier (DOI):
10.1049/stg2.12023

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
IET Smart Grid

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Comprehensive Practical Evaluation of Wired and Wireless Internet Base Smart Grid Communication

Mehdi Zeinali, John Thompson

Abstract—Internet based communications is a key solution for enabling low-cost and scalable communication infrastructure for different applications of the Smart Grid. However, the performance of this network needs to be evaluated practically in the context of smart grid applications based on key metrics such as latency and reliability. This paper is a comprehensive evaluation of the United Kingdom internet network characteristics which will allow a smart grid systems designer to consider essential parameters for communication applications. This paper will focus on three smart grid applications, but also the outcome of this research is also relevant to a wider range of Internet of Things (IoT) applications. Different combinations of off-the-shelf wired and wireless last-mile communication technologies are evaluated using, real-world transport protocols such as the Transport Control Protocol (TCP) and the User Datagram Protocol (UDP). The performance of TCP/UDP has been tested in a realistic client-server communication testbed. The results from extensive evaluations show that typical latency values are between 200 ms to 600 ms for data packets from 50 bytes to 10 kbytes short control packets. Moreover, by applying data compression techniques the results can be improved 5-20% for different last mile communications.

Index Terms—Smart Grid, IoT, Latency, Reliability, Compression, TCP/UDP, GPS, Order Statistics, Time Synchronization.

I. INTRODUCTION

The smart grid has started to be deployed during the last decade to the existing power grid by enabling the exchange of information between different parties contributing to the grid including consumers, energy producers and control centres. Emerging smart grid applications, such as Demand Response (DR), Vehicle to Grid (V2G) and Wide-Area Monitoring System (WAMS) rely on the exchange of information between stakeholders of the power grid. To support fast and reliable data transfer in the power grid we need to utilise a communication infrastructure with the capability of providing near real-time data delivery [1]. It should handle the large volume of data produced by the massive number of devices in the grid to enable precise and highly accurate control of the power system. The smart grid concept involves applying the concept of Internet of Things (IoT) to the power network [2].

Based on the description mentioned above, the most economical solution for such a communication system would be the internet backbone infrastructure in each country including both the internet service providers (ISPs) and home or office networks. For a better understanding of internet network performance, different parameters such as robustness, reliability and security need to be assessed for smart grid applications. Due to increasing demand for using wired and wireless internet networks for a range of applications in IoT, providing convenient metrics to indicate the suitability of those technologies is a necessary requirement. These include latency, availability, reliability and average data rate. Among these metrics, latency and reliability are particularly important parameters which have to be evaluated against required expectations for smart grid applications. We have to distinguish two latency definitions. It is common to use “ping latency” for very short packets to measure the latency value and this definition for different last-mile communication technologies has been assessed previously in some studies, e.g. [4] [20]. The second definition is to measure the latency for larger TCP/UDP data packets which provides more realistic results for actual data transmission and will be discussed in this research paper.

As Internet-based communications over last-mile communication technologies have been used in this work to implement the test-bed, the performance of internet protocols such as such as TCP and UDP should be evaluated. Previously, there has been simulation-based research on this area, such as [6] [8], where the results show much lower latency values than are encountered in real world networks. Also, the lack of accurate end-to-end time synchronization is another issue that has not been widely considered in previous work. The most common solution for time synchronizations is using Network Time Protocol (NTP) or Global Positioning System (GPS). NTP in comparison to GPS shows lower efficiency with a limited accuracy of tens of milliseconds, while GPS can offer an accuracy of few microseconds [9].

Previously, the required latency for different smart grid applications was simulated and modelled with NS2 software in [1]. The results suggested that UDP operating over a dedicated communication network can meet a latency requirement of 100 ms and it was not suggested to use TCP in that work. That study did not give any indication on the error performance of TCP and UDP. In addition, the latency of different last-mile communication technologies has been assessed previously in some studies [4] or has been simulated for large scale heterogeneous smart grid IoT networks in [3]. This paper provides a more detailed evaluation than the study in [15], which described initial findings and the hardware testbed in detail. The experimental findings from that paper showed that the latency was less than 600 ms for typical TCP/UDP short control packets, while UDP packets experience 4 times higher packet loss than TCP packets.
Another important technique which theoretically can have a significant impact on the latency in the communication link is to use data compression techniques [10]. In this research, lossless compression techniques are implemented on the test-bed to study the reduction of latency value by reducing the data packets size over the communication link.

This paper builds on results in [15] to carry out a more detailed evaluation of network performance. This involved a major data collection and processing exercise, with the following aims:

- Carry out an extensive data collection process over a period of 6 weeks for five different types of wired and wireless internet connections. This provides more detailed statistical information about latency and reliability than was possible in [15]. We show how our results collected for one sensor can be extended to the case of multiple sensors reporting an event to the data centre. Also simultaneous packet transmissions on different internet connections has been studied to observe if there are significant similarities in packet delays.

- We have evaluated the performance of data compression techniques for information packets to determine their impact on the latency performance of different links.

The major contribution of this paper is to provide a statistical comparison of the latency and reliability of TCP and UDP protocols for smart grid applications using different communications technologies.

This paper is organized as follows. Section II will describe the problem and introduce the expected communication scenario with the Hardware description of test-bed and a brief explanation of applied techniques to build the test-bed has been discussed. In Section III, results of the tests and measurements will be explained in detail. Finally, conclusions of the paper are presented in Section IV.

II. Problem Statement, Key Parameters and Test-Bed Structure

Fig.1 shows a large scale DSR, V2G and WAMS communication scenario deployment, which should connect end-user devices and premises to energy stakeholder control centre. The procedure of communication scenario shown in Fig.2 in more details. As an example in DR applications, The control centre detects a signal from the national grid to react on any changes in the power grid, start to generate commands data packets and send them to the loads, energy producers and also other actuator connected to the grid, to keep it in a balanced mode. All these data transferring across the power grid, which will make it smarter and more flexible to changes can happen through the internet network infrastructure which connects all parts of grid through low cost off-the-shelf last-mile connectivity, shown in the Fig.1. Using last miles communications technologies such as Asymmetric digital subscriber line (ADSL), Cable modem Internet (Fibre), University Network (Ethernet to Fibre Broadband) (UN), Third Generation (3G) and Fourth Generation (4G) Mobile Communications systems.

<table>
<thead>
<tr>
<th>Application</th>
<th>Packet size (bytes)</th>
<th>Latency</th>
</tr>
</thead>
<tbody>
<tr>
<td>DR</td>
<td><1000</td>
<td>less than 500ms for 90% reliability</td>
</tr>
<tr>
<td>V2G</td>
<td>50-1000</td>
<td>1 per second-to-1 per minute</td>
</tr>
<tr>
<td>PMU</td>
<td>2.5 KB</td>
<td>10 ms</td>
</tr>
<tr>
<td>WAMS</td>
<td>depending on the number of PMU and Buses in power network</td>
<td>less than 1 min for 90% reliability</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A. Different Smart Grid Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>As can be seen in Fig.1, the basic network layout can serve many different smart grid applications including demand response, electric vehicle charging and wide area system monitoring. Table I shows the size of typical packets of data produced for these different applications. Access to the public Internet for smart grid applications can be very cost effective, as energy service providers do not need to deploy their own communications infrastructure [13] [14].</td>
</tr>
</tbody>
</table>

1) **DR**: It is expected that Demand Response (DR) reduces the cost of energy by shifting demand from periods of peak load with high prices to periods of low demand with lower prices. DR also tries to balance between generation and consumption of electricity and prevents a high cost for generation when there is not a high demand for electricity [11] [12].

2) **WAMS**: The traditional power grid has been upgraded and become smarter by using Wide Area Monitoring System (WAMS) technology. One of the most important parts of the of WAMS setup is the communication network which permits
data on the power network from Phasor Measurement Units (PMUs) to be shared with the control centre. Recently, different control methods for the power grid have been investigated based on a PMU monitoring system for the grid. In [5] the authors proposed a communication resource allocation method for the PMU network to maximize the overall power grid observability redundancy. A key assumption is that there will be a proper communication network, which will fulfill the requirement for timely and reliable sharing of PMU data [26].

3) V2G: In power grid operations, ancillary services are critical as market operators are responsible for matching the supply with the demand in real-time within tight tolerance bounds. Traditionally, dedicated fast-response diesel generators are employed to respond to grid signals within seconds to minutes. In recent years, the participation of PEV batteries in the ancillary services market, also known as vehicle-to-grid (V2G), has gained popularity as the use of PEVs enhance system efficiency, while providing monetary benefits to PEV owners [6]. In a V2G application, each PEV battery is charged and discharged within a time window according to real-time automatic generation control signals [27].

B. Different last mile technologies specifications and definition of latency

Table II shows the last-mile communication technologies evaluated in this research work, both wireless and wired with typical data rate and estimated latency which are taken from [10] [15]. The major internet connection options are 3G, 4G, ADSL, Fibre and UN (Ethernet) with a short-range communication technology of Wi-Fi which facilitates connection of a number of end-user devices to the major internet connection point. For comparison, the considered technologies in a recently published of the Ofcom report include wired technologies [16], which indicates achievable latencies of 12-13ms and 19-22ms for Fibre and ADSL and Fibre connections, respectively. Regarding wireless networks such as 3G and 4G, the latency assessment has been compared in [17], which reports an average latency value of 35ms for 4G and a latency of 45ms for 3G. These latency results are usually for very short “ping” packets, as used in [20]. These figures are typically much lower than the actual latency times required to transmit even modest data packet sizes, such as the results presented in [15].

We will now define two primary metrics for our evaluation, latency and reliability. Latency is the most important metric that we need to define for evaluation of last-mile communication technologies that have been studied in the test-bed. A typical latency definition is the time that a packet of data travels across the network from a source to destination, and return, which could be called the round trip time (RTT) latency. In this paper, we will instead measure the one-way latency (OWL). The OWL is visualised in Fig. 2, which shows the key steps in creating, transmitting and receiving a data packet.

\[t_{OWL} = t_2 - t_1. \]

In equation (1), \(t_{OWL} \) is the one-way latency, \(t_2 \) is the time when the data packet transmission is received and \(t_1 \) is the transmission time of the data packet. The OWL is practically important in our analysis as it indicates the delay caused by the communication network in conveying data or command packets from the source to the destination. Another related parameter is the packet loss ratio, which can be defined as follows:

\[P_{LR} = \frac{P_{NR}}{P_{tot}}, \]

Where \(P_{LR} \) is packet loss ratio, \(P_{NR} \) is the number of data packets not received and \(P_{tot} \) is the total number of data packets transmitted to the receiver. In our experimental evaluations, some packets were dropped in the network and never received. Results for \(P_{LR} \) give an impression of the overall reliability of the network connection. Additionally, in our reliability figures, the 90% latency will be used as the performance measurement. This ensures that at least 90% of end-users receive the transmitted command from the control centre within the specified delay time. In cellular communication networks tested for this paper, such as 3G and 4G, we need to consider an additional delay transmission due to the cellular modem moving from Sleep or Idle mode to an active mode to be able to transmit the data packets. This extra delay is significantly higher for the 3G modem in comparison to a 4G modem, which is typically in an active mode, and this delay could be considered negligible.

In the reliability figures, 90% latency will be indicated as performance measurements to be sure that at least 90% of end-users receives the transmitted command from the control centre within a certain delay time.

Other factors could impact on networks latency such as processing, buffering, transmission time interval, scheduling policy of data packets, transmission protocols and re-transmission schemes.

<table>
<thead>
<tr>
<th>TABLE II</th>
<th>LAST MILE CONNECTIVITY’S CHARACTERISTIC USED IN TEST-BED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wi-Fi</td>
</tr>
<tr>
<td>Data Rate (bps)</td>
<td>11-54M</td>
</tr>
<tr>
<td>Typical Latency</td>
<td>3-20 ms</td>
</tr>
</tbody>
</table>

Fig. 2. Processing, generating and packets delivering time
C. Transmission Protocols and Virtual Private Networks (VPN) used in the Test-Bed

In this research work, we used a VPN to provide an encrypted end-to-end communication link [21]. A free and open-source VPN software called SoftEther [22] has been used which can support a cross platform and multi-protocol connection between the Server and the Clients. In the next step, we used standard internet-based transport protocols for emulating smart grid communications. The most common protocol in the internet network is the TCP protocol. Due to the specification of TCP, it can establish a highly reliable connection for exchanging information and data packets across the network. It supports a handshaking mechanism to verify reliable exchange information along with the re-transmission mechanism. Another transport protocol which is very popular for transmitting data in internet networks is UDP. In contrast to TCP, UDP is not a connection-oriented protocol. So, UDP works without a handshaking mechanism. It is an unreliable protocol where packets can be dropped during its route to the destination because of lower priority. Due to this specification, UDP can be faster than TCP, which sacrifices speed to achieve reliability.

D. Latency Measurements Using Accurate Timing Protocols

To implement the project and measure the latency values using equation (1) with high accuracy, we required a proper reference time at both ends of the connection link in the communication infrastructure. There are two options for achieving high accuracy: use the Global Positioning System (GPS) or the Network Time Protocol (NTP) [23]. The NTP standard as a reference time allows a very accurate synchronization for local systems or very small networks. NTP can provide an accuracy of 1ms, but in larger networks such as the UK internet infrastructure, the timing offset could be up to tens of ms. An alternative solution for the reference time is using a GPS receiver. Besides, providing location information, it can be used for estimation of the time offset between the atomic clock in the GPS satellites and the internal clock source of the GPS receiver. This is based on receiving a very accurate Pulse Per Second (PPS) signal [18]. Experiments in [15] showed that the GPS PPS signal allows our client and server hardware to be time synchronized with the precision of less than 1ms [19].

E. Prediction of Latency for Higher Number of Users Using Order Statistic

As discussed in [20], in order to support DR applications, several sensors and monitoring systems may be deployed in consumer premises or a part of the distribution network of the power grid. We are able to address this question by extending our measured results for a single sensor one way latency (OWL) with different last-mile technologies described in the last section. In this section, we will predict the achievable minimum OWL in the communication network for deploying several sensors in the power grid using a theoretical approach based on order statistics. For example, the Nth order statistic of independently identical variables such as $L_1, L_2, L_3, ..., L_N$ which they can be arranging in increasing order as follows:

$L_{(1)} \leq L_{(2)} \leq L_{(3)} \leq \cdots \leq L_{(N)}$

where the CDF $F_{(1)}$ of the shortest delay $L_{(1)}$ can be defined as

\[
F_{(1)}(l) = P(L_{(1)} < l) = 1 - P(L_{(1)} > l) = 1 - P(L_1 > l) \cdots P(L_N > l) = 1 - (1 - F(l))^N,
\]

where $F(L)$ is the CDF for a single link, such as the CDF results shown in Fig.4 of the results section. This equation holds if the latency on one communication link is statistically independent of any other link. This calculation gives insight into how quickly information about an event, e.g. a fault in the network, can be communicated to the Control Centre from multiple distributed sensors in an area.

F. Data Compression Techniques

Compression algorithms can be used for reducing the size of existing data, based on removing the redundant information from the original data and encoding it more effectively. This approach is mainly useful when routine data is exchanged between clients and the server. It is less likely to be effective for control packets which are specifically designed to communicate an instruction in a concise but secure manner. This data size reduction will allow storing of information in less memory and requires less bandwidth for data transmission. In this paper, two lossless compression techniques Lempel-Ziv Welch (LZW) and Adaptive Huffman coding has been used to ensure data fidelity. Space saving is a key metric to evaluate the performance of compression algorithms by calculating the percentage of data reduction as follows:

\[
S_{SR} = 1 - \frac{C_D}{UC_D},
\]

where S_{SR} is the space-saving ratio, C_D is the compressed data size in bits and UC_D is the un-compressed data size in bits. The LZW and Huffman coding techniques were applied to different data packets with varying sizes to measure their performance. Previous simulation studies suggest that the Huffman technique is a fast compression technique and can achieve almost 75% space saving for a wide range of different data packet sizes [10]. In contrast, the LZW space-saving results vary depending on the size of the data packet, and for larger data packet sizes, it achieves a higher percentage of space saving up to 87% [10]. However, LZW requires higher complexity to compress data packets in comparison with the Huffman method. Selecting a proper compression algorithm can vary depending on hardware capabilities, the space-saving percentage required, compression and decompression time according to the needs of the smart grid application.

G. Hardware and Test-Bed Set-Up Description

Fig.1 shows the emulation set-up consisting of a personal PC emulated control centre, running a python-language server program. Low-cost Raspberry Pi (RPi) platforms run a second python-language script to play the role of the clients in the
network. The complete hardware specification, both for client and server platform, is described in Table III. In the first scenario, we run the testbed with just one client (emulating smart grid use case devices such as DR, V2G and WAMS) connected to the server (emulating power grid control centre).

In the second scenario, more clients (multiple devices) are connected to the server (Control Centre) to evaluate the correlation between latency values for different last-mile technologies. The multiple client case is also used to measure the latency of reporting real-time events to the control centre. Different last-mile communication technologies connect with the internet network to provide the required communication infrastructure to exchange information between the server and the clients through a safe and secure VPN connection. The proposed communication scenario performance has been evaluated by exchanging different data packet sizes from 50 bytes to 10 kbytes using TCP and UDP protocols. The Service designer can consider the choice of TCP or UDP for different applications based on the performance of the proposed model. For example, TCP can be used to transmit longer data packets with higher reliability and without packet loss. On the other hand, UDP could be suitable for short control messages that require lower latency with a tolerable packet loss in the networks. The RPi platforms (clients) can be connected to one of the wired and wireless last-mile technologies seen in Table II and Fig.1, while a fibre broadband connection with a speed of 40 Mbps was provided for the Host server PC to connect to the internet network.

III. MEASUREMENTS RESULTS AND DISCUSSION

In this section, long-term data collected from the platform described in Section II over a period of around six weeks in Edinburgh during August and September 2019 will be analysed and discussed. Multiple clients were deployed simultaneously using different communications technologies to assess the performance of multiple last-mile link types. The clients communicated with a server, which used a fibre broadband connection, as explained in Section II, and shown in Fig.1. Data transmissions of different data packet sizes from 50 bytes - 10 kbytes were transmitted regularly using both TCP and UDP protocols and the results recorded. These are intended to represent typical short messages that are sent in smart grid applications. A system designer may exploit our results to evaluate the overall latency, using their knowledge of the profile of data packet sizes that are used. Average results and statistical distributions for the latency and packet loss of the evaluated data packet sizes will be presented in the figures below. Experiments were also conducted to investigate the following issues:

- Data packets of size 50 bytes, 100 bytes, 500 bytes and 1 kbyte were transmitted three times consecutively to study the slow start behaviour of the TCP and UDP protocols;
- The correlation between the latency results for different clients and communications technologies in the multi-user scenario has been investigated;
- Data compression techniques applied to the data packets have been tested on the testbed to assess their impact on latency performance.

A. Main data analysis

Fig.3 shows the median latency value that has been measured for different data packet sizes with different last-mile communication technology solutions. This figure shows that 4G connectivity has much better performance than 3G connections with a 242 ms one-way latency for 50 byte packets with the TCP protocol. There is a slow increase to 391 ms for the larger 10 kbyte data packets. For the UDP protocol with 4G, we can see slightly lower latency results of 200 ms and 324 ms respectively for 50 bytes and 10 kbytes respectively. The subfigure inside Fig.3 shows that 3G performance for TCP and UDP is much worse for smart grid applications, with an average latency of 593 ms for 50 byte data packets increasing to around 1560 ms seconds for 10 kbyte sizes in UDP data packets.

Fig. 3 also shows that wired connections achieve much better performance for TCP. For short control packets of 50 bytes, latency results of 152 ms, 97 ms and 254 ms are observed for UN, Fibre and ADSL connections respectively. As with the wireless connections, as the packet size increases, the latency value increases slowly so that for the largest data packets of 10 kbytes a latency result of around 315 ms is observed. The corresponding results show that median value for the UDP latency is lower than TCP latency for wired connections. The UDP results show more fluctuations for different data packet sizes, but the latency is also generally increasing with large packet sizes. The worst UDP results are observed to be for

<table>
<thead>
<tr>
<th>TABLE III</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLIENT AND SERVER SPECIFICATION</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>CPU</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>RAM</td>
</tr>
</tbody>
</table>

Fig. 3. Median Latency value for TCP in all Last mile technologies
the UN network, with latencies of 173-314 ms for 50 byte-10 kbyte packets, which may be connected with the traffic policies adopted there.

The top plots are for the CDF of TCP latency, the middle plots show the corresponding CDF of UDP latency and the bottom plots show the percentage of lost data packets respectively.

Cumulative Distribution Function (CDF) plots have been obtained from all of the collected data from the five last-mile communication solutions we studied. Our results include TCP and UDP latencies calculated using equation (1) for different packet sizes and the measured packet loss ratio computed using equation (2). For Fig.4, the plots are shown as follows.

Fig. 5. TCP Average One-Way Latency Measurements in Different Days of week (a) and different Hours of the Day (b) for 4G (wireless example) and Fibre (wired example)

Fig. 6. (a) Compression and decompression time on the RPi and the server, (b) percentage of space saving for LZW and Huffman compression techniques

To begin with, Fig.4 shows the results collected for the wired and wireless connections and the colour legend on the ADSL plots (Fig.4-c) are the same for all other plots. As can be seen, Fig. 4-a and 4-b show wireless connection results, while Figs. 4-c, Figs. 4-d and Figs. 4-e measure the wired internet connection performance. By following the plotted red line in the CDF plot, the 90% confidence latency value can be
found for each CDF. For the ADSL link in Fig. 4-c, the 90% latency value is around 300 ms for 50 or 100 byte packets, but increases to 400ms for larger packet sizes. For UDP, the latency results are slightly improved for 50 byte packets where the 90% latency is 180ms.

However, for other packet sizes much higher latency results of up to 1.2 sec are observed. In general, when comparing the TCP and UDP CDF plots in Fig.4-a to Fig.4-e, the 90% confidence latency for TCP can usually be achieved in a shorter time window, often below 500 ms. In contrast, the UDP CDF results for 90% confidence require longer time window, which often exceeds 1 sec.

The UDP packet loss ratio is typically in the range from 5-8% except for 3G which can increase up to 15-20%. For TCP data packets, the packet loss ratio in all tests is less than 0.3% of the transmitted data packets, which is a much lower percentage.

As shown in Table 1, each smart grid application has a unique requirement in terms of latency and reliability. Our testbed results show that the wired internet connection can guarantee the minimum required latency with TCP and UDP for smart grid applications. TCP supports smart grid applications with fewer packet delivery errors from the reliability point of view. For WAMS, as it is not easy to deploy wired internet connections, the 4G wireless cellular network can be used for reliable and low cost internet-based communication deployment solutions using TCP protocols. The 4G cellular network has been evaluated in [24] for strong, medium and poor signal coverage conditions in a V2G application.

Table IV summarises the 90% confidence latency values for both TCP and UDP data packets for all packet sizes and for all five last-mile technologies. It can be seen from the table that Fibre and UN networks have the lowest 90% TCP latency results in the range of 270-430 ms, followed by ADSL which achieves slightly higher latency results of 300-460 ms. The 4G wireless latency results are typically around 25% higher than the wired latency results, but the performance is still reasonable with latency values of 450-630 ms. The TCP performance of the 3G network is much poorer at 1.5-2.5 sec. The latency results for UDP involve significantly more variability and many 90% latency results for both wired and wireless connections exceed 1 sec. We observe that the highest UDP latency values in this case are for the wired UN network and the 3G wireless network.

We have also tested and measured the latency for different days of the week and different times of the day to evaluate the performance of the investigated networks. We wish to understand when one can expect higher or lower latency results. Fig.5 compares the performance of 4G as the best wireless network and Fibre as the best wired solution for performance in different days of the week (Fig.5-a) and different times of the day (Fig.5-b). The days of the week are categorized into weekdays (Mondays-Thursdays), Fridays and the weekend. We considered three different time periods each day for every 8 hours from midnight-8am, working hours in the day (8am-4pm) and evening times (4pm-midnight).

As can be seen in Fig.5-a, for a 4G connection, there is a fluctuation in the mean value of the latency for different days with the highest latency results being at the weekend. On the other hand, for a Fibre connection, the latency at the weekend increased by 100 ms compared to the average results as home users have more activity at this time leading to increased data traffic.

Conversely, during weekdays and Fridays with lower data traffic on the Fibre connection, the network latency drops by 50ms from the mean latency value. In Fig.5-b, where latency results are compared for different 8 hour periods, we can see that latency for times between midnight until 8am are lower than average for both 4G and Fibre due to lower data traffic activity in the both networks during the night. For 4G, the remaining hours of the day almost are the same as mean latency value while a client on the Fibre network experiences around 50ms higher than average latency value during the evening time.

B. Prediction of Nth Order One-Way Latency

In the previous section we have plotted the cdf function of the OWL values for one user or sensor different last-mile technologies. We are able to simply extend these results to consider the latency for N sensors or devices that try to communicate important information to the control centre simultaneously. Communications via N sensors is likely to reach the control centre more rapidly than in the case of a single sensor. Then, we can calculate the cdf plot of the OWL according to equation (4).

The results are shown in Fig.7 and Fig.8 for a 1 KB data packet size of TCP and UDP respectively for 4G (wireless), Fibre (Wired) along with users using both wired and wireless communications for redundancy. It can be easily seen from the figures that by deploying a larger number of sensors or devices, we can expect a lower OWL for demand-side response applications and the control centre can receive the required signal in a shorter time than for the case of one sensor only. Based on our calculations for up to 64 sensors or users, there is no significant additional improvement for more than 16 devices. Because of that, figures have only been plotted for up to 16 users. Increasing the number of sensors that communicate to the Control Centre will improve latency significantly compared to the one user scenario, and the improvement for UDP is greater than TCP. For example, in TCP 90% of packets can be received for 16 users in 140,75
and 85 ms respectively for 4G, fibre and dual communication while for one user the latency values for the same last-mile technologies are 465, 285 and 255 ms, respectively. In the UDP case, 90% of packets arrive for the one user case with 4G, Fibre and dual communication are received within 526, 573 and 235 ms respectively. These OWL values can be improved significantly by increasing the number of sensors to 16, yielding 90% latency values of 80, 35 and 30 ms respectively as shown in Fig.8.

C. Correlation Evaluation

Another important point to study is if there is any correlation between latency values for different last-mile technologies. We analysed all latency results for data packets, which arrived simultaneously from all the clients to the server in any three-minute interval. Then we calculated the correlation values between each pair of last-mile technologies to compute the correlation between them. The results of the calculated pairwise average correlation are given in Table V.

The results in the table show very low correlation results,
with a maximum value of 0.1418 for the TCP correlation between Fibre and UN. Based on the interpretation in [24], the correlation is typically negligible, and thus no significant interactions between latency results on different link types has been observed in our measurements.

D. Data Compression

The compression techniques used in this work have been described in Section II.E of this paper. Data compression cannot be meaningfully applied to control commands at these will be carefully designed to balance small data packet size with data encryption and other security measures. Data compression can be considered for other use cases especially when then the client or server needs to transmit a larger volume of data. The results of using combinations of different protocols such as TCP and UDP jointly with alternating methods of compression such as LZW and Huffman coding has been analysed and the impact on latency and reliability has been studied. First, it is necessary to understand that adding compression techniques will require more processing at the test-bed platform for compression and also more processing for decompressing the data that arrives at the PC server. this will add extra time for compression and decompression while these techniques are applied to reduce the size of the data packets. It is hoped that reducing the packet size can reduce the network latency for smaller compressed data packets. The combined latency can be calculated as:

\[L_C = L_{CT} + L_T + L_{DT} \]

(5)

where \(L_C \) is the total latency when compression techniques are applied, \(L_{CT} \) is time required for compressing data, \(L_T \) is the latency time for the data packet to travel in the network and \(L_{DT} \) is the time required for decompressing data packet in the destination.

As can be seen in equation (5), we have to add the time for compression and decompression to the latency value. Fig.6 plots two important pieces of information regarding compression techniques. Fig.6 (a) shows the compression and decompression times for each data packets both on the RPi client and the PC server. It can easily be seen that applying LZW on the RPi will add a very high compression time to the overall latency of about 100-110 ms for 10 kbyte data packets. At the same time, Huffman coding has very low compression time of 20-40 ms. On the other hand, the PC server with much faster hardware can reduce the time of compression and decompression both for LZW and Huffman coding. Fig.6 (b) presented the percentage of data reduction, which represents the space-saving ratio for all data packets. Huffman coding can maintain a space saving ratio around 70% for different information data packets depending on the data type. At the same time, LZW can actually increase the size of small packets, which means that the data volume actually increases rather than reducing. Fig.9 and Fig.10 illustrate the results of mean latency value using compression techniques. As an example, the comparison of the compression techniques' impact on latency with mean latency values given for both UDP and TCP for two data packet sizes of 1KB and 10 KB can be considered. The compressed data result shows that the latency has reduced for data compression in comparison to the uncompressed case. The results in general show only modest reductions in latency of around 5-20% of the original value for the TCP protocol in all last mile technologies except 3G with LZW compression technique. This observation matches the relatively shallow slopes of the average latency results shown in Fig.3, where large changes in packet size often result in relatively small changes in latency. Data compression appears to provide more improvements for UDP, but this effect may be related to the higher packet loss rates observed for this protocol. The best improvement can be seen for 3G, where the UDP data packets are compressed by LZW, leading to a latency reduction of 500-700ms. However, the latency results are still higher than for other networks. Even when the additional compression/decompression time in Fig.6a is taken into account, it is clear that data compression offers only modest improvements in reducing communications latency.

E. Network slicing and Local Computing

Table VI shows the path that the signals typically follow for different connection types, using the trace route facility to check the internet path. It is clear that in order to move from one internet service provider to another, the packets are typically routed from Scotland to London and back, an approximate round trip distance of 800 miles or 1300 km. Even if both clients and server are in the same city, the data packets need to travel across the country which obviously increases the latency time for each data packet. It is possible that future wired and wireless internet networks will implement so-called network slicing configurations [25]. This may allow particular services, such as for smart grid applications, to be handled independently of other internet packets. One consequence may
be more intelligent routing of data packets in order to reduce the latency results that have been observed in this paper.

IV. CONCLUSION

We have investigated the one-way latency for control centre-remote client connections. This is important for data and control packets sent over the internet in emerging smart grid applications. Typical average latencies range from 200 ms to 600 ms for 50 bytes to 10 kbyte short control packets. Results suggest UDP packets experience much higher losses (5-7\%) except 3G which suffered a higher packet loss of 15-20\%) than TCP packets (less than 0.5\%) for wired and wireless connections and have higher 90\% latency results. The TCP mechanism is preferred for sending sensor measurements and other data that has critical reliability and latency requirements. The latency measurements vary significantly on different days of week and at different times of the day, according to the overall data traffic in the network. For example, we observed higher latency at the weekend in wired fibre links when more home customers are making use of their network. We could not find any significant correlations for the latency behaviour between different types of communication links. We have used order statistics to predict the OWL for deploying larger number of sensors to look out for network problems such as voltage or frequency deviations. By sending packets from several sensors simultaneously, we can expect significant improvement on 90\% confidence OWL in this scenario. Data compression techniques have been studied and show modest improvements in latency performance, at the cost of extra processing times at the client and server. We also note that due to the current internet topology of the UK, increased latencies arise as data packets are routed across the country in order to move from one internet service provider to another.

ACKNOWLEDGMENT

The authors gratefully acknowledge funding from the UK Government Department for Business, Energy and Industrial Strategy (BEIS) Project Quickturn 1273/01/2017-ND114 for this work.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the corresponding author upon reasonable request.

CONFLICT OF INTEREST STATEMENT

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

REFERENCES

[22] https://www softhe workshop/

Mehdi Zeinali received his MSc degree in wireless communication engineering from Lund University, Lund, Sweden. From September 2014 to 2020 he worked as a research assistant and PhD student at the University of Edinburgh. Recently he joined as a member of academic staff to the Nottingham Trent University (NTU). His main research interest is digital communication, wireless sensor networks, and now he is investigating architecture, technologies, requirements, challenges, and proposed solutions of internet-based smart grid communications.
John Thompson

John S. Thompson (Fellow, IEEE) is currently a Professor of signal processing and communications with the School of Engineering, University of Edinburgh, Edinburgh, U.K. He currently participates in two major U.K. research projects that study new concepts for data-driven signal processing and for millimeter-waveband wireless communications. His current research interests include antenna array processing, cooperative communications systems, and energy-efficient wireless communications. He has authored or coauthored more than 300 articles on these topics. Prof. Thompson was elevated to fellow of the IEEE for contributions to antenna arrays and multihop communications in January 2016.