

Edinburgh Research Explorer

Application-driven Bandwidth Guarantees in Datacenters

Citation for published version:
Lee, J, Turner, Y, Lee, M, Popa, L, Banerjee, S, Kang, J-M & Sharma, P 2014, Application-driven
Bandwidth Guarantees in Datacenters. in Proceedings of the 2014 ACM Conference on SIGCOMM. ACM,
New York, NY, USA, pp. 467-478. https://doi.org/10.1145/2619239.2626326

Digital Object Identifier (DOI):
10.1145/2619239.2626326

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proceedings of the 2014 ACM Conference on SIGCOMM

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 06. May. 2024

https://doi.org/10.1145/2619239.2626326
https://doi.org/10.1145/2619239.2626326
https://www.research.ed.ac.uk/en/publications/f5851031-be87-4aa8-b5be-ee8bea63c5ef

Application-Driven Bandwidth Guarantees in Datacenters

Jeongkeun Lee Yoshio Turner Myungjin Lee* Lucian Popa+ Sujata Banerjee

Joon-Myung Kang Puneet Sharma

HP Labs, *University of Edinburgh, +Databricks

ABSTRACT

Providing bandwidth guarantees to specific applications is be-
coming increasingly important as applications compete for shared
cloud network resources. We present CloudMirror, a solution that
provides bandwidth guarantees to cloud applications based on a
new network abstraction and workload placement algorithm. An
effective network abstraction would enable applications to easily
and accurately specify their requirements, while simultaneously
enabling the infrastructure to provision resources efficiently
for deployed applications. Prior research has approached the
bandwidth guarantee specification by using abstractions that
resemble physical network topologies. We present a contrasting
approach of deriving a network abstraction based on application
communication structure, called Tenant Application Graph or

TAG. CloudMirror also incorporates a new workload place-
ment algorithm that efficiently meets bandwidth requirements
specified by TAGs while factoring in high availability consider-
ations. Extensive simulations using real application traces and
datacenter topologies show that CloudMirror can handle 40%
more bandwidth demand than the state of the art (e.g., the Ok-
topus system), while improving high availability from 20% to 70%.

Categories and Subject Descriptors: C.2.3 [Computer-
Communication Networks]: Network Operations
Keywords: Datacenter; Bandwidth; Availability; Cloud; Virtual
Network; Application

1. INTRODUCTION
A growing trend is the consolidation of computing infrastructure

and applications into large datacenters, including virtualized cloud
environments. Many of these emerging cloud applications are com-
plex combinations of multiple services and require predictable per-
formance, high availability, and high intra-datacenter bandwidth;
e.g., Facebook “experiences 1000 times more traffic inside its data
centers than it sends to and receives from outside users”, and the
internal traffic has increased much faster than Internet-facing band-
width [1]. Meanwhile, many datacenter networks are oversub-
scribed, as high as 40:1 in some Facebook datacenters [2], causing
the intra-datacenter traffic to contend for core bandwidth. Hence,
providing bandwidth guarantees to specific applications is highly
desirable, in order to preserve their response-time predictability
when they compete for bandwidth with other applications.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGCOMM’14, August 17–22, 2014, Chicago, IL, USA.

Copyright 2014 ACM 978-1-4503-2836-4/14/08 ...$15.00.

http://dx.doi.org/10.1145/2619239.2626326.

Today, it is easy to share and virtualize compute and storage
resources effectively. In contrast, implementing network virtual-
ization with bandwidth guarantees on a shared network infrastruc-
ture is an inherently complex and challenging task [3–7, 18, 45],
which requires three key technologies: 1) An easy-to-use network

abstraction model for tenants to accurately express their bandwidth
requirements; 2) A workload placement algorithm that efficiently
allocates datacenter resources to meet the tenant requests, and 3) A
scalable runtime mechanism to enforce the bandwidth guarantees

and utilize unused bandwidth efficiently. In this paper, we propose
CloudMirror, a solution that combines a new network abstraction
with a new workload placement algorithm, while leveraging an ex-
isting mechanism [7] for enforcing guarantees.

An effective network abstraction model serves two purposes.
One purpose is for tenants to specify their network requirements
in a simple and intuitive yet accurate manner. The other purpose
is to facilitate easy translation of these requirements to an efficient
deployment on the low level infrastructure components. Most prior
work, e.g., [4–9], has designed abstractions for specifying band-
width guarantees that can be expressed as idealized physical net-
work models, e.g., non-blocking switch (hose) [8] or two-level tree
(hierarchical hose) [4, 6]. This is a natural approach since, for ex-
ample, in cloud computing, tenants want to have the illusion of run-
ning their applications on dedicated hardware; with such a model,
tenants would have the illusion of running their application over a
dedicated physical network.

In contrast to these prior approaches, our approach is to derive

the network abstraction model based on application communica-

tion structure, and not a given underlying physical network topol-

ogy. We show that not only is such an abstraction easier to under-
stand and reason about by tenants, but it can also be significantly
more efficient in reserving bandwidth than the commonly proposed
abstractions, such as the hose model. The intuition for its efficiency
is that our abstraction accurately captures the bandwidth require-
ments of an application rather than imposing a pre-defined and per-
haps a poor fit network abstraction (e.g., hose) for applications to
map their requirements to.

To instantiate the bandwidth guarantees, the high-level abstrac-
tion must be mapped onto the low level physical topology via a job
(VM) placement mechanism. We describe a new algorithm that ex-
ploits our refined network abstraction to more efficiently utilize dat-
acenter resources. Efficient bandwidth utilization is often achieved
by colocating application VMs in a single server or rack, which
hurts availability; our placement algorithm provides high availabil-
ity (HA) while efficiently guaranteeing bandwidth.

Finally, a runtime mechanism must enforce the virtual network
abstraction for any traffic matrix in the datacenter. Our network ab-
straction can be easily supported through minor changes to existing
frameworks for enforcing hose guarantees, such as those proposed
in [4, 5, 7].

In this paper, we make the following contributions, building on
our prior work [10].

1. A new tenant network abstraction model – Tenant Applica-

tion Graphs or TAGs (§3). Deriving application structures
from empirical datasets, we show that TAGs can be easier to
use and more efficient in reserving bandwidth than the exist-
ing abstractions. We also develop a methodology to generate
TAG models automatically from raw communication traces.

2. A new fast VM placement algorithm that resource-efficiently
maps TAGs onto a tree-shaped physical network, satisfy-
ing the bandwidth requirements and also any specified high
availability (HA) goals (§4). Bandwidth efficiency and HA
can be conflicting goals [11]. We mathematically derive
conditions that determine when colocating VMs would save
bandwidth resource. When the conditions are violated, i.e.,
no bandwidth savings from colocation, our VM placement
adopts anti-colocation to improve HA and to achieve bal-
anced utilization of bandwidth with other types of resources.

3. Demonstration of the benefits of the TAG model and of
our placement algorithm through extensive simulations using
real application traces and datacenter topologies (§5). With
a simple prototype, we show that the TAG model can be eas-
ily implemented on top of an existing mechanism [7] that
enforces the hose model.

We next describe the current state of the art in providing band-
width guarantees in cloud datacenter networks. Through examples
of real applications, we show how existing network abstractions fall
short and thus motivate the need for our new TAG model.

2. BACKGROUND AND RELATED WORK
Prior cloud networking research has primarily focused on sup-

porting network requirements for Hadoop and Pregel like batch
processing applications. Obviously, many applications are not sim-
ilar in structure to Hadoop or Pregel exhibiting simple all-to-all
communication patterns. In this paper we focus on other applica-
tion types such as interactive applications (e.g., web and OLTP)
hosted in today’s cloud environments [12–14]. These applications
have complex and tiered structures, and are not well represented
using the prior models (§2.2). Moreover, unlike batch applications
that can tolerate network bottlenecks, interactive applications have

very stringent performance requirements, and demand predictable

throughput and tail latencies [13]. Amazon has reported incurring
e-commerce sales loss of 1% for every 100 msec increase in re-
sponse latency [15]. Parley [16] demonstrated that adequate band-
width is critical for applications to maintain low tail latencies. In
our tests with Wikipedia benchmark [17], we also observed a sharp
increase in web response time (from 250 to 900 msec) when the
network bandwidth between the web and database VMs was throt-
tled, only for 10 seconds, to 10% below bottleneck-free capacity.1

This demonstrates the severe impact of insufficient bandwidth on
web applications and a strong need for guaranteeing bandwidth for
interactive applications.

Our private conversations with cloud users/operators as well
as various benchmark reports confirm that non-batch, interactive

workloads often have similar or higher bandwidth requirements

relative to more CPU-bound batch workloads. Fig. 1(a) plots
the ratio of aggregate application throughput (Mbps) to aggregate
CPU consumption (GHz) for various cloud workloads.2 From

1In contrast, [18] observed only marginal increase (<5%) of completion
times of various batch jobs when their per-VM bandwidths were capped at
33% below bottleneck-free capacity.
2CPU consumption: # of vCPUs × core speed × CPU busy %. BW/CPU
likely understate BW usage; i) reported CPU% ranges [50,100] and ii) we

1

10

100

1000

10000

B
a

n
d

w
id

th
 :

 C
P

U
 r

a
ti

o

(M
b

p
s/

G
H

z)

(a) Workloads

demand range

demand

1

10

100

1000

10000

(b) Datacenters

server

ToR

aggregation

Figure 1: Bandwidth-to-CPU ratio for 10 workloads and 4 dat-

acenters. Batch jobs in red; interactive applications in blue.

Fig. 1(a), we observe that the interactive workloads (Redis to Cas-
sandra [19–24]) have similar or higher ratios of network-to-CPU
compared to the batch jobs (Hadoop and Hive [18]).

Meanwhile, today’s datacenters (DCs) are often oversubscribed
and lack enough bandwidth to avoid contention between applica-
tions. Fig. 1(b) plots the provisioned ratio of bandwidth-to-CPU
resources of four cloud datacenter environments at different tree
topology levels.3 We consider two production cloud DCs, Face-
book DC [2,25] and the synthetic DC topology simulated in [4,18].
Comparing Figs. 1(a) and 1(b), we find that most datacenters are
well provisioned to meet network demands of the workloads at the
server level, but not at the ToR or aggregation level due to net-
work oversubscription. Despite a recent trend toward less oversub-
scription, provisioning full-bisection bandwidth remains costly for
large-scale datacenters. Bandwidth contention on oversubscribed
core links is worsened by the need to spread VMs of an appli-
cation across multiple servers and racks to increase robustness to
single-point-of-failure. Even for non-oversubscribed networks, an
efficient tenant network abstraction coupled with bandwidth guar-
antees benefits applications and operators, because extra band-
width can facilitate lossless/fast network updates [26] and fault-
resiliency [27].

While some cloud providers start to guarantee bandwidth [28,
29], they do so at specific fixed bandwidth-to-vCPU ratios, which
limits flexibility in serving applications with diverse bandwidth-to-
CPU demand ratios (Fig 1(a)). Their models, typically simplified
from the hose model, also fail to capture bandwidth demands in an
accurate or resource-efficient way, as we describe next.

2.1 Example Application Structure
Let us consider two illustrative applications to highlight the

shortcomings of prior models for abstracting and provisioning net-
work bandwidth.

Many user-facing applications and sophisticated enterprise ap-
plications are composed of multiple tiers with complex traffic in-
teractions [11,12,14]. Fig. 2(a) shows a simple example of a three-
tiered web application with a frontend web tier, a business logic tier,
and a backend database tier. Each tier contains multiple VMs and
the edges of the communication graph are annotated with the band-
width requirements between tiers. The second example is a real-

treat it as 100% when not reported to make sure we do not over estimate
the ratio. Redis [19] and VoltDB [20] benchmarks report transactions-per-
second; we converted them to ranges of network throughput by assuming
data size ranges [100,1500] bytes.
3At the server level, we compute the ratio of the server’s NIC bandwidth
and the aggregate server CPU cycles. At the Top-of-Rack (ToR) and aggre-
gate switch levels, we compute the same ratio as the uplink bandwidth nor-
malized by the total CPU cycles of servers under the ToR/aggregate switch.

Web Logic DB
B1 B2

B3

(a) 3-tier web application

B2+B3

Web

B1

… … …

Logic DB

B1+B2

(b) Hose modeling

L3

Web

L1

Logic DB

L2

(c) Physical deployment example

Figure 2: Three tiered application example deployed using the hose model.

Spout1

B

B
Bolt2 Bolt3

Bolt1B

(a) Storm example

Spout1

…

Bolt2 Bolt3

… …

2B B B

S 2B S B S B

Bolt1

…

B

S B

(b) VOC Modeling

L2

Spout1 + Bolt1

L1

Bolt2 + Bolt3

(c) Physical deployment example

Figure 3: Storm [30] application example deployed using the VOC model.

time data analytics application shown in Fig. 3(a), implemented
using Storm [30]. Storm is a popular platform for online machine
learning, continuous computation on data streams, etc. Storm ap-
plications have two types of components, implemented using Java
threads: “spouts”, which are similar to mappers in MapReduce, and
“bolts”, which represent both a mapper and a reducer.

2.2 Shortcomings of Prior Models
The most commonly used abstractions are variants of the hose

model and the pipe model. These are often a poor fit for modeling
many applications, as we describe next.

• Hose Model: In the hose model abstraction [4,7,8], all VMs are
connected to a central (virtual) switch by a dedicated link (hose)
having a minimum bandwidth guarantee. We consider a gener-
alized hose model [8] where each VM can have a heterogeneous
bandwidth guarantee (unlike [4,28]) to better match application re-
quirements. While the hose model well describes batch applica-
tions with homogeneous all-to-all communication patterns [18], it
does not accurately express the requirements for applications com-
posed of multiple tiers with complex traffic interactions. It can also
be severely inefficient in terms of resource utilization. Consider
the example of Fig. 2(a) and assume that B1 represents the typical
bandwidth demand between one VM of the web tier and one VM
of the business logic tier. B2 is the bandwidth demand between one
VM of the business logic tier and one VM of the database tier, while
B3 is the bandwidth demand between two database VMs represent-
ing traffic for maintaining database consistency. For simplicity, we
assume an equal number of VMs in each tier and equal bandwidth
requirements in both directions of each edge while ignoring band-
width requirements for Internet access.

Fig. 2(b) presents the hose model guarantees for the example in
Fig. 2(a). The fundamental problem is that the hose model aggre-

gates the demands for multiple different communications – e.g.,
logic-DB (B2) and DB-DB (B3) for a database VM – into one hose.
This prevents the cloud operator from accurately computing the re-
quired bandwidth on physical links and leads to inefficient band-
width consumption. Suppose that each application tier is deployed
on a separate subtree of the physical network as shown in Fig. 2(c).
To satisfy the hose model representation, the bandwidth that must
be reserved on link L3 for each database VM would be B2+B3.4 The

4We assume here that B2 +B3 < B1 +B1 +B2, and so the minimum that
needs to be reserved on L3 is B2+B3 rather than 2B1+B2.

hose model hides the fact that B3 is intended for the communication
within the DB tier rather than for communication with other tiers.
The tenant does not actually need the full guarantee of (B2+B3)
indicated by the hose model on link L3, thus wasting B3 on L3.

In addition to being inefficient, the hose model also fails to guar-

antee the required bandwidth in case of congestion. In the 3-tier
example of Fig. 4, simplified from Fig. 2(a), suppose B1 = 500,
B2 = 100 (in Mbps) and that all the tiers are placed under the
same switch with each VM in a separate server. The hose guar-
antee for the business logic VM would be the sum of the require-
ments 500+ 100 = 600 Mbps. Suppose the bottleneck bandwidth
towards the business logic VM is also 600 Mbps. If the business
logic VM momentarily receives an aggregate of 500 Mbps traffic
from web VMs and also another 500 Mbps from DB VMs, the
total 1000 Mbps traffic exceeds the available bandwidth and the
hose guarantee (both 600 Mbps). Because the hose model aggre-
gates the requirements for two different communications (from web
and DB), the model is agnostic to the actual guarantees that the
business logic VM needs for different sources. Existing solutions
would partition the 600 Mbps hose guarantee by TCP-like max-min
fairness [7] and yield 300:300 (Mbps), assuming equal number of
sending VMs from each tier, but fail to provide the 500 Mbps guar-
antee for the communication with the web tier.

• Virtual Oversubscribed Cluster (VOC): This model proposed
in [4, 6] enhances the hose model by organizing VMs into clusters,
each with a hose model guarantee. Clusters are then connected to-
gether with per-cluster hoses with capacity of B · S/O, where B is
the guarantee of each VM inside the cluster, S is the size of the
cluster (number of VMs) and O is the oversubscription factor [4].
Again, to better suit applications, we consider a generalized VOC
model that accommodates different guarantees, sizes and oversub-
scription factors for each cluster, unlike the more constrained ho-
mogeneous model in [4].

The VOC model is also not well suited to represent most applica-
tions. Consider the Storm example in Fig. 3(a), where for simplic-
ity we assume that each component has the same number of VMs
S, and the outgoing bandwidth of each VM to a communicating
component is B. Even for this simple example it is non-trivial to
derive a good VOC model representation from many possible rep-
resentations. Fig. 3(b) presents one possible mapping where each
application component is represented as a VOC cluster. The re-
sulting model is a relaxed VOC model with no oversubscription of

Logic DB
100

DB

W W D D

Web

… …
500 500

L

Logic

Web
500

Figure 4: Hose fails to separately guarantee traffic to Logic

from Web and DB in case of congestion.

the clusters. This model also fails to accurately capture the appli-
cation’s communication pattern as the Storm components do not
communicate internally using that bandwidth.

The goal behind the VOC model is to isolate highly connected
application tiers and place them in better connected topology sub-
trees. Having clusters that are not oversubscribed and that do not
communicate among their VMs defeats the purpose of the VOC
model, and, in fact, has an adverse effect. The placement algorithm
may place the VMs of each Storm component in separate subtrees
in an attempt to localize intra-component traffic, as Oktopus [4]
does. This wastes bandwidth as the Storm threads communicate
only between components.

Fig. 3(c) shows a potential deployment where two Storm compo-
nents are placed in one branch of the physical tree while the other
two are in a different branch. In this case, the bandwidth reservation
on links L1 and L2 should be S ·B given the communication pattern
(since only “Spout1” communicates with “Bolt2” between the two
branches). However, VOC will reserve twice this bandwidth since
VOC is agnostic to actual inter-component communication pattern
and requires min(3S ·B,2S ·B) = 2S ·B.

In essence, the VOC model also aggregates bandwidth require-
ments towards different components into a single hose and a single
oversubscribed hose. This aggregation prevents: 1) determining the
actual inter-component bandwidth needed at physical links, and 2)
guaranteeing the required bandwidth in case of congestion (similar
to Fig. 4). Recently, Hadrian [6] extended VOC by enabling each
component X to list the components that X communicates with,
e.g., Spout1: {Bolt1, Bolt2}, but this still aggregates requirements
towards the listed components into a single oversubscribed hose
and does not spell out the actual inter-component patterns.5

To see the significance of inter-component traffic, we analyzed
the component-to-component traffic matrix from the bing.com

datacenter, provided by the authors of [11]. In this example, we
found that most application components have high inter-component

communications. The inter-component traffic fraction of each com-
ponent averages 91% over 500+ components. The total inter-
component traffic constituted 65% of the entire datacenter traf-
fic.Excluding traffic from management and common services, the
total inter-component traffic becomes 37% of the entire non-
management traffic; VOC model is still ineffective since the per-

component ratio of inter-component traffic is still high at 85% on
average.

Gatekeeper [9] tried to better model inter-component guarantees
by allowing the composition of multiple hoses for each VM. In the
example of Fig. 4, the business logic VM would be connected to
two hoses: one for 500 Mbps guarantee towards the web tier and
the other for 100 Mbps towards the DB tier. However, the hoses un-
necessarily include intra-component traffic, wasting physical band-
width to provide the unnecessary guarantees or failing to meet the
intended guarantee: e.g., DB-DB traffic can hog the bandwidth in-
tended for logic-DB traffic.

• Pipe Model: Another alternative is to specify bandwidth guar-
antees between pairs of VMs [3, 31, 32] as virtual pipes. While

5In addition, Hadrian’s extension to VOC is meant to model inter-tenant
requirements instead of inter-component requirements.

this model can precisely capture the application’s traffic needs, it is
too rigid and it lacks statistical multiplexing. Typically, the VMs
belonging to different tiers that exchange data are selected by run-
time load balancers, which do not guarantee perfectly uniform load
distribution to every destination. Thus, load to each destination can
vary over time even when the aggregate load is constant. Inability
to update each pipe rapidly to tightly track their time-varying de-
mand likely requires worst case reservations of peak load for each
pipe [8]. For instance, the pipe model might force 2X overprovi-
sioning based on a benchmark report for Amazon’s Elastic Load
Balancer that shows that the sum of the peak loads to each desti-
nation is at least double the peak aggregate traffic [33]. The pipe
model is also tedious to use as the tenants can have hundreds and
even thousands of VMs, leading to tens of thousands of pairwise
guarantees, hurting scalability in placing tenant VMs (§5).

In summary, as opposed to the hose model and its variants that
aggregate (or reduce) various communication patterns into a single
hose guarantee, we need a new abstraction that spells out the actual
communication pattern between pairs of components, similar to the
pipe model, but without suffering from being tedious and slow like
the pipe model.

3. TENANT APPLICATION GRAPH (TAG)
We propose the Tenant Application Graph (TAG), a new model

that tenants can use to describe bandwidth requirements for appli-
cations. Unlike hose and VOC abstractions, which present models
resembling physical networks, the TAG abstraction aims to model
the actual communication patterns of applications. The TAG model
leverages the tenant’s knowledge of an application’s structure to
yield a concise yet flexible representation of the application’s com-
munication pattern.

A TAG model is a graph, where each vertex represents an appli-

cation component (or tier, we use the two terms interchangeably to
indicate the set of VMs performing the same function). Since most
applications are conceptually composed of multiple tiers [12], a
tenant can simply map each tier onto a TAG vertex. For example,
for the application in Fig. 2(a) the tenant would identify three tiers:
web, business logic, and database. One or more special compo-
nents are used to model nodes external to the TAG tiers, e.g., the
Internet, a storage service, another tenant, etc. Each component
u has a ‘size’ attribute, Nu, denoting the number of VMs in that
component, which is optional for the special components.

Tenants request bandwidth guarantees between tiers by plac-
ing directed edges between the corresponding vertices in the TAG
model. Each directed edge e = (u,v) from tier u to tier v is labeled
with an ordered pair < Se,Re > that represents per-VM bandwidth
guarantees. Specifically, each VM in tier u is guaranteed band-
width Se for sending traffic to VMs in tier v, and each VM in tier v

is guaranteed bandwidth Re to receive traffic from VMs in tier u.
Having two values (sending and receiving) instead of a single

bandwidth guarantee for each edge is useful when the sizes of the
two tiers are different. If tiers u and v have sizes Nu and Nv, re-
spectively, then the total bandwidth that TAG guarantees for traffic
sent from tier u to tier v is Bu→v = min(Se ·N

u,Re ·N
v) because the

total outgoing traffic from tier u cannot exceed the total incoming
traffic to tier v, and vice versa.

To model communication among VMs within tier u, the TAG
model allows a self-loop edge of the form e = (u,u) that is labeled
with a single bandwidth guarantee SRe, which represents both the
sending and the receiving guarantee for each individual VM in that
tier (or vertex). A self-loop edge is equivalent to a conventional
hose model; each VM in tier u can be considered to be attached to

C1 C2
B1 B2

B2

in

B2

C1

B1

… …

C2

B2
in

T1 2 S2

Virtual Trunk Virtual Switch

Figure 5: TAG model (a) example, (b) explained.

a virtual switch via a transmission hose of rate SRe and a receive
hose of rate SRe.

Fig. 5(a) shows a TAG model for a simple example application
with two tiers C1 and C2. In this example, a directed edge from C1
to C2 is labeled < B1,B2 >. Thus, each VM in C1 is guaranteed to
be able to send at rate B1 to the set of VMs in C2. Similarly, each
VM in C2 is guaranteed to be able to receive at rate B2 from the set
of VMs in C1.

To better understand the TAG model, Fig. 5(b) shows an alterna-
tive way of visualizing the guarantees expressed in Fig. 5(a). The
directional guarantees between C1 and C2 is represented by the
virtual trunk T1→2. Each VM in C1 is connected to T1→2 by a
dedicated directional link of capacity B1; and T1→2 is connected
through a directional link of capacity B2 to each VM in C2. Thus,
a virtual trunk can be seen as a directional hose model between
the VMs of the two communicating tiers; T1→2 captures one-to-
many/many-to-one send/receive bandwidth for each VM in C1/C2.
This differs from two alternatives in modeling inter-tier guaran-
tees: 1) guaranteeing the aggregate bandwidth between C1 and C2
through a tier-to-tier pipe, and 2) provisioning every send-receive
VM pair with a pipe [31]. The alternatives lack the efficiency and
flexibility benefits of using TAG that we will describe soon.

The TAG model example in Fig. 5(a) has a self-loop edge for
tier C2, describing the bandwidth guarantees for traffic where both
source and destination are in C2, e.g., the traffic between database
servers in Fig. 2(a). A self-loop edge is equivalent to a hose model
between the VMs of that tier. For example, in Fig. 5(b), each VM
in C2 is connected through a bidirectional link of capacity Bin

2 to a
virtual switch S2.

Note that hose and pipe models are special cases of TAG: a TAG
with one component and a self-loop is the hose model, and a TAG
with exactly one VM per component and no self-loops is the pipe
model.

Benefits: Because the TAG abstraction mirrors real application
structure, it is intuitive, descriptive and easy to use. Mirroring ap-
plication structure enables the TAG model to be efficient, describing
the bandwidth needs of complex structured applications accurately
unlike hose or VOC models that often lead to over-allocation of
bandwidth (§2.2).

Furthermore, the TAG model is flexible. Like the hose model,
TAG presents per-VM guarantees, enabling it to take advantage of
statistical multiplexing by specifying a guarantee based on the peak
of the sum of VM-to-VM demands instead of the (typically larger)
sum of peak demands needed by the pipe model. TAG is also flex-
ible to dynamic re-sizing of tiers (known as “auto-scaling” [34]);
per-VM bandwidth guarantees Se and Re typically do not need
to change when tier sizes are changed by scaling. For example,
Netflix’s benchmark on AWS exhibited stable per-VM bandwidth
while scaling up the number of VMs from 48 to 288 [24]. This
is unlike a VM-to-VM pipe model [31, 32] where per-pipe band-
width guarantees need to be recomputed whenever dynamic load-
balancing or auto-scaling takes place, or else bandwidth must be
heavily overprovisioned. This is also unlike guaranteeing an ag-

gregate total bandwidth between components, which would have
to change when components scale up/down.

Finally, grouping VMs by component in the TAG model enables
tenants to specify a much smaller number of values than for the
pipe model.6

Producing TAG Models: Users who understand the structure
of their distributed applications can specify a matching TAG model
and tune the component bandwidth guarantees to their needs. Al-
ternatively, cloud orchestration systems like OpenStack Heat and
AWS CloudFormation could be extended to generate TAG models
automatically along with their current ability to automate applica-
tion deployment and control application scaling. These systems use
application templates, possibly provided as a library for users, that
explicitly describe application components and their configuration
and could be extended with bandwidth guarantee information for
each component.

For users who do not know the structure and bandwidth demands
of their applications, the provider or the user can try to infer an ap-
propriate TAG model. We are exploring an approach that clusters
VMs that exhibit similarity in their communication pattern, e.g.,
VMs that share a common set of destinations. For each VM, a fea-
ture vector is constructed based currently only on the VM-to-VM
bandwidth weighted traffic matrix. The feature vector includes the
VM’s row and column entries, i.e., both outgoing and incoming
traffic, and similarity is computed as the angular distance between
vectors. A projection graph is formed containing one vertex for
each VM and edges with weight set to the similarity between the
VMs for the two incident vertices. Known algorithms [35, 36] that
maximize graph modularity are applied to the projection graph to
identify clusters of VMs with high edge weight within the clus-
ter, indicating high similarity among the VMs. The TAG model is
formed by treating each cluster as a component and using the traffic
matrix bandwidths to identify all hose and trunk guarantees. When
identifying these guarantees, we use a time series of traffic matrices
to factor in savings from statistical multiplexing.

We applied this approach to the bing.com dataset to determine
how well it could infer the known component structure given only
the VM-to-VM traffic matrix. Using the metric of adjusted mu-
tual information ranging from 0 (independent) to 1 (identical) clus-
tering [37], we obtained on average 0.54 over 80 applications us-
ing Louvain clustering [35], indicating substantial commonality be-
tween the ground truth clustering and the inferred clusters, but also
the need for further improvement.

Component-Level Graph Models: Graph models have been
proposed to describe generic topologies between service compo-
nents and desirable communication policies (security, priority, for-
warding) between components, e.g., in Service-Oriented Architec-
ture [38], Group-based Policy [31, 39] and Network Functions Vir-
tualisation [40]. Our TAG model can be viewed as extending these
models by explicitly representing bandwidth guarantees between
communicating components.

4. DEPLOYING TAG
TAGs capture tenant application structures rather than physical

network topologies. We present a VM placement algorithm that
bridges the gap between the high level TAG to the low level phys-
ical infrastructure. As most cloud datacenter topologies are tree
structures, we aim to efficiently deploy TAG instances on tree-

6To be even simpler for users, two edges in opposite directions between
two tiers can be combined into a single undirected edge when the incom-
ing/outgoing values for the tiers are the same (i.e., S(u,v) = R(v,u) and
R(u,v) = S(v,u)).

shaped physical topologies. For simplicity, we describe our al-
gorithm assuming a single-rooted tree, however our algorithm can
similarly be applied to a multi-rooted tree.

Existing network-aware approaches have focused on reduc-
ing bandwidth usage by localizing network traffic into a small
region/sub-tree: thus colocating VMs that incur high network traf-
fic between them [4, 11, 32]. In this section, we first derive the
key conditions that enable bandwidth reduction through colocation.
Next, we show that bandwidth reduction through colocation is of-
ten infeasible or undesirable due to high availability (HA) and other
requirements. Finally, we present our VM placement algorithm that
uses the bandwidth reduction conditions to efficiently deploy TAG
models and also to improve high availability.

4.1 Bandwidth Required by TAG
To deploy an application that is described by a TAG model, the

cloud provider must allocate sufficient bandwidth on physical links
to support the bandwidth guarantees specified in the TAG model.
For a given TAG model, we calculate the amount of bandwidth
that must be allocated on the uplink of a particular subtree of a
datacenter tree topology, when the subtree contains a subset of the
TAG VMs. The subtree could be at any level of the topology, e.g.,
server, ToR switch, or aggregation switch; and the uplink connects
the subtree to the rest of the datacenter topology.

Let X denote the set of TAG components placed in the subtree
of interest, and X denote the set of all components that are outside
this subtree. A component can be a member of both sets if it has
some VMs in the subtree and the other VMs outside the subtree.
Let Nt

X represent the number of VMs of component t that reside in

the subtree, and let Nt ′

X
represent the number of VMs of component

t ′ that reside outside the subtree.
For the TAG model, the bandwidth CX ,out that must be allocated

for outgoing transmission from X to X is given by summing up the
requirement for each pair of components where the first component
(t) has at least one VM in the subtree and the second component
(t ′) has at least one VM outside the subtree. Define Bt→t ′

snd as the
bandwidth needed for each VM in component t for transmission
to component t ′, and Bt→t ′

rcv as the bandwidth needed for each VM
in component t ′ for reception from component t. These values are
obtained directly from the TAG model. Then, we have

CX ,out = ∑
t∈X

∑
t ′∈X

min(Nt
X Bt→t ′

snd ,Nt ′

X
Bt→t ′

rcv)

= Btrunk +Bhose.

Btrunk = ∑
t∈X

∑
t ′∈X
t ′ 6=t

min(Nt
X Bt→t ′

snd ,Nt ′

X
Bt→t ′

rcv).

Bhose = ∑
t∈X∩X

min(Nt
X Bt→t

snd ,N
t
X

Bt→t
rcv).

(1)

Btrunk is the inter-component requirement (i.e., virtual trunk) and
Bhose is the intra-component requirement (i.e., hose).7 The TAG
bandwidth requirement in the opposite direction from X to X , say
CX ,in, is calculated similarly.

4.2 Bandwidth Savings by Colocation
We derive key conditions that enable bandwidth savings through

colocation from Eq. 1. Consider Bhose that defines the outgoing

7CX ,out for the VOC model is similarly defined as

min

(

∑t∈X ∑∀t′ 6=t Nt
X Bt→t′

snd ,∑t′∈X ∑∀t 6=t′ Nt′

X
Bt→t′

rcv

)

+ Bhose. From this,

one can easily prove that the TAG model always requires a bandwidth
allocation that is less or equal to that needed with the VOC model.

hose bandwidth needed at the subtree uplink. The min() term for
Bhose defines each t’s hose bandwidth across the subtree uplink.
This term can be re-written as min(Nt

X ,N
t −Nt

X)B
t→t
snd where Nt is

the total number of VMs of component t and because Bt→t
snd = Bt→t

rcv .
As Nt

X increases from zero to Nt , the hose bandwidth increases

from zero to Nt

2 Bt→t
snd when Nt

X = Nt

2 and then decreases to zero.
The hose bandwidth is zero either when all VMs of t reside in X or
X . From the standpoint of t in the subtree, hose bandwidth saving
due to increasing degree of colocation happens only when

Nt
X >

Nt

2
. (2)

Thus, the necessary and sufficient condition to achieve hose band-

width saving is that more than half the VMs of t must be colocated

in the subtree.
The min() term for Btrunk in Eq. 1 defines the virtual trunk band-

width from t to t ′ (where t ′ 6= t) across the subtree uplink, for out-
going traffic. Let Nt ′ denote the total number of VMs of t ′. Then
the outgoing trunk bandwidth, denoted by B1, is computed as

B1 = min(Nt
X Bt→t ′

snd ,(Nt ′ −Nt ′

X)B
t→t ′

rcv). (3)

We next derive the worst-case trunk bandwidth requirement, B2,
and compute the amount of trunk bandwidth saving as B2− B1.
The worst-case trunk bandwidth is incurred when all VMs of t ′ are
placed outside of the subtree (Nt ′

X = 0), in which case no bandwidth

is saved and B2 = min(Nt
X Bt→t ′

snd ,Nt ′Bt→t ′

rcv). For simplicity, we as-
sume that the total sending rate from t is equal to the total receiving
rate of t ′, i.e., NtBt→t ′

snd = Nt ′Bt→t ′

rcv ; we have B2 = Nt
X Bt→t ′

snd since
Nt

X ≤ Nt . Then, the bandwidth that can be saved by (partial) colo-
cation is:

B2−B1 = max(Nt
X Bt→t ′

snd − (Nt ′ −Nt ′

X)B
t→t ′

rcv ,0). (4)

The condition to have non-zero trunk bandwidth saving, B2−B1 >
0, is given as

Nt
X Bt→t ′

snd +Nt ′

X Bt→t ′

rcv > Nt ′Bt→t ′

rcv . (5)

It is clear that the bandwidth saving increases as Nt
X and Nt ′

X in-
crease, i.e., as more VMs of t and t ′ are colocated. The required
uplink bandwidth is zero when hosting all VMs of t and t ′ in the
subtree: Nt

X = Nt and Nt ′

X = Nt ′ . Again assuming that the total
sending rate from t is equal to the total receiving rate of t ′, i.e.,
NtBt→t ′

snd =Nt ′Bt→t ′

rcv , Eq. 5 becomes Nt ′Nt
X +NtNt ′

X >NtNt ′ ; its nec-

essary condition is easily proven to be:

Nt
X >

Nt

2
or Nt ′

X >
Nt ′

2
. (6)

Thus, to achieve trunk bandwidth saving, more than half of the VMs

of t or those of t ′ need to be colocated in the subtree, similar to
the hose saving condition Eq. 2. Since Eq. 6 is a necessary but
not sufficient condition for trunk savings, our placement algorithm
verifies savings using Eq. 4 before colocating multiple tiers.

4.3 Disadvantages of Colocation
A naive approach to deploy a TAG would be to identify a set

of TAG tiers that heavily communicate with each other and colo-
cate them on the same subtree to save bandwidth, while ensur-
ing valid placements by satisfying the requirement of Eq. 1. This
is the approach taken by existing network-aware placement solu-
tions [3, 4, 31] though they use different abstractions: hose, VOC,
or pipe.

However, bandwidth saving by VM colocation can lead to
single-point-of-failure and conflict with High Availability (HA) re-
quirements. In addition, colocation can cause unbalanced utiliza-
tion of the different types of resources available on each host (band-
width, CPU, memory); in turn, this may increase the number of

hosts and potentially the network bandwidth allocation needed to
support a given application demand. We next elaborate on these
two disadvantages of colocation.

Colocation vs. High Availability (HA). Colocation increases
the chance for applications to experience downtime with a single
server or switch failure. Thus, HA requirements may conflict with
bandwidth-saving goals. An HA requirement is often expressed
as anti-affinity (anti-colocation): the VMs of the same tier/service
must reside on multiple servers or switches to retain service avail-
ability in case of a server/switch failure. Anti-affinity improves HA
but depletes bandwidth saving from colocation. Anti-affinity also
increases the need for bandwidth saving in oversubscribed data-
center networks: e.g., anti-affinity enforced at the tree level LAA

increases the chance for tenant traffic to consume the bandwidth of
level LAA + 1 subtrees, which have smaller aggregate bandwidth
than level LAA.

Previous work addressing HA requirements for workload place-
ment (for example [11, 41, 42]) has not, to our knowledge, also
provided bandwidth guarantees. Some, notably Bodik et al. [11],
have presented techniques to jointly maximize bandwidth savings
and HA but without providing guarantees. Our placement algo-
rithm provides both bandwidth guarantees as well as optional HA
guarantees on a per-tenant basis. Even for tenants without HA re-
quirements, we can opportunistically increase survivability when
bandwidth is not the bottleneck.

Colocation vs. Efficient Resource Utilization. Colocation can
reduce the efficiency of resource utilization when there are dis-
proportionate demands for different resource types, e.g., network
vs. CPU (Fig. 1). In Fig. 6, we consider an example of placing three
hose components under a rack that has enough resources to accom-
modate the request. The placement in Fig. 6(c) localizes 16 Mbps
bandwidth demands from components A and B under the two left-
most servers but cannot provide requested guarantees to compo-
nent C. If there is no available VM slot outside this rack, this re-
quest will be rejected and this rack will be underutilized. Previous
network-aware VM placement algorithms would blindly colocate
A’s VMs and B’s VMs and yield this inefficient allocation. The al-
ternative allocation in Fig. 6(d) does not save the total bandwidth
at the server uplinks but efficiently utilizes both slot and bandwidth
resources while providing the guarantees. The key to achieving
this balanced and efficient utilization is placing high-bandwidth

and low-bandwidth demanding VMs together, even though they do

not communicate with each other. Note that this placement also
improves HA.

4.4 VM Placement Algorithm
We aim to maximize the datacenter resource utilization by ac-

cepting as many TAG requests as possible while guaranteeing re-
quested bandwidth. This problem is NP-hard similar to optimally
placing hose models [8]. We first present our main heuristic in Al-
gorithm 1, and extend it to support HA in §4.5. For brevity, we
sketch the steps in the algorithm and define only major functions in
the pseudocode. We assume identical VM types and slots; extend-
ing for heterogeneous cases is straightforward.

The algorithm starts with AllocTenant, which takes a TAG
graph g as an input; g lists application components (vertices), com-
munication edges, and their attributes (component size and band-
width demand). In order to localize the traffic between the VMs in
g, FindLowestSubtree in line 2 searches for a valid lowest-level
subtree, st, under which the entire g is likely to fit. The search
starts from the server level (0) and moves upward. g’s demands for
1) VM slots and 2) bandwidth for communication with its external
entities are validated against 1) the total number of VM slots avail-

Algorithm 1: VM scheduler (simplified)

1 def AllocTenant(TAG g):

2 st = FindLowestSubtree(g, 0);
3 while st:

/* Pass g’s copy to Alloc. map: server
locations of placed VMs */

4 map = Alloc(g, st);
5 if entire g in map:

/* Reserve bandwidth for map upto root */
6 ReserveBW(map, root); return map;
7 Dealloc(map, st);
8 if st is root: return False;
9 st = FindLowestSubtree(g, level(st)+1);

10 return False;
11 def Alloc(g, st):
12 map = {} ;
13 if level(st)== 0: /* st is a server. reserve its

slots and uplink BW. */
14 map[st] += g; ReserveBW(map,st);
15 return map;

/* First, minimize BW usage by colocation */
16 if BwSavingsFeasible():
17 map = Colocate(g, st);
18 g.Subtract(map);

/* Second, balance resource utilization */
19 if g.size > 0:

20 map += Balance(g, st);
21 if map:
22 if ReserveBW(map, st) is False:
23 Dealloc(map, st);
24 map = {};
25 return map;
26 def Colocate(g, st):
27 amap = {};
28 (gsub, child) = FindTiersToColoc(g, st);
29 while gsub.size > 0:

30 map = Alloc(gsub, child);
31 amap += map; g.Subtract(map);
32 (gsub, child) = FindTiersToColoc(g, st);

33 return amap;
34 def Balance(g, st):
35 amap = {};
36 (gsub, child) = MdSubsetSum(g, st);
37 while gsub.size >0:
38 map = Alloc(gsub, child);
39 amap += map; g.Subtract(map);
40 (gsub, child) = MdSubsetSum(g, st);
41 return amap;

able in the servers under st and 2) the available uplink bandwidth
from st to the tree root.
AllocTenant in line 4 attempts to deploy g on st by calling

Alloc, which reserves slot and bandwidth resources in the subtree
below st and returns a map of allocated VMs and their server loca-
tions. If map covers all VMs of g, the algorithm successfully returns
after reserving slot and bandwidth resources from st up to root

and the cloud provider will launch VMs on the specified servers
in map. Alloc may fail to allocate the entire g under st, because
the bandwidth availability of the links below st is not guaranteed
by FindLowestSubtree; the actual requirements on those links
are unknown until we know the exact number of VMs of each tier
that will be placed in each server under st. In case of such failure,
Dealloc in line 7 releases the resources reserved for the VMs in
map. The algorithm next tries to allocate g under a new subtree at
st’s parent level (line 9). When moving to the parent level of st,
the siblings of st will be considered for placement of g either in its
entirety or split across multiple siblings. The algorithm continues

A

(2)
B

(2)

C

(4)

64

(a) Request for 3 hose components,

total 8 VMs and 40 Mbps demand.

ToR

A

(b) Rack with 4 servers, each

with 2 slots and 10 Mbps NIC.

ToR

(c) Colocation for saving

bandwidth of A and B.

A

B

B

C

C

C

C

0 0 12 12

violation

A

ToR

(d) No saving but efficient

resource utilizations.

C

A

C

B

C

B

C

10 10 10 104

Figure 6: Colocation for bandwidth saving can hurt efficient resource utilization.

to move to higher levels of the tree until either placement succeeds
or else placement finally fails at the tree root (line 8).
Alloc (line 11) is a recursive function, invoked by its two sub-

routines: Colocate and Balance. (We describe Alloc and the
subroutines in a depth-first manner.) Before reaching the subrou-
tines, Alloc first checks if the target st is a server: if so, it allocates
g’s VMs on the server and returns; we assume sufficient bandwidth
is always available for communication between VMs in the same
server. If st is a ToR or higher level switch, Alloc strategically al-
locates g’s VMs over st’s child nodes by Colocate and Balance.
Colocate is invoked only when bandwidth saving through colo-

cation is feasible (line 16), determined by the size conditions
(Eqs. 2 and 6) and the HA requirement (§4.5). As the algorithm
recurses down the tree by subsequent invocations of Alloc, the
number of VMs of a hose tier (or a pair of trunk tiers) in g may
become less than 50% of the original tier size(s); bandwidth sav-
ing thus becomes infeasible. Likewise, if anti-affinity is required
at level LAA with 50% or higher worst case survivability (RWCS,
defined in §4.5), it is impossible to place >50% of a tier under a
subtree at level-LAA or lower.
FindTiersToColoc in Colocate identifies a set of VMs gsub

(⊂ g) that provide (hose, trunk or both) bandwidth saving through
colocation by using the size conditions of Eqs. 2-6. It excludes
from gsub low-bandwidth tiers (e.g., A and B in Fig. 6) that can
subsequently be placed together with high bandwidth tiers (e.g., C
in Fig. 6) to increase resource utilization across different resource
types, e.g., network and CPU. The idea is to identify tiers hav-
ing low per-VM bandwidth demand compared to the per-slot avail-
able bandwidth of st’s child nodes, and then place VMs of these
low-bandwidth tiers together with VMs of higher bandwidth tiers,
where the VMs of each higher bandwidth tier are not themselves
colocated (due to the size or HA constraints tested on algorithm
line 16).8 Note that this strategy places low-bandwidth VMs and
high-bandwidth VMs together even when the two types of VMs do
not communicate with each other.

To achieve this balance of slot and bandwidth utilization, Bal-
ance is invoked (line 20) to deploy the VMs, remaining in g after
Colocate, for which bandwidth saving is infeasible. MdSubset-
Sum in Balance tries to find the best child node of st and the
best set of VMs gsub (⊂g) that will lead both slot and uplink uti-
lization of child to approach 100%; this is similar to a known
Multi-Dimensional Subset-Sum problem. We extended the stan-
dard one-dimensional greedy algorithm [43] to three dimensions
(slot, in BW, out BW) by using the utilization ratio of each resource
as a common metric. We also improved its speed by iterating over

8This could be a poor strategy if subsequently arriving tiers/tenants require
large bandwidth allocations. To obtain needed bandwidth, the algorithm
would have to reverse its earlier decisions and choose locality maximization
for previously placed tiers, a capability we currently do not consider for
simplicity.

g’s tiers, instead of every VM, as the VMs in the same tier have the
same demands.

Algorithm Complexity: We compare asymptotic complexity
of Algorithm 1 with that of Oktopus and two pipe-based algo-
rithms [3, 32]. All four algorithms recurse over the hierarchical
datacenter structure; we analyze the complexity of each recursion.
We fix the datacenter tree degrees as constant. The complexity for
Alloc to find a valid placement of a TAG graph g in each recur-
sion is O(T 2), where T is the number of tiers in a tenant, because
FindTiersToColoc iterates over the tier-to-tier edges in g to find
tiers with large bandwidth saving. Oktopus’s complexity at each
recursion is O(K); K is a mean tier size. But Oktopus deploys each
tier of a VOC separately and every tier invokes a separate top-level
recursion; per-recursion complexity becomes O(KT). We found
CloudMirror and Oktopus runtimes are comparable, their differ-
ence within an order of magnitude: CloudMirror is faster for some
tenants and vice versa. The work in [32] performs a min-cut over
a VM-to-VM graph at each recursion with O(N4) complexity; N

is the number of VMs of a tenant (N = KT). SecondNet [3] re-
duced the complexity to O(N3) at the cost of optimality but it is still
>1000 times slower than CloudMirror or Oktopus when K ∼= 10,
T ∼= 5 (from the bing dataset excluding the management services).

4.5 Providing High-Availability
We next extend the main VM placement algorithm to support

two approaches in meeting HA goals in addition to providing band-
width guarantees: 1) guaranteeing anti-affinity for scenarios with
strict HA requirements and 2) opportunistic anti-affinity for scenar-
ios that do not have strict HA requirements but would still benefit
from increasing HA.

Guaranteeing Anti-Affinity. Guaranteeing network bandwidth
for predictable performance and achieving high availability are
both first class goals for many applications. We found cloud pro-
viders tend to deploy fault-resilient networking [44], especially at
core switches, but there is no such mechanism for server failures.
Thus, anti-affinity – placing VMs of a tier under multiple subtrees
– is more desired at server level to increase worst-case survivabil-
ity (WCS) of the tier. WCS is defined as the smallest fraction of
VMs of the same tier that remain functional during a failure of a
single subtree at level-LAA in a datacenter [11].9 In this paper we
use servers as default fault isolation domains and set default LAA

to server level. To guarantee a required WCS, RWCS, we extend the
main algorithm and set an upper bound for Nt

X , the number of VMs
placed under a subtree of LAA or lower level:

Nt
X <= max(1, int(Nt ∗ (1−RWCS))), (7)

Our evaluations will show that guaranteeing WCS may decrease
datacenter utilization while increasing fault tolerance.

Opportunistic Anti-Affinity. For tenants not paying for HA

9Ref. [11] modeled fault-domain also considering powerline failures, which
our algorithm can be extended to incorporate.

guarantees, we still opportunistically improve HA by distribut-
ing their VMs across servers when bandwidth saving is infeasible
(from the size conditions of Eqs. 2-6) or undesirable, a new prop-
erty we now introduce to capture relative difference between band-
width availability and bandwidth demand. For example, bandwidth
saving could be less desirable at server level because server uplink
bandwidth can support the demand of most applications (Fig. 1).
Formally, we determine bandwidth saving desirability by compar-
ing the available bandwidth averaged over unallocated slots under
st against the average per-VM bandwidth demand of input g, fac-
toring in the expected contributions of future tenant VMs (predicted
based on previous arrivals). If the former is smaller than the latter,
bandwidth saving is deemed desirable.

To implement the opportunistic approach, we make three mod-
ifications to the main algorithm. We modify line 16 to consider
also the desirability such that Colocate is invoked only when it is
both feasible and desirable. Similarly, FindLowestSubtree starts
searching from the lowest level where bandwidth saving is desir-
able, instead of blindly starting from the server level, to facilitate
VM placements across multiple servers. The third modification
goes to MdSubsetSum, which originally returned as many VMs as
possible in gsub (line 36) to fill in the chosen child node (in a
resource-balanced way) and leaved more sibling child nodes with
more slots available for future tenants to do colocation. We modify
MdSubsetSum to return only one VM in gsub and to select the best
child for that VM when bandwidth saving is not desirable. This
encourages distributed VM allocations over all child nodes while
still achieving balanced slot and bandwidth utilization of the child
nodes. Our evaluation will show that this opportunistic approach
can greatly improve average WCS at the cost of marginally de-
creased datacenter utilization while preserving all bandwidth guar-
antees. The decrease is due to the imperfect estimation of future
demands and thus suboptimal desirability decision.

5. EVALUATION
We next evaluate the benefit of our TAG model and the perfor-

mance of our proposed CloudMirror placement algorithm (CM).
We evaluate 1) their efficiency in (a) reserving less network band-

width and (b) accepting more tenant requests compared to other
models and placement algorithms. Our evaluation isolates the sep-
arate impacts of the TAG model and the CM placement algorithm
on these efficiency metrics. We also evaluate 2) the ability of our
placement algorithm to guarantee and improve availability, while
providing bandwidth guarantees. Finally, we verify 3) the feasibil-
ity of deploying our solution on a real testbed.

To evaluate 1) and 2), we wrote a simulator in Python that im-
plements CM to deploy TAG models, and Oktopus [4] to deploy
virtual cluster (VC) – hose with homogeneous bandwidth – and
VOC models. We found VC always performed worse than VOC
and TAG. Thus, we omit the VC results and use VOC as a baseline.
We substantially improved the Oktopus algorithm [4] by: handling
the case when “Alloc” fails to allocate the requested slots, placing
clusters of the same VOC under a common subtree to localize inter-
cluster traffic, and relaxing the VOC model to allow arbitrary sizes,
cluster bandwidth and core bandwidth for different clusters.

Simulation Setup: We simulate a tree-shaped 3-level network
topology inspired by a real cloud datacenter, with 2048 servers.
For simplicity, we assume all VMs have identical CPU and memory
requirements, and each server can host 25 VMs.

Each simulation run consists of 10,000 Poisson tenant arrivals
and departures. Arriving tenants are uniformly sampled at random
from a pool of 80 tenants, described below. We vary the mean
arrival rate (λ) to control the load on a datacenter while keeping

Algorithm Server ToR Agg

CM+TAG 3209.0 1006.8 0.7

CM+VOC 3266.5 (1.02) 1230.1 (1.22) 1.7 (2.55)

OVOC 2978.8 (0.93) 1299.7 (1.29) 14.7 (22.08)

Table 1: Reserved bandwidth (Gbps) for bing workload. Val-

ues in () report bandwidth ratio compared to CM+TAG.

tenant dwell time (Td) fixed; the load is TsλTd

2048×25 , where the mean
tenant size (#VMs) is Ts and the denominator is the total VM slots.

Each tenant arrival has a single TAG or VOC request. Ex-
periments draw arrivals from one of three workloads: empirical
datasets from bing.com [11] and hpcloud.com [29], and a syn-
thetic workload. Due to space constraints, we primarily present
results from the bing workload. The bing workload consists of a
set of services, the service size ranging from one to a few hundred
VMs. The services constitute a diverse range of job types (inter-
active web services or batch data-processing) and communication
patterns (e.g., linear, star, ring, mesh; shown in Fig. 7 in [11]), and
some have large intra-service demands (similar to MapReduce). A
set of central management and logging services communicates with
every other service, but mostly at low bandwidth. We remove the
common management/logging services and their traffic, as similar
to [11], to create a set of isolated tenants which our experiments
randomly sample to simulate arrivals. In total there are 80 tenants
in the pool: their mean size Ts is 57, with some large tenants over
200 VMs in size; the largest tenant has 732 VMs. We consider each
service as corresponding to a component/tier in the TAG model and
to a cluster in the VOC model.

5.1 Simulation Results
We first evaluate the main CloudMirror algorithm (CM) that does

not consider HA.
Bandwidth Reserved: Table 1 lists the aggregate bandwidth re-

served on uplinks from the server, ToR, and agg switch network
levels, for three combinations of model and placement algorithm
– CM+TAG, CM+VOC and Oktopus+VOC (OVOC). Since CM is
not designed to place VOC models, CM+VOC uses the placement
obtained by CM+TAG but reports the bandwidth allocation result-
ing from modeling the tenants using VOC. For fair comparison,
we simulate an ideal network topology with unlimited network ca-
pacity; all three combinations deploy the same set of tenants. We
simulate only tenant arrivals (no departure) and measure the aggre-
gate bandwidth usage of the deployed tenants when the first tenant
rejection happens due to lack of VM slots.

Table 1 shows results for the bing.com workload containing
both intra- and inter-component traffic. Comparing VOC and TAG
models with the same CM placement, VOC consumes more band-
width than TAG at all three network levels, because the VOC
model lacks inter-component traffic pattern information and, thus,
reserves unnecessary bandwidth (§2.2). However, the bandwidth
advantage of TAG over VOC is small at server level. This is be-
cause the services (components) in the bing workload are either
smaller or > 2× larger than the server size (25 VM slots), leaving
no trunk bandwidth savings advantage for TAG through colocation
(Eq. 6) at server level. Trunk bandwidth saving is possible at ToR
and agg levels resulting in a greater difference between TAG and
VOC models. Comparing placement algorithms, CM+VOC con-
sumes more server-level bandwidth than Oktopus+VOC (OVOC)
because CM avoids colocation for low-bandwidth components, in-
stead spreading their VMs across servers to achieve balanced re-
source utilization (as in Fig. 6(d)); we demonstrate the benefits of
resource balancing below where we introduce bandwidth capac-

(BW, OVOC) (BW, CM) (VM, OVOC) (VM, CM)

 0

 10

 20

 30

 40

 50

 400 600 800 1000 1200

R
e
je

c
ti
o
n
 r

a
te

 (
%

)

Bmax (Mbps)

(a) Load = 50%

 0

 10

 20

 30

 40

 50

 400 600 800 1000 1200

R
e
je

c
ti
o
n
 r

a
te

 (
%

)

Bmax (Mbps)

(b) Load = 90%

Figure 7: Rejection rates with various bandwidth scaling.

Legend format: (metric, algorithm).

 0

 10

 20

 30

 40

 50

 10 20 30 40 50 60 70 80 90 100

R
e
je

c
ti
o
n
 r

a
te

 (
%

)

Load (%)

(BW, OVOC)
(BW, CM)
(VM, OVOC)
(VM, CM)

Figure 8: Rejection rates

with varying loads. Bmax =

800Mbps.

 0

 10

 20

 30

 40

 50

16x 32x 64x 128x

R
e

je
c
te

d
 B

W
 (

%
)

Oversubscription ratio

CM
OVOC

Figure 9: Bandwidth re-

jection rate across different

oversubscription ratios.

ity constraints into the network topology. At ToR and agg switch
levels, CM+VOC allocates less bandwidth than OVOC. CM place-
ment can achieve savings through its strategy of colocating compo-
nents with high inter-component traffic in the same subtree, unlike
Oktopus which places components independently.

Experiments (not shown) using a synthetic workload, formed by
artificially mixing different application sizes and types (e.g., three
tier web services and MapReduce jobs) and experiments using the
hpcloud workload yielded results similar to Table 1.

 0

 10

 20

 30

 40

 50

R
e

je
c
te

d
 B

W
 (

%
)

Coloc+Balance
Coloc
Balance
OVOC

Figure 10: Micro-

benchmarking of CM.

Workload Rejection Rate: We
extend the experiment to a topol-
ogy with constrained bandwidth ca-
pacity and we simulate tenant ar-
rivals and departures while varying
the mean arrival rate. Now some
tenant requests may be rejected due
to lack of network capacity, and
thus we compare the rate of rejected
tenant requests. We assume each
server has a 10G uplink to its ToR
switch; and ToR-aggregation and
aggregation-core links are oversubscribed by a 32:8:1 ratio, mim-
icking real datacenters [2].

Fig. 7 plots the ratios of rejected tenants’ #VMs and aggre-
gate bandwidth relative to those of the total tenant arrivals. Re-
jection of a tenant can happen due to insufficient available band-
width and/or CPU/memory resources (slots). The bandwidth val-
ues in the bing.com workload dataset are relative, not absolute.
We scale the bandwidth values such that the average per-VM de-
mand (Bvm) of the tenant with the largest Bvm becomes the target
per-VM bandwidth (Bmax). Fig. 7(a) shows that for some Bmax, CM
(=CM+TAG) can deploy almost all requests while OVOC rejects up
to 40% of bandwidth requests. Fig. 7(b) also shows a substantial
difference between CM and OVOC for a different target load. In

 0

 20

 40

 60

 80

 100

0 25 50 75

M
e
a
n
 s

e
rv

e
r-

le
v
e
l
W

C
S

 (
%

)

Required server-level WCS (%)

CM+HA
OVOC+HA

(a) Achieved WCS

 0

 10

 20

 30

 40

 50

0 25 50 75

R
e
je

c
te

d
 B

W
 (

%
)

Required server-level WCS (%)

CM
OVOC

(b) Rejected BW

Figure 11: Impact of guaranteeing WCS. The error bar denotes

max and min achieved WCS.

 0

 10

 20

 30

 400 600 800 1000 1200

R
e

je
c
te

d
 B

W
 (

%
)

Bmax (Mbps)

CM
CM+HA
CM+oppHA

(a) Rejected BW

 0

 20

 40

 60

 80

 100

400 600 800 1000 1200

M
e
a
n
 s

e
rv

e
r-

le
v
e
l
W

C
S

 (
%

)

Bmax (Mbps)

CM CM+HA CM+oppHA

(b) Achieved WCS

Figure 12: Comparison of different HA mechanisms. CM: de-

fault approach w/o any HA. CM+HA: guarantee 50% WCS.

CM+oppHA: opportunistic HA.

all experiments, tenant rejection rate is less than 2.2%, but rejected
tenants tend to have unusually large VM/bandwidth requirements.

The results with varying load are shown in Fig. 8. OVOC fails
to deploy a set of tenants having large slot or bandwidth demands
even at low loads while CM efficiently places most of them. We
stress-test CM and OVOC by increasing the network topology
oversubscription ratio. Fig. 9 illustrates that CM is resilient to
highly bandwidth-constrained network environments while OVOC
is quickly incapable of deploying tenants.

To evaluate the impact of two subroutines of the CM algorithm
– Coloc and Balance – we deactivate each subroutine one by one
and plot the TAG bandwidth rejection rate of each case (Coloc only
and Balance only) with that of the original CM (Coloc+Balance)
and, just for reference, OVOC in Fig. 10. Colocation is clearly the
main factor in accepting more resource requests but Balance also
contributes by preventing a subtree from leaving its compute re-
source heavily underutilized while its network is maxed out and
vice versa (Fig. 6). Even without Coloc, which seeks colocation
benefits between components, the Balance-only approach per-
formed close to OVOC in Fig. 10.

High Availability (HA): Some tenants need guaranteed HA as
much as guaranteed bandwidth. Our HA extension, CM+HA, can
place VMs while guaranteeing bandwidth and worst-case surviv-
ability (WCS) at a specified tree level, LAA. For comparison, we
also extended Oktopus to implement WCS-guarantees. Fig. 11
shows that the required WCS (RWCS, x-axis) is achieved with both
algorithms when LAA=SERVER. CM+HA achieves higher average
WCS across the deployed application components than OVOC be-
cause CM tries a balanced resource utilization by colocating VMs
with opposite resource requirements (high bandwidth VM and low
bandwidth VM) instead of blindly colocating VMs from the same
component. Guaranteeing HA with a higher WCS requirement

increases the bandwidth rejection rate. The increase is small in
Fig 11(b) because bandwidth is not a bottleneck at the server level;
we observed higher increases when we set LAA to higher-levels.

We next evaluate the opportunistic anti-affinity enhancement
to CM described in §4.5. Fig. 12 shows that the opportunis-
tic HA (CM+oppHA) can achieve high average WCS comparable
with the guaranteed HA approach, while yielding bandwidth re-
jection rates as low as the default CM algorithm (see the points
where Bmax = 1000 in Fig. 12(a)). With its opportunistic non-
guaranteed approach, CM+oppHA may achieve high or low WCS
values close to zero (see error bars in Fig. 12(b)). We also tested
when LAA=TOR and observed very similar patterns with Fig. 12,
except that CM+HA rejected more BW than in Fig. 12(a)).

Algorithm runtime: CM, implemented in Python (single-
thread), typically runs within 200 msec for tenants of up to 100s
of VMs and up to a few seconds for tenants of up to 1000 VMs,
demonstrating its scalability. Our CM and Oktopus implementa-
tions have similar runtimes. We ran the simulations on Standard-
type compute instances in HP Public Cloud.

We also implemented the SecondNet [3] algorithm that places
pipe models, using C++ for core libraries. We converted the bing

TAG models to idealized pipe models by dividing each hose and
trunk guarantee uniformly across the corresponding pipes (instead
of planning realistically for worst-case as described in §2.2). Sec-
ondNet is faster than another pipe model algorithm [32] but still
slow to deploy the bing workload especially at high datacenter uti-
lization, taking tens of minutes to place one large tenant. Assum-
ing ideal placement, idealized pipe models are fundamentally more
bandwidth-efficient than the more flexible TAG models. How-
ever, SecondNet produced less efficient resource allocations than
CM+TAG leading to higher tenant rejection and also much longer
execution time. This demonstrates the sheer complexity of plac-
ing VM-VM pipes rendering the pipe model less practical. Since
pipe is a special case of TAG, we were able to evaluate running CM
to deploy the idealized bing pipe models, and observed CM+pipe
consuming 8% less bandwidth than SecondNet. CM+pipe runtime,
while slower than CM+TAG, was comparable to that of SecondNet;
note that CM is implemented in Python while SecondNet in C++
and Python.

5.2 Guarantee Enforcement Prototype
Enforcement of TAG model guarantees can be implemented as a

straightforward patch to most prior solutions for enforcing hose-
model bandwidth guarantees, such as [4, 5, 7, 9]. The intuition
is that all these frameworks rate-limit pairs of source-destination
VMs (the rate-limit is based on the two VMs’ bandwidth guaran-
tees, their current communication pattern, the degree of congestion,
etc.). Since the TAG model can be seen as being composed from a
set of (directional) hose models, the only conceptual change to be
made to these frameworks is to identify to which hose a particular
source-destination VM pair belongs. We have implemented a proof
of concept based on this approach in ElasticSwitch, a recent pro-
posal for enforcing work-conserving hose-model bandwidth guar-
antees [7]. This patch consists of 30 lines of code.

Fig. 13(a) shows a simple experiment scenario and topology.
We aim to show that the two bandwidth guarantees of VM Z

from tier C2 are isolated from each other (one guarantee for traffic
from C1 and one for C2 intra-tier traffic). For simplicity we set
B1 = B2 = Bin

2 = 450 Mbps; the bottleneck link towards VM Z is
1 Gbps and we leave 10% of the bandwidth unreserved. In our ex-
periment, VM Z receives TCP traffic from VMs in both tiers C1
and C2. We use a single sender, VM X , in tier C1, and we vary
the number of senders in tier C2. Fig. 13(b) plots application-level

Z

X

L = 1000 Mbps

450 450
450

C1 C2

(a) Experiment setup

0

200

400

600

800

1000

0 1 2 3 4 5

T
h
ro

u
g
h
p
u
t

(M
b
p
s
)

Number of senders in C2

X -> Z VMs in tier C2 -> Z

450

(b) TCP throughput of VM Z

Figure 13: TAG guarantees using ElasticSwitch.

throughput of VM Z between the senders in tiers C1 and C2 as we
increase the number of senders in tier C2. Traffic from VM X of
tier C1 is protected from the larger intra-tier traffic.

6. DISCUSSION AND FUTURE WORK
Here we briefly discuss several extensions of the TAG model and

the overall CloudMirror system design.
Large-scale variations in load will trigger tenants to scale up

or down by “auto-scaling”, which is flexibly handled by the TAG
model. We plan to extend our placement algorithm to better support
auto-scaling. Smaller-scale load variations, which do not trigger
scaling, can vary bandwidth requirements over time; CloudMirror
can adopt existing approaches, such as workload profiling [18] or
history-based prediction [45], to be even more efficient.

We believe that the TAG model is versatile and could potentially
express other requirements and policies besides bandwidth, includ-
ing latency, security, access control, reliability, and auto-scaling.
Generalizing the TAG concept with additional application level re-
quirements is a potential topic for follow-on work.

Automatic generation of TAG requirements is another ripe area
of research. We have sketched a measurement-based system to au-
tomatically identify application components and their bandwidth
requirements from raw VM-VM level traffic. We plan to conduct a
rigorous evaluation of the outlined techniques.

Cloud operators often provide popular application components
as infrastructure services (e.g., block storage, front-end web clus-
ter). Tenants can use TAG to express their bandwidth demands be-
tween those infrastructure service components and the other com-
ponents they bring in. When every tenant component is an infras-
tructure service (e.g., Platform-as-a-Service), TAG can be used in-
ternally by the cloud provider to capture the bandwidth demands
between the components.

We expect that TAG and CM placement principles can be ap-
plied to future datacenters and workloads. For example, next-
generation resource-disaggregated datacenters [46, 47] will likely
interconnect pools of compute capacity with pools of non-volatile
memory (NVRAM) in a hierarchical network. The NVRAM will
have throughput and access times orders of magnitude faster than
the rotating storage media it displaces, thus imposing much higher
bandwidth demands on future datacenter-wide interconnect. This
challenge further strengthens the need for efficient and balanced
resource allocation, as provided by CloudMirror. We envision ex-
tending the TAG model to capture bandwidth guarantees between
compute elements and NVRAM; each TAG component currently
defining a set of similar VMs can be split into one component that
defines a set of similar compute elements, and one component that
defines a set of NVRAM, with virtual trunks added to specify band-
width guarantees between these components.

7. CONCLUSION
Migrating mission critical applications to cloud environments

demands a network virtualization solution with performance guar-
antees. We introduced an efficient network virtualization solution,
CloudMirror, with three components – a network abstraction called
Tenant Application Graph (TAG) that represents the true applica-
tion communication pattern, an efficient VM placement strategy
that efficiently utilizes datacenter resources while providing high
availability, and a runtime mechanism that enforces the applica-
tion bandwidth requirements. Our simulation experiments using
real application traces demonstrate significantly improved datacen-
ter resource efficiency over existing solutions.

Acknowledgments: We thank Peter Bodik and the other au-
thors of [11] for providing us with the data we used in the pre-
sented experiments. We also thank the anonymous reviewers and
our shepherd, Chuanxiong Guo, for their guidance on the paper.

8. REFERENCES
[1] “Facebook Future-Proofs Data Center With Revamped Network.”

http://tinyurl.com/6v5pswv.
[2] N. Farrington and A. Andreyev, “Facebook’s Data Center Network

Architecture,” IEEE Optical Interconnects, 2013.
[3] C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun, W. Wu, and

Y. Zhang, “SecondNet: a Data Center Network Virtualization
Architecture with Bandwidth Guarantees,” ACM CoNEXT, 2010.

[4] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron, “Towards
Predictable Datacenter Networks,” ACM SIGCOMM, 2011.

[5] V. Jeyakumar, M. Alizadeh, , D. Mazières, B. Prabhakar, C. Kim,
and A. Greenberg, “EyeQ: Practical Network Performance Isolation
at the Edge,” USENIX NSDI, 2013.

[6] H. Ballani, K. Jang, T. Karagiannis, C. Kim, D. Gunawardena, and
G. O’Shea, “Chatty Tenants and the Cloud Network Sharing
Problem,” USENIX NSDI 2013.

[7] L. Popa, P. Yalagandula, S. Banerjee, J. C. Mogul, Y. Turner, and
J. R. Santos, “ElasticSwitch: Practical Work-Conserving Bandwidth
Guarantees for Cloud Computing,” ACM SIGCOMM, 2013.

[8] N. G. Duffield, P. Goyal, A. Greenberg, P. Mishra, K. K.
Ramakrishnan, and J. E. van der Merive, “A Flexible Model for
Resource Management in Virtual Private Networks,” ACM
SIGCOMM, 1999.

[9] H. Rodrigues, J. R. Santos, Y. Turner, P. Soares, and D. Guedes,
“Gatekeeper: Supporting Bandwidth Guarantees for Multi-tenant
Datacenter Networks,” USENIX WIOV, 2011.

[10] J. Lee, M. Lee, L. Popa, Y. Turner, S. Banerjee, P. Sharma, and
B. Stephenson, “CloudMirror: Application-Aware Bandwidth
Reservations in the Cloud,” USENIX HotCloud, 2013.

[11] P. Bodík, I. Menache, M. Chowdhury, P. Mani, D. A. Maltz, and
I. Stoica, “Surviving Failures in Bandwidth-Constrained
Datacenters,” ACM SIGCOMM, 2012.

[12] M. Hajjat, X. Sun, Y.-W. E. Sung, D. Maltz, S. Rao,
K. Sripanidkulchai, and M. Tawarmalani, “Cloudward Bound:
Planning for Beneficial Migration of Enterprise Applications to the
Cloud,” ACM SIGCOMM, 2010.

[13] J. Dean and L. A. Barroso, “The Tail at Scale,” Communications of

The ACM, vol. 56, Feb 2013.
[14] “AWS Architecture Center.”

http://aws.amazon.com/architecture/.
[15] “Amazon - Every 100ms delay costs 1% of sales.”

http://tinyurl.com/k635quz.
[16] V. Jeyakumar, A. Kabbani, J. C. Mogul, and A. Vahdat, “Flexible

Network Bandwidth and Latency Provisioning in the Datacenter,” in
arXiv:1405.0631, 2014.

[17] “WikiBench: Web hosting benchmark.”
http://www.wikibench.eu/.

[18] D. Xie, N. Ding, Y. C. Hu, and R. Kompella, “The Only Constant is
Change: Incorporating Time-varying Network Reservations in Data
Centers,” ACM SIGCOMM, 2012.

[19] “Redis Benchmark & Rackspace Performance VMs.”
http://tinyurl.com/omyzyax.

[20] “877,000 TPS with Erlang and VoltDB.”
http://tinyurl.com/naoakwl.

[21] “Testing Vyatta 6.5 R1 under VMware.”
http://tinyurl.com/l7u9gfa.

[22] J.-C. Huang, M. Monchiero, Y. Turner, and H.-H. Lee, “Ally:
OS-transparent packet inspection using sequestered cores,”
ACM/IEEE ANCS, 2011.

[23] J. Summers, T. Brecht, D. Eager, and B. Wong, “Methodologies for
Generating HTTP Streaming Video Workloads to Evaluate Web
Server Performance,” ACM SYSTOR, 2012.

[24] Netflix Tech Blog, “Benchmarking Cassandra Scalability on AWS.”
http://tinyurl.com/3ogo79c.

[25] H. Li and A. Michael, “Intel Motherboard Hardware v2.0,” tech.
rep., Open Compute Project.

[26] X. Jin, H. H. Liu, R. Gandhi, S. Kandula, R. Mahajan, J. Rexford,
R. Wattenhofer, and M. Zhang, “Dionysus: Dynamic Scheduling of
Network Updates,” ACM SIGCOMM, 2014.

[27] H. H. Liu, S. Kandula, R. Mahajan, M. Zhang, and D. Gelernter,
“Traffic Engineering with Forward Fault Correction,” ACM
SIGCOMM, 2014.

[28] “Rackspace: Welcome to Performance Cloud Servers; Have Some
Benchmarks!.” http://tinyurl.com/pam57uy.

[29] K. LaCurts, S. Deng, A. Goyal, and H. Balakrishnan, “Choreo:
Network-aware task placement for cloud applications,” ACM IMC,
2013.

[30] “Storm: Distributed and fault-tolerant realtime computation.”
http://storm-project.net/.

[31] T. Benson, A. Akella, A. Shaikh, and S. Sahu, “CloudNaaS: A Cloud
Networking Platform for Enterprise Applications,” ACM SOCC,
2011.

[32] X. Meng, V. Pappas, and L. Zhang, “Improving the scalability of
data center networks with traffic-aware virtual machine placement,”
IEEE INFOCOM, 2010.

[33] Brian Adler, “Load Balancing in the Cloud: Tools, Tips, and
Techniques.” RightScale Technical Whitepaper.

[34] “Amazon Web Services - Auto Scaling.”
http://aws.amazon.com/autoscaling/.

[35] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” J. Stat. Mech., 2008.

[36] M. Rosvall and C. T. Bergstrom, “Maps of random walks on
complex networks reveal community structure,” PNAS 2008.

[37] N. X. Vinh, J. Epps, and J. Bailey, “Information Theoretic Measures
for Clusterings Comparison: Variants, Properties, Normalization and
Correction for Chance,” Journal of Machine Learning Research,
vol. 11, pp. 2837–54, 2010.

[38] A. Klein, F. Ishikawa, and S. Honiden, “Towards Network-aware
Service Composition in the Cloud,” ACM WWW, 2012.

[39] “OpenDaylight, Group-based Policy project.”
http://tinyurl.com/n42h3ju.

[40] “ETSI, Network Functions Virtualisation.”
http://tinyurl.com/maaqnng.

[41] F. Hermenier, J. Lawall, and G. Muller, “BtrPlace: A Flexible
Consolidation Manager for Highly Available Applications,” IEEE

TDSC, vol. 10, no. 5, 2013.
[42] E. Bin, O. Biran, O. Boni, E. Hadad, E. K. Kolodner, Y. Moatti, and

D. H. Lorenz, “Guaranteeing high availability goals for virtual
machine placement,” ICDCS, 2011.

[43] B. Przydatek, “A fast approximation algorithm for the subset-sum
problem,” 1999.

[44] “Cisco Virtual Switching Systems (VSS).”
http://tinyurl.com/yqg97w.

[45] K. LaCurts, J. Mogul, H. Balakrishnan, and Y. Turner, “Cicada:
Introducing Predictive Guarantees for Cloud Networks,” USENIX
HotCloud, 2014.

[46] S. Han, N. Egi, A. Panda, S. Ratnasamy, G. Shi, and S. Shenker,
“Network Support for Resource Disaggregation in Next-Generation
Datacenters,” ACM HotNets, 2013.

[47] K. Asanovic, “FireBox: A Hardware Building Block for 2020
Warehouse-Scale Computers,” USENIX FAST 2014 Keynote.

