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Abstract11

We investigate the effect of particle volume fraction on the efficiency of deter-

ministic lateral displacement (DLD) devices. DLD is a popular passive sorting

technique for microfluidic applications. Yet, it has been designed for treating di-

lute suspensions, and its efficiency for denser samples is not well known. We per-

form 3D simulations based on the immersed-boundary, lattice-Boltzmann and

finite-element methods to model the flow of red blood cells (RBCs) in different

DLD devices. We quantify the DLD efficiency in terms of appropriate “failure”

probabilities and RBC counts in designated device outlets. Our main result

is that the displacement mode breaks down upon an increase of RBC volume

fraction, while the zigzag mode remains relatively robust. This suggests that

the separation of larger particles (such as white blood cells) from a dense RBC

background is simpler than separating smaller particles (such as platelets) from

the same background. The observed breakdown stems from non-deterministic

particle collisions interfering with the designed deterministic nature of DLD de-

vices. Therefore, we postulate that dense suspension effects generally hamper

efficient particle separation in devices based on deterministic principles.

Keywords: Deterministic lateral displacement, Blood cell separation,12

Simulation, Haematocrit, Microfluidics13

1. Introduction14

Separation of cellular blood components is an important step in clinical di-15

agnosis of diseases, such as malaria [1], as well as in medical research focusing16

on phenotype and/or genotype of the various subtypes of blood cells. The tra-17
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ditional blood separation methods employed for clinical tests typically involve18

large sample volumes and often costly specialist equipment [1]. The advent of19

microfluidic separation techniques for biological cells has opened up the possibil-20

ity of replacement of traditional blood tests with lab-on-chip diagnostics [2, 3].21

By scaling the separation process down to the cellular length scale one can re-22

duce the sample volume and the time required for the tests. Furthermore, these23

microfluidic separation techniques lend easily toward downstream integration24

for analysis and diagnosis of cell populations of interest.25

Deterministic lateral displacement (DLD) is a high-resolution and relatively26

straightforward size-based microfluidic separation technique first applied to the27

separation of hard polystyrene beads [4]. It has the advantage of being label-28

free, relying solely on the device geometry without need for additional external29

forces to achieve separation (passive separation). For this reason, it has been30

put to use in diverse separation applications, such as parasites from human31

blood [5], polystyrene micro-beads [6], purification of fungal spores [7], sepa-32

ration of epithelial cells from fibroblast cells [8], fractionation of human whole33

blood [9], removal of circulating tumor cells (CTCs) from blood [10] and mi-34

crofluidic droplet fractionation [11]. For a given geometry, a DLD device has two35

operation modes: “displacement”, for larger particles, and “zigzag”, for smaller36

particles as presented in section 3. Since DLD relies on deterministic interactions37

between micro-obstacles and sample particles as they flow through the device,38

DLD devices are designed to operate under dilute conditions. In this regime, the39

interaction of particles and obstacles is not much affected by particle-particle40

collisions so that particles can follow deterministic paths in the device.41

In recent years, the DLD technique has received much attention in the area42

of human blood cell separation. In a previous work, the use of DLD has been43

demostrated for fractionating all cellular components of human blood [9, 12].44

With cell size as the sole criterion, DLD devices have been applied for separation45

of leukocytes from blood [9, 13, 14], red blood cells (RBCs) from blood [9, 13, 15],46

platelets from blood [9, 16] and even plasma from whole blood [9]. Furthermore,47

the use of DLD for deformability-dependent blood cell separation [17, 18] and48

fingerprinting [19, 18] has been demonstrated. In addition to fractionating blood49

constituents, external pathogens such as Trypanosomes have been separated50
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from human blood using DLD [5].51

Having achieved passive, label-free separation, those previous works show52

much promise for integration of the DLD principle in point-of-care blood diag-53

nostic devices or even in vivo use in human vasculature implants. However, to54

the best of our knowledge, all the experiments use a diluted sample of blood.55

The dilution is carried out either in the blood sample preparatory stage and/or56

by use of buffer streams in the device. The blood cells are therefore always at57

a lower volume fraction than their natural haematocrit value. Higher volume58

fractions close to the physiological haematocrit value of ∼40–45% are desirable,59

though. This would mean smaller sampling volumes, potentially faster results60

and minimum pre-treatment of the blood sample. These factors become espe-61

cially important when the species to be isolated (e.g. pathogens) are sparse and62

sample dilution would further reduce their already small concentration.63

The performance of a DLD device at higher haematocrit values remains an64

open question and is a key requirement to get this technology into medical65

practice. A few authors have only briefly looked at this matter and report that66

device clogging and separation breakdown due to cell deformability and stiction67

to device surfaces are some of the concerns [14, 9]. To address this question,68

we require consideration from device manufacture as well as design aspects.69

Going for an experimental evaluation of the DLD design is time-consuming and70

expensive due to the large number of different devices required. At this point,71

simulations of cellular flow through DLD devices can reduce the workload since72

they allow for simple parameter variations. Furthermore they provide unique73

insight into the deformation of cells, the resulting complex flow fields and the74

effect that these and other parameters (such as haematocrit) have on the device75

efficiency.76

In this paper, we examine the effect of RBC volume fraction on the DLD77

performance using 3D computer simulations based on the immersed-boundary,78

lattice-Boltzmann and finite-element methods (section 2). RBCs are the most79

abundant cellular blood components (about 98%) and therefore dominate the80

blood rheology. Specifically, we analyse how the zigzag and displacement modes81

are affected by an increased number density of RBCs in the device. We quantify82

the performance of these modes by defining appropriate failure probabilities.83
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One of our main results (section 4) is that the zigzag mode is relatively84

robust. The displacement mode, however, is strongly affected by even moderate85

volume fractions (around 10–20%). We observe an eventual breakdown of the86

displacement mode at high volume fractions, rendering nearly all RBCs moving87

on zigzag-like trajectories. This leads us to believe that it would probably be88

easier to separate a few larger cells from a dense RBC background than a few89

smaller particles from the same background. Our results show that the failure90

probabilities have a different character in both device operation modes. While91

failure events in the zigzag mode can annihilate each other, displacement failures92

always accumulate. This explains why the zigzag mode is relatively robust upon93

haematocrit increase, while the displacement mode finally breaks down.94

Our study provides valuable insight into the DLD behaviour at larger haema-95

tocrit, as summarised in section 5. The mechanism for the displacement break-96

down is the increasing importance of non-deterministic effects due to particle97

collisions. Therefore, we expect those findings to apply to essentially all sep-98

aration mechanisms relying on deterministic sorting of dense suspensions of99

particles of any kind. The key question to make DLD devices more suitable for100

denser suspensions is how to reduce the failure probability in the displacement101

mode. We believe that our study provides impetus to further research in the102

field.103

2. Methods and geometry104

The employed numerical methods (section 2.1) and geometry (section 2.2)105

are the same as in [17]. The major difference is the number of cells simulated106

simultaneously to vary the volume fraction (section 2.3).107

2.1. Numerical methods108

Several research groups have simulated RBC suspensions in the past years109

[20, 21, 22, 23, 24, 25, 26]. Here, we use the lattice-Boltzmann method (LBM) [27,110

28] for the fluid, the finite-element method (FEM) [29, 30] for the RBC mem-111

brane and the immersed-boundary method (IBM) [31] for the fluid-membrane112

coupling.113

We model the RBCs as biconcave closed membranes, meshed with 2,000114

triangular surface elements. The RBCs have a radius of r = 3.9µm along their115
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major axis and a thickness of 2.4µm. The elastic behaviour of the membrane116

is specified entirely by its shear, area dilation and bending moduli κs, κα and117

κb. We keep the dimensionless value of κα = 0.5 and κb/(κsr
2) = 2.5 · 10−3118

constant, resulting in only one free parameter specifying the elastic behaviour119

of the RBCs. The dimensionless interior and exterior fluid viscosities are η = 5
6120

and 1
6 , respectively.121

All rigid boundaries (confining walls and obstacles of the DLD geometry) are122

modelled by the no-slip bounce-back method [32]. Membrane nodes experience a123

short-range repulsion near those boundaries and between each other to maintain124

a thin lubrication layer. We employ periodic boundary conditions along the y-125

axis and shifted boundary conditions along the x-axis to realise a finite row126

shift.127

A constant force density mimicking a pressure gradient drives the flow along128

the x-axis. Additionally we impose a variable pressure gradient along the y-axis129

which counteracts any non-zero average flow along that axis. The reason for this130

measure is that in real DLD devices there are also confining walls in y-direction131

(we assume they are far away but existing). Due to the continuity equation and132

incompressibility condition, fluid cannot accumulate at those walls so that the133

average flow along the y-axis must vanish.134

2.2. Geometry135

We choose a shallow DLD device, with a height of H = 4.8µm. The large136

confinement along the z-axis forces the RBCs to align parallel with their major137

axis lying in the plane of the device (x-y-plane). This arrangement ensures that138

the RBCs are not susceptible to orientation-dependent separation [19]. The139

RBCs, however, remain deformable, which significantly influences their apparent140

size [17] and consequently their trajectories.141

In accordance with most of the experimental work involving blood cells in142

DLD devices, we use a cylindrical pillar design for the obstacles as shown in143

Fig. 1. The pillar radius is R = 10µm, and the centre-to-centre distance is144

λ = 32µm. This leaves a gap size of G = 12µm in between adjacent pil-145

lars. These device dimensions are kept invariant in all simulations. The only146

free geometrical parameter is the row shift d, which defines the dimensionless147

displacement parameter ε = d/λ and the angle α = arctan ε.148
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Figure 1: Employed DLD geometry with pillar radius R, centre-to-centre dis-
tance λ and row shift d, which define the gap size G and shift angle α. Reprinted
with permission from T. Krüger, D. Holmes, P.V. Coveney, Biomicrofluidics,
Vol. 8, Page 054114, (2014). Copyright 2014, American Institute of Physics.

Table 1: Streamline separation distances s for selected row shift values d.

row shift displacement parameter separation distance
d [µm] ε s [µm]
2.0 5/80 1.2
4.4 11/80 2.1
6.0 15/80 2.7

We previously identified the streamline separation distances for the current149

DLD layout [17]. The distances obtained for the row shifts d used in the present150

work are collected in Table 1.151

2.3. Simulations152

We use the capillary number153

Ca =
p′`r

κs
(1)

as dimensionless measure for the RBC deformation in the ambient flow field.154

The length ` =
√
GH is the geometric average of the width and height of the155

gap between two neighbouring pillars, and p′ is the pressure gradient along the156

x-axis. Inertial effects are negligible [17].157

The simulation domain encloses a single pillar of the DLD device and consists158

of 80 × 80 × 12 lattice units along the x-, y- and z-axes, respectively. This159
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gives a lattice constant of ∆x = 0.4µm and an undeformed RBC diameter of160

19.6 ∆x. By simulating only one pillar, we assume that the entire device is161

filled with RBCs at the specified volume fraction. This simplification makes the162

simulations feasible in the first place, while capturing the essential DLD device163

properties [17].164

We previously mapped out the parameter space for deformability-based RBC165

separation [17]. As a result, we obtained a line in the Ca-d parameter space166

which separates regions with RBCs moving on zigzag or displaced trajectories.167

However, only a single RBC, i.e. the dilute limit, was considered. Here, we use168

the known parameter map as a guide to investigate the effect of RBC volume169

fraction on the separation efficiency.170

The relevant simulation parameters to explore are d (device geometry), Ca171

(RBC deformability) and Ht (haematocrit, RBC volume fraction). We consider172

five different Ht-values (8.0, 16.1, 32.2, 40.2 and 45.6%; the latter being close to173

the physiological value in humans). Due to the periodic boundary conditions, we174

achieve these volume fractions with particle counts between 3 and 17. All RBCs175

in a simulation have the same elastic properties. The initial RBC positions and176

orientations are chosen arbitrarily, only taking care to avoid overlap with walls177

and other cells. All simulations with identical Ht share the same initial state.178

For each considered volume fraction we have simulated three different row shifts179

(d = 2.0, 4.4 and 6.0µm) and three different capillary numbers (Ca = 0.2, 0.5180

and 1.0) by varying the shear modulus κs. Therefore, we have run and analysed181

5 × 3 × 3 = 45 simulations in total. The shear modulus for healthy RBCs is182

κs = 5.3µN/m. Thus, in order to achieve Ca between 0.2 and 1.0, we would183

require real-world pressure gradients between 35 and 175 kPa/m.184

3. DLD operation modes185

A DLD device designed to separate cells (e.g. white blood cells or platelets)186

from an RBC background can be classified into two cases (operation modes):187

one where the RBCs move in the displacement mode and the other where they188

are expected to move in the zigzag mode. This is illustrated in Fig. 2. As we will189

demonstrate in the subsequent discussion, the behaviour of the cells in either190

mode is different from the other. In view of this fact, we briefly discuss the191
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Figure 2: Operation modes of a DLD device for particle separation from a
background species (e.g. RBCs). In the displacement mode, the particles of the
background species are forced on displaced trajectories (solid line) while the
desired smaller particles are expected to move horizontally on average. In the
zigzag mode, the device is designed such that particles of the background species
move on zigzag trajectories (dashed line) while the desired larger particles move
diagonally. The former mode may be used for separation of platelets from RBCs
while the latter is usually employed for the separation of white blood cells from
RBCs.

displacement and zigzag modes separately. In section 4, we will show how the192

RBC volume fraction affects both operation modes.193

• Zigzag mode: As the name suggests, in the zigzag mode a cell follows194

a zigzag path through the device as it moves downstream (dashed line195

in Fig. 2). In this setup a single cell with a diameter smaller than the196

critical diameter travels along the flow streamlines, only moving around197

the pillars in order to compensate for the row shift. Thus, we expect the198

mean lateral displacement of the cell from its starting position to be zero199

at the outlet of a well designed DLD device. In order to achieve zero net200

displacement, a particle has to fall down to a lower lane (i.e. a diagonal201

along the pillars) every n = λ/d pillar encounters. This is nicely borne202

out in Fig. 2 (dashed line). For example, for a row shift d = 6.0µm and a203

centre-to-centre distance λ = 32µm, we find n = 32/6.0 ≈ 5.3.204

• Displacement mode: In the displacement mode the cell diameter is205

larger than the critical diameter. Therefore, the cell is laterally shifted206

at each pillar, along the array inclination, as it flows downstream in the207

device (solid line in Fig. 2). Ideally, a particle in the displacement mode208

always remains in one single lane. In contrast to the zigzag mode, in this209

setup a cell is forced to interact with a pillar at every subsequent column.210

The expected lateral displacement is the product of the row shift d and211

the number N of pillars crossed.212
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Figure 3: Considered parameter space. We have simulated three different row
shifts (d = 2.0, 4.4, 6.0µm), each at three capillary numbers (Ca = 0.2, 0.5,
1.0). Based on the results from [17], we know that three of those data points
lead to zigzag trajectories (circles) and the other six to displaced trajectories
(triangles) in the dilute limit. The solid line indicates the separation of zigzag
(above) and displaced trajectories (below), as identified in [17].

Zigzag is the natural state in a DLD device, displacement is not. On the213

one hand, fluid particles (e.g. water molecules) and other small particles always214

follow zigzag trajectories on average. Their mean lateral motion is not affected215

by the presence of the obstacles, as long as the pressure gradient is along the216

device horizontal. On the other hand, the displacement mode results from non-217

hydrodynamic volume exclusion effects forcing a sufficiently large particle to218

jump to another streamline at each obstacle.219

Based on our previous analysis [17], we know that the following parameters220

lead to zigzag trajectories of a single RBC: (d,Ca) = (4.4µm, 1.0), (6.0µm, 0.5)221

and (6.0µm, 1.0). All other simulated parameter combinations lead to displaced222

trajectories. These results are summarised in Fig. 3.223

In order to analyse the performance of the DLD devices upon an increase in224

volume fraction, we define four imaginary outlets of equal width for collecting225

the RBCs after the 100th encountered pillar (N = 100). This arbitrary number226

is a compromise between the desired statistics and simulation runtime consider-227

ations. The outlet layout in relation to the device geometry is shown in Fig. 4.228
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O2 (Z)

O3 (D)

O4 (D)
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1
0
0
d
+

3
λ

Figure 4: Definition of the DLD outlets. We define four imaginary equisized
outlets at x = 100λ (O1–O4). O1 and O2 are supposed to collect zigzag (Z)
cells, O3 and O4 displaced (D) cells. The total outlet width is 100d+ 3λ (d/λ =
0.1875 for this figure). Note that we have extended the outlet width below the
horizontal (dashed line) by 2λ since a few cells tend to be negatively displaced
(Fig. 6). The solid diagonal line indicates the trajectory of an ideally displaced
particle entering at the inlet (I) and staying in a single lane.

It is obvious that the total outlet width is different for different row shifts d229

at the 100th pillar. We track individual RBC trajectories and make sure that230

the simulations run until all cells have encountered at least 100 pillars (3.2 mm231

downstream distance).232

We emphasise that the above outlet definition is convenient for our analysis,233

but it does not necessarily reflect the requirements of a typical experiment.234

Real devices may have fewer or more outlets or outlets with different sizes or235

outlets after a different number of pillars. This, however, does not make our236

observations and conclusions any less relevant.237

4. Results and discussion238

We present our numerical results with a particular focus on the effect of239

the volume fraction Ht. After discussing the RBC trajectories in section 4.1,240

we introduce and analyse the failure event probabilities of RBCs (section 4.2).241

Finally, we investigate the spatial distribution of RBCs in the outlets of the242

DLD device (section 4.3).243

4.1. Cell trajectories244

Fig. 5 and Fig. 6 depict the RBC trajectories in the DLD device. We show245

representative data for two different volume fractions: Ht = 8.0% (3 simulated246

cells) in Fig. 5 and Ht = 45.6% (17 simulated cells), which is close to the247

physiological value, in Fig. 6. The x- and y-axes are normalised by the pillar-to-248

pillar distance λ so that the label on the x-axis indicates the number of pillars249
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Figure 5: Cell trajectories (different red shades for individual cells) for Ht =
8.0%. The black solid line indicates the inclination of the DLD lanes. Expected
operation modes are designated by D for displacement or Z for zigzag according
to Fig. 3. Both axes are normalised by the pillar-to-pillar distance λ. Note that
the x- and y-axes are not shown to scale.
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Figure 6: Cell trajectories (different red shades for individual cells) for Ht =
45.6%. The dashed line indicates the device horizontal. See Fig. 5 for further
explanations. Note that the x- and y-axes are not shown to scale.
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passed by the cells. Both figures consist of a set of subfigures with different row250

shifts (d = 2.0, 4.4, 6.0µm, varied row-wise) and different capillary numbers251

(Ca = 0.2, 1.0, varied column-wise). The expected operational mode (Z for252

zigzag or D for displacement, cf. Fig. 3) for a single RBC is marked in each253

subfigure. Small jumps along the y-axis indicate cells passing over and above a254

pillar. Sharp intermittent dips in negative y-direction show how cells pass below255

a pillar and fall down to another lane.256

From Fig. 5 and Fig. 6 we see that, except for d = 2.0µm at Ht = 8.0%,257

all RBCs fail to follow their designated trajectories: cells are neither in a pure258

displacement nor a pure zigzag mode. At Ht = 45.6%, the cells display a large259

scatter about their mean lateral position. Since cell scatter, which is caused260

by cell collisions, is not deterministic, it is an indicator for a reduced DLD261

predictability and efficiency. At the outlet (x/λ = 100), the maximum cell262

scatter is as large as ≈ 7λ for Ht = 45.6% (Fig. 6(c,e)), whereas for Ht = 8.0%263

the cell scatter is ≈ λ and therefore relatively small (Fig. 5).264

An increase in volume fraction results in cells deviating from their expected265

ideal mean trajectory that is followed by a single cell in the device under the266

same conditions. A DLD operation mode can be termed “robust” if most of the267

cells end up in their designated outlets and cellular separation can therefore be268

achieved. We obseve that, in the zigzag mode, the mean outlet cell position269

does not deviate more than ≈ 3λ from the initial position. Therefore, the zigzag270

mode is relatively robust upon an increase of volume fraction. However, the271

lateral mean position in displacement mode is far from the expected one and272

varies with d and Ca. This means that the displacement mode is not robust.273

Based on the phase space in Fig. 3, we expect the zigzag mode for Ht =274

45.6% with d = 4.4, 6.0µm and Ca = 1.0 (Fig. 6(d,f)). Indeed we observe only275

relatively small undesired lateral cell displacements. On average, these cells276

travel along near horizontal trajectories and could be collected within the first277

device outlet. This leaves device outlets farther away from the horizontal free278

for collection of larger sized particles (e.g. white blood cells).279

The situation is different for the expected displacement mode. In Fig. 6(a–280

c,e) we observe that the displacement mode deteriorates significantly with in-281

creased volume fraction. In fact, at Ht = 45.6%, the mean cell trajectory282
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direction is close to the horizontal. This would make it difficult to separate283

smaller particles (e.g. platelets) from a background of dense RBCs.284

4.2. Failure rates285

We define a failure as an event when a cell takes a“wrong turn”. For example,286

a failure in the displacement mode (displacement failure) means that a cell is287

not bumped up and changes the streamline but drops to a lower lane. Each288

failure is associated with a lateral displacement penalty. A displacement failure289

leads to a particle being located by λ lower than its expected lateral position,290

so −λ is the lateral penalty for a single displacement failure.291

The zigzag mode behaves differently because a particle on a zigzag trajec-292

tory experiences a number of displacement events followed by one zigzag event.293

Therefore, there are two different failure types in the zigzag mode: one where a294

cell is bumbed up once too often, the other when it falls to a lower lane once too295

often. In any case, each failure leads to an unexpected lateral cell displacement296

by about ±λ, so the penalty is the same, up to its sign, for all failure modes.297

The crucial point is that both zigzag failure modes tend to cancel each other298

because they lead to an unexpected displacement in different directions. One299

occurrence of the first failure mode compensates for one occurrence of the other300

failure mode. This is completely different for the displacement mode where301

cells can only drop to a lower lane, but we have never observed a cell jumping302

an entire lane up. Therefore, displacement failures always accumulate while303

zigzag failures can annihilate each other. This makes the displacement mode304

susceptible to a breakdown when the failure rate increases. Obviously, as shown305

in section 4.1, this happens for increasing volume fractions where cell collisions306

lead to less deterministic behaviour.307

Our observation suggests that the zigzag mode survives at higher volume308

fractions because both failure modes approximately cancel each other on aver-309

age. However, individual cells still behave differently. Some experience more310

failures with a +λ penalty, others more with a −λ penalty. This leads to the311

lateral cell scatter in the trajectory plots (Fig. 6(d,f)).312

4.2.1. Zigzag failure313

In order to quantify the effect of the device parameters on the cell trajec-314

tories, we define failure probabilities. Let ∆y be the lateral displacement error315
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for a cell in the zigzag mode at the N th column. This means that the cell is316

laterally displaced by ∆y compared to its expected position. A cell travelling317

on its expected trajectory obviously yields ∆y = 0. For cells moving too far up318

(positive y-direction) we get ∆y > 0, for those moving too far down we have319

∆y < 0.320

Introducing failure probabilities p+f,Z and p−f,Z for both zigzag failure modes321

(p+f,Z corresponds to an event where the cell is bumped above a pillar once too322

often, which leads to a positive lateral shift, while p−f,Z indicates that the cell323

falls down to a lower lane once too often), we can write324

∆y = Nλ
(
p+f,Z − p

−
f,Z

)
. (2)

This equation means that a cell may experience a failure at each of the N325

columns with probability p±f,Z. Each failure contributes with ±λ to the displace-326

ment ∆y as discussed in section 4.1. Note that both zigzag failure modes tend327

to cancel each other, so only the net failure probability pf,Z = p+f,Z − p
−
f,Z will328

affect the final lateral cell position. The probability pf,Z is a measure of the329

intrinsic failure mechanism for a given device under the given flow conditions330

(Ca, Ht).331

In the zigzag mode, let Nup and Ndn be the number of times a cell chooses332

to move above or below a pillar obstacle encountered in the flow. Furthermore,333

let N0
up and N0

dn be the number of times a single cell would flow above or below334

a pillar obstacle in an ideal zigzag mode. It is clear that the total number of335

events equals the number N of pillars encountered in any case:336

N = N0
dn +N0

up = Ndn +Nup. (3)

Furthermore, we know from the zigzag design requirements that337

N0
dn

N
=
d

λ
=

1

n
, (4)

where n is the period for the row shift of the device. The last equation reflects338

the fact that on average a cell on a perfect zigzag trajectory does not have a339

lateral net displacement. In other words, the ratio of N0
dn to N0

up is uniquely340

determined by the device geometry (d and λ).341

In practice, we calculate the net zigzag failure probability pf,Z for each indi-342

vidual cell via eq. (2) and the observed values for ∆y at x = 100λ (N = 100).343
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Figure 7: Zigzag failure probability pf,Z as function of the volume fraction Ht
for different parameters d and Ca. Error bars indicate the standard deviation
obtained from the cell ensemble in each simulation. Data points are slightly
shifted along the Ht-axis to avoid overlap of error bars. Lines connecting the
data points are guides for the eyes.

This allows us to compute the average and variance over all the cells in a par-344

ticular simulation. In terms of number of events, we can also write345

pf,Z =
N0

dn −Ndn

N
=
Nup −N0

up

N
. (5)

Fig. 7 depicts the average zigzag failure probability pf,Z as function of Ht346

for various parameters (d, Ca). The error bars in Fig. 7 show the standard347

deviation as obtained from the cell ensemble and therefore represent the cell348

scatter at the outlet. We see that the net failure probability pf,Z is small and349

remains below 3% for all investigated data points. We also observe that the350

failure probability increases sharply with a small increase in the volume fraction351

and then, with further increase in Ht, drops to a near constant value at high352

volume fractions. This underlines the relative stability of the zigzag mode at353

high volume fractions.354

The reason for this stability is that at higher volume fractions the RBCs355

tend to occupy most of the operational volume in the device. Their behaviour356

is therefore akin to the fluid molecules flowing through the device, which is the357

natural state for a DLD device. The relatively densely packed RBCs therefore358

tend to follow the natural division of streamlines.359

The standard deviation of pf,Z is seen to increase with Ht. This is probably360

due to the related increase of the collision rate between cells. For a practical361
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device this suggests the requirement for an outlet with greater width for RBC362

collection.363

Cell collisions tend to make the system less deterministic. We expect that364

systems with parameters (d,Ca) close to the separation line in Fig. 3 are less365

robust upon an increase of Ht than those systems which are farther away from366

the separation line. Indeed, from Fig. 7 we see that the data point (d = 6.0µm,367

Ca = 1.0) leads to a lower failure rate than the other two data points which368

are closer to the separation line in Fig. 3. This interpretation will be again369

corroborated in section 4.2.2. We conclude that, at larger volume fractions370

and therefore lower determinacy, there is no longer a sharp separation between371

displacement and zigzag modes. Therefore, the critical separation line loses its372

original meaning and can only be used as a reference.373

4.2.2. Displacement failure374

For a single cell in an ideal displacement mode, all pillar encounters lead to375

a bumping event and we have N0
dn = 0 and N0

up = N . Therefore, there cannot376

be more bumping events as ideally expected, so p+f,D = 0. This means that377

there is only one failure mode and only one corresponding failure probability378

pf,D = p−f,D. We can write the displacement error with respect to the expected379

lateral position as380

∆y = −Nλpf,D. (6)

Note the minus sign indicating that a displacement failure always leads to a381

downward motion, toward the horizontal. This can also be written in terms of382

events as383

pf,D =
N0

up −Nup

N
=
Ndn −N0

dn

N
=
Ndn

N
. (7)

As for the zigzag mode, we compute the displacement failure probability for384

individual cells, which gives us access to the mean and standard deviation of385

the cell ensemble.386

In Fig. 8 the average displacement failure probabilities are plotted as func-387

tion of Ht for different combinations of d and Ca. In addition, the limiting388

displacement failure probability p∞f,D for each row shift d is shown as a hori-389

zontal line. p∞f,D corresponds to the case where the cells effectively move along390

the horizontal and is given by p∞f,D = d/λ. This is equivalent to the complete391
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Figure 8: Displacement failure probability pf,D as function of the volume frac-
tion Ht for different parameters d and Ca. Error bars indicate the standard
deviation obtained from the cell ensemble in each simulation. Lines connecting
the data points are guides for the eyes. The horizontal lines indicate the lim-
iting displacement failure probability p∞f,D = d/λ for each value of d (solid for
d = 2.0µm, dashed for d = 4.4µm and dotted for d = 6.0µm).

breakdown of the displacement mode and obviously the worst-case scenario for392

a DLD device intended to be run in displacement mode.393

From Fig. 8 we see that pf,D increases monotonically with Ht for all com-394

binations of d and Ca and asymptotically approaches p∞f,D. The highest failure395

rate is observed at the maximum haematocrit value studied (Ht = 45.6%). In396

this scenario, we find RBCs nearly everywhere in the DLD device. As explained397

in the previous section, under these circumstances, the cellular flow closely re-398

sembles the behaviour of a continuum fluid in the device. When the cells become399

densely packed, not all of them can undergo displacement at every pillar crossed.400

Every cell missing a displacement event increases the failure probability. There-401

fore, at high volume fractions, the cells tend to approach the horizontal and402

move on near-zigzag trajectories, which in turn leads to the breakdown of the403

displacement mode.404

At lower volume fractions (Fig. 8), Ca has a significant effect on pf,D for405

fixed d. In contrast, at higher volume fractions, the probability pf,D converges406

for various Ca-values at given row shifts d. Therefore, at high volume fractions,407

the failure probability is no longer a function of Ca. This shows that effects due408

to dense cell packing become more important than cell deformability.409
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Generally, the variation of pf,D with d and Ca can be correlated with the410

distance of the (d, Ca) point from the critical separation line in Fig. 3. For the411

zigzag case in section 4.2.1, we found that points closer to the critical separation412

line have higher values of pf,Z. Here, for the displacement mode, the same413

argument holds, as long as pf,D is normalised by its asymptotical value p∞f,D. This414

indicates again that those systems which are closer to the critical separation line415

are less robust upon an increase of Ht.416

We also see from Fig. 8 that the failure probability pf,D increases with d at all417

volume fractions. Therefore, we postulate that failure events in the displacement418

mode generally become rarer with decrease in row shift d. Why is this the419

case? For larger values of d, the critical particle separation radius becomes420

larger (cf. Tab. 1). Therefore, there are more particles in the device that are421

potentially close to the streamlines passing below the next pillar. This means422

that more particles can accidentally be pushed by neighbouring particles onto423

such a streamline and subsequently fall down to a lower lane.424

It is misleading to claim that a smaller value of d will make DLD devices425

more robust, though. DLD devices with small d are typically longer, i.e. N is426

larger. This is so because at small d a particle has to be displaced many times in427

order to achieve a significant lateral displacement at the outlet. We can assume428

that the required N for separation typically scales with 1/d. It is important to429

note that the relevant failure indicator is the product pf,DN . If N grows faster430

than pf,D decreases upon decreasing d, the device will not be more robust in431

the end. Therefore, a design criterion for an improved DLD device operating at432

large Ht is to reduce the product pf,DN .433

4.3. Outlet distributions434

The failure probabilities by themselves do not present a complete picture of435

the effectiveness of the device. To reveal the robustness of the device we count436

the number of cells in each of the four outlets (cf. section 2.3) and show the437

cell count histograms in Fig. 9. We present the histograms for Ht = 16.1% and438

45.6% at d = 0.2, 4.4, 6.0µm and Ca = 0.2, 1.0. For the sake of a simpler439

comparison, the histograms are normalised by the maximum outlet width and440

the total number of cells collected at the outlets.441

We consider the DLD device as robust if all cells supposed to travel on442
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Figure 9: Histograms of RBC outlet distributions for various control parame-
ters. The row shift assumes the values d = 2.0µm (left column), d = 4.4µm
(middle column) and d = 6.0µm (right column). The first and second rows show
the results for Ca = 0.2, the third and fourth rows the results for Ca = 1.0. The
volume fraction is Ht = 16.1% (first and third rows) and Ht = 45.6% (second
and fourth rows). The expected operation mode is indicated (D for displace-
ment or Z for zigzag, cf. Fig. 3). The inlet position relative to the total outlet
width is marked as a black box at the bottom of each histogram (cf. Fig. 4).
Outlets 1 and 2 are supposed to collect zigzag cells, outlets 3 and 4 displaced
cells. Slanted hatching with green colour indicates successful and red-coloured
vertical hatching erroneous collection of cells into their expected outlets.
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zigzag trajectories are collected in outlets 1 and 2, whereas all cells expected to443

be displaced are collected in outlets 3 and 4. This definition would still allow for444

successful separation of particles in a real-world device. Note that the values of445

d and Ca already decide whether the cells are supposed to be displaced or not446

(cf. Fig. 3).447

We observe that, for the zigzag mode at Ht = 16.1% (Fig. 9(h,i)), all RBCs448

are collected in their designated outlets 1 and 2. When we increase the volume449

fraction to Ht = 45.6% (Fig. 9(k,l)), still all cells end up in the expected outlets450

1 and 2. This may allow for larger particles to be displaced into outlets 3 and451

4 from a background of RBCs even at high volume fractions.452

However, the RBCs in the displacement mode reveal a different picture.453

In Fig. 9(a,b,g), at Ht = 16.1%, (nearly) all RBCs are displaced into their454

designated outlets. But, when the row shift d is increased to 6.0µm, there is455

total failure to obtain RBCs in outlets 3 and 4 (Fig. 9(c)) even at rather dilute456

16.1% volume fraction. With an increase in the volume fraction to 45.6%, we457

get about 50% correctly collected RBCs at a low row shift, d = 2.0µm. This458

deteriorates quickly when d is increased, with all cells collected in the zigzag459

outlets (1 and 2) at d = 4.4 and 6.0µm (Fig. 9(e,f)).460

This evidence corroborates our postulate that a DLD device lends relatively461

easily to separation of larger particles (such as white blood cells) from a back-462

ground of RBCs designated to be in the zigzag mode. However, it will be more463

difficult to achieve efficient separation at high volume fractions when the RBCs464

are expected to be the displaced particle species in order to separate smaller465

particles (such as platelets).466

Fig. 8 and Fig. 9 suggest that already small volume fractions, around 10%,467

can significantly spoil the displacement mode efficiency, at least for larger val-468

ues of d. The large displacement failure probability pf,D is the reason for this469

behaviour. Since pf,D is governed by cell collisions which reduce the determi-470

nacy of the device, we believe that this problem is not specific to the considered471

device geometry and particle type (RBCs). It is rather a general problem for472

all devices which rely on some kind of deterministic displacement of any type of473

particles (not only RBCs) interacting with obstacles. We therefore expect that474

most DLD devices will not work reliably at large particle volume fractions.475
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Inglis et al. [33] experimentally observed a decreasing white blood cell en-476

richment efficiency with increasing haematocrit in a DLD device (see Fig. 6 in477

[33]). Apart from this result, we did not find discussions of the haematocrit478

effect on the separation efficiency of blood components in the literature.479

It is an open question how to keep the advantages of a DLD device (determin-480

istic displacement of large particles) and at the same time avoid displacement481

failures caused by non-deterministic particle collisions. Therefore, a key re-482

quirement for more robust DLD devices is to reduce the displacement failure483

probability pf,D at larger volume fractions. This may be achieved by optimising484

the pillar shape or the size of the gaps between the pillars. We believe that DLD485

devices will not be suitable for suspensions with high volume fractions (above486

about 10–20%) before this problem is solved.487

5. Summary and conclusions488

Deterministic lateral displacement (DLD) devices are commonly used in mi-489

crofluidics to separate particles based on their size or deformability, e.g. cells in490

whole blood. Depending on its size, a particle experiences one of two possible491

trajectory modes in a DLD device: “zigzag”, where a small particle follows the492

fluid streamlines on average, and “displacement”, where larger particles bump493

into obstacles in the flow and are forced on displaced trajectories. However,494

DLD devices are designed for the treatment of relatively dilute suspensions.495

In the present work, we examine the effect of red blood cell (RBC) volume496

fraction (haematocrit Ht) on the performance of a DLD device via 3D simu-497

lations based on the immersed-boundary, lattice-Boltzmann and finite-element498

methods. In order to quantify failure in each mode, we analyse displacement499

and zigzag failure probabilities. A failure event denotes a cell encounter with a500

DLD obstacle which leads to a“wrong”outcome, i.e. the cell moves in a different501

lateral direction than expected for a dilute suspension in the same device geome-502

try. We find that the mean and standard deviations of these failure probabilities503

are significant performance indicators for a DLD device.504

Our main observation is that the displacement mode breaks down upon an505

increase of the RBC volume fraction, caused by large failure probabilities. At506

the same time, the zigzag mode shows relatively few failure events and is more507

23



robust at higher volume fraction. We find that, in contrast to the displacement508

failure, the mean zigzag failure probability seems largely independent of the509

haematocrit. This difference stems from the fact that, in the zigzag mode, a510

cell suffers from two failure modes which tend to cancel each other. In the511

displacement mode, however, there exists only one failure mode whose effect512

accumulates over time.513

Furthermore, we investigate at which lateral position the simulated RBCs514

are found when they reach the end of the device. We define four outlet bins515

and analyse the cell count in each outlet. We observe that RBCs expected in516

the zigzag mode are essentially collected in the designated zigzag outlets, while517

RBCs meant to travel on displacement trajectories fail to be collected in dis-518

placement outlets at volume fractions above about 10–20%. As a consequence,519

it seems to be easier to separate larger particles (e.g. white blood cells) from a520

dense RBC background than smaller particles (e.g. platelets) from RBCs.521

The essential reason for the breakdown of the displacement mode at larger522

Ht is that DLD devices rely on deterministic processes while particle collisions523

in dense suspensions are intrinsically non-deterministic. We therefore believe524

that our results are not a peculiarity of the specific DLD geometry and choice525

of red blood cells studied here, but that basically all separation devices relying526

on deterministic displacement would suffer from any dense suspension effects.527

This would make it difficult, if not impossible, to separate dense suspensions in528

DLD devices without prior diluting.529

The key for future applications of the DLD technique for dense suspensions,530

blood in particular, is to understand how the failure probabilities are affected531

by particle collisions and how this effect may be reduced, e.g. by novel obstacle532

shapes.533
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