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Performance Analysis of Cloud Radio Access
Networks with Distributed Multiple Antenna

Remote Radio Heads
F. A. Khan, H. HeStudent Member, IEEE, J. XueMember, IEEEand T. RatnarajahSenior Member, IEEE

Abstract—In this paper, the performance of cloud radio access
networks (CRANs) where spatially distributed remote radio
heads (RRHs) aid the macro base station (MBS) in transmission
is analysed. In order to reflect a realistic scenario, the MBSand
the RRHs are assumed to be equipped with multiple antennas
and distributed according to a Poisson point process. Both,
the MBS and the RRHs, are assumed to employ maximal
ratio transmission (MRT) or transmit antenna selection (TAS).
Considering downlink transmission, the outage performance of
three schemes is studied; first is the selection transmission (ST)
scheme, in which the MBS or the RRH with the best channel
is selected for transmission. In the second scheme, all the RRHs
participate (ARP) and transmit the signal to the user, whereas
in the third scheme, a minimal number of RRHs, to attain
a desired data-rate, participate in transmission (MRP). Exact
closed-form expression for the outage probability is derived for
the ST scheme. For the ARP and MRP schemes, analytical
approximations of the outage probability are derived which are
tight at high signal-to-noise ratios. In addition, for the MRP
scheme, the minimal number of RRHs required to meet a target
data rate is also calculated which can be useful in characterizing
the system complexity. Furthermore, the derived expressions
are validated through numerical simulation. It is shown that
the average diversity gains of these schemes are independent
of the intensity/number of RRHs and only depend on the
number of antennas on the MBS. Furthermore, the ARP scheme
outperforms the ST scheme when the MBS/RRHs transmit with
maximum power. However, in case of a sum power constraint
and equal power allocation, the ST scheme outperforms the ARP
scheme.

Index Terms—Cloud radio access networks, maximum ratio
transmission, MISO, Poisson point process, stochastic geometry,
transmit antenna selection.

I. INTRODUCTION

Cell densification is one of the key technologies proposed to
improve the capacity and area spectral efficiency of existing
networks [1]. A major drawback of increasing the cell/base
station (BS) density is that the overall interference in the
network also increases resulting in a limited capacity gain[2],
[3]. In addition, deploying more BSs is neither cost efficient
nor power efficient [4].

Copyright (c) 2015 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.
F. A. Khan, H. He, J. Xue and T. Ratnarajah are with the School of
Engineering, University of Edinburgh, Edinburgh, UK. Email: {F.Khan, H.He,
J.Xue, T.Ratnarajah}@ed.ac.uk. The corresponding authors are Fahd Ahmed
Khan (fahd.khan@kaust.edu.sa) and Jiang Xue (J.Xue@ed.ac.uk). This work
was supported by the Seventh Framework Programme for Research of the
European Commission under grant number HARP-318489.

Cloud radio access networks (CRANs) have been proposed
as a low-cost and power-efficient solution to meet the increas-
ing capacity demand. In the existing networks, the baseband
units (BBUs), which consume high power, and the radio units
are situated together. The idea in CRANs is to move the
BBUs to a central location/data centre and connect it to the
radio units, also called remote radio heads (RRHs), via optical
fibres [4]. Moving the BBUs to a central location results in
improved power efficiency. In addition, the cost of network
expansion is lowered because only low cost RRHs/BSs need
to be deployed for improving the coverage as well as the
capacity of the network. Furthermore, it has been shown that
through coordinated multipoint processing (CoMP), the overall
interference can be limited. CoMP is very efficient when all
the RRHs are connected with each other and possess the data
information of each other [1], [5]. CoMP can easily be adopted
in CRANs, to reduce the interference and improve the network
capacity.

A. Existing Relevant Work:

When each of the RRH has a single antenna, the CRAN
model becomes similar to the distributed antenna system
(DAS). There have been several studies to analyse the per-
formance of the DAS see [6]–[9] and the references therein.
In [7] it was shown that the average spectrum efficiency per
sector and the cell edge spectrum efficiency in the traditional
system with co-located BS antennas (TS-CBA) is better than
that of a DAS without frequency reuse. However, when the
frequency reuse is considered the DAS outperforms TS-CBA.
In [6], it was shown that DAS reduces inter-cell interference
in a multicell environment and significantly improves capacity
particularly in case of the users near the cell boundaries. In
[8], the cell average ergodic capacity for a DAS in a composite
fading channel model was analysed. An antenna selection
strategy to maximize the energy efficiency under a pre-defined
target rate constraint was proposed in [9]. In [10], it was
shown that, for a CRAN with distributed RRHs with multiple
antennas, the optimal distributed beamforming scheme had a
form of maximum ratio transmission (MRT) at each RRH and
the outage probability and ergodic capacity under Rayleigh
fading channels was also analyzed. A joint strategy to select
the antenna, the regularization factor, and the transmit power
to maximize the average weighted sum-rate was proposed in
[11].

In these previous works, the RRHs were assigned fixed
regular locations. However, in many practical situations,this
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is difficult to do so and the RRHs are located randomly [12]–
[17]. When the RRHs are assumed to be randomly placed, it
can give a reasonable lower bound on the performance of an
actual system. In [12], the authors proposed a low-complexity
power allocation scheme among the distributed transmit an-
tennas. In [13], the antennas were distributed according toa
binomial point process, the users were distributed according
to a Poisson point process (PPP) and a composite fading
channel model was assumed. The authors derived analytical
expressions for the outage performance of only selection trans-
mission, where the antenna with the best channel was selected
to serve the user, under different scenarios. It was shown in
[14], that the DAS yields a higher capacity gain compared
to the TS-CBA, provided the channel state information (CSI)
is available at the transmitter and the receiver. The ergodic
capacity of a multi-cell distributed RRH system, where the
RRH locations were modelled as a spatial PPP was studied in
[15], and it was shown that this system provides better cell-
edge performance and can even provide higher capacity in a
user-centric configuration. In [16], the RRHs were distributed
according to a PPP and a Rayleigh fading channel with a
standard path loss model was assumed. Different from the
work in [12], the outage performance of selection transmission
scheme, in which the macro BS (MBS) or the RRH with the
best channel is selected for transmission, was compared to the
scheme where all the RRHs employ distributed beamforming
and aid in transmission [16]. In addition, the minimal number
of RRHs required to meet a predefined quality of service (QoS)
was also studied. In [17], it was shown that the uplink sum
capacity increases as a result of reduction in the inter-cell
interference of a DAS.

B. Our Contribution:

In [12]–[17], the RRHs were assumed to be equipped with
a single antenna. However, in the proposed CRAN model,
the RRHs will be equipped with multiple antennas. Therefore,
different from the models in [12]–[17], in this work, a more
general and realistic scenario is considered, and we analyze
the performance of a network where several multiple antenna
RRHs are distributed randomly (according to a PPP) over
a circular region and serve the user along with a multiple
antenna macro base station (MBS). To the authors best knowl-
edge, for this network setup, the performance of a CRAN
with multiple antenna RRHs has not been analysed previously.
Having multiple antennas at the MBS and RRHs leads to a new
and more involved analysis compared to the one presented in
[12]–[17] because the distribution of the signal-to-noiseratio
(SNR) from the RRHs to the users is no longer an exponential
distribution1. In addition, in [16] the path loss coefficient was

1The distribution of the large-scale fading gain (LSFG) and the small-
scale fading gain (SSFG) in the case of multiple antenna systems is well
known. Themethodto obtain the distribution of the received SNR using the
distributions of the LSFG and the SSFG is also straightforward and comes
from basic probability theory and has been reported in many existing works eg
see [12], [13], [16], [18] and references therein. However,to the authors best
knowledge, even with the known fading distributions and theanalysis method,
the distribution of the received SNR from the multiple antenna RRHs to the
users has not been reported previously. Moreover, it is morechallenging to
obtain the performance expressions for the transmission schemes considered
in this work using the derived distribution of the received SNR.

fixed to 2. However, in this work, the performance is analysed
for arbitrary value of the path loss coefficient which also
results in a more involved analysis.

The performance of this network is studied under the sce-
nario when the MBS and the RRHs have varying complexity.
Specifically, two levels of complexity are considered. The
MBS and RRHs with higher complexity consist of multiple
radio frequency (RF) chains and employ maximum-ratio-
transmission (MRT) whereas the MBS and RRHs with lower
complexity consist of a single RF chain and employ transmit
antenna selection (TAS). Furthermore, three different transmis-
sion schemes are considered; 1) the MBS or the RRH with the
best channel participates in transmission, also called selection
transmission (ST), 2) all the RRHs participate (ARP) and aid
the MBS in transmission and 3) minimal number of RRHs to
attain a desired data-rate participate in transmission (MRP).
Employing more RRHs results in a higher cost in terms of
higher power expenditure and requires more control and data
processing for synchronizing the transmissions. Therefore,
MRT can help improve the power efficiency and reduce the
overhead compared to ARP scheme as was also discussed in
[9], [16]. From among the three schemes considered, ST has
the lowest cost and ARP has the highest cost.

The performance of these schemes is analysed in terms
of outage probability. Exact closed-form expression for the
outage probability is derived for the ST scheme, whereas, a
tight approximation of the outage probability at high signal-
to-noise ratio is obtained for the ARP scheme. In the worst
case scenario, the MRP scheme becomes the same as the ARP
scheme and therefore it has the same outage probability as the
ARP scheme. In addition, in order to quantify the complexity
of the MRP scheme, we also analyze and obtain expressions
for the minimum number of RRHs required to achieve a
certain QoS. These expressions are obtained for two cases,
one in which the RRHs have fixed transmit power and the
other in which the RRHs can adapt power and compensate
the pathloss. Furthermore, the derived expressions are verified
through numerical simulations. Our simulation results show
the effective trade-off between number of RRHs and number
of antennas at each RRH. For example, considering the ARP
scheme with MRT, increasing the number of antennas at
each RRHs is more effective than employing more RRHs, as
increasing the number of RRHs results in a lower transmit
power at the MBS/RRHs and a lower coding gain. In addition,
it is also shown that at high SNR regime, ST, ARP and MRP
achieve a diversity ordermT , wheremT is the number of
antennas at the MBS, and this diversity order does not depend
on the number/intensity of the RRHs.

The rest of the paper is organized as follows. The system
model is explained in section II. The statistics of the channel
used in the performance analysis of each scheme are derived
in Section III. The analytical expressions for the outage perfor-
mance for the ST and ARP schemes as well as the complexity
analysis of the MRP scheme is presented in Section IV. The
numerical results are presented in Section V. Finally, the main
results are summarized in the concluding Section VI.
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Fig. 1. System model

II. SYSTEM MODEL

Consider a network shown in Fig 1, where a user is being
served by a central intelligence unit (can also be termed as
a macro-cell base station (MBS)), at a distanceR from the
user, and a group ofN RRHs distributed randomly over a
circular regionD, of radius R, around the user location2.
The MBS is equipped withmT antennas whereas each RRH
has nT antennas. It is assumed that the location of the
RRHs obey a homogeneous Poisson point process (PPP) with
intensity λRRH , therefore,N , is Poisson distributed, i.e.,
Pr{N RRH in DiscD}= αN

Γ(N+1)
e−α whereα = πR2λRRH .

The channel vector between then-th RRH and the user
U can be written asgn = [gn,1...gn,nT

]
T , wheregn,t is the

channel gain between thet-th antenna ofn-th RRH and the
user,(·)T denotes the transpose operator. Assuming Rayleigh
fading channelgn,t ∼ CN (0, µ) where CN (x, y) denotes
complex Gaussian random variable (RV) with meanx and
variancey and µ denotes the mean power of the channel.
Similarly, the channel between the user and the MBS is
denoted asg0, whereg0 = [g0,1...g0,mT

]
T . The distance of the

n-th RRH from the centre is denoted bydn. As the locations
of the RRHs are random,dn is a RV with distribution

fdn (x) =
2x

R2
; 0 ≤ x ≤ R. (1)

Transmission Schemes:
For the system under consideration, three transmission

schemes are studied, namely; 1) selection transmission (ST),
2) all the RRHs participate (ARP) and 3) minimal number of
RRHs participate (MRP). In ST, the MBS or the RRH with
the best channel is selected for transmission whereas in ARP,
all the RRHs transmit to the user3. The ST scheme has lower

2In our analysis, we condition on the location of the user. TheMBS at a
distanceR and the RRHs within a distanceR from the user, serve the user.
In this model, if the user is displaced and comes closer to theMBS, it implies
thatR will reduce. As a result the area of the circular region will also reduce.
The converse is also valid. The distribution of the distanceof the user from
the RRHs depends onR and thus, it will change whenR changes.

3In both these schemes, the MBS also participates in transmission. The
performance expressions derived in this paper are derived for this scenario.
The performance expressions for the scenario in which the MBS does not
transmit, can easily be obtained by substitutingmT = 0 in the derived
expressions.

overhead compared to the ARP scheme as it does not require
coordination among the RRHs. However, this lower overhead
is possible at the cost of some performance loss as will be
discussed later.

Using all RRHs in the ARP scheme provides the optimal
reception reliability but at the price of increasing system
complexity. However, in some instances, optimal performance
is not always needed and only a certain data-rate requirement
is to be satisfied. In such cases, it is possible to achieve
the pre-defined data-rate using only a subset of the available
RRHs [9]. Using a minimal number of RRHs is beneficial
as it yields a practical scheme with reduced complexity and
ensuring desired system performance. Thus, in MRP scheme,
the minimal number of RRHs required to meet a pre-defined
data rate are used for transmission. In addition, in case of all
these schemes, it is assumed that the multiple antenna MBS
and RRHs employ MRT or TAS for transmission of the signal.

In this sequel we analyse the performance of these trans-
mission schemes in terms of outage probability. In the next
section, we derive the required statistics of the channel for
analysing the outage probability.

III. F INDING STATISTICS OF THECHANNEL

A. Statistics of SNR for MRT

When MRT is employed at the MBS and the RRHs, the
received signal-to-noise ratio (SNR) from then-th RRH to
the user can be given as [16]

γn =
P

N0

(

1

1 + dv
n

)

‖gn‖
2 (2)

whereP is the transmit power at the MBS and each RRH,
N0 denotes the noise power at the user, termδn = (1 + dvn)
denotes the pathloss,v is the path loss coefficient, and‖·‖
denotes the 2-norm4. WhenN RRHs transmit using MRT, the
overall SNR at the user is given as

γ =
N
∑

n=1

γn =
P

N0

N
∑

n=1

(

1

1 + dv
n

)

‖gn‖
2
. (3)

Similarly, the SNR of the MBS can be given as [16]

γ0 =
P

N0

(

1

1 + Rv

)

‖g0‖
2
. (4)

When the MBS and theN RRHs transmit using MRT, the
overall SNR at the user is given as

γMBS =

N
∑

n=0

γn =
P

N0

N
∑

n=0

(

1

1 + dv
n

)

‖gn‖
2
= γ0 + γ (5)

whered0 = R. In order to analyse the performance of this
scheme, the statistics ofγMBS andγ, such as the cumulative
distribution function (CDF) and the probability distribution
function (PDF), are required. For deriving the statistics of
γMBS andγ, the statistics ofγn are required. Therefore, the
CDF γn is given by following Proposition.

4In deriving (2), it is assumed that the transmitted signal vector is

x = P
g
H
n

|gn|
s, wheres is the transmitted symbol having mean zero and unit

variance. Therefore, the average transmit power isE[‖x‖2] = P , whereE[·]
is the expectation operator. Moreover, in this paper, it is assumed that the
MBS and the RRHs employ equal power allocation and, therefore, transmit
with the same powerP .
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Fγn (Φ) = 1 −

nT −1
∑

i=0

i
∑

j=0

(i

j

) 2

Γ (i + 1) vR2
e
−

N0Φ
Pµ

(

N0Φ

Pµ

)i−
(

j+ 2
v

)

ζ

(

j +
2

v
,
N0Φ

Pµ
R

v

)

(6)

Proposition 1. When all the RRHs transmit using MRT, the
CDF of the SNR of then-th RRH received at the user, denoted
by γn, is given in(6).

Proof: See Appendix A.
The CDF in (6) is obtained in closed-form and is given

in terms of incomplete Gamma function which can be easily
evaluated using existing mathematical packages. In addition,
the obtained CDF is valid for arbitrary value of the pathloss
exponent,v, unlike [16] in which the pathloss exponent was
assumed fixed i.e.v = 2. Therefore, this expression in (6)
is more general and the CDF for the scenario considered in
[16] can be obtained by substitutingnT = 1 and v = 2. By
substituting,Φ = 2R − 1 in (6), whereR denotes the data-
rate, the outage probability for then-th RRH can be obtained.
Furthermore, the PDF of the SNR can be easily obtained by
taking the derivative of (6) w.r.t.Φ.5

It is not trivial to obtain the statistics ofγ using the CDF
derived in (6). Therefore, we derive an approximation of the
CDF of γn, using which one can obtain the statistics ofγ. The
approximate CDF ofγn is given in following Proposition.

Proposition 2. When all the RRHs transmit using MRT, the
CDF of the SNR of then-th RRH received at the user, denoted
by γn, can be approximated as

Fγn (Φ) ≈

K
∑

p=0

Ξp

(

N0Φ

Pµ

)nT +p

(7)

where the infinite series is truncated toK + 1
terms, K is any positive integer and Ξp =
∑nT−1

i=0

∑i
j=0

∑

u=l+k=nT +p−i

2(ij)(−1)u+1(Rv)k+i

v(k+j+ 2
v )Γ(i+1)Γ(l+1)Γ(k+1)

.

Proof: See Appendix B.
It can be noted that the CDF in (7) is a polynomial function

and has been limited toK + 1 terms. AsK → ∞, the
approximation becomes closer to the exact CDF given in
(6). Furthermore, this approximation in (7) is tight at high
SNRs6. Our simulation results show that even for,K ≤ 10, the
simulation results match the analytical results at high SNRs.
Moreover, the approximate PDF of the SNR can be easily
obtained by taking the derivative of (7) w.r.t.Φ. In addition,
using (7), the approximate CDF ofγ can be derived and is
given in following Proposition.

5Note that using the CDF and PDF expressions derived in this work, the
expressions for the moment-generating-function (MGF) of the SNR as well
as symbol error rate (SER) performance can be obtained for the system under
consideration. However, it is omitted due to space limitation.

6High SNR implies thatz = N0Φ

Pµ
is very small i.e.z ≈ 0. The CDF in

(7), Fγn (Φ) ≈
∑K

p=0 Ξp (z)nT +p, is thus, a summation of powers ofz.
Whenz is very small, eg. in the high SNR regime, it implieszb ≪ za ≤ z

wherea and b are any positive integers andb > a. Therefore, in this case,
the summation result is only influenced by lower powers and the terms with
higher powers have minimal contribution and can be neglected. Therefore, the
CDF in (7) approximates the CDF at high SNR accurately. However, at low
SNRs, i.e. largez, this approximation might not be accurate.

Proposition 3. WhenN RRHs transmit using MRT, the CDF
of the overall SNR received at the user, denoted byγ, can be
approximated as

Fγ (Φ) ≈
∑

IN

κIN

Γ
(

NnT + ξIN + 1
)

(

N0Φ

Pµ

)NnT +ξIN (8)

where
∑

IN
is shorthand notation of

∑K
i1=0

∑K
i2=0 ...

∑K
iN=0

and ξIN =
∑N

l=1 il andκIN =
∏N

l=1 ΞilΓ (nT + il + 1).

Proof: See Appendix C.
The approximation given in (8) closely approximates the

exact CDF at high SNRs. The CDF is in form of a polynomial
function and can be easily implemented in existing mathe-
matical packages. For a CRAN system withN participating
RRHs, the CDF in (8) can be used to obtain the approximate
outage probability. By substituting,Φ = 2R − 1 in (8), the
approximate outage probability at the user can be obtained
whenN RRHs transmit using MRT. The approximate PDF of
γ can be easily obtained by taking the derivative of (8) w.r.t.
Φ.

Diversity Order: (8) is in form of a polynomial function
and at high SNRs, it can be approximated by its lowest order
term, which is obtained by takingξIN = 0 and (8) can be
approximated as

Fγ (Φ) ≈ F
∞
γ (Φ) =

(Ξ0Γ (nT + 1))N

Γ (NnT + 1)

(

N0Φ

Pµ

)NnT

. (9)

Using (9), it can be easily shown that the diversity gain7

achieved whenN RRHs transmit using MRT isNnT . When
N is a RV, the diversity gain is different as will be shown in
Section IV.

B. Statistics of SNR for TAS

In case of TAS, the MBS and the RRHs transmit using the
antenna providing the highest SNR. The SNR from then-th
RRH can be given as

Υn =
P

N0

max
t

{(

1

1 + dv
n

)

|gn,t|
2

}

(10)

where1 ≤ t ≤ nT . WhenN RRHs transmit using the best
antenna, the overall SNR at the user is given as

Υ =
P

N0

N
∑

n=1

{

max
t

{(

1

1 + dv
n

)

|gn,t|
2

}}

. (11)

Similarly, the SNR of the MBS can be given as [16]

Υ0 =
P

N0
max

t

{(

1

1 + Rv

)

|g0,t|
2

}

. (12)

When the MBS andN RRHs transmit after selecting the best
antenna, the overall SNR at the user is given as

ΥMBS =
P

N0

N
∑

n=0

{

max
t

{(

1

1 + dv
n

)

|gn,t|
2

}}

= Υ0 + Υ (13)

7Diversity gain can be obtained asd = limN0
P

→0

log
(

F
(

N0
P

))

log
(

N0
P

) where

F (·) denotes the CDF.
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whered0 = R. Similar to the case of MRT, in order to analyse
the performance of this scheme, the statistics ofΥMBS and
Υ, such as the CDF and PDF, are required. For deriving the
statistics ofΥMBS andΥ, the statistics ofΥn are required.
Therefore, the CDF ofΥn is obtained and is given in following
Proposition.

Proposition 4. When all the RRHs transmit using TAS, the
CDF of the SNR of then-th RRH received at the user, denoted
by Υn, is given in(14).

Proof: See Appendix D.
Similar to the expression in case of MRT, the CDF in (14)

is obtained in closed-form and is given in terms of incomplete
Gamma function which can be easily evaluated using existing
mathematical packages. In addition, the obtained CDF is valid
for arbitrary value of the pathloss exponent,v. By substituting,
Φ = 2R − 1 in (14) the outage probability for then-th RRH
can be obtained. Furthermore, the PDF of the SNR can be
easily obtained by taking the derivative of (14).

Again, in this case, it is not trivial to obtain the statistics
of Υ using the CDF derived in (14). Therefore, we derive an
approximation of the CDF ofΥn, using which one can obtain
the statistics ofΥ. The approximate CDF ofΥn is given in
following Proposition.

Proposition 5. When all the RRHs transmit using TAS, the
CDF of the SNR of then-th RRH received at the user, denoted
by Υn, can be approximated as

FΥn (Φ) ≈

K
∑

i=0

χi

(

N0Φ

Pµ

)nT +i

(15)

where χi =
∑nT

t=1

∑

u=k+l=nT +i

(
nT

t

) 2(−1)u+tRvktu

vΓ(l+1)Γ(k+1)(k+ 2
v )

and the infinite series is truncated toK + 1 terms.

Proof: Proof follows similar steps to the proof of Propo-
sition 2 and thus has been omitted due to space limitation.

Similar to MRT scheme, the CDF in (15) is a polynomial
function and has been limited toK + 1 terms. AsK → ∞,
the approximation converges to the exact CDF. Furthermore,
this approximation in (15) is tight at high SNRs. Again,
the approximate PDF of the SNR can be easily obtained by
taking the derivative of (15) w.r.t.Φ. Furthermore, using (15),
the approximate CDF ofΥ can be derived and is given in
following Proposition.

Proposition 6. WhenN RRHs transmit using TAS, the CDF
of the overall SNR received at the user, denoted byΥ, can be
approximated as

FΥ (Φ) ≈
∑

IN

κIN

Γ
(

NnT + ξIN + 1
)

(

N0Φ

Pµ

)NnT +ξIN (16)

where
∑

IN
is shorthand notation of

∑K
i1=0

∑K
i2=0 ...

∑K
iN=0

and ξIN =
∑N

l=1 il andκIN =
∏N

l=1 χilΓ (nT + il + 1).

Proof: Proof follows similar steps to the proof of Propo-
sition 3 and thus has been omitted due to space limitation.

Again, in this case, the CDF given in (16) is a polynomial
function which is tight at high SNRs. The approximate PDF

of Υ can be easily obtained by taking the derivative of (16)
w.r.t. Φ. By substituting,Φ = 2R−1 in (16), the approximate
outage probability at the user can be obtained when all the
RRHs transmit using TAS.

Diversity Order: Again, in this case, (16) is in form of a
polynomial function and at high SNRs it can be approximated
by its lowest order term, which is obtained by takingξIN = 0
and (16) can be approximated as

FΥ (Φ) ≈ F
∞
Υ (Φ) =

(χ0Γ (nT + 1))N

Γ (NnT + 1)

(

N0Φ

Pµ

)NnT

. (17)

Using (17), it can be easily shown that the diversity gain
achieved whenN RRHs transmit using TAS isNnT .

IV. PERFORMANCEANALYSIS

A. ST Scheme

In this scheme, the MBS or the RRH with the best channel
is selected for transmission. Therefore, the outage event occurs
when the channels of both the MBS and the best RRH are in
outage.

When the MBS andN RRHs transmit using MRT, the
outage probability can be given as

PMRT,ST (Φ|N) =
(

Fγ0 (Φ)
)

(Fγn (Φ))N (18)

whereFγ0 (y) = 1
Γ(mT )ζ

(

mT ,
y
βµ

)

and β = P
N0(1+Rv) . As

N is a RV, the overall outage probability can be given as

PMRT,ST (Φ) =

∞
∑

N=0

(

Fγ0 (Φ)
)

(Fγn (Φ))
N αN

Γ (N + 1)
e
−α

. (19)

Similarly, when the MBS andN RRHs transmit using TAS,
the outage probability can be given as

PTAS,ST (Φ|N) =
(

FΥ0 (Φ)
)

(FΥn (Φ))
N (20)

whereFΥ0 (Φ) = 1+
∑mT

t=1 (−1)t
(
mT

t

)
e−

Φ
βµ

t. As N is a RV,
the overall outage probability can be given as

PTAS,ST (Φ) =

∞
∑

N=0

(

FΥ0 (Φ)
)

(FΥn (Φ))N
αN

Γ (N + 1)
e
−α

. (21)

(19) and (21) give the average probability of outage of the
system with Poisson distributed RRHs.

Diversity Order:
1) Number of RRHs isN : In the case of MRT at the

MBS/RRHs, at high SNRs, (7) can be approximated as

F
∞
γn

(Φ) ≈ Ξ0

(

N0Φ

Pµ

)nT

(22)

and Fγ0 (Φ) = 1
Γ(mT )ζ

(

mT ,
ΦN0(1+Rv)

µP

)

≈ F∞
γ0

(Φ) =
ΦmT (1+Rv)mT

Γ(mT )mTµmT

(
N0

P

)mT . When the MBS andN RRHs trans-
mit using MRT, at high SNRs the outage probability can be
approximated as

P
∞
MRT,ST (Φ|N) ≈

(

F
∞
γ0

(Φ)
)(

F
∞
γn

(Φ)
)N

=
ΦmT +NnT (1 + Rv)mT ΞN

0

µmT +NnT Γ (mT )mT

(

N0

P

)mT +NnT

.

(23)

Using (23), it can be easily shown that, whenN RRHs are
present and the MBS/RRHs employ MRT, the diversity gain
achieved by ST scheme is(NnT +mT ).
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FΥn (Φ) = 1 +
2

v

nT
∑

t=1

(−1)
t
(nT

t

)

e
−

N0t
Pµ

Φ
(

R
v N0t

Pµ
Φ

)− 2
v
ζ

(

2

v
,
N0t

Pµ
ΦR

v

)

(14)

Similarly, when the MBS/RRHs employ TAS, at high SNRs
the outage probability of the ST scheme can be approximated
as

P∞
TAS,ST (Φ|N) ≈

(

F
∞
Υ0

(Φ)
)(

F
∞
Υn

(Φ)
)N

=
ΦmT +NnT (1 + Rv)mT χN

0

µmT +NnT

(

N0

P

)mT +NnT

.

(24)

Using (24), it can be easily shown that, whenN RRHs are
present and the MBS/RRHs employ TAS, the diversity gain
achieved by ST scheme is(NnT +mT ).

2) Number of RRHs is random:At high SNRs, using (23),
(19) can be approximated as

P∞
MRT,ST (Φ) = Gγ (0)

(

N0

P

)mT

e
−α

+ Gγ (1)
αe−α

Γ (2)

(

N0

P

)mT +nT

+ . . . ≈ Gγ (0)

(

N0

P

)mT

e
−α

(25)

whereGγ (N) =
ΦmT +NnT (1+Rv)mT ΞN

0

µmT +NnT Γ(mT )mT
. Using (25), it can be

easily shown that, when the number of RRHs is random and
the MBS/RRHs employ MRT, the diversity gain achieved by
ST scheme ismT

8.
Similar derivations can be done for ST scheme,

where the MBS/RRHs employ TAS, which will yields
the expression of outage probability at high SNR, as
PTAS,ST ≈ GΥ (0)

(
N0

P

)mT
e−α where, GΥ (N) =

ΦmT +NnT (1+Rv)mT χN
0

µmT +NnT
. Again using this expression, it can be

easily shown that, when the number of RRHs is random and
the MBS/RRHs employ TAS, the diversity gain achieved by
ST scheme ismT .

This shows that the diversity order of the ST scheme ismT

which is the number of antennas on the MBS. This indicates
that the diversity order can be increased by increasingmT and
vice versa. Furthermore, it can be deduced that the parameters
of the RRHs do not affect the diversity order. For example, by
varying the intensityλRRH or the number of antennas,nT ,
the diversity order cannot be varied. However, (25) and the
corresponding expression in the case of TAS involves the term
e−α whereα depends onλRRH . This means that the intensity
of the RRHs,λRRH , does impact the outage probability. For
example, a largerλRRH implies a largerα and thus, a lower
outage probability.

B. ARP Scheme

In this scheme, all the RRHs are selected for transmission.
Therefore, the outage event will occur if the overall SNR from
the MBS and the RRHs is in outage.

When the MBS andN RRHs transmit using MRT, the
outage probability can be given as

PMRT,ARP (Φ|N) = Pr{γ + γ0 < Φ} = Pr{γ < Φ − γ0}. (26)

8If the MBS does not participate in transmission, it can be shown, that the
average diversity gain achieved isnT .

PMRT,ARP (Φ) can be expressed as

PMRT,ARP (Φ|N) =

∫ Φ

0

Fγ (Φ − γ0) fγ0 (γ0) dγ0. (27)

SubstitutingFγ (·) andfγ0 (·), applying the binomial theorem
and solving the resulting integral, yields the outage probability
expression given in (28), whereµβ = Pµ

N0(1+Rv) andµα =
P
N0

µ. The overall outage probability can be given as

PMRT,ARP (Φ) =

∞
∑

N=0

PMRT,ARP (Φ|N)
αN

Γ (N + 1)
e
−α

. (29)

Similarly, when the MBS andN RRHs transmit using TAS,
the outage probability can be given as

PTAS,ARP (Φ|N) =

∫

Φ

0

FΥ (Φ − x) fΥ0 (x) dx. (30)

Again, substitutingFΥ (·) and fΥ0 (·), and solving the re-
sulting integral using [19, eq. (3.381.1)] gives the outage
probability expression in (31). The overall outage probability
is given as

PTAS,ARP (Φ) =
∞
∑

N=0

PTAS,ARP (Φ|N)
αN

Γ (N + 1)
e
−α

. (32)

Diversity Order: For this scheme, the probability of outage
can be upper bounded by the outage probability of the ST
scheme. This implies that the diversity order achieved by ARP
scheme is also(NnT +mT ) whenN RRHs serve the user
along with the MBS, and ismT when random number of
RRHs serve the user.

C. MRP Scheme

In this scheme, only a subset of the available RRHs is
employed to meet a specified data-rate requirement. Using
this scheme, a minimal number of RRHs are used, which
is beneficial as it yields a practical scheme with reduced
complexity and ensuring desired system performance. The
outage probability of this scheme will be same as that of the
MRT scheme, because the outage event will only occur when
the overall SNR from the MBS and all the RRHs is in outage.
Therefore, in this section, we derive expression for the average
number of RRHs that are required to meet a pre-defined data
rate. This expression is beneficial as it gives information to the
network operators about the minimal average number of RRHs
that are needed to be activated to achieve a certain data-rate
requirement.

We consider the same network of Fig. 1. However, for
mathematical tractability, the MBS is not considered in this
case andN ≥ 2 9. Assuming that the SNR for each RRH
is denoted asγi wherei ∈ [1, . . . , N ]. All SNRs are ordered
as γ(N) ≥ γ(N−1) ≥ . . . ≥ γ(1). The subset of RRHs that
is minimally sufficient to meet a pre-defined data rate should
correspond to theS largest SNRs. Without loss of generality,

9Note that, whenN = 1, the single RRH must always transmit and it
determines the outage performance.
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PMRT,ARP (Φ|N) =
∑

IN

NnT+ξIN
∑

l=0

(NnT + ξIN
l

)

(

1

µα

)NnT +ξIN
(

1

µβ

)−l κIN
(−1)l Φ

NnT +ξIN
−l

ζ
(

mT + l, Φ
µβ

)

Γ (mT ) Γ
(

NnT + ξIN + 1
) (28)

PTAS,ARP (Φ|N) =
∑

IN

mT
∑

t=1

(mT

t

)

(

1

µα

)NnT+ξIN κIN
(−1)t e

− t
µη

Φ

Γ
(

NnT + ξIN + 1
)

(

−
t

µη

)−NnT −ξIN
ζ

(

NnT + ξIN + 1,−Φ
t

µη

)

(31)

denoteθN,n =
∑n

i=1 γ(N−i+1), the averaged minimal number
of RRHs to meet a pre-defined data rate is given as [16]

n̄N =

N
∑

n=1

n · Pr(S = n|N) (33)

where

Pr(S = n|N) =











1 − FθN,1
(ǫ) ; n = 1

FθN,n−1
(ǫ)− FθN,n

(ǫ) ; 2 ≤ n ≤ N − 1

FθN,N−1
(ǫ) ; n = N.

(34)

From (33) and (34) it is clear that in order to obtain the average
minimal number of RRHs required, the CDF ofθN,n needs
to be derived for the MRT and TAS based systems. In the
following we derive the CDF ofθN,n for both the MRT and
TAS based systems. The CDF ofθN,n is also beneficial in
obtaining the outage performance whenn RRHs with the best
channels are selected for transmission.

1) MRT With Fixed Transmit Power:
In case of the MRT scheme, we denote the SNR for each
RRH asγ̄n = Un, the ordered SNRs are expressed asγ̄(N) ≥
γ̄(N−1) ≥ . . . ≥ γ̄(1) and θ̄N,n =

∑n
i=1 γ̄(N−i+1).

Proposition 7. The approximate CDF of the sum ofn largest
SNRs in the case of MRT, denoted byθ̄N,n, is given in(35),
where

∑

J is shorthand notation of
∑K

j1=0 ...
∑K

jN−n−1=0,

κj =
∏N−n−1

l=1 Ξjl , κk = (nT + k) Ξk andξj =
∑N−n−1

l=1 jl,
∑

M is shorthand notation of
∑nT+i1−1

m1=0 ...
∑nT+in−1

mn=0 , ξm =
∑n

l=1 ml, κm,i =
∏n

l=1 Γ(nT+il)
∏

n
l=1 Γ(ml+1) ,

∑

I is shorthand notation

of
∑K

i1=0 ...
∑nT

tn=1 and κi =
∏n

l=1 (nT + il) Ξil and ξi =
∑n

l=1 il.

Proof: See Appendix E.
Proposition 7 gives a tight approximation of the CDF of

the sum ofn largest SNRs, in the high SNR regime. By
substituting (35) into (34) and substitutingǫ = N0Φ

P
the PDF

of S can be obtained. Substituting the resulting PDF ofS
into (33) gives the expression for averaged minimal number
of RRHs to meet a pre-defined data rate in case of MRT.

2) TAS With Fixed Transmit Power:
In case of the TAS scheme, we denote the SNR for each RRH
as Ῡi = Hn, the ordered SNRs are expressed asῩ(N) ≥
Ῡ(N−1) ≥ . . . ≥ Ῡ(1) and Θ̄N,n =

∑n
i=1 Ῡ(N−i+1).

Proposition 8. The approximate CDF of the sum ofn largest
SNRs in the case of TAS, denoted byΘ̄N,n, is given in(36),
where

∑

J is shorthand notation of
∑K

j1=0 ...
∑K

jN−n−1=0,

κj =
∏N−n−1

l=1 χjl , κk = (nT + k)χk, ξj =
∑N−n−1

l=1 jl,
∑

J is shorthand notation of
∑K

j1=0 ...
∑K

jN−n−1=0, κj =
∏N−n−1

l=1 χjl , κk = (nT + k)χk and ξj =
∑N−n−1

l=1 jl.

Proof: Proof follows similar steps to the proof of Propo-
sition 7 and thus has been omitted due to space limitation.

Similar to the case of MRT, (36) gives a tight approximation
of the CDF of the sum ofn largest SNRs in the high SNR
regime and by substituting (36) into (34) and substitutingǫ =
N0Φ
P

, the PDF ofS in case of TAS is obtained. Substituting the
resulting PDF ofS into (33) gives the expression for averaged
minimal number of RRHs to meet a pre-defined data rate for
TAS based system.

So far we have considered the scenario in which each RRH
transmits with powerP . Now we consider the special case in
which the RRHs are able to adapt their transmit power. There
exist multiple schemes for power adaptation, however, in this
work, for a tractable analysis, we consider a scheme in which
the power is adjusted such that the pathloss is compensated.
Therefore, in this case, the transmit power of then-th RRH
will be Pn = (1 + dvn). Note that, the transmit power is
dependent on the distance of the RRH from the user and,
therefore, it is different for different RRHs. Moreover, inthis
case, the SNR at the user will only depend on the channel
fading gain. For this power allocation scheme, the outage
performance of ST and ARP schemes has been extensively
studied in literature. However, to the best of the authors
knowledge, the CDF of the SNR for the MRP scheme has
not been reported before.

3) MRT With Adaptive Transmit Power:

If each RRH possesses the ability to adapt its power, then
the pathloss can be compensated by varying the transmit power
inversely to the pathloss. In this scenario, the received SNR
only depends on the channel fading gain. In case of the MRT
scheme with adaptive power, we denote the SNR for then-
th RRH asγ̂n = ‖gn‖

2

N0
, the ordered SNRs are expressed as

γ̂(N) ≥ γ̂(N−1) ≥ . . . ≥ γ̂(1) and θ̂N,n =
∑n

i=1 γ̂(N−i+1).

Proposition 9. The exact CDF of the sum ofn
largest SNRs in the case of MRT with adaptive
transmit power, denoted byθ̂N,n, is given in (37),
where m = 1 + nnT − ξm + (ξm + nT + ξj),
p = 1 + nnT − ξm + (ξm + nT + ξj), b̄N =





0, 1, 1, ..., 1
︸ ︷︷ ︸

nnT−ξm

, 1 +
(j + 1)

n
, 1 +

(j + 1)

n
, ..., 1 +

(j + 1)

n
︸ ︷︷ ︸

(ξm+nT+ξj)







,

aN = {}, bD = {}, āD = b̄N + 1 =
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Fθ̄N,n
(y) ≈

∑

I

∑

M

∑

J

K
∑

k=0

N !κiκm,iκkκj

(N − n − 1)!(n)!n((N−n)nT +ξm+ξj+k)

Γ ((N − n)nT + ξm + ξj + k)

Γ (NnT + ξj + ξi + k + 1)

(

y

µ

)NnT +ξi+ξj+k

(35)

FΘ̄N,n
(y) =

∑

I

∑

M

∑

J

K
∑

k=0

N !κiκm,iκkκj

(N − n − 1)!(n)!n((N−n)nT +ξm+ξj+k)

Γ ((N − n)nT + ξm + ξj + k)

Γ (NnT + ξj + ξi + k + 1)

(

y

µ

)NnT +ξi+ξj+k

(36)

F
θ̂N,n

(y) =
∑

M

N−n−1
∑

j=0

∑

I

κI

(N − n − 1

j

) (−1)j N !n−(ξm+nT +ξj)Γ (ξm + nT + ξj)κm

Γ (nT ) (N − n − 1)!(n)!
G

m,n
p,q

(

e
−y

, µ

∣

∣

∣

∣

aN , āD

b̄N , bD

)

(37)







1, 2, 2, ..., 2
︸ ︷︷ ︸

nnT−ξm

, 2 +
(j + 1)

n
, 2 +

(j + 1)

n
, ..., 2 +

(j + 1)

n
︸ ︷︷ ︸

(ξm+nT+ξj)







,

∑

I =
∑nT−1

i1=0 ...
∑nT−1

ij=0 , κI =
∏j

o=1
1

Γ(io+1) ,

ξj =
∑j

o=1 io,
∑

M =
∑nT−1

m1=0 ...
∑nT−1

mn=0, ξm =
∑n

i=1 mi

and κm = 1
∏

n
i=1 Γ(mi+1) .

Proof: See Appendix F.
Unlike the case of MRT with fixed transmit power, (37)

is an exact and accurate expression of the CDF of the sum
of n largest SNRs from the RRHs. By substituting (37) into
(34), one can obtain the PDF ofS and ǫ = N0Φ in case of
MRT. Substituting the resulting PDF ofS into (33) gives the
expression for averaged minimal number of RRHs to meet
a pre-defined data rate for MRT based system with adaptive
power.

4) TAS With Adaptive Transmit Power:
Similarly, in case of the TAS scheme with adaptive power, we
denote the SNR for then-th RRH asΥ̂i = Gn = maxt |gi,t|

2,
the ordered SNRs are expressed asΥ̂(N) ≥ Υ̂(N−1) ≥ . . . ≥

Υ̂(1) and Θ̂N,n =
∑n

i=1 Υ̂(N−i+1).

Proposition 10. The exact CDF of the sum ofn largest SNRs
in the case of TAS with adaptive transmit power, denoted
by Θ̂N,n, is given in (38), where m = n + 2, p = n +

2,̄bN =






0, m

n
+ ξl

n
+ ξt

n
, t1, t2, ..., tn
︸ ︷︷ ︸

n






, aN = {}, bD = {},

āD =






1, m

n
+ ξl

n
+ ξt

n
+ 1, t1 + 1, t2 + 1, ..., tn + 1

︸ ︷︷ ︸

n






=

b̄N + 1,
∑

T =
∑nT

t1=1 ...
∑nT

tn=1, κt =
∏n

i=1 (−1)
ti+1 (nT

ti

)
ti

and ξt =
∑n

i=1 ti,
∑

L =
∑nT

l=0 ...
∑nT

lN−n−1=0, κl =
∏N−n−1

i=1 (−1)
li
(
nT

li

)
, ξl =

∑N−n−1
i=1 li and κm =

(−1)
m+1 (nT

m

)
m.

Proof: Proof follows similar steps to the proof of Propo-
sition 9 and thus has been omitted due to space limitation.

Similarly, for the case of TAS with adaptive transmit power,
(38) is an exact and accurate expression of the CDF of the sum
of n largest SNRs from the RRHs and by substituting (38) into
(34) one can obtain the PDF ofS and ǫ = N0Φ in case of
TAS. Substituting the resulting PDF ofS into (33) gives the
expression for averaged minimal number of RRHs to meet
a pre-defined data rate for TAS based system with adaptive

power.

V. NUMERICAL RESULTS

In this section, numerical simulation results are shown to
corroborate the derived analytical results. In the simulations,
we assume a macro-cell with radiusR = 1000m, average
channel powerµ = 1 and N0 = 10−6. The parameters are
fixed unless stated. The intensity can be expressed asλRRH =
Λ

πR2 , whereΛ is any integer, and it implies that the average
number of RRHs in a region ofπR2 is Λ. The performance of
two practical power allocation schemes is examined; 1) there
is a maximum power constraint on each MBS and RRH in
the network and 2) there is a total power constraint on the
MBS and RRHs in the network. In order to analyse the best
performance offered by the first scheme, the MBS and RRHs
are assumed to transmit with same maximum powerP . In
case of the second scheme, for demonstration purposes, the
total power,PT , is equally distributed among the MBS and
the RRHs10. Furthermore, in order to get insights on whether
collocated antennas are better or distributed antennas,N and
nT are chosen such that the total number of antennas on the
RRHs is same.

In all the figures (except Fig. 8), the blue dashed-dot lines
indicate the results obtained via Monte-Carlo simulationsand
the remaining lines/curves are plotted using the expressions
derived in this paper and depict the analytical results. Specif-
ically, the black dashed lines denote the analytical results for
the ARP scheme, the black solid lines indicate the analytical
results for the ST scheme and the maroon dotted lines denote
the asymptotic results for each scheme. In Fig. 8, the simula-
tion results are indicated by green squares and the lines/curves
are plotted using the expressions derived in this paper.

First we consider the scenario in which there is an individual
power constraint on each MBS and RRH in the network. In this
case, the MBS and RRHs are assumed to transmit with same
maximum powerP . Fig. 2 and Fig. 3 show the probability
of outage of both the ST and ARP schemes with varying the
transmit power,P , when the MBS/RRHs employ MRT and
TAS, respectively. The simulation results are shown whenN

10Note that other power allocation schemes can also be considered.
However, in this work, for corroboration of our results, we presented the
performance of these sub-optimal power allocation policies. The derivation of
the optimal power allocation policy will be considered in a future work.
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FΘ̂N,n
(y) =

N !

(N − n − 1)!(n)!

∑

T

∑

L

nT
∑

m=1

κt

n
κlκmG

m,n
p,q

(

e
−y

, µ

∣

∣

∣

∣

aN , āD

b̄N , bD

)

(38)
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Fig. 2. Probability of outage for ST and ARP schemes with varying transmit
power for a fixed number of RRHs with MRT wherev = 3 andR = 1.
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Fig. 3. Probability of outage for ST and ARP schemes with varying transmit
power for a fixed number of RRHs with TAS wherev = 3 andR = 1.

RRHs are serving the user in the region11. The performances
of ST and ARP schemes are compared for different antenna
allocations. It can be seen that the outage probability of both
schemes decrease with increasing transmit power and the ARP
scheme has lower outage probability compared to the ST
scheme. It is worth noting that the ARP scheme gives better
performance but at a cost of higher system complexity. In
addition, the outage probability decreases as the number of
antennas increases, i.e. more antennas or more RRHs provide
more diversity and array gain and thus, result in a lower outage

11Note that, in the network, the number of RRHs,N , is random, However,
here for the purpose of analysis, we show the performance of the network
whenN RRHs are transmitting to the user. Later, we will show the overall
average performance of the network when the number of RRHs israndom.
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Fig. 4. Probability of outage for ST and ARP schemes with varying transmit
power forN RRHs with MRT whereN is a Poisson RV,v = 2 andR = 1.

probability. For the ARP scheme, with a fixed number of total
transmitting antennas (i.e.NnT +mT = 7), the system with
(N,nT ,mT ) = (2, 3, 1) gives lower outage probability com-
pared to the system with(N,nT ,mT ) = (2, 2, 3), implying
that it is better to distribute antennas on the RRHs rather
than collocating them on the MBS. Distributing antennas
on the RRHs diversifies the path loss and therefore gives
better performance. The system with(N,nT ,mT ) = (3, 2, 1)
gives lower outage probability compared to the system with
(N,nT ,mT ) = (2, 3, 1), since increasingN implies an
increase in the overall transmission power as well as it
diversifies the path loss resulting in improved performance.
However, for the ST scheme with MRT, comparing the system
having (N,nT ,mT ) = (3, 2, 1) with the system having
(N,nT ,mT ) = (2, 3, 1), the system with largernT gives
lower outage probability which suggests that for ST with MRT,
fewer RRHs with more antennas gives better performance due
to a higher coding gain. Whereas, for the ST scheme with
TAS, diversifying the pathloss, i.e. employing more RRHs with
fewer antennas gives larger coding gain and thus, improved
performance. It can be observed from Fig. 2 and Fig. 3 that the
analytical results for ST match the simulation results exactly.
Whereas the analytical results for the ARP scheme and the
asymptotic results match well with the simulation results at
high SNRs12.

The probability of outage with varying transmit power for
the system with randomN andR = 1 BPCU is shown in Fig.
4 for MBS/RRHs with MRT. Again in this case, the MBS and
RRHs are assumed to transmit with maximum transmit power
P . It can be observed that, at low SNRs the ARP scheme

12This match is good at high SNRs, because as was discussed in footnote
3, the approximation used in the derivations is accurate in the high SNR
regime. At low SNRs, this approximation is not accurate and therefore, there
is mismatch between analytical and simulation results.
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Fig. 5. Probability of outage for ST and ARP schemes with varying total
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R = 1.
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Fig. 6. Probability of outage for ST and ARP schemes with varying total
transmit power for a fixed number of RRHs with TAS wherev = 3 and
R = 1.

performs better compared to the ST scheme. However, at high
SNRs both schemes give similar performance, implying that
in actual networks it might be better to adopt the ST scheme
due to its lower complexity. In addition, Fig. 4 also shows that
whennT is fixed, a larger densityλRRH can provide a better
outage performance and increasing the number of antennas at
the MBS,mT , gives significant performance gain and also a
higher diversity gain as was discussed previously. It can be
observed from Fig. 4 that the analytical results for ST match
the simulation results exactly. Whereas the analytical results
for the ARP scheme and the asymptotic results match well
with the simulation results at high SNRs.

Next, we consider the scenario in which there is a total
power constraint on the network and the total power,PT ,
is equally distributed among the MBS and the RRHs. In
case of the ST scheme, as only the MBS/RRH with the best
channel is selected for transmission, all transmission power
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Fig. 7. Probability of outage for ST and ARP schemes with varying total
transmit power forN RRHs with MRT whereN is Poisson RV,v = 2 and
R = 1.

will be allocated to it. Whereas, for the ARP scheme, when
N RRHs aid the MBS in transmission, the power allocated
to each MBS/RRH isP = PT

N+1 . Fig. 5 and Fig. 6 show the
probability of outage of both the ST and ARP schemes with
varying the total transmit power,PT , when the MBS/RRHs
employ MRT and TAS, respectively. Again, the performances
of ST and ARP schemes are compared for different antenna
allocations. The outage probability decreases with increasing
the total transmit power or the total number of antennas.
However, due to a total power constraint and equal power
allocation policy, the ST scheme performs better compared to
the ARP scheme. This was not the case in Fig. 2 and Fig. 3,
where ARP outperformed ST scheme because each additional
RRH increased the overall system power. By employing other
power allocation schemes, the performance of ARP can be
improved. However, deriving the optimal power allocation
policy for ARP scheme will be considered in a future work.
Furthermore, for the ARP scheme with MRT, comparing the
system with(N,nT ,mT ) = (3, 2, 1) with the system with
(N,nT ,mT ) = (2, 3, 1), the system with higherN gives
higher outage probability, as increasingN results in a lower
transmit power at the MBS/RRHs and a lower coding gain.
However, for the ARP scheme with TAS, increasingN gives
higher coding gain that is sufficient to overcome the lower
transmit power and thus, give better outage performance.
Moreover, for the ST scheme, the outage performance is the
same as that in Fig. 2 and Fig. 3. It can be observed from
Fig. 5 and Fig. 6 that the analytical results for ST match the
simulation results exactly. Whereas the analytical results for
the ARP scheme and the asymptotic results match well with
the simulation results at high SNRs.

The probability of outage with varying total transmit power,
PT , for the system with randomN andR = 1 BPCU is shown
in Fig. 7 for MBS/RRHs with MRT. Similar to Fig. 4, it can be
observed in Fig. 7 that at high SNRs both schemes give similar
performance. Furthermore, the performance can be improved
by increasing the density of the RRHs or increasing the



11

0 2 4 6 8 10 12 14 16 18 20
1

1.5

2

2.5

3

3.5

4

4.5

5

µ/N
0
 [dB]

A
ve

ra
ge

 M
in

im
al

 N
um

be
r 

of
 R

R
H

 

 
TAS
MRT
Simulation

Rate=6

Rate=4

n
T
=2,3

n
T
=2,3
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number of antennas at the MBS/RRHs. Similarly, the diversity
gain of the system can be increased only by increasing the
number of antennas at the MBS. It can be observed from Fig.
7 that the analytical results for ST match the simulation results
exactly. Whereas the analytical results for the ARP scheme and
the asymptotic results match well with the simulation results
at high SNRs.

Next we consider the scenario, where the RRHs transmit
with adaptive transmit power and compensates the path loss.
In Fig. 8, the averaged minimal numbers of RRHs, with
adaptive power policy, to meet different pre-defined data rates
are plotted against mean channel powerµ, whereN = 5. It
can be observed from Fig. 8, for a fixed data rate, the minimal
number of RRHs required decreases with increase in SNR and
vice versa. When the SNR is fixed, more RRHs are needed to
meet a higher data rate. Furthermore, using MRT fewer RRHs
need to be employed to achieve a certain target rate compared
to TAS. This happens because MRT offers higher array gain
compared to TAS. It can be observed that the analytical results
match the simulation results quite well.

VI. CONCLUSION

In this work, the downlink performance of CRAN with
randomly distributed multiple antenna RRHs was investigated.
The MBS and the RRHs were assumed to employ MRT or TAS
for transmission. For this system, the performance of three
downlink protocols, namely, ST, ARP and MRP were analysed
and the analytical expressions for the outage probability were
obtained. Furthermore, for the MRP scheme, the minimal
number of RRHs required to meet a pre-defined data rate
was also studied. The derived analytical expressions were
validated through numerical simulations. Our results showed,
that in the case of power constraint per MBS/RRHs, the ARP
scheme outperformed the ST scheme, whereas in case of the
sum power constraint, the ST scheme outperformed the ARP
scheme. In addition, at high SNRs, the diversity could only
be improved by increasing the number of antennas employed
on the MBS. On increasing the density of the RRHs, the

outage probability was reduced, but the diversity order was
not impacted.

VII. A PPENDIX

A. Statistics of SNR fromn-th RRH

The CDF ofγn can be obtained as

Fγn (Φ) = Pr

{

P

N0

(

1

1 + dv
n

)

‖gn‖
2
< Φ

}

= Pr

{

P

N0

Un < Φ

}

(39)

where Un =
(

1
1+dv

n

)

‖gn‖
2. In order to obtain the CDF

of Un, first we need to find the statistics of‖gn‖
2

=
∑nT

t=1 |gn,t|
2. gn,t is CN (0, µ), therefore,|gn,t|

2 is an ex-
ponential RV with meanµ and ‖gn‖

2
=

∑nT

t=1 |gn,t|
2,

is thus, Erlang distributed. The PDF of‖gn‖
2 is given

as f‖gn‖2 (y)=
1

µnT Γ(nT )
ynT −1e

−
y
µ and the CDF of ‖gn‖

2

is F‖gn‖2(y)=
1

Γ(nT )
ζ(nT ,

y
µ )=

(

1−
∑nT −1

i=0
1

Γ(i+1)
e
−

y
µ ( y

µ )
i
)

where

ζ(·, ·) denotes the lower incomplete Gamma function [19, Eq.
(8.350.1)] andΓ(·) is the Gamma function [19, Eq. (8.310.1)].

The CDF ofUn =
(

1
1+dv

n

)

‖gn‖
2 can be derived using the

statistics of‖gn‖
2 as

FUn (y) =

∫

R

0

F‖gn‖2

(

y
(

1 + x
v))

fdn (x)dx. (40)

Substituting the CDF of‖gn‖
2 and the PDF in (1) into (40)

and doing some simplification yields

FUn (y) = 1 −

nT −1
∑

i=0

e
−

y
µ

Γ (i+ 1)

(

y

µ

)i 2

R2

∫

R

0

xe
−

y
µ

xv
(

1 + x
v)i

dx.

(41)
Using the binomial theorem, doing some simplification yields
and making change of variablez = xv yields

FUn (y) = 1−

nT −1
∑

i=0

i
∑

j=0

(i

j

) e
−

y
µ

Γ (i + 1)

(

y

µ

)i 2

vR2

∫

Rv

0

z
j−
(

1− 2
v

)

e
−

y
µ

z
dz

(42)
which can be expressed in terms of lower incomplete gamma
function as

FUn (y) = 1−

nT −1
∑

i=0

i
∑

j=0

(i

j

) 2e
−

y
µ

Γ (i + 1) vR2

(

y

µ

)i−
(

j+ 2
v

)

ζ

(

j +
2

v
,
y

µ
R

v

)

.

(43)
Finally the CDF ofγn can be obtained by substitutingy =
N0

P
Φ in (43) to yield (6).

B. Approximation of Statistics of SNR fromn-th RRH

The CDF of Un is given as FUn (y)=1−
∑nT −1

i=0

∑i
j=0 (

i
j)

2
Γ(i+1)vR2 e

−
y
µ ( y

µ )
i−(j+ 2

v )ζ(j+ 2
v
,
y
µ
Rv).

Replacing the lower incomplete Gamma function and
the exponential function with its series representation in[19,
eq. (8.354.1) and eq. (1.211.1)] yields

FUn (y) =1 −

nT −1
∑

i=0

i
∑

j=0

(i

j

) 2

Γ (i + 1) v

(

∞
∑

l=0

(−1)l

Γ (l + 1)

(

y

µ

)l
)

×

(

∞
∑

k=0

(−1)k

Γ (k + 1)
(

k + j + 2
v

)

(

y

µ
R

v

)k+i
)

.

(44)

After rearranging the terms and doing some simplification,
(44) can be expressed as

FUn (y) = 1 +

nT −1
∑

i=0

i
∑

j=0

∞
∑

l=0

∞
∑

k=0

2
(

i
j

)

(−1)l+k+1 (Rv)k+i
(

y
µ

)k+i+l

v
(

k + j + 2
v

)

Γ (i + 1)Γ (l + 1)Γ (k + 1)
.

(45)
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In the above series representation, the terms with power ofy

less thannT are zero, thereforeFUn
(y) can be expressed as

FUn (y) =

nT −1
∑

i=0

i
∑

j=0

∑

u=l+k≥nT −i

2v−1
(i
j

)

(−1)u+1 (Rv)k+i
(

y
µ

)u+i

(

k + j + 2
v

)

Γ (i + 1)Γ (l + 1)Γ (k + 1)

(46)
which can be compactly expressed as

FUn (y) = Ξ0

(

y

µ

)nT

+Ξ1

(

y

µ

)nT +1

+ ...+ΞK

(

y

µ

)nT +K

. . . (47)

whereΞp=
∑nT −1

i=0

∑i
j=0

∑

u=l+k=nT +p−i

2v−1(ij)(−1)u+1(Rv)k+i

(k+j+ 2
v )Γ(i+1)Γ(l+1)Γ(k+1)

.

Limiting to K + 1 terms, and approximation ofFUn
(y) is

obtained as
FUn (y) ≈

K
∑

p=0

Ξp

(

y

µ

)nT +p

. (48)

Again the approximate CDF ofγn can be obtained by substi-
tuting y = N0

P
Φ in (48) to yield (7).

C. Statistics of overall SNR when all RRHs transmit

We need to find statistics ofγ =
∑N

n=1 γn = P
N0

∑N
n=1 Un.

Unfortunately, it is not trivial to obtain the statistics ofγ.
However, the approximate statistics ofγ can be derived using
the approximation of the CDF ofγn. First step is to obtain
the statistics ofT =

∑N
n=1 Un. Using the MGF approach to

obtain the distribution ofT . The idea is to obtain the CDF of
T can be obtained by taking the inverse Laplace transform of
the MGF ofT . The MGF ofUn can be obtained as

MUn (s) = s

∫ ∞

0

e
−sx

FUn (x) dx. (49)

Substituting the CDF from (48) into (49) and solving the
resulting integration yields the MGF as

MUn (s) =
K
∑

i=0

Ξi

(

1

µ

)nT +i Γ (nT + i+ 1)

snT +i
. (50)

As the channel is assumed to be i.i.d., the MGF ofT =
∑N

n=1 Un can be obtained as

MT (s) =

(

K
∑

i=0

Ξi

(

1

µ

)nT +i Γ (nT + i + 1)

snT +i

)N

. (51)

Representing the product of sum in terms of sum of products
yields

MT (s) =
K
∑

i1=0

K
∑

i2=0

...

K
∑

iN=0

N
∏

l=1

Ξil

(

1

µ

)nT +il Γ (nT + il + 1)

snT +il
(52)

which can be compactly expressed as

MT (s) =
∑

IN

κIN

(

1

µ

)NnT +ξIN
s
−NnT −ξIN (53)

where
∑

IN
is shorthand notation of

∑K
i1=0

∑K
i2=0 ...

∑K
iN=0

and ξIN =
∑N

l=1 il and κIN =
∏N

l=1 ΞilΓ (nT + il + 1).
Finally, the CDF ofT can be obtained by taking inverse
Laplace Transform ofMT (s)

s
to yield

FT (y) =
∑

IN

κIN

Γ
(

NnT + ξIN + 1
)

(

1

µ

)NnT+ξIN
y
NnT+ξIN . (54)

The CDF ofγ can be obtained by substitutingy = N0

P
Φ in

(54) to yield (8).

D. Statistics of SNR fromn-th RRH

The CDF ofΥn can be obtained as

FΥn (Φ) = Pr

{

P

N0

(

1

1 + dv
n

)

max
t

{

|gn,t|
2
}

< Φ

}

= Pr

{

P

N0
Hn < Φ

}

(55)
where Hn =

(
1

1+dv
n

)

maxt

{

|gn,t|
2
}

. In order to obtain
the CDF of Hn, first we need to find the statistics of
Gn = maxt

{

|gn,t|
2
}

. The CDF ofGn = maxt |gn,t|
2 can

be obtained as

FGn (y) =

(

F
|gn,t|

2

(

y

µ

))nT

= 1 +

nT
∑

t=1

(−1)t
(nT

t

)

e
−

y
µ

t (56)

and the PDF ofGn can be obtained as

fGn (y) = −

nT
∑

t=1

(−1)
t
(nT

t

) t

µ
e
−

y
µ

t
. (57)

Given dn, the CDF ofHn =
(

1
1+dv

n

)

Gn is

FHn|dn (y|dn) = 1 +

nT
∑

t=1

(−1)
t
(nT

t

)

e
−

y
µ (1+dvn)t. (58)

The CDF ofHn can be obtained by averaging the CDF over
the PDF ofdn as

FHn (y) = 1 +
2

R2

nT
∑

t=1

(−1)t
(nT

t

)

∫

R

0

xe
−

y
µ (1+xv)t

dx. (59)

Substitutingz = xv and thenx = y
µ
tz yields

FHn (y) = 1 +
2

R2v

nT
∑

t=1

(−1)t
(nT

t

)

e
−

y
µ

t
∫ y

µ
tRv

0

(

x
y
µ

t

) 2
v
−1

y
µ
t

e
−x

dx.

(60)
The above integral can be expressed in terms of lower incom-
plete Gamma function to yield

FHn (y) = 1 +
2

v

nT
∑

t=1

(−1)t
(nT

t

)

e
−

y
µ

t
(

R
v y

µ
t

)− 2
v
ζ

(

2

v
,
y

µ
tR

v

)

.

(61)
Finally the CDF ofΥn can be obtained by substitutingy =
N0

P
Φ in (61) to yield (14).

E. CDF of θ̄N,n

Conditioned on the(n+ 1)-th largest order statistics, then
largest order statistics are i.i.d [20]. Therefore, conditioned on
the (n+ 1)-th largest order statistic, the Laplace transform of
then-th largest order statistic is

Mγ̄(n) (s) =
1

1 − Fγ̄n (y)

∫

∞

y

e
−sz

fγ̄n (z) dz. (62)

Substituting the approximate PDF ofγ̄n yields

Mγ̄(n) (s) =

K
∑

i=0

(

1

µ

)nT +i (nT + i)

1 − Fγ̄n (y)
Ξis

−(nT +i)Γ (nT + i, sy) .

(63)
The Laplace transform of the PDF of the sum ofn largest
order statistics is

Mθ̄N,n
(s) =

∫ ∞

0

fγ̄(N−n) (y)

(1 − Fγ̄n (y))n
×

(

K
∑

i=0

(

1

µ

)nT +i

(nT + i) Ξis
−(nT +i)Γ (nT + i, sy)

)n

dy.

(64)



13

Expressing the product of sum as the sum of products yields

Mθ̄N,n
(s) =

∑

I

κi

(

1

µ

)nT n+ξi

s
−(nT n+ξi)×

∫

∞

0

n
∏

l=1

Γ (nT + il, sy)
fγ̄(N−n) (y)

(1 − Fγ̄n (y))n
dy

(65)

where
∑

I is shorthand notation of
∑K

i1=0 ...
∑nT

tn=1 and
κi =

∏n
l=1 (nT + il) Ξil andξi =

∑n
l=1 il. Using summation

representation ofΓ (n+ 1, x) = Γ (n+ 1) e−x
∑n

m=0
xm

Γ(m+1)
yields

Mθ̄N,n
(s) =

∑

I

κi

(

1

µ

)nT n+ξi

s
−(nT n+ξi)

(

n
∏

l=1

Γ (nT + il)

)

×

∫

∞

0

e
−nsy





n
∏

l=1

nT +il−1
∑

m=0

(sy)m

Γ (m + 1)





fγ̄(N−n) (y)

(1 − Fγ̄n (y))n
dy.

(66)

Again expressing the product of sum as the sum of products
yields

Mθ̄N,n
(s) =

∑

I

∑

M

κiκm,i

(

1

µ

)nT n+ξi

s
−(nT n+ξi−ξm)

×

∫ ∞

0

e
−nsy

y
ξm

fγ̄(N−n) (y)

(1 − Fγ̄n (y))n
dy

(67)

where
∑

M is shorthand notation of
∑nT+i1−1

m1=0 ...
∑nT+in−1

mn=0 ,

ξm =
∑n

l=1 ml andκm,i =
∏n

l=1 Γ(nT+il)
∏

n
l=1 Γ(ml+1) . Substituting PDF

fγ̄(N−n) (y) yields

Mθ̄N,n
(s) =

N !

(N − n − 1)!(n)!

∑

I

∑

M

κiκm,i

(

1

µ

)nT n+ξi

×

s
−(nT n+ξi−ξm)

∫ ∞

0

e
−nsy

y
ξmFγ̄n (y)N−n−1

fγ̄n (y)dy.

(68)

Substituting the CDFFγ̄n
(y) and PDFfγ̄n

(y) and simplifying
yields

Mθ̄N,n
(s) =

∑

I

∑

M

N !κiκm,i

(N − n − 1)!(n)!

(

1

µ

)nT n+ξi

s
−(nT n+ξi−ξm)×

∫

∞

0

e
−nsy

y
ξm





K
∑

j=0

Ξj

(

y

µ

)nT +j





N−n−1
K
∑

k=0

(nT + k)
Ξky

nT +k−1

µnT +k
dy.

(69)

Expressing the product of sum as the sum of products and
simplifying yields (71).

Mθ̄N,n
(s) =

∑

I

∑

M

∑

J

K
∑

k=0

N !κiκm,iκkκj

(N − n − 1)!(n)!

(

1

µ

)ξi+NnT+ξj+k

s
−(nT n+ξi−ξm)

∫ ∞

0

e
−nsy

y
(N−n)nT +ξm+ξj+k−1

dy

(70)

where
∑

J is shorthand notation of
∑K

j1=0 ...
∑K

jN−n−1=0,

κj =
∏N−n−1

l=1 Ξjl , κk = (nT + k) Ξk andξj =
∑N−n−1

l=1 jl.
Solving the integral and taking the inverse Laplace Transform
of (71) yields the CDF in (35).

F. CDF of θ̂N,n

Conditioned on the(n+ 1)-th largest order statistics, then
largest order statistics are i.i.d [20]. Therefore, conditioned on
the (n+ 1)-th largest order statistic, the Laplace transform of
the n-th largest order statistic is

Mγ̂(n) (s) =
1

1 − Fγ̂n (y)

∫

∞

y

e
−sz

fγ̂n (z) dz. (72)

The PDF ofγ̂n = ‖gn‖
2 is given as

fγ̂n (y) =
1

µnT Γ (nT )
y
nT −1

e
−

y
µ (73)

and the CDF of̂γn is

Fγ̂n (y) =
1

Γ (nT )
ζ

(

nT ,
y

µ

)

=



1 −

nT −1
∑

i=0

1

Γ (i + 1)
e
−

y
µ

(

y

µ

)i



 .

(74)
Following a similar procedure as before, the Laplace transform
of the order statistic is obtained as

Mγ̂(n) (s) =

(

1

1 − Fγ̂n (y)

)

(

s + 1
µ

)−nT

µnT Γ (nT )
Γ

(

nT ,

(

s +
1

µ

)

y

)

. (75)

The Laplace transform of sum of largest order statistics is

M
θ̂N,n

(s) =

(

1

µnT Γ (nT )

)n

×

∫ ∞

0

(

s +
1

µ

)−nnT
(

Γ

(

nT ,

(

s +
1

µ

)

y

))n fγ̂(N−n) (y)

(1 − Fγ̂n (y))n
dy.

(76)

Substituting the PDF offγ̂(N−n) (y) yields

M
θ̂N,n

(s) =

(

1

µnT Γ (nT )

)n N !

(N − n − 1)!(n)!

(

s +
1

µ

)−nnT

×

∫ ∞

0

(

Γ

(

nT ,

(

s +
1

µ

)

y

))n

Fγ̂n (y)N−n−1
fγ̂n (y)dy.

(77)

Substituting the CDFFγ̂n
(y) and PDFfγ̂n

(y) and simplifying
yields

M
θ̂N,n

(s) =

(

1
µnT Γ(nT )

)n

N !

(N − n − 1)!(n)!

(

s +
1

µ

)−nnT

×

∫ ∞

0

Γ (nT )n e
−
(

s+ 1
µ

)

ny





nT −1
∑

m=0

((

s + 1
µ

)

y
)m

Γ (m + 1)





n

×



1 −

nT −1
∑

i=0

1

Γ (i+ 1)
e
−

y
µ

(

y

µ

)i





N−n−1

1

µnT Γ (nT )
y
nT −1

e
−

y
µ dy.

(78)

Expressing product of sum as sum of products yields

M
θ̂N,n

(s) =

(

1

µnT

)n 1

µnT Γ (nT )

N !

(N − n − 1)!(n)!

(

s +
1

µ

)−nnT

×

∫ ∞

0

e
−
(

s+ 1
µ

)

ny

(

∑

M

κm

((

s +
1

µ

)

y

)ξm
)

×

N−n−1
∑

j=0

(N − n − 1

j

)

(−1)j





nT −1
∑

i=0

e
−

y
µ

Γ (i+ 1)

(

y

µ

)i





j

y
nT −1

e
−

y
µ dy

(79)

where
∑

M =
∑nT−1

m1=0 ...
∑nT−1

mn=0, ξm =
∑n

i=1 mi and
κm = 1

∏

n
i=1 Γ(mi+1) . Again expressing product of sum as

sum of products yields (80), where
∑

I =
∑nT−1

i1=0 ...
∑nT−1

ij=0 ,

κI =
∏j

o=1
1

Γ(io+1) and ξj =
∑j

o=1 io. Rearranging terms
and solving the resulting integral yields (81). Representing
M

θ̂N,n
(s) in terms of Gamma functions yields (82). The CDF

can be obtained by taking the inverse Laplace transform of
µ
µs
MS (s) which is given as

F
θ̂N,n

(y) =
∑

M

N−n−1
∑

j=0

∑

I

κI

(N − n − 1

j

)

×

(−1)j N !n−(ξm+nT +ξj)Γ (ξm + nT + ξj)κm

Γ (nT ) (N − n − 1)!(n)!
×

µ

2πι

∫

γ+iT

γ−iT

∏m
k=1 Γ

(

µs + b̄N (k)
)

∏p
k=1 Γ (µs + āD (k))

e
sy

ds

(83)



14

Mθ̄N,n
(s) =

∑

I

∑

M

∑

J

K
∑

k=0

N !κiκm,iκkκjΓ ((N − n)nT + ξm + ξj + k)

(N − n − 1)!(n)!n((N−n)nT +ξm+ξj+k)

(

1

µ

)NnT+ξi+ξj+k

s
−(NnT +ξj+ξi+k) (71)

M
θ̂N,n

(s) =

(

1

µnT

)n 1

µnT Γ (nT )

N !

(N − n − 1)!(n)!

∑

M

N−n−1
∑

j=0

(N − n − 1

j

)

(−1)
j
κm×

(

s +
1

µ

)−nnT +ξm
∫ ∞

0

y
ξme

−
(

s+ 1
µ

)

ny∑

I

κIe
−

y
µ

j
(

y

µ

)ξj

y
nT −1

e
−

y
µ dy

(80)

M
θ̂N,n

(s) =
∑

M

N−n−1
∑

j=0

∑

I

(N − n − 1

j

) κI (−1)j N !Γ (ξm + nT + ξj) κm

Γ (nT ) (N − n − 1)!(n)!n(ξm+nT +ξj)
(µs + 1)

−nnT +ξm

(

µs +
1

n
(n + j + 1)

)−(ξm+nT +ξj)
(81)

M
θ̂N,n

(s) =
∑

M

N−n−1
∑

j=0

∑

I

κI

(N − n − 1

j

) (−1)j N !n−(ξm+nT +ξj)Γ (ξm + nT + ξj)κm

Γ (nT ) (N − n − 1)!(n)!

×
Γ (µs + 1)nnT −ξm Γ

(

µs + 1 + 1
n
(j + 1)

)(ξm+nT +ξj)

Γ (µs + 1 + 1)nnT −ξm Γ
(

µs + 1 + 1
n
(j + 1) + 1

)(ξm+nT +ξj)

(82)

where m = 1 + nnT − ξm + (ξm + nT + ξj),
p = 1 + nnT − ξm + (ξm + nT + ξj), b̄N =





0, 1, 1, ..., 1
︸ ︷︷ ︸

nnT−ξm

, 1 +
(j + 1)

n
, 1 +

(j + 1)

n
, ..., 1 +

(j + 1)

n
︸ ︷︷ ︸

(ξm+nT+ξj)







and āD = b̄N + 1 =





1, 2, 2, ..., 2
︸ ︷︷ ︸

nnT−ξm

, 2 +
(j + 1)

n
, 2 +

(j + 1)

n
, ..., 2 +

(j + 1)

n
︸ ︷︷ ︸

(ξm+nT+ξj)







.

The CDF in (83) can finally be represented in terms of
Meijer-G function as (37).
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