
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A sequential hypothesis test based on a generalized Azuma
inequality

Citation for published version:
Reijsbergen, D, Scheinhardt, W & de Boer, P-T 2015, 'A sequential hypothesis test based on a generalized
Azuma inequality', Statistics and Probability Letters, vol. 97, pp. 192-196.
https://doi.org/10.1016/j.spl.2014.11.018

Digital Object Identifier (DOI):
10.1016/j.spl.2014.11.018

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Statistics and Probability Letters

Publisher Rights Statement:
?

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 20. Mar. 2024

https://doi.org/10.1016/j.spl.2014.11.018
https://doi.org/10.1016/j.spl.2014.11.018
https://www.research.ed.ac.uk/en/publications/6b6577d0-90e7-4695-9557-ba6e8a29b5ae


A sequential hypothesis test based on

a generalized Azuma inequality1

Daniël Reijsbergena,2, Werner Scheinhardtb, Pieter-Tjerk de Boerb

aLaboratory for Foundations of Computer Science, University of Edinburgh, Scotland
bCenter for Telematics & Information Technology, University of Twente, Enschede, The Netherlands

Abstract

We present a new power-one sequential hypothesis test based on a bound for the proba-
bility that a bounded zero-mean martingale ever crosses a curve of the form a(n+ k)b. The
proof of the bound is of independent interest.
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1. Introduction

Consider a Bernoulli random variable X with unknown parameter p, i.e., P(X = 1) =
p = 1− P(X = 0). We wish to determine whether p is larger or smaller than some value p0
by drawing i.i.d. samples X1, X2, . . . of X in a sequential manner (see e.g. [4]), only stopping
when we have sufficient evidence to accept either of the two following alternative hypotheses,

H+1 : p > p0, H−1 : p < p0. (1)

Additionally, we have the null hypothesis H0 : p = p0, which cannot be shown to be correct,
as its negation p 6= p0 cannot be disproved statistically: no matter how many samples we
draw and no matter how much evidence we see for p = p0, there will always be some small ε
such that we cannot reject the claim that p = p0 + ε.

We like to emphasize that the goal is to set up a test that will in principle always draw a
‘correct’ conclusion, no matter how small |p− p0| is. The meaning of ‘correct’ here is in the
usual sense, namely that the probability of a wrong conclusion is provably below some α,
where 1− α is the confidence level. Thus, when |p− p0| is small, we continue the sequential
test to the point where it (eventually) becomes clear whether we should accept H+1 or H−1,
rather than at some point losing interest and simply concluding that p ≈ p0.

1Part of this work has been done when the first author was at the University of Twente. The work has been
supported by the Netherlands Organisation for Scientific Research (NWO), project number 612.064.812, and
by the EU project QUANTICOL, 600708. We would also like to thank Jasper Goseling for helpful discussions.
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The test statistic we will use here is a random process Zn given by

Z0 = 0, Zn ,
n∑

i=1

Xi − np0, n = 1, 2, . . . ,

with a drift p − p0 being zero, positive, or negative, depending on which hypothesis holds
true. Clearly, when the experiment shows, e.g., Zn drifting away to +∞, then this is strong
evidence for H+1. The idea is then to fix some positive increasing threshold function fn that
allows us to accept H+1 as soon as Zn ≥ fn, or to accept H−1 as soon as Zn ≤ −fn. We
continue sampling (increasing n by drawing new Xi) as long as −fn < Zn < fn. Of course
one could also choose different shapes for the upper- and lower thresholds, but a symmetric
choice seems the most natural, considering the zero drift of Zn under H0.

Whatever function fn is chosen, we will need to bound the probabilities of crossing them,
given that some hypothesis is (or is not) valid. Let Ai, i ∈ {−1,+1}, be the event that we
reject H0 in favor of Hi. Then we impose the following conditions on the two errors of the
first type (in (2)) and on the two errors of the second type (in (3)):

P(A+1 | ¬H+1) ≤ α1, P(A−1 | ¬H−1) ≤ α2 (2)

P(¬A+1 | H+1) ≤ β1, P(¬A−1 | H−1) ≤ β2. (3)

We will consider these probabilities in more detail later; see the proof of Corollary 2. No-
tice that using (2) and (3) the probability of a wrong conclusion under H0 is bounded as
P(A−1 ∪ A+1 | H0) ≤ α1 + α2. We do not impose a stricter bound on this, assuming that in
reality we never have p = p0 exactly.3

The shape of fn should be sublinear to ensure that the process will hit one of the thresh-
olds with probability 1 (unless p = p0). If this is not the case, (2) may hold, but (3) will not
hold for small p− p0; in other words, a conclusion may never be reached, especially when p
is close to p0. When fn behaves like a square root, we know from the literature on Wiener
processes [9] that even under H0 one of the thresholds will be crossed after finite time with
probability 1; as a consequence, if p is not equal but very close to p0, both outcomes are
almost equally likely, so no bounds on the error probability can be guaranteed.

Striking a good balance between these two extremes is often done by letting fn asymp-
totically behave as

√
n log(n), see [1, 2]. We will refer to this type of scheme as the Darling-

Robbins scheme, after the authors of these papers. In the current paper we will pursue
another choice, which has not received much attention to the best of our knowledge, namely
taking fn as a power of n, between 2

3
and 1. It may seem at first sight that this adds ‘more

than necessary’ to the square root, as nb grows faster than
√
n log(n) for any b > 2

3
, but

because the derived bound for the nb case is sharper, it turns out that the new test may
require fewer samples depending on its parametrization; see Section 4.

To prove that our choice for fn indeed satisfies (2) and (3), we need to bound the
probability under H0 that ZN is above fN (or below −fN), where N is a random value —

3If p = p0 is possible, one can choose α1 and α2 smaller, at the expense of (many) more samples needed.
E.g., for a 95% confidence test one can choose α1 = α2 = 0.025, rather than α1 = α2 = 0.05.
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namely the smallest n for which Zn /∈ (−fn, fn). For non-sequential tests, this only needs
to be done for some fixed N , namely the sample size, and the probabilities involved are
tail probabilities, to which we can apply, e.g., the Central Limit Theorem or the Chernoff-
Hoeffding bound. Another, related bound is the Azuma-Hoeffding inequality, which gives a
bound on tail probabilities of martingales with bounded differences.4 Since our process Zn

is a martingale with bounded differences, the Azuma-Hoeffding inequality could be used to
establish a fixed sample size test, even if the Chernoff-Hoeffding bound may be tighter. This
possibility was already mentioned in [3], and was recently investigated in [7] and [8].

Actually, the same bound as the one for the Azuma-Hoeffding inequality can also be used
for the probability that Zn is above fn (or below −fn) for some n ≥ N , rather than just ZN

being above fn (or below −fn) for fixed N . This was shown by Ross in Section 6.5 of [6] for
the case of linear fn, where he calls this the generalized Azuma inequality. Inspired by this, we
apply the same reasoning as [6] to thresholds of the form nb, again using (super)martingales.
In fact, the proof depends on a lemma that is of independent interest as it may be useful
for proving generalized Azuma inequalities for different fn. The result of the bound is a
hypothesis test that can be more powerful than the Darling-Robbins scheme, when the
parameters are chosen appropriately.

The outline of the paper is as follows. In Section 2 we give the main result and the
application to our hypothesis testing scheme. The proof of the main result is based on two
lemmas that we present and prove in Section 3. In Section 4 we provide insight in how
the parameters of the test should be chosen, and compare the new test empirically to the
Darling-Robbins scheme.

2. Main result

The main result of the paper can be stated as follows.

Theorem 1 (A generalized Azuma inequality). Let Zn =
∑n

i=1Xi − np0, where the Xi,
i ∈ N, are i.i.d. random variables with support ⊂ [0, 1] and E(Xi) = p0. Let fn = a(n+ k)b

with k > 0, a > 0 and b ∈ (2
3
, 1). Also, let N = min{n > 0 : Zn /∈ (−fn, fn)}, or N = ∞ if

Zn ∈ (−fn, fn) for all n > 0. Then

P(N <∞ and ZN ≥ fN) ≤ exp(−8(3b− 2)a2k2b−1), (4)

P(N <∞ and ZN ≤ −fN) ≤ exp(−8(3b− 2)a2k2b−1). (5)

Proof. Statement (4) follows immediately by applying Lemma 3 in Section 3 to the Z̃n

process of Lemma 4. Statement (5) follows by applying (4) to the process −Zn =∑n
i=1(1−Xi)− n(1− p0), which has the same structure as Zn.

4A supermartingale is a stochastic process Yn for which E(Yn|Yn−1, . . . , n0) ≤ Yn−1, n > 0; when this
holds with equality, Yn is called a martingale; when P(|Yn − Yn−1| < c) = 1 for some finite c and all n > 0,
the (super)martingale is said to have bounded differences.
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Corollary 2. The sequential test as described in the Introduction, with fn = a(n + k)b,
satisfies (2) and (3) with α1 = α2 = β1 = β2 = α if we choose the parameters a, b, and k
such that 8(3b− 2)a2k2b−1 ≥ − log(α).

Proof. For any p ≤ p0, the first probability in (2) is upper-bounded by P(A+1 | H0), which
is exactly the probability in (4); similarly the second probability in (2) is upper-bounded
by (5). Next define A0 as ¬A−1 ∩ ¬A+1, the event that we do not reject H0, i.e., that
−fn < Zn < fn for all n > 0. This event has probability zero, unless p = p0. Thus, we can
write the first probability in (3) as P(A0 | H+1) + P(A−1 | H+1) = P(A−1 | H+1), and then
upper-bound this, for any value of p > p0, by P(A−1 | H0), which is (5); similarly the second
probability in (3) is upper-bounded by (4).

First we present and prove the two lemmas that lie at the foundation of the proof of
Theorem 1. Note that the first lemma in general holds for any increasing shape of fn; this
suggests it may be used to generalize Theorem 1 to other choices for fn.

3. Two basic lemmas

In Section 6.5 of [6], the proof of the original ‘generalized Azuma inequality’ is based on
a result that determines an upper bound for the probability that a martingale with bounded
differences ever crosses some line a(n + k), with a, k > 0; see Proposition 6.5.1 of [6]. In
this section we provide an analogous result for crossing a line of the form fn = a(n + k)b,
with a, k > 0 and b ∈ (2

3
, 1). The proof is similar, based on the supermartingale property

of Wn = ecn(Zn−fn) for some sequence cn (rather than some constant c as in [6]). One
complication is that we need a lower bound on Zn, which we achieve by letting Zn stop as
soon as it crosses −fn; this does not affect the usefulness of the result.

Lemma 3. Let Yn be a zero-mean martingale with bounded differences. Also, let fn > 0 be
any positive increasing threshold function. If we can find a positive sequence cn such that
Wn = ecn(Yn−fn) is a supermartingale, then

P(∃n ≥ 0 : Yn ≥ fn) ≤ exp(−f0c0). (6)

Proof. Assuming thatWn is a supermartingale, we define the bounded stopping timeN(m) =
min{n : Yn ≥ fn or n = m} to find that

P(YN(m) ≥ fN(m)) = P(WN(m) ≥ 1) ≤ E(WN(m)) ≤ E(W0) = exp(−f0c0),

where the first inequality is the Markov inequality, and the second is due to the Su-
permartingale Stopping Theorem (Theorem 6.4.1 of [6]) and the fact that N(m) is bounded.
The result then follows by letting m→∞.

Lemma 4. Let Zn and fn be as in Theorem 1, and let Z̃n be the same process as Zn but
stopped 5 at −fn and fn. Also let cn = 8(3b− 2)fn/(n+ k) = 8a(3b− 2)(n+ k)b−1. Then the

process Wn , ecn(Z̃n−fn) is a supermartingale.

5i.e., if ∃n such that Zn /∈ (−fn, fn) then, with N being the smallest such n, let Z̃n = Zn for n < N and
let Z̃n = −fN or Z̃n = fN for n ≥ N , depending on whether ZN ≤ −fN or ZN ≥ fN .

4



Proof. The process Wn is a supermartingale if and only if E(Wn|Fn−1) ≤ Wn−1 with Fn ,
Wn, . . . ,W1. Clearly this property holds for all n > N since then Wn = Wn−1. In the sequel
we assume n ≤ N and write Zn instead of Z̃n, keeping in mind that −fn−1 < Zn−1 < fn−1.
First we write, for n ≤ N ,

E(Wn|Fn−1) = ecn(fn−1−fn) · ecn(Zn−1−fn−1) · E
(
ecn(Xn−p0)|Fn−1

)
.

The middle factor is precisely W
cn

cn−1

n−1 , while the expectation in the third factor is actually
independent of Fn−1. So for Wn to be a supermartingale we must have

ecn(fn−1−fn) · E(ecn(Xn−p0)) ≤ W
1− cn

cn−1

n−1 . (7)

By Lemmas 6.3.1 and 6.3.2 of [6] we have that

E(ecn(Xn−p0)) ≤ (1− p0)e−p0cn + p0e
(1−p0)cn ≤ ec

2
n/8,

so that, taking logarithms, (7) is implied by

cn(fn − fn−1) ≥ 1
8
c2n + (cn−1 − cn)(fn−1 − Zn−1).

Using Zn−1 > −fn−1, which is due to n ≤ N and the stopping assumption, and then dividing
by cnfn, it remains to show that

1 +
fn−1
fn
≥ 1

8

cn
fn

+ 2
cn−1
cn

fn−1
fn

. (8)

Our particular choice of cn, which has not been used in the proof so far, stems from the fact
that by this choice (8) can be rewritten to 1 + zb ≥ (3b− 2)(1− z) + 2z2b−1, where we write
z , n+k−1

n+k
. Define gb(z) , 2z2b−1 − zb − 1 + (3b − 2)(1 − z), then we need gb(z) ≤ 0 for

z ∈ (0, 1) which, since gb(1) = 0, is implied by g′b(z) ≤ 0 on (0, 1). The latter is indeed the
case, since

g′b(z) = (4b− 2)(zb−1 − 1)(zb−1 − 2−3b
4b−2)

and clearly 2−3b
4b−2 < 0 when b ∈ (2

3
, 1). This proves (8), hence the result follows.

4. Application and Performance

In order to use a test based on Corollary 2, values need to be given to a, k, b and α.
As we argue in [5], these parameters have a large impact on the sample size, but there is
no universally best choice. The optimal choice depends on |p − p0|, which is unknown a
priori. However, if the investigator can come up with a guess γ for |p−p0|, then the optimal
values for a and k can be approximated by numerically minimising the value n at which
n · |p− p0| hits the boundary fn. Such a guess can be based on e.g. exploratory simulation
runs or strong similarity with another, already solved problem. This is similar to Bayesian
statistics, although we emphasize that only the expected sample size depends on γ, but not
the error probability guarantees.
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Figure 1: Comparison between the
new test and Darling-Robbins in
terms of their expected sample size as
a function of the true value |p − p0|.
The test parameters were optimized
for a guess γ = 0.01. The expected
sample sizes are determined via two
different approaches. Solid lines rep-
resent rough, numerical approxima-
tions, obtained as the intersection of
n · |p− p0| and fn. On the other hand,
dots represent results from computer
simulation runs, with ±1 standard de-
viation intervals around them.

As we argue in [5], b = 3
4

strikes a good balance between sensitivity to γ and good
performance when γ is (almost) correct. Given this choice (and α), we can compare the new

test with the power-one test based on Darling-Robbins with fn =
√
ā(n+ 1) log(n+ k̄),

where ā and k̄ are also optimized based on γ. In general, the new test is better when the
guess is almost correct, while the Darling-Robbins test is less sensitive to γ. This is illustrated
in Figure 1. For example, if p0 = 0.5 and the guess is 0.51, then the new test will do better if
p ∈ [0.5024, 0.5827] (or if p ∈ [0.4173, 0.4976]), otherwise Darling-Robbins does better. Near
the center of this interval, the new test is better by a factor of more than 4 in sample size.

As a final comment we mention that the test in this paper can also be applied more
generally to situations where the Xi are not Bernoulli distributed. Future work in this
direction will include the context of importance sampling, provided that the increments Xi

(which then correspond to likelihood ratios) can be bounded.
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