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Abstract

Genome maintenance defects cause complex disease phenotypes characterized by developmental 

failure, cancer susceptibility, and premature aging. It remains poorly understood how DNA 

damage responses function during organismal development and maintain tissue functionality when 

DNA damage accumulates with aging. Here we show that the FoxO transcription factor DAF-16 is 

activated in response to DNA damage during development while the DNA damage responsiveness 

of DAF-16 declines with aging. We find that in contrast to its established role in mediating 

starvation arrest, DAF-16 alleviates DNA damage-induced developmental arrest and even in the 

absence of DNA repair promotes developmental growth and enhances somatic tissue functionality. 

We demonstrate that the GATA transcription factor EGL-27 co-regulates DAF-16 target genes in 

response to DNA damage and together with DAF-16 promotes developmental growth. We 

propose that EGL-27/GATA activity specifies DAF-16 mediated DNA damage responses to 

enable developmental progression and to prolong tissue functioning when DNA damage persists.

Cells and tissues are constantly attacked by intrinsic and extrinsic genotoxic insults leading 

to a large variety of DNA lesions1. Congenital defects in genome maintenance systems 

underlie a variety of developmental abnormalities as well as cancer susceptibility and 

*Correspondence: bjoern.schumacher@uni-koeln.de.
6present address: Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
Author contributions: MM, LCR, VB, ME, RUM, AW, SG, JS performed experiments and analysed data; LCR, PF, BS conducted 
bioinformatics analysis; TB, BeS contributed materials; BS wrote the paper

The authors declare no competing financial interest.

Europe PMC Funders Group
Author Manuscript
Nat Cell Biol. Author manuscript; available in PMC 2015 June 01.

Published in final edited form as:
Nat Cell Biol. 2014 December ; 16(12): 1168–1179. doi:10.1038/ncb3071.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



progeroid (“premature aging-like”) syndromes2. The two distinct damage recognition 

branches of nucleotide excision repair (NER) exemplify the complexity of phenotypes 

caused by genome maintenance defects. While global-genome (GG-) NER scans the entire 

genome, transcription-coupled (TC-) NER specifically recognizes lesions on the actively 

transcribed strand. In both cases the same downstream NER machinery removes the 

damage3. GG-NER defective patients develop the skin cancer susceptibility syndrome 

Xeroderma pigmentosum (XP), whereas TC-NER defective Cockayne syndrome (CS) 

patients exhibit severe postnatal growth failure followed by premature signs of aging. 

Mutations affecting the downstream NER components can lead to XP, XP in combination 

with CS (XPCS), trichothiodystrophy (TTD), or Cerebro-Oculo-Facio-Skeletal Syndrome 

(COFS)3. It is thought that GG-NER defects result in mutations and genome instability 

during replication and thus lead to cancer development, while RNA polymerase (RNAPII) 

stalling at DNA lesions as a result of TC-NER defects impairs developmental growth and 

accelerates degeneration of tissues4.

Cellular DNA damage checkpoints that halt the cell cycle, or induce cellular senescence and 

apoptosis have been characterized over the past 25 years5. However, it remains poorly 

understood how DNA damage responses regulate organismal development and maintain 

tissue functionality when damage accumulates with aging. Given the complex disease 

phenotypes of genome instability syndromes it is of pivotal interest to uncover the 

mechanisms through which developing organisms and differentiated tissues respond to 

persistent DNA damage. C. elegans shows a clear distinction between highly dynamic germ 

cells undergoing mitotic and meiotic cell divisions and somatic cells that undergo a 

deterministic developmental fate until they terminally differentiate6. Highly conserved DNA 

damage checkpoint mechanisms respond to DNA damage specifically in the germ line7. The 

NER pathway is functionally conserved in the nematode8. Completely NER deficient xpa-1 

or csb-1;xpc-1 double mutants are exquisitely UV sensitive. TC-NER defective csb-1 but 

not GG-NER defective xpc-1 mutant worms display UV sensitivity during late embryonic 

and early larval development. In contrast, UV irradiation of xpc-1 but not csb-1 mutants 

confer sterility during adulthood, and lethality in early embryos9.

We have followed the larval development of C. elegans upon UV-induced DNA damage. 

While developmental growth transiently arrests, specifically somatic tissues cease 

developmental growth when transcription-blocking lesions remain unrepaired. We reveal 

that insulin/insulin-like growth factor signalling (IIS) -a conserved pathway regulating 

development, stress resistance, and lifespan10-responds to DNA damage. The IIS effector 

transcription factor DAF-16/FoxO is activated in response to persistent DNA damage in 

somatic tissues and, contrasting its established function in the starvation response, promotes 

developmental growth. The DNA damage responsiveness of DAF-16 is most effective 

during development and declines with aging. We propose that the growth promoting activity 

of DAF-16 is specified by the GATA transcription factor EGL-27, which we demonstrate to 

interact with DAF-16, co-regulates DAF-16 target genes and together with DAF-16 

mediates DNA damage tolerance. Our data suggest that through GATA mediated promoter 

recognition DAF-16 activation enables development when DNA damage persists and 

Mueller et al. Page 2

Nat Cell Biol. Author manuscript; available in PMC 2015 June 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



confers enhanced tissue functionality and lifespan amid DNA damage accumulation in 

aging.

Results

TC-NER deficiency leads to developmental arrest of somatic tissues upon UV damage

Upon hatching C. elegans successively undergoes the L1, L2, L3 and L4 larval stages 

preceding adulthood. In synchronized wild-type (wt) L1 larvae developmental growth was 

transiently delayed upon UVB treatment (Suppl. Figure 1A). While completely NER 

defective xpa-1 mutants arrest larval development already at low UV doses (Suppl. Figure 

1B), in UV-treated TC-NER deficient csb-1 mutants germ cells continued their mitotic 

expansion while somatic development was impaired (Figure 1A). The germ cell 

proliferation was abrogated in csb-1;xpc-1 double mutants similarly to xpa-1 mutants, while 

GG-NER defective xpc-1 mutants, despite completing somatic development, failed to 

develop a germ line upon UV treatment (Figure 1A). Mitotically dividing germ cells 

displayed anaphase bridges upon UV treatment of adult xpc-1 mutants indicating genome 

instability in the germ stem cell compartment as the cause for sterility in GG-NER mutants 

(Suppl. Figure 1C). These data suggest that rather than functioning during different 

developmental periods as previously thought9, already during larval development the two 

NER branches in C. elegans show specific requirements of GG-NER in germ cells and of 

TC-NER in somatic tissues.

Persistent DNA damage leads to activation of DAF-16/FoxO

To identify genes that respond to UV-induced DNA damage during development we 

analysed the transcriptomes of L1 larvae upon UV treatment. We verified microarray results 

using quantitative real time PCR (Suppl. Table 1). 6 hours after 60mJ/cm2 UV irradiation, 

1349 genes were differentially expressed in wt worms (p<0.01, fold change (FC)>+/-1.5) 

(Suppl. Table 2) and 1730 genes responded (p<0.01, FC>+/-1.5) in xpa-1 mutants that were 

treated with a low dose of 10mJ/cm2 (Suppl. Table 3). The UV-induced gene expression 

changes in wt and xpa-1 mutants showed a highly significant positive correlation (Spearman 

r=0.89; p<0.0001), indicating that the transcriptional response depended on UV-induced 

DNA lesions (Suppl. Figure 1D, E).

To identify pathways that respond to DNA damage during development, we developed 

“wormpath”, an algorithm that provides a statistical framework to measure enriched genetic 

or biochemical interactions reported in the C. elegans repository11 (see methods). The 

largest significantly overrepresented network among UV response genes was centred on the 

IIS genes daf-16 and daf-2 (p<0.0001; Figure 1B) and comprised significantly 

overrepresented biological processes that included dauer larval development, determination 

of adult lifespan, and aging (Suppl. Figure 1F), indicating that genes functioning in the IIS 

longevity assurance pathway respond to DNA damage during development.

The FoxO transcription factor DAF-16 is activated when inhibitory IIS is alleviated and 

hypophosphorylated DAF-16 localizes to the nucleus to regulate starvation responses, confer 

resistance to multiple stress factors and mediate lifespan extension12-16. To address whether 
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DAF-16 is activated by DNA damage, we monitored DAF-16::GFP localization in vivo16. 

While in the absence of UV DAF-16::GFP was completely cytoplasmic, we observed a 

transient nuclear localization upon UV treatment during larval stages (L1 larvae Figure 1C; 

L3 larvae Suppl. Figure 1G). DAF-16 showed nearly complete and prolonged nuclear 

localization in completely NER and TC-NER deficient mutants upon UV damage, while 

GG-NER defective worms behaved similarly to wt animals (Figure 1C; Suppl. Figure 1G), 

suggesting that transcription-blocking lesions lead to activation of DAF-16. The kinetics of 

DAF-16 translocation within several hours following UV exposure is indeed consistent with 

the kinetics of RNAPII dependent detection of transcription-blocking lesions17.

During adulthood, we observed that DAF-16::GFP nuclear localization in response to DNA 

damage occurs most readily at day 3 and then declines as the worms age (Figure 1D). Also 

the strong DAF-16 activation in xpa-1 mutants occurs during early adulthood and then 

steadily declines throughout adulthood (Figure 1D; Suppl. Figure 2A). The initial induction 

of CPD lesions by UV was unaffected by age (Suppl. Figure 2B, C). In contrast, 

DAF-16::GFP activation upon even mild heat stress remained constant throughout 

adulthood. These observations suggest that while DAF-16 activation occurs efficiently 

during larval development and in young adulthood, the DAF-16 responsiveness specifically 

to DNA damage declines with aging.

DAF-16 activation alleviates developmental arrest and enhances somatic tissue 
functionality when DNA damage persists

The function of DAF-16 in mediating lifespan extension and stress resistance has become 

evident through analysis of mutations in the insulin/IGF-1 receptor daf-2 that lead to 

constitutive activation of DAF-1614,15,18. Complete loss-of-function of daf-2 results in 

permanent L1 arrest13 and strong loss-of-function alleles in permanent dauer arrest19. The 

canonical temperature sensitive daf-2(e1370) allele shows a slightly delayed but otherwise 

unperturbed development at the semi-permissive temperature of 20 °C (Figure 2, 

untreated)18. We also included mutants of age-1, the PI3 kinase acting downstream of 

DAF-220 and additional daf-2 alleles (Figure 2; Suppl. Figure 2D). Strikingly, 48h post UV-

treatment a significantly higher number of daf-2 or age-1 mutant animals had continued 

developmental growth while wt worms arrested (Figure 2). The alleviation of UV-induced 

arrest is the more striking as only mutants with partial loss of IIS function could be used for 

assessing developmental progress. daf-2;daf-16 double mutants completely reconstituted 

UV-induced developmental arrest (Figure 2) comparable to wt or daf-16 single mutants 

(Suppl. Figure 2E), demonstrating that DAF-16 activation is sufficient to promote 

developmental progression in response to UV-induced DNA damage. This role of activated 

DAF-16 to override the DNA damage-induced developmental arrest comprises a previously 

unknown function of DAF-16 that contrasts its role in starvation arrest, in which activated 

DAF-16 mediates the developmental stalling13.

The alleviation of the developmental arrest upon DNA damage in daf-2 mutants did not 

compromise adult longevity as subsequent adult lifespan was insignificantly reduced, 

whereas wt and daf-2;daf-16 double mutants showed a slight but significant reduction of 

adult lifespan (Suppl. Figure 2F).
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In contrast to DAF-16, the Nrf-related transcription factor SKN-1, functioning in parallel to 

DAF-16 to mediate lifespan extension and stress resistance21,22, was dispensable for the 

DAF-16 mediated DNA damage tolerance during development (Suppl. Figures 3A-D).

To address whether DAF-16 activation might override the developmental arrest even when 

DNA damage persists, we UV-treated L1 worms that were defective in daf-2 as well as in 

xpa-1 precluding removal of UV-induced 6-4PP and CPD lesions (Figure 3A). Intriguingly, 

mutations in daf-2 alleviated the arrest of xpa-1 mutants in a daf-16 dependent manner 

(Figure 3B) indicating that DAF-16 activation could override the developmental arrest 

despite the persistence of DNA lesions.

We then assessed whether the IIS response could also enhance functionality of differentiated 

tissues when DNA damage persists in adult worms and could thus antagonize DNA damage 

driven aging. In adult animals, UV damage leads to lifespan reduction in xpa-1 mutant 

worms23. While xpa-1 mutants showed a dramatic reduction in pharyngeal pumping and 

motility following UV treatment, the xpa-1;daf-2 double mutants maintained tissue 

functionality (Figure 3C, D; Suppl. Figure 4A) and their lifespan was significantly extended 

compared to xpa-1 mutants (Suppl. Figure 4B, C). Thus, daf-2 inactivation enhances tissue 

functionality and healthy lifespan in the presence of persistent DNA damage.

To assess whether the enhanced resistance to persistent DNA damage and alleviation of 

developmental arrest of daf-2 mutants comprised a specific function of DAF-16 in somatic 

tissues, we treated csb-1;daf-2 and xpc-1;daf-2 mutants. While age-1 and daf-2 mutations 

alleviated the arrest of csb-1 mutants upon UV in a daf-16 dependent manner (Figure 3E), 

mutant daf-2 failed to confer UV-resistance to xpc-1 deficient germ cells (Figure 3F). In 

addition, the DNA damage tolerance in daf-2 mutants was unaffected in germline-less glp-4 

mutants (Suppl. Figure 4D). Thus, DAF-16 activation enhances tolerance of persistent DNA 

damage specifically in somatic tissues.

DAF-16 promotes developmental growth through distinct target gene regulation in 
response to DNA damage

To assess the role of DAF-16 in developmental gene regulation, we contrasted the gene 

expression changes upon UV treatment with those upon starvation, where DAF-16 has 

previously been shown to mediate L1 arrest13. In agreement with previous gene expression 

data24, we observed a strong transcriptional response to starvation (Table S4). The 

significantly altered transcripts in response to UV and to starvation showed a highly 

significant positive correlation (Spearman r=0.62; p<0.0001) (Figure 4A, Suppl. Figure 1C) 

with 64% of UV response genes overlapping with the starvation response genes (Figure 4B). 

82% of those overlapping genes responded similarly to UV as to starvation (Suppl. Tables 5, 

6) and contained oxidative stress responses. The genes that were induced in response to UV 

and repressed in response to starvation showed enrichment of positive regulation of 

metazoan growth (Figure 4C, Suppl. Figure 5).

Systematic analysis of putative promoter elements employing the RSAT software25 revealed 

a highly significant enrichment of the DAF-16 associated element (DAE)26 within the UV-

induced genes, while starvation induced genes showed highly significant enrichment of the 
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DAF-16 binding element (DBE) (Table 1). Most strikingly, those genes that were induced 

both upon UV and starvation showed overrepresentation of DBE, while those genes that 

were induced upon UV and repressed upon starvation contained a highly significant 

enrichment of DAE. None of the binding sites associated with the transcription factors 

PHA-4, DAF-12, ELT-2, HSF-1, SKN-1, or the canonical E-box showed such enrichment 

patterns, indicating a vastly specific enrichment of DAF-16 target promoters (Table 1, 

Suppl. Table 7, 8). This promoter analysis suggests that DAF-16 activation in response to 

UV-induced DNA damage leads to induction of DAE regulated genes, which are repressed 

by DAF-16 upon starvation. Indeed, starvation prior to UV exposure resulted in exacerbated 

developmental arrest (Figure 4D) suggesting that the induction of starvation responses 

sensitizes worms for developmental arrest following DNA damage. SKN-1, previously 

implied in the starvation response27, was dispensable for this effect (Suppl. Figure 6A).

The GATA transcription factor EGL-27 interacts with DAF-16 to induce DNA damage 
response genes and promote developmental growth

To identify transcription factors that might specify the distinctive growth promoting function 

of DAF-16 in the DNA damage response, we determined DAF-16 dependent genes as being 

significantly induced (FC>1.5; p<0.01) upon UV in daf-2 mutants and more strongly 

induced upon UV in daf-2 vs. daf-2;daf-16, daf-2 vs. wt, and wt vs. daf-16 (Suppl. Table 9), 

yielding 514 genes, among which the largest group was indeed associated with positive 

regulation of growth (Suppl. Figure 6B, Suppl. Table 10). The DAF-16 dependent UV-

response genes contained 3 significantly enriched sequence matrices that comprise GATA 

transcription factor recognition sites (Figure 5A), as determined by motif comparison 

analysis28. Two motifs contained the DAE element (CTTATCA or TGATAAG) that in 

addition to its identification as DAF-16 target element29, has also been defined as GATA 

response element30. Indeed, several GATA factors are required for the longevity of daf-2 

mutants30-32. To investigate the function of GATA factors in the developmental response to 

UV irradiation, we analysed elt-3, elt-4, elt-6, elt-7, egl-27, end-1, end-3, med-1, and med-2 

mutants. Specifically egl-27 mutants exhibited a strongly enhanced developmental growth 

arrest following UV treatment (Figure 5B, Suppl. Figure 6C, D)) that was rescued by 

transgenic expression of EGL-27::GFP (Figure 5B).

Out of 22 tested DAF-16 target genes 12 showed significantly diminished induction upon 

UV irradiation in egl-27 mutants when compared to wt (Figure 6A), indicating that EGL-27 

regulates a subset of DAF-16 dependent DNA damage response genes. Among those, RNAi 

against the “DNA damage effector downstream of DAF-16 and EGL-27” (dde) genes dde-1 

(F01D5.1) and dde-2 (F01D5.2), as well as a mutation in oac-32, which we renamed dde-3, 

significantly enhanced developmental arrest upon UV treatment (Figure 6B).

We next determined that EGL-27 and DAF-16 genetically interact by synergistically 

promoting developmental growth (Figure 6C (untreated), Suppl. Table 11). A daf-16 

mutation further enhanced the UV sensitivity of egl-27 mutants (Figure 6C). Moreover, 

EGL-27 was required for the DNA damage tolerance of daf-2 mutants, as daf-2;egl-27 

double mutants showed a similar degree of developmental arrest as wt worms (Figure 6D). 

egl-27 mutants showed enhanced sensitivity to oxidative damage (which among others also 
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imposes transcription blocking lesions33) that was further aggravated in daf-16;egl-27 

double mutants (Suppl. Figure 7A). In contrast to daf-16, however, egl-27 was dispensable 

for heat stress resistance (Suppl. Figure 7B) and daf-2- mediated dauer formation (Suppl. 

Figure 7C).

Cytologically, DAF-16::GFP and EGL-27::GFP fusion proteins were expressed in the same 

nuclei in L1 animals following UV-treatment (Figure 7A, Suppl. Figure 7D). In vitro, co-

expressed epitope tagged DAF-16 co-immunoprecipitated with EGL-27 (Figure 7B, Suppl. 

Figure 8A-E). We further mapped the interaction to the C-terminus containing a Q-rich 

domain (Suppl. Figure 8F) that is present in EGL-27 but not other C. elegans GATA factors 

(Figure 7B, Suppl. Figure 8A-E). Taken together, these data indicate that EGL-27 functions 

together with DAF-16 downstream of DAF-2 to specify the induction of developmental 

growth genes thus promoting tolerance to DNA damage.

Discussion

DAF-16 promotes development in response to DNA damage through distinct mode of gene 
regulation

We investigated the consequences of DNA damage during postembryonic metazoan 

development in C. elegans and determined that UV-induced DNA damage leads to a 

transient arrest during larval development. TC-NER defects specifically impair the 

development of somatic tissues, suggesting that the requirement for TC-NER for 

developmental growth is conserved from worm to man. Given the phenotypic complexity of 

mammalian NER mutants, we propose C. elegans as valuable metazoan system to gain 

insight into physiological consequences of DNA damage during development and aging 

particularly in the context of distinct NER impairments.

We reveal that an IIS network responds to UV-induced DNA damage in developing worms. 

Activation of the IIS effector DAF-16 was previously observed in response to various 

stressors including starvation, heat, and juglone but not UV16. In contrast to previous studies 

that used short wavelength UVC, which is unlikely to penetrate throughout the worm’s 

tissues, we observed DAF-16 activation upon irradiation with more deeply penetrating and 

physiologically more relevant UVB. Natural sampling experiments identified developing C. 

elegans larvae outside of the starvation arrest exclusively on decaying fruits and fresh 

compost heaps34. With a yearly average irradiation in central Europe of 4mJ/cm2 UVB per 

minute, with significantly higher peaks during summer and at higher altitudes35, the UV 

response mechanisms are thus likely to play an important role in the natural habitat of C. 

elegans. In contrast to the transient activation in repair proficient animals, persistent DNA 

damage resulted in enhanced and prolonged DAF-16 activation. DAF-16 activation 

specifically in response to UV-treatment declined during adulthood, suggesting that reduced 

DAF-16 responsiveness to DNA damage accumulation contributes to DNA damage driven 

tissue degeneration with aging.

In accordance with our observations, reduced IIS has been observed in progeroid mice 

lacking Sirtuin 636, or the NER factors Ercc1 or Csb and Xpa37,38. We previously showed 

that persistent DNA damage that leads to RNAPII stalling, the culprit of TC-NER 
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deficiencies, evokes IIS attenuation in mammalian cells39. We now for the first time reveal 

the physiological function of IIS response to persistent DNA damage. We show that genetic 

IIS attenuation leads to suppression of the DNA damage induced somatic growth arrest 

through activation of DAF-16. This previously unknown function contrasts the established 

role of DAF-16 in response to starvation13. In both cases DAF-16 confers general stress 

resistance as observed upon starvation, heat, reactive oxygen species, and UV12,14,16,40,41 

likely through the induction of DBE-controlled genes. Specifically in response to DNA 

damage, DAF-16 induces starvation-repressed growth genes that contain GATA-comprising 

DAE motifs (Figure 7C). Conceptually consistent with a dual function, the activation of the 

mammalian DAF-16 homolog also results in very contrasting consequences as FoxO acts 

tumour suppressive in solid tumours but oncogenic in an acute myeloid lymphoma42. It will 

be highly interesting to evaluate whether context-dependent transcription co-factors 

determine the distinct outcomes of FoxO activity.

ELG-27/GATA co-regulates developmental growth with DAF-16/FoxO

Our data suggest that DAF-16 induces developmental growth genes through binding to a C-

terminal interaction domain of EGL-27 whose GATA domain in turn recognizes the 

GATA/DAE promoter motif. We genetically place EGL-27 downstream of DAF-2 in 

promoting developmental growth in parallel to DAF-16. egl-27 has previously been found to 

regulate cell polarity, migration, and embryonic patterning redundantly with the related 

GATA factor egr-143-45. The human EGL-27 homolog metastasis tumour antigen 1 (MTA1) 

is associated with aggressiveness of various tumour types46,47 and is required for an 

efficient G2/M arrest following DNA damage48. It will be highly interesting to investigate 

whether FOXO and MTA1 interact in the DNA damage response and which implication this 

might have for tumour development and metastasis.

DAF-16 activation raises threshold for detrimental consequences of persistent DNA 
damage in development and aging

DAF-16 activity overrides the developmental arrest and enhances tissue functionality even 

in the absence of UV-lesion repair. DAF-16 activation might thus raise the threshold of 

damage-induced functional decline amid accumulating DNA damage with aging. Altering 

the tolerance threshold to persistent DNA damage through modifying IIS activity might 

comprise an evolutionary strategy to adapt the durability of somatic tissues without altering 

the DNA repair capacity, which would require adaptations in multiple genome maintenance 

systems and in case of NER involve multi-protein complexes with abundant base line levels 

that are assembled upon damage recognition with highly complex dynamics49.

The function of DAF-16 in responding to DNA damage during development might be highly 

relevant also for understanding how longevity assurance pathways counteract the 

consequences of DNA damage accumulation in aging. As selective pressure acts most 

strongly during early life50, IIS function might have been primarily adapted to respond to 

DNA damage during development. In C. elegans cellular DNA damage checkpoints are 

important for eliminating germ cells that are genomically compromised thus preventing 

resource allocation to damaged oocytes. Once embryogenesis ensues, cellular DNA damage 

checkpoints are switched off7. In the subsequent larval development the IIS response might 
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force growth even when DNA damage persists thus ensuring the maximal usage of 

previously invested maternal resources. Developmental timing and lifespan are intricately 

linked as slowly developing organisms require a longer lifespan for successful 

reproduction51. The IIS response to DNA damage might thus also adapt to co-regulate 

developmental timing and lifespan in response to persistent DNA damage.

Experimental Procedures

Strains

All strains were cultured according to standard conditions54. Strains used were N2 (Bristol; 

wild type), RB1801 csb-1(ok2335), RB864 xpa-1(ok698), FX03886 xpc-1(tm3886), CB1370 

daf-2(e1370), DR1572 daf-2(e1368), DR1565 daf-2(m596), DR26 daf-16(m26), TJ1052 

age-1(hx546), DR1309 daf-2(e1370);daf-16(m26), TJ356 zIs356[daf-16::GFP; rol-6]IV, 

BJS10 daf-2(e1370); xpa-1(ok69 8), BJS27 xpa-1(ok698); age-1(hx546), BJS16; 

zIs356[daf-16::GFP; rol-6]IV; xpa-1(ok698); BJS15 zIs356[daf-16::GFP; rol-6]IV; 

csb-1(ok2335), BJS51: xpc-1(tm3886); zIs356[daf-16::GFP; rol-6]IV, BJS49: 

csb-1(ok2335);xpc-1(tm3886); zIs356[daf-16::GFP; rol-6]IV, BJS23 

csb-1(ok2335);daf-2(e1370), BJS22 csb-1(ok2335); age-1(hx546), BJS25 csb-1(ok2335); 

daf-16(m26), BJS30 csb-1(ok2335); daf-16(m26); daf-2(e1370), BJS29 xpc-1(tm3886); 

daf-2 (e1370), BJS21 csb-1(ok2335); xpc-1(tm3886), CF1934 

daf-16(mu86)I;muIs109[daf-16p::gfp::daf-16 + odr-1p::rfp], MT170 egl-27(n170), VC1217 

egl-27(ok1670), BJS143 daf-2(e1370);egl27(ok1670), OP177 unc-119(ed3)III; 

wgIs177[egl-27::TY1::EGFP::3xFLAG + unc-119(+)], BJS151 egl-27(ok1670)II; 

unc-119(ed3)III; wgIs177[egl-27::TY1::EGFP::3xFLAG + unc-119(+)], BJS150 

egl-27(n170)II; unc-119(ed3)III; wgIs177[egl-27::TY1::EGFP::3xFLAG + unc-119(+)], 

VC40566 dde-3(gk696370), BJS267 skn-1(zu169)nT1qIS51, BJS268 skn-1(zu67)nT1qIS51, 

BJS263 skn-1(zu135)nT1qIS51, BJS264 skn-1(zu135)nT1qIS51;daf-2(e1370), BJS265 

skn-1(zu135)nT1qIS51;daf-16(mu86), BJS266 

skn-1(zu135)nT1qIS51;daf-2(e1370);daf-16(mu86), Is007skn-1b/c::GFP;rol-6, BJS226 

skn-1b/c::GFP;rol-6;xpa-1(ok698), SS104 glp-4(bn2), BJS234 glp-4(bn2);daf-2 (e1370), 

VC143 elt-3(gk121), JM124 elt-4(ca16), VC1606 elt-6(gk754), RB948 elt-7(ok835), VC271 

end-1(ok558), RB1331 end-3(ok1448), RB930 med-1(ok804), MS123 med-2(cx9744).

Microarrays

RNA was isolated from 10000 age synchronized L1 larvae. The worms were age 

synchronized using hypochlorite treatment. Since hypochlorite treatment is followed by 

hatching in media without food and thus induces a starvation response, after 24h of hatching 

the larvae were transferred to NGM plates seeded with E. coli OP50 bacteria and left to 

recover for 6h before UV treatment to remove any effect of starvation on their 

transcriptional profile. The starvation control was not transferred to seeded plates. 6h after 

treatment with the indicated doses of UVB radiation using a UV6 lamp (Waldmann), the 

animals were washed off plates using M9 buffer, washed once more with M9 buffer and 

resuspended in TRIZOL (Invitrogen). To facilitate complete lysis, worms were disrupted in 

TRIZOL with 0.7 mm zirconia/silica beads (Biospec Products) using a Precellys24 (Bertin). 

After lysis, total RNA was purified using the RNeasy Mini kit (Qiagen) according to the 
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manufacturers’ specifications, except for the use of 1-Bromo-3-chloropropane (Sigma) 

instead of chloroform for phase separation.

RNA quality was assessed using a Nanodrop 8000 spectrophotometer (Thermo Scientific) 

and a Bioanalyzer (Agilent). Expression profiles were obtained using a GeneChip C. elegans 

Genome Array (Affymetrix) according to the manufacturers’ specifications by the CCG 

facility (Berlin, Germany). Hybridization signals were normalized by quantile normalization 

and differentially expressed genes were determined by ANOVA analysis using the Partek 

software package.

The data files are deposited under the GEO accession code GSE47778.

For qPCR analysis, cDNA was generated using Superscript II (Invitrogen). Quantitative 

real-time PCR (qPCR) was done with Biorad CFX96 real-time PCR machines using SYBR 

Green I (Sigma) and Platinum Taq polymerase (Invitrogen). All qPCR reactions were done 

in duplicate. The generation of specific PCR products was confirmed by melting curve 

analysis. Each primer pair was tested with a logarithmic dilution of a cDNA mix to generate 

a linear standard curve (crossing point (CP) plotted versus log of template concentration), 

which was used to calculate the primer pair efficiency (E = 10(-1/slope)). For data analysis, 

the second derivative maximum method was applied, and induction of target cDNA was 

calculated according to Pfaffl55: [Etarget
ΔCP(cDNAuntreated-cDNAtreated)target]/

[Econtrol
ΔCP(cDNAuntreated-cDNAtreated)control].

Pathway analysis with a newly developed algorithm

For in-depth analysis of the content of our set of differentially expressed genes, we have 

developed Wormpath, a user-friendly software and web service for efficient discovery of 

genetic networks in C. elegans taking advantage of the information on genetic interactions 

available in Wormbase. A single “interaction” between two genes can describe their role as 

members of the same pathway; moreover, a set of interactions can be understood as 

components of large networks as a model for complex cellular processes or signalling 

cascades. For reasons of stringency we have only included experimentally verified 

interactions in Wormbase, while ignoring predicted interactions. Wormpath uses pairs 

termed “indirect” interactions, which are interactions between two genes from the list of 

significant genes and a third gene, which is not in the list. This strategy allows the 

identification of interaction networks also when, for instance, only some genes functioning 

in a pathway are transcriptionally altered while other members of a pathway might also be 

regulated e.g. on the posttranscriptional level.

The search algorithm operates on a large underlying graph in which each gene of the list is 

assigned exactly one node. Pairs of nodes in the graph linked by a direct or “indirect” 

genetic interaction according to Wormbase are assigned an edge labelled with additional 

information from the database. Our approach for discovery of networks in this graph is 

controlled by a maximum number of steps D defining the distance from a start node, of 

which interacting nodes are searched. This strategy is applied to each of the nodes in the 

graph taken as the start node and, subsequently, all redundant networks are discarded. To 

also analyse smaller sub-networks, the procedure is repeated for all possible step sizes 
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smaller than D because this number naturally controls the degree of completeness to which a 

particular network is made visible.

To rank the networks in the results list, each of them is assigned a score defined by the 

number of its interactions, thus reflecting its size as well as its complexity. A p-value 

indicating the statistical significance of the test on the null hypothesis that the proportion of 

pathway members is equal among the list members and in the entirety of all C. elegans 

genes is calculated by Fisher’s exact test with the hypergeometric parameters N (total 

number of genes in the database), n (number of differentially expressed genes) and K (total 

number of genes involved in the pathway estimated by the sum of the numbers of interactors 

of the pathway members among the differentially expressed genes). The software is 

accessible http://bifacility.uni-koeln.de/wormpath using a standard web browser.

Gene Ontology Classification and Overrepresentation of Biological Themes

All significant gene entries were subjected to GO classification (http://

www.geneontology.org). Significant over-representation of GO-classified biological 

processes was assessed by comparing the number of pertinent genes in a given biological 

process to the total number of the relevant genes printed on the array for that particular 

biological process (Fisher exact test) using the publicly accessible software DAVID (http://

david.abcc.ncifcrf.gov/summary.jsp). Due to the redundant nature of GO annotations, we 

employed Kappa statistics to measure the degree of the common genes between two 

annotations, and heuristic clustering to classify the groups of similar annotations according 

to kappa values (http://david.abcc.ncifcrf.gov/summary.jsp).

Transcription factor sites analysis

Only genes with a p-value<0.01 were considered for the clustering of responsive transcripts 

to UV or/and starvation. We clustered the genes in upregulated (1.5 or 2 fold change for UV 

and starvation response, respectively) and downregulated response (−1.5 and −2 fold change 

for UV and starvation response, respectively). Three analyses of the promoter regions of the 

genes were performed with these data: first a search with the sequences included in both 

responses separately, second with the non-overlapped responses and, finally, with the 

overlapped ones. We searched either 600 or 1000 base pairs upstream of the start codon, for 

TGTTTAC the canonical DAF-16 Binding Element (DBE) motif56; CTTATCA the 

predicted DAF-16 Associated Element (DAE)26; NTTCNNGAANNTTCN, 

NTTCNNGAAN(N)5NGAAN and NTTCN(N)5NTTCN(N)5NGAAN the Heat Shock 

Elements (HSE)57; WWTRTCAT the SKN-1 binding motif22 and CATATG an Heme-

responsive element58. Transcription factor sites search was performed using the DNA-

pattern matching tool of regulatory sequence analysis tools RSAT software (http://

rsat.ulb.ac.be/rsat/)25. The results given are the total percentage of matches for each cluster, 

in both strands of the sequence. The p-values were obtained with the 2-tailed Fisher’s exact 

test, in respect to all the corresponding C. elegans sequences of genes that did not 

significantly respond to either UV or starvation.

In order to search for overrepresented motifs in the promoter regions of the DAF-16 

dependently induced genes, 1000 bp upstream the CDS of 449 genes that were significantly 
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induced in daf-2 (FC>1.5; p<0.01) upon UV and more strongly induced upon DNA damage 

in daf-2 vs. daf-2;daf-16, daf-2 vs. wt, and wt vs. daf-16 were submitted to the oligo-analysis 

tool in RSAT. The search was limited to sequence alignments of seven nucleotides. We 

validated the significance of the motifs by reassessing the percentage of sequences 

containing the motifs in the group of genes and by comparing this percentage with promoter 

of all genes that did not alter their expression upon UV treatment. We used TOMTOM, a 

Motif Comparison Tool, to search similarities between the motifs found in the group of 

interest and Transcription Factors databases. Employing the consensus matrices sequences 

as input we obtained statistically significant motifs that were associated to TF of different 

species.

Irradiation and analysis of somatic arrest

Worms were bleached and allowed to hatch over night in M9 buffer. Arrested L1 larvae 

were put onto empty NGM plates and irradiated with 310nm UVB light using Phillips UV6 

bulbs in a Waldmann UV236B irradiation device or were mock treated. (Irradiance was 

measured using a UVX digital radiometer and a UVX-31 probe from UVP and was 

generally around 0.3 mW/cm2.) Worms were washed off with M9 buffer, concentrated by 

centrifugation and put on NGM plates with pre-grown OP50 E.coli lawn. Plates were kept at 

20°C for 48hours or 72 hours, respectively, and analyzed by large particle flow cytometry 

using a Union Biometrica COPAS Biosort system. Larval stages were attributed by 

measuring concerning Time of Flight versus Extinction using the Biosort 5291 software and 

confirmed by manual inspection under a dissecting microscope.

Fecundity

Worms were staged and L4 larvae were irradiated and allowed to recover for 24 hours at 

20°C. Worms were transferred to new OP50 seeded plates and allowed to lay eggs for 3 

hours. Adult worms were removed and embryos counted. Viable offspring was counted 48h 

later.

DAF-16::GFP translocation

Strains TJ356: N2; zIs356[daf-16::GFP; rol-6]IV, BJS16: xpa-1(ok698)I; 

zIs356[daf-16::GFP; rol-6]IV, BJS15: csb-1(ok2335)X; zIs356[daf-16::GFP; rol-6]IV, 

BJS51: xpc-1(tm3886); zIs356[daf-16::GFP; rol-6]IV and BJS49: 

csb-1(ok2335);xpc-1(tm3886); zIs356[daf-16::GFP; rol-6]IV. DAF-16::GFP localization 

was analyzed under the fluorescence dissecting microscope at given time points. 

DAF-16::GFP localization of mock treated worms was invariably cytoplasmic throughout 

the experiments.

Pharyngeal pumping

Worms were synchronized by hypochlorite bleaching and L1s were put onto NGM plates 

seeded with OP50. After two days L4 larvae were transferred to new plates and 24 hours 

later were irradiated or mock treated. The worms were transferred every day to a new plate 

and on day 7 after irradiation the pharyngeal pumping rate of each healthy, surviving 

individual (at least 21 per strain and treatment) was determined under a dissecting stereo 
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microscope. To establish the average pharyngeal pumping rate, the movements of the 

pharynx of each individual were counted at least twice for 10 seconds and an average of 

these measurements was calculated. Box-and-whisker graph with Tukey whiskers of 1.5x 

IQR was created in Prism5 software.

Body bends

Worms were synchronized by hypochlorite bleaching and L1s were put onto NGM plates 

seeded with OP50. After two days L4 larvae were transferred to new plates and 24 hours 

later were irradiated or mock treated. The worms were transferred every day to a new plate 

and the rate of body bends was monitored on day 8 after irradiation. Each healthy, surviving 

individual (at least 18 per strain and treatment) was transferred into a drop of M9 buffer on a 

microscope slide, and body bends were monitored dissecting stereo microscope during 

periods of constant sigmoid movement (if possible). A body bend was scored each time the 

tip of the head reached the maximum amplitude on one given side. To establish the avarage 

body bend rate, the movements of each individual were counted at least 3 times for 10 

seconds and an average of these measurements was calculated. Box-and-whisker graph with 

Tukey whiskers of 1.5x IQR was created on Prism5 software.

Lifespan

Adult worms were allowed to lay eggs for one hour and were removed. Progeny was 

incubated at 20°C and young adult worms were transferred to a new plate and irradiated 

with UVB or mock treated. Animals were incubated at 20°C and transferred to a new plate 

with a lawn of UV-sterilized OP50 bacteria every second day during the fertile period and 

once per week afterwards. Animals were counted every day or every second day. Dead 

animals were those that did not show any reaction after being poked with a platinum wire. 

Dead animals were scored and removed from the plate. Animals that died from internal 

hatching or dried out on the wall were censored.

DNA repair assay

Worms were grown on extra peptone plates, bleached and allowed to hatch over night in M9 

buffer and filtered through a 11μm mesh filter (Millipore). Worms were pelleted and 

100-200μl of worm pellet were transferred on to a medium NGM agar plates, left for drying 

and irradiated or mock treated. Worms were washed off immediately using pre-cooled M9 

buffer, split into 2 parts and both parts were pelleted in a pre-cooled centrifuge. Supernatant 

was removed and one part was quick frozen on dry ice (0 minutes sample). The second 

sample was plated on a pre-seeded NGM plate and left on 20°C for about 22 hours. Worms 

were washed off using M9 buffer and washed 5 times, left rotating for 1-2 hours in M9 

buffer in order to consume bacteria in the gut, washed 5 times, pelleted and quick frozen 24 

hours after irradiation. Genomic DNA was isolated using Qiagen Puregene kit according to 

a modified version of the “DNA purification from Tissue” protocol. The frozen worm pellet 

was thawed at 4°C and 3ml of cell lysis solution and 15μl Proteinase K was added and the 

mix was incubated for 3hs at 55°C on a thermo shaker at full speed. Samples were allowed 

to cool down and 15μl of RNAse A solution was added and incubated for 30min at 37°C. 

Samples were cooled for 3min on ice and 1ml of protein precipitation solution was added 

and samples were vortexed vigorously for 20sec and centrifuged for 10min at 2,000 × g. The 
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supernatant was transferred to a new tube and 3ml of isopropanol were added and tubes 

were gently inverted 50 times. Samples were centrifuged for 3min at 2,000 × g and 

supernatant was removed and the pellet was allowed to air dry for 10min at RT. Genomic 

DNA was solved in 100μl Quiagen DNA rehydration buffer and DNA concentration was 

measured using a Nanodrop 8000 and DNA integrity was tested in on a 0.7% TAE gel. A 

1:1 dilution series starting with 4μg for 6-4PPs and 1μg for CPDs and 7 dilution steps was 

carried out and dilutions were denatured for 5 minutes at 95C, put directly on ice, and 

blotted onto an Hybond nylon membrane (Amersham) using a Whatman 96-well slot 

blotting device at 300mbar vacuum. Cross-linking of the DNA was carried out for 2 hours at 

80°C. The membrane was blocked for 30 minutes in 3% milk/PBS. Primary antibodies Anti-

Cyclobutane Pyrimidine Dimers - Clone: TDM-2 or Anti-(6-4) photoproducts - Clone: 

64M-2 - both mouse (Cosmo Bio) were diluted 1:10,000 or 1:3,000, respectively in PBS-T. 

The membrane was incubated in antibody solution over night at 4C, washed 3x in PBS-T, 

blocked for 30 minutes in 3% milk/PBS and incubated 1 hour with 1:10,000 secondary 

antibody solution Peroxidase-conjugated AffiniPure Goat Anti-Mouse IgG + IgM [H+L] 

(Jackson Immuno Research) in PBS-T at room temperature and washed 3x in PBS-T. DNA 

Lesions were visualized by incubating the membrane with ECL plus Western blotting 

reagent (Amersham) for 5min (0.1ml/cm2 of solution A and B 40:1) and exposing CL-

Xposure Film (Thermo Scientific) to the membrane.

Heat shock

L4 worms were isolated onto NGM plates and incubated at 35°C until the time point 

indicated. Plates were removed and worms were allowed to recover for 30 minutes at 20°C 

and were analysed under a stereomicroscope. Worms were scored as dead when they did not 

respond to a poke with a platinum wire.

Dauer formation

Dauer formation rate was analysed by putting synchronized L1 worms derived from 

hypochlorite bleaching onto NGM plates seeded with OP50 and these plates were put to 

25°C for 48hs. Worms were analysed for larval stage by inspection under a 

stereomicroscope.

Paraquat stress

Development on paraquat plates was analysed by putting synchronized L1 worms derived 

from hypochlorite bleaching onto NGM plates containing the indicated molarity of Methyl 

viologen dichloride hydrate (Paraquat 856177 Aldrich) seeded with OP50. Worms were 

scored 48hs later for their developmental stage.

Imaging of DAF-16::GFP and EGL-27::GFP transgenic animals

Imaging of live non-treated and UV-irradiated DAF-16 and EGL-27 reporter worms was 

done by laser scanning confocal microscopy using a Zeiss Meta 510. Synchronized L1 

worms derived from hypochlorite bleaching were plated onto NGM plates seeded with 

OP50 and incubated at 20°C. Treated worms were irradiated with 150mJ/cm2 UVB. Worms 
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were imaged 6hs after feeding and irradiation to visualize the cellular localization of the 

GFP fusion proteins.

In vitro interactions

daf-16 and egl-27 cDNAs were cloned between the MluI and NotI sites in the mammalian 

expression vector pcDNA6, which contained FLAG or v5 in the C-terminus. Cloning 

primers DAF-16h: daf-16fwd AAAAACacgcgtgccaccATGcaactcgagcaaaagtcttca, daf-16rev 

AAAAACGCGGCCGCCcaaatcaaaatgaatatgctgccc; Cloning primers EGL-27d: egl-27fwd 

AAAAACacgcgtgccaccATGGCTGAATGTTCAGTAGGTGA, egl-27c-termfwd 

AAAAACACGCGTgccaccATGAGCGAGACTCCAGATCGT; egl-27rev 

AAAAACGCGGCCGCCCTGATGTTGAGGACGCATC, egl-27N-termrev 

AAAAACGCGGCCGCGCGAAGAAGGCGTTCTTCTTCGT. For Co-

immunoprecipitation HEK293T cells were cultured in DME medium containing 10% FBS 

and transiently transfected using the calcium phosphate method. The following day, cells 

were harvested using ice-cold PBS. Cells were collected by centrifugation and lysed in a 1% 

Triton X-100 buffer (1% Triton X-100, 20 mM Tris-HCl, pH 7.5, 50 mM NaCl, 50 mM 

NaF, 15 mM Na4P2O7, 2 mM Na3VO4 and PMSF) for 15 min on ice. After centrifugation at 

15,000 g for 15 min at 4°C, the supernatant was incubated at 4°C for 2 h with anti-FLAG 

(M2) antibody coupled agarose beads (Sigma-Aldrich). Before the addition of beads, a small 

aliquot of each supernatant was preserved and diluted with 2× SDS-PAGE sample buffer for 

later Western blot analysis (lysate). The beads were washed at least three times with lysis 

buffer, and the proteins bound were resolved by SDS-PAGE, blotted on to polyvinylidene 

fluoride membranes, and visualized with enhanced chemiluminescence after incubation of 

the blots with the respective antibodies. Primary antibodies used were anti-FLAG (M2 

Sigma-Aldrich), anti-V5 (SV5-Pk1 Serotec) and anti-GFP (Santa Cruz Biotechnology). 

Secondary antibodies coupled to horseradish peroxidase were obtained from Jackson 

ImmunoResearch Laboratories (goat anti-mouse IgG, light-chain specific) and DAKO (goat 

anti-mouse IgG). A truncation of hEPS15L1 [1-225] was used as a negative control59.

Statistical analysis

Statistical methods that were used and error bar descriptions are detailed in the figure 

legends and specified for specific methodologies in the respective method section. 

Information about sample size is included in all figure legends. Randomization was not 

applied because the group allocation was guided by the genotype of the respective mutant 

worms. Worms of a given genotype were randomly selected from large strain populations 

for each experiment without any preconditioning. Blinding was not applied as the 

experiments were carried out under highly standardized and predefined conditions such that 

an investigator-induced bias can be excluded. Logrank-Test: The survival curves for the 

treatment conditions do not cross each other at any time point. t-Test: The variance within 

each group of data has been incorporated into the test statistics.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. IIS network responds to UV-induced DNA damage during development and activation 
of DAF-16 that declines with aging
(A) Transcription-coupled repair defects lead to arrested somatic development. Worms were 

treated as L1 larvae and pictures taken 96h post treatment (wt, xpc-1, csb-1 with 60mJ/cm2; 

xpc-1;csb-1 with 10mJ/cm2). Note that while wt worms have developed into adult worms, 

xpc-1 mutants have completed somatic development but lack a germ line, csb-1 mutants are 

developmentally delayed while germ cells continued to divide while xpc-1;csb-1 double 

mutants have arrested both somatic and germ line development (representative pictures 

shown, experiment was repeated at least 3 times). (B) shows largest significantly 
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overrepresented interaction network among differentially expressed genes upon UV 

treatment. Upregulated genes are depicted in red, downregulated genes in green. One link 

through non-transcriptionally regulated genes was permitted in the analysis. (C) 

DAF-16::GFP cellular localization upon UV treatment in larvae. L1 wt, xpc-1, xpa-1, csb-1 

and csb-1;xpc-1 strains were irradiated with 120 mJ/cm2 and kept at 20°C (Average of n=3 

independent experiments per strain and dose is shown, 10 individuals analysed per 

experiment; error bars=SEM). The graph shows the percentage of worms showing 

cytoplasmic, nuclear and partially nuclear DAF-16::GFP localization without treatment 

(control), and following UV irradiation. (D) DAF-16::GFP cellular localization upon UV 

treatment in adult worms. Wt and xpa-1 mutant are shown. Three replicates of 10 adult 

worms during the first, third, fifth, seventh and tenth day of adulthood were exposed to 150 

mJ/cm2 and incubated at 20°C. In parallel, adult worms of the same age were heat shocked 

at 32°C for ten minutes and scored for the subcellular localization of the GFP signal 

(Average of n=3 independent experiments per strain and dose is shown, 10 individuals 

analysed per experiment; error bars=SEM).
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Figure 2. Activation of DAF-16 promotes developmental growth upon UV-induced damage
daf-2 and age-1 mutants show reduced developmental arrest in a daf-16 dependent manner. 

L1 larvae were treated with UV and larval stages determined 48h post treatment. Animals 

that proceeded to L4 and young adulthood (YA) are scored together. Note that daf-16 single 

mutant alleles are analysed in suppl. Figure 2E. (Average of n=4 independent experiments 

per strain and dose is shown, >1450 individuals analysed per experiment; error bars=SD, 

*=p<0.05, **=p<0.01, ***=p<0.001, two-tailed T-Test, compared to wt).
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Figure 3. IIS mutants enhance somatic resistance to persistent DNA damage
(A) UV-induced DNA lesions remain unrepaired in xpa-1 and in xpa-1;daf-2 mutants. wt, 

xpa-1, and xpa-1;daf-2 were treated at L1 stage and CPD and 6-4PP lesions were measured 

by antibody staining in slot blots of worm extracts directly upon treatment with 40mJ/cm2 

UV and 24h later (representative result is shown and the experiment was repeated 3 times) 

(B) L1 larvae were irradiated or mock treated and developmental stages evaluated 48h or 

72h (lower panel) later (average of n=3 independent experiments per strain and dose is 

shown, >829 individuals analysed per experiment; error bars=SD; *=p<0.05, **=p<0.01, 
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***=p<0.001, two-tailed T-Test compared to wt) (C) Worms were isolated as L4s and 

irradiated 24hs later or mock treated and pharyngeal pumping rate per 10 seconds was 

determined on day 7 after the irradiation (representation in box-and-whisker graph with 

whiskers 1.5x IQR, ****=p<0.0001, two-tailed T-Test). (D) For body bends measurements, 

worms were isolated as L4s and irradiated 24hs later or mock treated and body bend rate per 

10 seconds was determined on day 8 after the irradiation (representation in box-and-whisker 

graph with whiskers 1.5x IQR, ***=p<0.001, two-tailed T-Test). (E) L1 larvae were treated 

and developmental stages assessed 48h post treatment (average of n=3 independent 

experiments per strain and dose is shown, >3400 individuals analysed per experiment; error 

bars=SD, *=p<0.05, **=p<0.01, ***=p<0.001, two-tailed T-Test, compared to csb-1). (F) 

L4 larvae were irradiated and were allowed to lay eggs for 5 hours starting at 24h after 

treatment (F; upper panel; average of n=3 independent experiments per strain and dose, 3 

individuals analysed per experiment, error bars=SD). Viable offspring was counted (F; 

lower panel) 48h post egg-laying (average of n=3 independent experiments per strain and 

dose shown, offspring of 3 parental individuals analysed per experiment; error bars=SD).
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Figure 4. Distinct and similar responses to persistent DNA damage and starvation
Synchronized L1 worms were fed for 4 hours or left under starvation. Starvation responses 

were previously shown to be quickly reverted upon feeding24. Fed wild type worms were 

treated with 60 mJ/cm2 UV and compared to non-UV treated controls. (A) xy blot of fold 

changes of significantly differentially expressed genes in UV treated and starved wt worms; 

linear regression is depicted in red. (B) Venn diagram showing overlap between 

significantly differentially expressed genes in response to starvation and UV treatment. (C) 

Functional clustering of genes that were up- or downregulated upon UV treatment (p<0.01, 

FC>±1.5) or starvation (p<0.01, FC>±2) reveals significantly overrepresented biological 

processes. (D) Synchronized L1 larvae were either fed for four hours or left under starvation 
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and exposed to UV treatment. Upon UV treatment larvae were provided with food and 

developmental stages were assessed 48h post UV irradiation (average of n=3 independent 

experiments is shown, >796 individuals analysed per experiment; error bars=SD, 

***=p<0.001, two-tailed T-Test).
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Figure 5. The GATA transcription factor EGL-27 promotes developmental growth upon DNA 
damage
(A) Specifically 3 GATA motifs are significantly enriched in promoters of DAF-16 

dependently induced genes in response to DNA damage. RSAT analysis identified three 

motifs that were significantly enriched in 1000 bp upstream sequences of 449 (RSAT 

eligible out of 514 total; see methods) genes that were significantly induced in daf-2 mutants 

(FC>1.5; p<0.01) upon UV and more strongly induced upon DNA damage in daf-2 vs. 

daf-2;daf-16, daf-2 vs. wt, and wt vs. daf-16. Motif comparisons with transcription factors 

databases identified significant match to GATA motifs. (B) egl-27(n170) and 

egl-27(ok1670) mutants are hypersensitive to larval arrest following DNA damage and 

rescued by transgenic egl-27::GFP expression. Synchronized L1 larvae were exposed to UV 

and larval stages assessed 48h post treatment (average of n=3 independent experiments per 

strain and dose is shown, >900 individuals analysed per experiment; error bars=SD 

*=p<0.05, **=p<0.01, ***=p<0.001, two-tailed T-Test).
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Figure 6. The GATA transcription factor EGL-27 co-regulates DAF-16 target genes and acts 
downstream of DAF-2 to promote developmental growth in response to DNA damage
(A) egl-27 is required for DAF-16 target gene induction. Genes that were defined as 

DAF-16 dependently induced (see Figure legend 5A) were analysed by qPCR 6h post UV in 

wt, egl-27(n170), and egl-27(ok1670) mutants (average of n=3 independent experiments). 

(B) RNAi knockdown of “DNA damage effector downstream of DAF-16 and EGL-27” 

dde-1 and dde-2 by two independent RNAi constructs (RNAi #152, RNAi #253) and a 

genetic mutation in dde-3(gk696370) lead to enhanced UV sensitivity (dde-3 mutant was 
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outcrossed prior to analysis; average of n=3 independent experiments per strain and dose is 

shown, >211 individuals analysed per experiment; error bars=SD; *=p<0.05, **=p<0.01, 

***=p<0.001, two-tailed T-Test, compared to GFP RNAi or wt, respectively). (C) wt, 

daf-16, egl-27 and daf-16;egl-27 upon UV treatment were analysed 48h post UV (average of 

n=3 independent experiments per strain and dose is shown, >25 individuals analysed per 

experiment analysed; error bars=SD; *=p<0.05, **=p<0.01, ***=p<0.001, two-tailed T-Test 

compared to wt). (D) egl-27 suppresses UV tolerance of daf-2. Synchronized L1 larvae were 

UV treated and developmental stages assessed 48h post treatment (average of n=3 

independent experiments per strain and dose is shown, >1738 individuals analysed per 

experiment; error bars=SD, *=p<0.05, **=p<0.01, ***=p<0.001, two-tailed T-Test 

compared to wt).
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Figure 7. EGL-27 interacts with DAF-16 upon DNA damage
(A) DAF-16::GFP upon UV treatment co-localizes with EGL-27::GFP in the nucleus of 

intestinal cells. L1 synchronized larvae were fed and UV-treated with 150 mJ/cm2 and kept 

at 20°C, images were taken 6hs after. Upper panels show DAF-16::GFP worms, left panel 

non-UV treated and right panel a completely nuclear DAF-16::GFP UV-irradiated worm. 

Lower panels show EGL-27::GFP worms, left panel non-UV treated and right panel UV-

irradiated (representative images shown; experiment repeated at least 3 times). (B) EGL-27 

interacts with DAF-16 (left panel). HEK293T cells were transiently transfected and after 

immunoprecipitation (IP) with FLAG (M2) beads, Western blot analysis revealed that 

DAF-16.V5 coprecipitated with EGL-27.FLAG but not with a control protein (EPS) 

(representative result of 4 independent experiments). Interaction with DAF-16 is mediated 

by the C-terminal part of EGL-27 (right panel). HEK293T cells were transiently transfected 

and after IP with FLAG (M2) beads, Western blot analysis revealed that DAF-16.V5 co-

precipitated with the EGL-27 C-terminus but not with an N-terminal truncation or a control 

protein (EPS) (representative result of 4 independent experiments). (C) Model for the 

differential consequences of DAF-16 activation upon persistent DNA damage and upon 

starvation. In response to persistent DNA lesions in somatic tissues DAF-16 activation 
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results in induction of somatic growth genes, which are repressed by DAF-16 upon 

starvation, through recognition of DAE promoter elements through the GATA transcription 

factor EGL-27. In both cases stress response genes are induced through recognition of DBE 

motifs leading to enhanced tissue maintenance.
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Table 1
Promoter analysis reveals overrepresentation of distinct DAF-16 response elements 
among UV and starvation response genes

All genes that neither responded to UV nor starvation were used as controls. Analysis was restricted to 

annotated non-redundant genes (Suppl. Table 8). To validate the approach we used a published dataset of 

DAF-16 regulated genes in adult worms26 (bottom two rows).

GENE RESPONSE GROUP DBE DAF-16 Binding Element DAE DAF-16 Associated Element

TGTTTAC p-value CTTATCA p-value

↑ UV (n=497) 17.3 2.4E-03 36.6 1.6E-18

↓ UV (n=595) 14.0 2.8E-01 22.6 3.6E-02

↑ UV (non-overlapped) (n=156) 16.0 1.8E-01 42.9 3.4E-11

↓ UV (non-overlapped) (n=270) 15.2 1.9E-01 24.4 2.5E-02

↑ STARVATION (n=1531) 18.6 1.3E-10 22.8 1.0E-03

↓ STARVATION (n=1385) 12.4 1.0E+00 23.0 8.3E-04

↑ STARVATION (non-overlapped) (n=1338) 18.0 3.4E-08 22.4 4.9E-03

↓ STARVATION (non-overlapped) (n=881) 12.5 1.0E+00 22.2 2.3E-02

Overlapped (n=697) 15.2 4.0E-02 24.7 8.7E-04

UV↑ ST↑ (n=163) 25.8 4.3E-06 25.8 4.6E-02

UV↑ ST↓ (n=98) 10.2 6.4E-01 43.9 3.4E-08

UV↓ ST↑ (n=30) 6.7 5.8E-01 23.3 3.6E-01

UV↓ ST↓ (n=406) 12.8 8.2E-01 19.7 4.6E-01

Control (n=13298) 12.5 19.4

daf-2(−) induced (n=231) 24.2 1.15E-06 38.5 2.1E-11

daf-2(−) repressed (n=220) 15.5 6.25E-02 38.6 4.9E-11
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