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Abstract. This study evaluates the ability of the JULES land

surface model (LSM) to simulate photosynthesis using local

and global data sets at 12 FLUXNET sites. Model param-

eters include site-specific (local) values for each flux tower

site and the default parameters used in the Hadley Cen-

tre Global Environmental Model (HadGEM) climate model.

Firstly, gross primary productivity (GPP) estimates from

driving JULES with data derived from local site measure-

ments were compared to observations from the FLUXNET

network. When using local data, the model is biased with to-

tal annual GPP underestimated by 16 % across all sites com-

pared to observations. Secondly, GPP estimates from driving

JULES with data derived from global parameter and atmo-

spheric reanalysis (on scales of 100 km or so) were com-

pared to FLUXNET observations. It was found that model

performance decreases further, with total annual GPP under-

estimated by 30 % across all sites compared to observations.

When JULES was driven using local parameters and global

meteorological data, it was shown that global data could be

used in place of FLUXNET data with a 7 % reduction in to-

tal annual simulated GPP. Thirdly, the global meteorological

data sets, WFDEI and PRINCETON, were compared to local

data to find that the WFDEI data set more closely matches the

local meteorological measurements (FLUXNET). Finally,

the JULES phenology model was tested by comparing results

from simulations using the default phenology model to those

forced with the remote sensing product MODIS leaf area in-

dex (LAI). Forcing the model with daily satellite LAI results

in only small improvements in predicted GPP at a small num-

ber of sites, compared to using the default phenology model.

1 Introduction

The atmosphere and biosphere are closely coupled and car-

bon is transported between the two via the carbon cycle (Cao

and Woodward, 1998). Although the carbon cycle is signif-

icantly affected by global warming, much still remains to

be understood about its behaviour (Schimel, 2007). Atmo-

spheric CO2 represents only a small amount of carbon in the

Earth system with the rest tied up in various reservoirs (Ciais

et al., 2013). These reservoirs can be either sources (release

more carbon than they absorb) or sinks (absorb more carbon

than they release). Sources can be either man-made (com-

bustion of fossil fuels, deforestation) or natural (plant and lit-

ter decomposition, soil respiration, ocean release) and sinks

include land vegetation, soils, oceans and geological reser-

voirs, such as deep-sea carbonate sediments and the upper

mantle (Ciais et al., 2013). Of the carbon dioxide emitted into

the atmosphere from the burning of fossil fuels, roughly half

remains in the atmosphere and the rest is absorbed by carbon

sinks on land and in the oceans (Le Quéré et al., 2009).

Global warming can affect terrestrial ecosystems in two

ways. Firstly, increasing atmospheric CO2 concentrations

have led to an increase in photosynthesis (Beck et al., 2011;

Fensholt et al., 2012), which has increased both carbon up-

take and storage by terrestrial ecosystems (Norby et al.,

2005; Leakey et al., 2009). This is known as CO2 fertili-

sation. This increase in atmospheric CO2 has led to an in-

crease in growing season leaf area index (LAI); see Piao et al.

(2006). It also reduces plant transpiration and increases plant

water use efficiency through the partial closure of stomata

(Warren et al., 2011). Secondly, a warmer climate can accel-

erate the decomposition of litter and soil organic carbon, and

increase plant respiration.

Published by Copernicus Publications on behalf of the European Geosciences Union.
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Table 1. Model parameters and meteorological variables that are altered between global and local model simulations.

Data set Variable name Units

PFT fractions Dimensionless

Model Annual maximum LAI m2 m−2

parameters Canopy height metres

Vcmax (maximum rate of Rubisco carboxylase activity) µmol CO2 m−2 s−1

Rooting depth metres

Soil texture fractionsa % of sand, silt and clay

Downward short-wave radiation Wm−2

Downward long-wave radiation Wm−2

Meteorological Precipitation rateb kgm−2 s−1

data Surface air temperature K

Wind speed ms−1

Surface air pressure Pa

Specific humidity kgkg−1

a The soil texture fractions (%) are used to compute the soil hydraulic and thermal characteristics.
b At some of the flux tower sites, the precipitation variable was separated into a rainfall rate (kg m−2 s−1) and snowfall rate

(kg m−2 s−1).

Predictions of the future uptake of atmospheric CO2 by the

terrestrial biosphere are uncertain and this uncertainty comes

from whether the terrestrial biosphere will continue to be a

sink or source for CO2. The Coupled Climate–Carbon Cycle

Model Intercomparison Project (C4MIP) was the first major

study to examine the coupling between climate change and

the carbon cycle (Friedlingstein et al., 2006). One of its main

conclusions was the reduced efficiency of the earth system,

in particular the land carbon sink, to absorb increased an-

thropogenic CO2. However, the magnitude of this effect de-

pended on the model used.

Land surface models (LSMs) are an important component

of climate models and simulate the interaction between the

atmosphere and terrestrial biosphere. They represent the sur-

face energy and water balance, climate effect of snow and

carbon fluxes (Pitman, 2003) and are considered the lower

boundary condition for global climate models (GCMs) (Best

et al., 2011). GCMs require the carbon, water and energy

fluxes between the land surface and atmosphere to be speci-

fied. Meteorological data, vegetation and soil characteristics

are provided as inputs to LSMs, and using these, LSMs can

predict fluxes, such as latent and sensible heat, upward long-

wave radiation and net ecosystem exchange of CO2, which

is used to determine global atmospheric CO2 concentrations.

Various LSMs have been designed over the last 40 years to

calculate these fluxes (Dai et al., 2003).

The earliest GCMs to include a representation of the land

surface based it on the simple “bucket” model. In this model,

the soil is assumed to have a fixed water capacity (like a

bucket) and at each land grid box and time step, the bucket is

filled with precipitation and emptied by evaporation (Carson,

1982). The excess above its capacity is termed runoff. This

model does not take vegetation or soil types into account. The

second generation of land surface schemes attempted to ex-

plicitly represent the effects of vegetation in surface energy

balance calculations and include the Biosphere-Atmosphere

Transfer Scheme (BATS) (three soil layers and one vegeta-

tion layer) (Dickinson, 1986) and the Simple Biosphere (SiB)

Model (three soil layers and two vegetation layers) (Sell-

ers et al., 1986). The current generation of models include

the biological control of evapotranspiration with biochemi-

cal models of leaf photosynthesis linked to the biophysics of

stomatal conductance (Farquhar et al., 1980; Bonan, 2008),

and can respond to changes in atmospheric CO2 in a more

realistic way.

LSM components are designed using results from research

literature, idealised laboratory experiments and observations

from limited field campaigns (Stöckli et al., 2008; Williams

et al., 2009). This can lead to sources of uncertainty in the pa-

rameterisation of processes; and as LSMs become more ad-

vanced, there is a need to understand their complexity and ac-

curacy. LSMs can be tested in a variety of ways. Multimodel

intercomparison projects provide a measure of how various

LSMs behave under controlled conditions (Schaefer et al.,

2012; Cadule et al., 2010; Randerson et al., 2009; Dirmeyer

et al., 2006; Henderson-Sellers et al., 1996). Parameter per-

turbation experiments evaluate a single model and numer-

ous simulations are performed where either one parameter is

changed at a time within a given range (Knorr, 2000; Knorr

and Heimann, 2001; El Maayar et al., 2002) or maximum

and minimum values of parameters are used (Hallgren and

Pitman, 2000). Recently, in the LSM community, there has

been effort to create a more standardised form of model eval-

uation known as benchmarking, whereby publicly available

data sets, at various temporal and spatial resolutions, along

with metrics and areas of model performance to be evalu-
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ated, are used by different modelling groups to test model

performance (Abramowitz, 2012; Luo et al., 2012). This has

previously been carried out by Abramowitz et al. (2008) and

Blyth et al. (2011).

Blyth et al. (2011) evaluated JULES at 10 FLUXNET

sites, representing a range of biomes and climatic conditions,

where model parameter values were taken as if the model

was embedded in a GCM, in order to assess the model’s

ability to predict observed water and carbon fluxes. We ex-

tended this work by performing model simulations whereby

model parameters (Table 1) were set to observe local site

conditions and were then compared to those using global

and satellite data. Local site conditions were those relevant

to a particular flux tower site and were obtained from the re-

search literature, communications with site Primary Investi-

gator and the Ameriflux data archive. Global data referred to

the model parameters taken from data sets used by the global

operational version of JULES and meteorological data from

global gridded data sets extracted for each flux tower grid

box. The satellite data referred to LAI data from the MODer-

ate resolution Imaging Spectroradiometer (MODIS) instru-

ment, aboard NASA’s Earth Observing System (EOS) satel-

lites, Terra and Aqua (http://modis.gsfc.nasa.gov).

In this study, we used 12 FLUXNET sites that cover

a range of ecosystem types; temperate (6), boreal (2),

mediterranean (2) and tropical (2) (Table 2), to investigate

differences between using local, global and satellite-derived

data sets when performing model simulations with JULES

version 3.0 (Clark et al., 2011; Best et al., 2011). In particu-

lar, we wished to address the following research questions:

– How well does JULES perform when using the best

available local meteorological and parameter data sets?

Can the model simulate interannual variability?

– How well does JULES perform when using global data?

– Of the global meteorological data sets used in this study,

which one compares best to FLUXNET data?

– Are improvements in simulated gross primary produc-

tivity (GPP) observed when forcing JULES with daily

satellite phenology compared to using the default phe-

nology module?

2 Methods and model

2.1 Model description

The Joint UK Land Environment Simulator (JULES) is

the land surface scheme of the UK Met Office Unified

Model (UM) (current version 8.6), a family of models that

includes the Hadley Centre Global Environmental Model

(HadGEM) climate model (http://www.metoffice.gov.uk/

research/modelling-systems/unified-model). It has evolved

from the Met Office Surface Exchange Scheme (MOSES)

(Cox et al., 1999). JULES is a mechanistic model and is able

to model such processes as photosynthesis, evapotranspira-

tion, soil and snow physics, and soil microbial activity (Blyth

et al., 2011). Each model grid box is composed of nine dif-

ferent surface types, five of which are vegetation, referred to

as plant functional types (PFTs) (broadleaf trees, needleleaf

trees, C3 (temperate) grass, C4 (tropical) grass and shrubs),

and four non-vegetation types (urban, inland water, bare soil

and land-ice). Each grid box can be made up of the first eight

surface types or is land-ice. For single-point model simula-

tions, as used in this study, each point is treated as a grid box

with data such as surface type fractions, soil texture fractions

and meteorological data used as input to the model.

The surface fluxes of CO2 associated with photosynthesis

are computed on each time step for each PFT using a cou-

pled photosynthesis-stomatal conductance model (Cox et al.,

1998). These accumulated carbon fluxes are passed to TRIF-

FID (Top-down Representation of Interactive Foliage and

Flora Including Dynamics), JULES’ dynamic global veg-

etation model and also its terrestrial carbon cycle compo-

nent (Cox, 2001). TRIFFID updates the areal coverage, LAI

and canopy height for each PFT on a longer time step (usu-

ally every 10 days), based on the net carbon available to it

and competition with other vegetation types (Cox, 2001).

For these model simulations, vegetation competition was dis-

abled, which meant that the PFT fractions for each site were

prescribed and did not vary with time. If vegetation competi-

tion was switched on during the spin-up process, this would

have introduced error into the model simulations due to un-

realistic vegetation fractions.

In JULES, phenology is, typically, updated once per day

by multiplying the annual maximum LAI by a scaling fac-

tor, which is calculated by using temperature-dependent leaf

turnover rates (Clark et al., 2011). When calculating GPP,

a multi-layer canopy was used for the scaling up of leaf-

level photosynthesis to canopy level. The option used took

into account the vertical gradient of canopy photosynthetic

capacity (decreasing leaf nitrogen from top to bottom of

canopy) and included light inhibition of leaf respiration. LAI

is calculated for each canopy level (default number is 10),

with a maximum LAI prescribed for each PFT. Clark et al.

(2011) contains more information on the options available

for the calculation of canopy photosynthesis. Two versions of

JULES were used in this study. JULES3.0 is the original and

publicly available release code of JULES version 3.0. The

source code can be downloaded from https://jules.jchmr.org/.

In addition, JULES3.0 was modified in order to force it with

daily MODIS LAI (JULESmod). The local (stand-alone) and

global operational versions of JULES are quite similar. Since

UM v8.1 (using JULES v3.0), the JULES code for both have

been the same with some exceptions, such as the UM/stand-

alone initialisation code. The science code (e.g. photosynthe-

sis, hydrology and soil processes) remains the same between

the two. A more detailed description of JULES can be found

in Clark et al. (2011) and Best et al. (2011).
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Table 2. Flux towers used in this study. The following biome types were used: deciduous broadleaf forest (DBF); evergreen needleleaf forest

(ENF); cropland (CRO); grassland (GRA); tundra (TUN); evergreen broadleaf forest (EBF).

Location

Number Site Lat [◦ N] Long [◦ E] Altitude (m) Biome type Year Climate zone

1 Harvard Forest 42.54 −72.17 303 DBF 2008 Temperate

2 Tharandt 50.96 13.57 380 ENF 2003 Temperate

3 Bondville 40.01 −88.29 219 CRO 2000 Temperate

4 Fort Peck 48.31 −105.10 634 GRA 2004 Temperate

5 Morgan Monroe 39.32 −86.41 275 DBF 2007 Temperate

6 Tumbarumba −35.66 148.15 1200 EBF 2008 Temperate

7 Kaamanen 69.14 27.29 155 TUN 2002 Boreal

8 Hyytiala 61.85 24.29 181 ENF 2003 Boreal

9 Santarem KM67 −2.86 −54.96 130 EBF 2003 Tropical

10 Santarem KM83 −3.02 −54.98 130 EBF 2001 Tropical

11 El Saler 39.35 −0.32 10 ENF 2003 Mediterranean

12 Vaira Ranch 38.41 −120.95 129 GRA 2005 Mediterranean

Table 3. Types of model simulations performed in this study.

Model Parameter Meteorological LAIb Phenologyc

simulationsa sets forcing

local-F local FLUXNET local Default

local local-WEIG local WFDEI-GPCC local Default

vs. global global-WEIG global WFDEI-GPCC global Default

data global-WEIC global WFDEI-CRU global Default

global-P global PRINCETON global Default

Satellite local-FNM local FLUXNET Site max. MODIS LAI Default

phenology local-FM local FLUXNET Site max. MODIS LAI Daily forcing

a For model simulation names, local and global refer to the parameter set and F, WEIG, WEIC and P refer to the meteorological forcing

data set used.
b For LAI, local refers to the observed annual maximum LAI at each site and global refers to that obtained from the look-up tables used

by the global operational version of the model.
c Default refers to the default phenology model used by JULES and daily forcing means that the default phenology has been switched

off and the model forced with daily MODIS LAI.

2.2 Experimental design

Offline single point simulations of GPP were performed at

each of the 12 flux tower sites using various global and lo-

cal data sets (Table 3). Correct simulation of GPP is impor-

tant since errors in its calculation can propagate through the

model and affect biomass and other flux calculations, such

as net ecosystem exchange (NEE) (Schaefer et al., 2012). In

JULES, NEE is not a model output and is calculated as total

ecosystem respiration minus GPP. The correct representation

of leaf level stomatal conductance has an influence on GPP

and transpiration. Errors in GPP can also introduce errors

into simulated latent and sensible heat fluxes. These study

sites (Blyth et al., 2011; Abramowitz et al., 2008, Table 5)

were chosen to validate model performance in carbon flux

simulation since gap-filled meteorological data, local obser-

vations of vegetation and soil characteristics and observed

GPP fluxes were available.

One year model simulations were performed and span a

range of years due to limited availability of local gap-filled

meteorological data, observations of GPP fluxes and vegeta-

tion characteristics (Table 2). Prior to performing the model

simulations, the soil carbon pools at each site were brought

to equilibrium using a 10 year spin-up by cycling 5 year aver-

aged meteorological data (in equilibrium mode), followed by

a 1000 year spin-up by cycling observed meteorological data

(in dynamical mode). At Tumbarumba, Santarem Km67 and

Santarem Km83, 3 year averaged meteorological data was

used in the first part of the spin-up process due to limited

data availability. More information on model spin-up can be

found in Clark et al. (2011).

2.3 Data

JULES requires meteorological data at 6-hourly intervals

or less in order to drive the model offline. In this study,

half-hourly/hourly meteorological data was used for model

Geosci. Model Dev., 8, 295–316, 2015 www.geosci-model-dev.net/8/295/2015/
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runs using local data and 3-hourly data for simulations us-

ing global data. For offline simulations, the model requires

downward short-wave and long-wave radiation (Wm−2),

rainfall and snowfall rate (kgm−2 s−1), air temperature (K),

wind speed (ms−1), surface pressure (Pa) and specific hu-

midity (kgkg−1) (Table 1). Gap-filled meteorological forcing

data at the local scale was obtained from the FLUXNET net-

work and data at the global scale was obtained from two grid-

ded data sets: WFDEI (Weedon et al., 2014, 2011) and that

developed by Sheffield et al. (2006) (referred to as PRINCE-

TON).

Vegetation and soil parameters (Table 1) were adjusted to

local or global values depending on the model simulations

(Table 3) performed at the 12 flux tower sites. Local vegeta-

tion (Tables 5, 6) and soil parameters (not shown) were ob-

tained from the research literature, communications with site

Primary Investigator and the Ameriflux data archive. Global

vegetation (Tables 5, 6) and soil parameters (not shown) were

taken from data sets used in the global operational version of

JULES as used in the Hadley Centre Global Environmen-

tal Model (HadGEM) climate model. These data sets include

the Global Land Cover Characterization (version 2) database

(http://edc2.usgs.gov/glcc/glcc.php) (PFT fractions), and the

Harmonized World Soil Database (version 1.2) (Nachter-

gaele et al., 2012) (soil texture fractions).

There are several global LAI data sets available, such as

ECOCLIMAP (1992) (Masson et al., 2003), CYCLOPES

(1997–2007) (Baret et al., 2007), GLOBCARBON (1998–

2003) (Deng et al., 2006), MOD15 (2000–present) (Yang

et al., 2006) and MISR LAI (2000–present) (Diner et al.,

2008; Hu et al., 2007). For the majority of sites used in this

study, gap-filled meteorological data and GPP flux observa-

tions are only available for the 2000s and therefore, a global

data set of satellite LAI was required that covered this period.

We used the MODIS LAI product because it is a high spatial

and temporal resolution data set with global coverage.

2.3.1 Forcing data

FLUXNET, a “network of regional networks”, is a global

network of micrometeorological tower sites that measure the

exchange of carbon dioxide, water vapour and energy be-

tween the biosphere and atmosphere across a range of biomes

and timescales (Baldocchi et al., 2001). Data and site infor-

mation are available online at: http://www.fluxnet.ornl.gov/.

Over 500 tower sites are located worldwide on five conti-

nents and are used to study a range of vegetation types, such

as temperate conifer and broadleaved (deciduous and ever-

green) forests, tropical and boreal forests, crops, grasslands,

wetlands, and tundra (Baldocchi et al., 2001).

The WATCH Forcing Data (WFD) (1901–2001) was cre-

ated in the framework of the Water and Global Change

(WATCH) project (http://www.eu-watch.org/), which sought

to assess the terrestrial water cycle using land surface mod-

els and general hydrological models. WFD was derived using

the 40 years ECMWF Re-Analysis (ERA-40) for 1958–2001

and data for 1901–1957 was obtained using random years ex-

tracted from the ERA-40 data (Weedon et al., 2011). WFD

was extended by applying the WFD methodology to the

ERA-Interim data for the 1979–2009 period (WFDEI) (Wee-

don et al., 2014). Within WFD and WFDEI, there are two

precipitation products: the first corrected using the Climate

Research Unit at the University of East Anglia (CRU) ob-

servations; and the second using Global Precipitation Clima-

tology Centre (GPCC) observations. The WFDEI data sets

incorporating the GPCC- and CRU-corrected precipitation

products are referred to as WFDEI-GPCC and WFDEI-CRU,

respectively. WFDEI is only available for land points includ-

ing Antarctica, and consists of 3-hourly, regularly (latitude–

longitude) gridded data at half-degree (0.5◦× 0.5◦) resolu-

tion. This resolution produces a global grid of 360× 720

grid cells and is equivalent to a surface resolution of about

56km× 56km at the Equator and 56km× 32km at 55◦ N

(temperate regions).

The Sheffield et al. (2006) data set (PRINCETON) is a

global 60-year meteorological data set for driving land sur-

face models developed by the Land Surface Hydrology Re-

search Group at Princeton University. PRINCETON is only

available for land points (excluding Antarctica), and con-

sists of 3-hourly, 1◦ resolution, meteorological data for the

1948–2008 period. This data set has a resolution half that

of WFDEI with a global grid of 180× 360 grid cells and is

equivalent to a surface resolution of about 111km× 111km

at the Equator and 111km× 64km at 55◦ N. The resolution

(both spatial and temporal) of the meteorological data can

affect the output of land surface and atmospheric chemistry

models (Pugh et al., 2013; Ashworth et al., 2010; Ito et al.,

2009; Guenther et al., 2006) and may introduce a systematic

bias.

2.3.2 Observational data

Local observations of GPP were obtained from the

FLUXNET network. Flux tower sites use the eddy covari-

ance method to measure net ecosystem exchange (NEE),

which is defined as the net flux of CO2, and is separated into

GPP and ecosystem respiration with a “flux-partitioning al-

gorithm” (Reichstein et al., 2005). There are a number of ap-

proaches used to separate NEE into its two component fluxes,

which include extrapolating night-time respiration measure-

ments to the daytime and fitting light-response curves to

daytime NEE measurements (Lasslop et al., 2010). In ad-

dition to flux-partitioning, the data must also be gap-filled

due to unfavourable meteorological conditions and instru-

ment failure (Reichstein et al., 2005). These processes carry

with them some uncertainty, which must be quantified. Ha-

gen et al. (2006) found that the uncertainty at the half-hourly

timescale was of the order of the observations themselves

(i.e. ∼ 100 %), but only ∼ 10 % at the annual timescales for

a temperate deciduous forest.

www.geosci-model-dev.net/8/295/2015/ Geosci. Model Dev., 8, 295–316, 2015
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Table 4. Definition of qualitative terms used to describe JULES’

ability to simulate GPP when compared to observed FLUXNET

GPP. Both RMSE and Bias have units of gCm−2 day−1. Starting at

“Very well”, the term associated with the first condition satisfied is

used to describe model performance.

Qualitative RMSE Bias

term (= x) (= y)

Very well 0 < x <+2 |y| ≤ +1

Good 0 < x <+3 |y| ≤ +2

Poorly 0 < x+ 5 |y| ≥ +2

2.3.3 Ecological and soil data

The Global Land Cover Characterization (version 2)

database, generated by the US Geological Survey, the Uni-

versity of Nebraska-Lincoln, and the European Commis-

sion’s Joint Research Centre, is a 1 km resolution global land

cover data set for use in environmental and modelling re-

search (Loveland et al., 2000). Land cover is classified into

17 categories using the International Geosphere–Biosphere

Programme (IGBP) scheme. The land cover category for

each of the flux tower sites was extracted from the GLCC

database (IGBP code in Table 5). These IGBP codes are then

used to derive the annual maximum LAI and canopy height

for each PFT from the look-up tables used in the global oper-

ational version of JULES. Further information on how these

variables are derived can be found in Appendix A.

Global soil texture fractions (% of sand, silt and clay)

for each of the 12 FLUXNET sites (not shown here) were

extracted from the Harmonized World Soil Database (ver-

sion 1.2) (HWSD) (Nachtergaele et al., 2012). The equations

used to compute soil hydraulic and thermal characteristics

were taken from the Unified Model Documentation Paper

No. 70 (Jones, 2007). Note that the equations in Jones (2007)

apply only to mineral soils, as organic soils behave differ-

ently (Gornall et al., 2007). In this study, the soils are clas-

sified as mineral at all 12 sites. Since the HWSD contains

soil textures for two soil depths (0–30 and 30–100 cm) and

JULES contains four soil layers (thicknesses of 0.1, 0.25,

0.65 and 2.0), the 0–30 cm soil textures were assigned to the

top two model soil layers (thicknesses 0.1 and 0.25 m, re-

spectively), and the 30–100 cm textures were assigned to the

bottom two layers (thicknesses 0.65 and 2.0 m, respectively).

The local soil textures are provided as site averages and

therefore, each model soil layer (four in total) is assigned

the same set of soil textures.

2.3.4 MODIS LAI products

The MODIS LAI product, computed from MODIS spectral

reflectances, provides continuous and consistent LAI cov-

erage for the entire global land surface at 1 km resolution

(Yang et al., 2006). Some gaps and noise in the data are

possible due to the presence of cloudiness, seasonal snow

cover and instrument problems, and this can limit the useful-

ness of the product (Gao et al., 2008; Lawrence and Chase,

2007). In this study, we use the MODIS Land Product Sub-

sets, created by the Oak Ridge National Laboratory Dis-

tributed Active Archive Center (ORNL DAAC), which pro-

vide summaries of selected MODIS Land Products for use

in model validation and field site characterisation and in-

clude data for more than 1000 field sites and flux towers

(http://daac.ornl.gov/MODIS/).

The MODIS Land Product Subsets (ASCII format) con-

tain LAI data for a 7km× 7 km grid of 49 pixels, with each

pixel representing the 1km× 1 km scale, at 8-day composite

intervals. The average of the 3× 3 pixel grid box centred on

the flux tower is taken to be that day’s LAI value. Only pixel

values with an even quality control (QC) flag was used for

the averaging and this produced a time-series of 8-day ob-

servations at each of the sites. Missing data were dealt with

by using the previous good value in the time-series. The ex-

ception to this was Bondville, where missing data occurred

in January 2000, since MODIS only started recording data in

February 2000 (this year was used due to limited data avail-

ability at the site). To gap-fill the missing data, an 11-year av-

erage was computed and the missing data replaced with the

average for January 2000. Finally, each time-series of 8-day

composite values was linearly interpolated to obtain a daily

LAI time-series.

2.4 Outline of experiments

This section describes the model simulations performed in

the study. In the model simulation names, local and global

refer to the parameter set and F, WEIG, WEIC and P refer to

the meteorological forcing data set used (Table 3). Vegetation

competition has been switched off for all model simulations.

2.4.1 Effect of local data on simulated GPP

Using JULES3.0, we compared model simulations using lo-

cal parameter and meteorological data sets (local-F; Table 3)

to observations of GPP from the FLUXNET network. For

this set of model simulations, the default phenology model

(used to update LAI) and TRIFFID were used.

The ability of the model to simulate interannual variability

was also examined. Multi-year model simulations were per-

formed for six of the sites using local data; one from each of

the various climate zones (Harvard Forest, Vaira Ranch, Hyy-

tiala, Santarem Km67), the Southern Hemisphere site (Tum-

barumba) and the temperate site, Morgan Monroe. Since me-

teorological data was available for multiple years at these

sites, but not model parameter data, the same parameter data

sets used for the single-year runs (Table 2) would be used for

the multi-year runs at specific sites.
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Table 5. Vegetation (PFT) and non-vegetation land cover type (BL: broadleaf tree, NL: needleleaf tree, C3g: C3 grass, C4g: C4 grass, sh:

shrubs, bs: bare soil) fractions at the 12 FLUXNET sites. For each site, the first row refers to global data and the second refers to local.

Plant functional types

Site IGBP code IGBP class BL NL C3g C4g sh bs References

Harvard Forest 4 DB forest 0.60 0.05 0.10 0.05 0.20

DB forest 0.95 0.05 Urbanski et al. (2007)

Vaira Ranch 8 Woody savannah 0.50 0.15 0.25 0.10

Grassland 0.95 0.05 Ryu et al. (2008)

Morgan Monroe 4 DB forest 0.60 0.05 0.10 0.05 0.20

DB forest 0.90 0.10 Schmid et al. (2000)

Hyytiala 1 EN forest 0.70 0.20 0.10

EN forest 0.95 0.05 Suni et al. (2003)

Tharandt 5 Mixed forest 0.35 0.35 0.20 0.10

EN forest 0.95 0.05 Grünwald and Bernhofer (2007)

Tumbarumba 2 EB forest 0.85 0.10 0.05

EN forest 0.90 0.10 Leuning et al. (2005)

El Saler 7 Open shrub 0.05 0.10 0.35 0.50

EN forest 0.90 0.10 Stöckli et al. (2008)

Fort Peck 10 Grassland 0.70 0.15 0.05 0.10

Grassland 0.90 0.10 Gilmanov et al. (2005)

Kaamanen 1 EN forest 0.70 0.20 0.10

Grassland 0.90 0.10 Laurila et al. (2001)

Santarem KM67 2 EB forest 0.85 0.10 0.05

EB forest 0.98 0.02 Hutyra et al. (2007)

Santarem KM83 2 EB forest 0.85 0.10 0.05

EB forest 0.98 0.02 Goulden et al. (2004)

Bondville 12 Cropland 0.75 0.05 0.20

Grassland 0.90 0.10 Meyers and Hollinger (2004)

2.4.2 Effect of global data on simulated GPP

Using JULES3.0, we compared model simulations using pa-

rameter sets from the HadGEM model and global meteoro-

logical data (global-WEIG, global-WEIC and global-P; Ta-

ble 3) to observations of GPP from the FLUXNET network.

In addition to this, we quantified how much error is intro-

duced into model simulations (using local model parameters)

when using global (WFDEI-GPCC) instead of local meteo-

rological data (local-WEIG and local-F in Table 3). In these

model simulations, the default phenology model and TRIF-

FID were used.

2.4.3 Comparison of global to local meteorological data

The WFDEI-GPCC, WFDEI-CRU and PRINCETON data

sets were compared to FLUXNET to find out which one more

closely captures the local meteorological conditions.

2.4.4 Daily satellite phenology

Using JULES3.0 and JULESmod, we tested the ability of

the JULES phenology model to simulate the seasonal cy-

cle of GPP by comparing model simulations, where JULES

uses MODIS LAI data (local-FM and local-FNM; Table 3)

to those using the default phenology model (local-F; Ta-

ble 3). When using the default phenology module, LAI was

computed internally by scaling the annual maximum LAI,

which was then used to calculate GPP. When forcing JULES

with daily MODIS data (local-FM), the phenology module

was switched off and the MODIS LAI then used to compute

GPP. For model simulations using MODIS data and the de-

fault phenology module (local-FNM), the annual maximum

MODIS LAI is set to be the annual maximum LAI. Vege-

tation competition has been switched off and local parame-

ters used for both sets of model simulations (local-FM, local-

FNM).
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Table 6. Local and global biophysical parameters (site annual maximum LAI, canopy height and Vcmax) at the 12 FLUXNET sites. For each

site, the first row refers to global data, the second refers to local and the third refers to satellite. Online data was accessed in April 2013.

LAI Canopy height Vcmax

Site (m2 m−2) (m) (µmol CO2 m−2 s−1) References

Harvard Forest

5.00 19.01 32.00 a Harvard Forest data archive/exchange

5.00a 24.00a 35.20a

6.03 – –

Vaira Ranch

4.00 1.26 48.00 b Ameriflux biological data

2.74b 0.67b 42.25c c Beerling and Quick (1995)

3.46 – –

Morgan Monroe

5.00 19.01 32.00

5.23b 27.00b 34.80c

6.81 – –

Hyytiala

6.00 21.46 24.00 d P. Kolari (personal communication, 2013)

3.00d 14.00e 60.00d e Suni et al. (2003)

4.56 – –

Tharandt

6.00 21.46 24.00 f T. Grünwald (personal communication, 2013)

7.10f 26.50g 62.50h g Grünwald and Bernhofer (2007)

3.82 – – h Kattge et al. (2009)

Tumbarumba

4.00 16.38 24.00 i E. van Gorsel (personal communication, 2013)

2.50i 40.00j 74.33k j Cleugh et al. (2007)

6.08 – – k Haverd et al. (2009)

El Saler

4.00 16.38 24.00 l Blyth et al. (2010)

4.00l 12.00m 62.5h m Obtained from http://www.bgc-jena.mpg.de

1.04 – –

Fort Peck

3.00 1.04 48.00 n Obtained from: http://ameriflux.ornl.gov/

2.00l 0.40n 42.25s

1.41 – –

Kaamanen

2.00 0.79 48.00 o Laurila et al. (2001)

0.70o 1.00p 42.25c p Aurela et al. (1998)

1.33 – –

Santarem Km67

9.00 28.12 32.00 q Oak Ridge National Laboratory DAAC

5.25q 45.00r 81.00s r Hutyra et al. (2007)

6.73 – – s Domingues et al. (2007)

Santarem Km83

9.00 28.12 32.00 t Doughty and Goulden (2008)

6.00t 40.00u 81.00v u Bruno et al. (2006)

6.63 – – v Domingues et al. (2007)

Bondville

5.00 1.46 48.00 w Meyers and Hollinger (2004)

6.74b 0.90w 117.35c

3.37 – –

2.5 Model analyses

To quantify differences between output from the various

model simulations and observations, we used root mean

squared error (RMSE) (Eq. 1), which is a measure of the av-

erage error of the simulations, and bias (Eq. 2), which is the

average difference between model and observations (a mea-

sure of under- or overprediction) with the absolute (Eq. 3)

and percentage differences (Eq. 4):

RMSE=

√∑t=n
t=1(xt − xo, t )

2

n
, (1)

Bias=

∑t=n
t=1xt −

∑t=n
t=1xo, t

n
. (2)

xt and xo, t are model and observed daily GPP fluxes, respec-

tively, which have been smoothed using a 7-day moving aver-
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Figure 1. Seasonal cycle of model-predicted (local-F, global-WEIG, global-WEIC and global-P in Table 3) and observed GPP fluxes,

smoothed with a 7-day moving average window, at the 12 FLUXNET sites (HF: Harvard Forest; VA: Vaira Ranch; MM: Morgan Monroe;

HY: Hyytiala; TH: Tharandt; TUM: Tumbarumba: ES: El Saler; FP: Fort Peck; KA: Kaamanen; S67: Santarem Km67; S83: Santarem Km83;

BO: Bondville). Model simulation years are given in Table 2. The thick lines refer to FLUXNET observations (blue) and simulated GPP

from local-F model simulations (red). Annual averages for model simulations and observations are plotted as thick dots on the right of each

plot in the same colours.

age since we are interested in the long-term average and not

daily variability. n is the number of paired values (number of

days in year). The absolute difference (1GPP) between the

model and observations is the absolute value of the difference

in total annual GPP for each and the percentage difference

(1%) is the absolute difference divided by the observed total

annual GPP:

1GPP= |
∑

GPPobs−

∑
GPPmodel|, (3)

1%=
1GPP∑
GPPobs

× 100. (4)

In order to describe JULES’ ability to reproduce simulated

GPP, a simple, but subjective, ranking system using qualita-

tive terms (Very well, Good and Poorly) was devised based on

RMSE and bias (Table 4, Fig. 2a). These ranges were used as

interannual variability was about ±1 gCm−2 day−1 in both

RMSE and bias (Sect. 3.1).

3 Results

3.1 Effect of local data on simulated GPP

When driven with local meteorological and parameter data

sets (local-F; Fig. 1), JULES has a negative bias with total

annual GPP underestimated by 16 % (3049 gCm−2 year−1;

Table 7) across all sites compared to observations. By us-

ing local data, JULES performs very well (see Fig. 2a

and Table 4 for definition of qualitative terms used to de-

scribe model performance) at the temperate forest sites,

Harvard Forest, Morgan Monroe, Hyytiala and Tharandt,

where RMSEs range from 1.1–1.4 gCm−2 day−1, biases

from −0.2 to +0.3 gCm−2 day−1 (Fig. 2a) and absolute dif-

ferences from 40–211 gCm−2 year−1 (Table 7) and good

at Vaira Ranch with an RMSE of 2.78 gCm−2 day−1,

bias of −0.19 gCm−2 day−1 and absolute difference of

71 gCm−2 year−1. The model performs poorly at Tum-

barumba, El Saler, Bondville and the tropical sites, Santarem

Km67 and Santarem Km83, with RMSEs ranging from 1.8–

4.1 gCm−2 day−1, biases from −3.7 to −0.2 gCm−2 day−1

and absolute differences from 71–1340 gCm−2 year−1.

At the temperate forest sites, JULES simulates the sum-

mer carbon uptake and leaf onset and senescence very well.

For example, at the needleleaf forests, Hyytiala and Tha-

randt, the model correctly captures the timing and magni-

tude of the seasonal cycle of GPP (Fig. 1). JULES is able to

capture the beginning and ending of the growing season, but

underestimates the summer carbon uptake at Tumbarumba, a

temperate sclerophyll forest (forests dominated by plants that

have hard leaves and are adapted to drought) (Fig. 1). At the

tropical sites, Santarem Km67 and Santarem Km83, the sea-

sonal cycle has been modelled poorly, with the total annual
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Figure 2. Comparison of modelled and observed GPP using bias and RMSE at the 12 FLUXNET sites (HF: Harvard Forest; VA: Vaira Ranch;

MM: Morgan Monroe; HY: Hyytiala; TH: Tharandt; TUM: Tumbarumba; ES: El Saler; FP: Fort Peck; KA: Kaamanen; S67: Santarem Km67;

S83: Santarem Km83; BO: Bondville) for three sets of model simulations: (a) local-F; (b) global-WEIG; and (f) local-WEIG (Table 3). (c)

displays the differences between bias and RMSE for global-WEIG and local-F model simulations; (d) differences between local-WEIG and

local-F model simulations; and (e) differences between global-WEIG and local-WEIG model simulations. Marked on (c), (d) and (e) next

to the figure letter are how the sets of model simulations differ. The site labels are coloured according to their climate zone (Table 2). The

dashed lines on (a) show the regions defined by the qualitative terms (Table 4) used to describe model performance.

Table 7. Absolute and percentage differences between model simulated and observed (FLUXNET) total annual GPP (gCm−2 year−1) at the

12 flux tower sites.
∑

GPPobs is the observed total annual GPP, 1GPP is the absolute difference (Eq. 3) between the model and observed

total annual GPP, and 1% is the percentage difference (Eq. 4) between the model and observed total annual GPP. Values highlighted in bold

mean that the difference is negative (i.e.
∑

GPPobs <
∑

GPPmodel). The total value for each of the model simulations was computed using

the differences and not the absolute differences.

FLUXNET local-F local-WEIG global-WEIG global-WEIC global-P

Site
∑

GPPobs 1GPP 1% 1GPP 1% 1GPP 1% 1GPP 1% 1GPP 1%

Harvard Forest 1621 40 2 567 35 716 44 711 44 486 30

Vaira Ranch 1047 71 7 592 57 235 22 259 25 369 35

Morgan Monroe 1385 94 7 639 46 616 44 661 48 256 18

Hyytiala 997 68 7 73 7 135 14 120 12 144 14

Tharandt 1754 211 12 306 17 687 39 819 47 590 34

Tumbarumba 2806 197 7 1710 61 1951 70 1984 71 1690 60

El Saler 1512 760 50 499 33 1073 71 1276 84 1234 82

Fort Peck 367 194 53 229 62 213 58 200 54 105 29

Kaamanen 368 249 68 273 74 8 2 5 1 124 34

Santarem Km67 3171 1340 42 451 14 1245 39 1075 34 392 12

Santarem Km83 2724 583 21 202 7 1033 38 644 24 40 1

Bondville 766 240 31 200 26 131 17 406 53 177 23

Total 18 518 3049 4325 8043 7348 4717

GPP being underestimated by 42 % (1340 gCm−2 year−1)

and 21 % (583 gC m−2 year−1), respectively (Table 7).

JULES can simulate interannual variability when using lo-

cal data with average RMSEs across all six sites for all years

being within 0.7 gCm−2 day−1 and average biases within

1.2 gCm−2 day−1 of model results from the corresponding

single-site runs (Fig. 3). Interannual variability is captured

very well at the temperate sites (Harvard Forest, Hyytiala
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Figure 3. Multi-year comparison of modelled and observed GPP

using bias and RMSE at six FLUXNET sites (HF: Harvard For-

est; VA: Vaira Ranch; MM: Morgan Monroe; HY: Hyytiala; TUM:

Tumbarumba; S67: Santarem Km67) for model simulations using

local parameter and meteorological data (local-F). The site labels

are coloured according to their climate zone (Table 2) and repre-

sent data from model simulations performed for the year specified

in Table 2, with results from other years plotted using the model

simulation year and labels coloured the same as the original site

label.

and Morgan Monroe) and Vaira Ranch with RMSEs rang-

ing from +1 to +3 gCm−2 day−1 and biases from +1 to

−1 gCm−2 day−1. As observed with the single-site model

simulations, the model fails to capture interannual variability

at Santarem Km67 and Tumbarumba (Fig. 3).

Overall, JULES performs very well with the use of local

data (meteorological and parameter data sets) with negative

biases observed at the tropical sites and the Southern Hemi-

sphere site, Tumbarumba, with the same trend also observed

when the model simulates interannual variability.

3.2 Effect of global data on simulated GPP

By replacing the local data with global parameter and

meteorological data, JULES had a much greater nega-

tive bias with total annual GPP underestimated by 30 %

(6703 gCm−2 year−1; Table 7) on average across all sites

compared to observations (global-WEIG, global-WEIC and

global-P; Fig. 1). This is also shown in the annual average

GPP, which has been plotted for each of the model simula-

tions and observations at the 12 sites (Fig. 1) and the percent-

age differences (Table 7), which are, in general, larger for

simulations using global data than for those using local. This

trend occurs at all sites, with the exception of the wetland

site, Kaamanen, and Santarem Km83, where modelled total

annual GPP (2684 gCm−2 year−1 and 492 gCm−2 year−1,

respectively) is overestimated (global-P; Table 7) compared

to model runs using only local data (2141 gCm−2 year−1 and

119 gCm−2 year−1, respectively; Table 7).

As well as quantifying differences in model simulations

using either local or global data, it is useful to know how

global meteorological data affects local model runs. Global

meteorological data can be used in place of FLUXNET data

in order to drive JULES (local-WEIG; Table 3). This is im-

portant for ecological research sites where there is limited or

no local meteorological data available. Using the WFDEI-

GPCC meteorological data set (local-WEIG; Table 3) to

force the model increases the negative bias of model simu-

lations using only local data (Fig. 2f), with a 7 % reduction

in simulated total annual GPP (15 469 gCm−2 year−1 for

local-F reduced to 14 193 gCm−2 year−1 for local-WEIG;

Table 7).

Forcing the model with WFDEI-GPCC (local-WEIG) re-

sults in decreases in model performance (increases in bias

and RMSE) at the majority of sites. The tropical sites,

Santarem Km67 and Santarem Km83, are two exceptions

and show a noticeable improvement in modelled yearly GPP

(66 and 61 % reduction of bias, respectively) and changes

to modelled seasonal cycle (25 % increase and 65 % reduc-

tion of RMSE, respectively). However, at some sites, such

as Tharandt, Kaamanen and Hyytiala, forcing JULES with

global meteorological data has not introduced large negative

biases into GPP predictions (Table 7), with RMSEs ranging

from 1.1–1.3 gCm−2 year−1 (Fig. 2f).

In general, we found the meteorological data had a greater

impact on modelled GPP fluxes than model parameters.

Larger differences exist between local-WEIG and local-F

(localWEIG-F; Fig. 2d), which differ only in the atmospheric

forcings data set used, compared to between global-WEIG

and local-WEIG (global− localWEIG; Fig. 2e), which differ

only in the model parameter sets used.

The ability of JULES to capture yearly GPP (bias) and

the seasonal cycle (RMSE) is affected at the majority of

sites when using global meteorological data (Fig. 2d), with

improvements observed at Santarem Km67 and Santarem

Km83. However, model parameters were found to affect

bias at all 12 sites (Fig. 2e) with the tropical sites being

the most influenced. With the exception of Tumbarumba,

biases associated with meteorological data compensate for

those associated with model parameters at the tropical sites

(globalWEIG− localF; Fig. 2c).

Overall, we found that with the use of global data (model

parameter and meteorological data), model performance de-

creased from very well to good and poorly at most sites,

with the exception of the tropical sites. Driving JULES with

global meteorological data introduces biases into single site

simulations. At the majority of sites, these biases are neg-

ative, but at tropical sites, the global meteorological data

www.geosci-model-dev.net/8/295/2015/ Geosci. Model Dev., 8, 295–316, 2015



306 D. Slevin et al.: Multi-site evaluation of the JULES land surface model using global and local data

Figure 4. Bias and RMSE, expressed as percentages of daily average, when comparing global (WFDEI-GPCC (circles), WFDEI-CRU

(squares) and PRINCETON (triangles)) to local meteorological data for four meteorological variables: (a) downward short-wave radiation

(SW); (b) downward long-wave radiation (LW); (c) precipitation; and (d) surface air temperature, at the 12 FLUXNET sites (HF: Harvard

Forest; VA: Vaira Ranch; MM: Morgan Monroe; HY: Hyytiala; TH: Tharandt; TUM: Tumbarumba; ES: El Saler; FP: Fort Peck; KA:

Kaamanen; S67: Santarem Km67; S83: Santarem Km83; BO: Bondville). The site labels are coloured according to their climate zone

(Table 2). Note that before computing bias and RMSE, the meteorological data was normalised against the annual mean for each site.

improves model performance. We found the meteorological

data to have a greater impact on GPP fluxes than model pa-

rameters.

3.3 Global vs. local meteorological data

As well as quantifying the error introduced into model sim-

ulations by using global meteorological data instead of lo-

cal, we also compared the global meteorological data to lo-

cal data. Only the downward short-wave and long-wave ra-

diation fluxes, precipitation and surface air temperature vari-

ables have been compared to FLUXNET values, since these

variables play the most influential role of the meteorologi-

cal forcings in canopy photosynthesis and light propagation

in JULES (Alton et al., 2007). In order to compare the me-

teorological data sets, the data was normalised against the

annual mean for each site before computing the RMSE and

bias.

Of the two global meteorological data sets used in this

study, the WFDEI data set compares best to FLUXNET

(lower RMSEs and biases than PRINCETON) at the major-

ity of sites (Fig. 4). Surface air temperatures compare best

to local meteorological measurements with average RMSEs

of 0.4 and 0.7 % (7 day filtered RMSE expressed as per-

centages of the annual mean value) (1.5 and 2.4 K) across

all sites for the WFDEI and PRINCETON data sets, respec-

tively (Fig. 4d), followed by the downward short-wave ra-

diation fluxes with average RMSEs of 13 and 17 % (27.0

and 33.2 Wm−2) for WFDEI and PRINCETON, respectively

(Fig. 4a), and downward long-wave radiation fluxes with

average RMSEs of 4 and 5 % (18.9 and 25.0 Wm−2) for

WFDEI and PRINCETON, respectively (Fig. 4b). Precipita-

tion data from global data sets differ most from local values

with RMSEs of 112–178 % (2.7–4.4 mmday−1) for WFDEI-

GPCC, WFDEI-CRU and PRINCETON, respectively, which

may be due to how the precipitation products of each global

data set is corrected (Weedon et al., 2011; Sheffield et al.,

2006).

In addition to comparing the global meteorological vari-

ables to their local values, we also examine the two pre-

cipitation products, WFDEI-GPCC (GPCC-corrected) and

WFDEI-CRU (CRU-corrected), within the WFDEI data

set. We found WFDEI-GPCC and WFDEI-CRU compare

equally well at the 12 FLUXNET sites (Fig. 4c) with av-

erage RMSEs of 2.7 and 2.8 mmday−1, respectively. Dif-

ferences between GPCC- and CRU-corrected precipitation

RMSEs are small (0.0–1.4 gCm−2 day−1) at individual flux

tower sites. When forcing JULES with WFDEI, there is lit-

tle difference when either WFDEI-GPCC or WFDEI-CRU

is used as the precipitation product, with average RMSEs of

2.9 and 2.8 gCm−2 day−1, respectively, across all sites, al-
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though differences in the data sets may be more important

when JULES is run globally.

Even though WFDEI compares better to the local me-

teorological data than PRINCETON, we found that when

JULES is forced with the PRINCETON data set, improve-

ments in GPP predictions were observed at Santarem Km67

and Santarem Km83 (Fig. 1). We observed that at the tropical

sites, the meteorological forcings were the primary driver of

productivity for model simulations using global data and that

biases associated with the global meteorological data com-

pensated for incorrect parameter values.

By swapping local meteorological data with global me-

teorological data (PRINCETON) for model simulations us-

ing local data (local-F), it was found that the positive bias

associated with global surface air temperature (PRINCE-

TON) at Santarem Km83 is the primary cause of improved

model performance (39 % reduction in RMSE) when us-

ing global data and by forcing JULES with the PRINCE-

TON data set and using the lower global Vcmax value (Ta-

ble 6), the model was able to reproduce the seasonal cy-

cle very well (RMSE of 1.26 gCm−2 day−1). At Santarem

Km67, we found the downward long-wave radiation to be

the main reason for the improved seasonal cycle (35 % re-

duction in RMSE) and by using the PRINCETON data set

and global Vcmax value (Table 6), model performance was

improved (RMSE of 2.12 gCm−2 day−1).

Compensation between meteorological data and model pa-

rameters also occurs at Hyytiala, where the model performs

very well with global meteorological and parameter data sets

(Fig. 1). The global downward short-wave radiation is larger

than its locally measured value and this offsets the low global

Vcmax value at this site (Table 6, Fig. 6b).

Overall, we found the WFDEI data set compares bet-

ter than PRINCETON to FLUXNET and of the four mete-

orological variables examined, the radiation fluxes (down-

ward short-wave and long-wave) and surface air tempera-

tures compare very well to local values. Within the WFDEI

data set, the two precipitation products (WFDEI-GPCC and

WFDEI-CRU) compare equally well to FLUXNET precip-

itation. Improvements were observed at the tropical sites

when JULES is forced with PRINCETON and this is due

to biases associated with the meteorological data.

3.4 Forcing JULES with daily satellite phenology

The performance of LSMs depend on how well the seasonal

variation of LAI is represented, since GPP is strongly influ-

enced by the timing of budburst and leaf senescence (Liu

et al., 2008). In JULES, LAI is essential for the calculation of

plant canopy photosynthesis and is updated daily in response

to temperature. We test the JULES phenology model by com-

paring model predictions of GPP when JULES uses its de-

fault phenology model with those in which JULES uses lo-

cal data with the annual maximum LAI set to be the MODIS

annual maximum LAI (local-FNM), and with those in which

the model uses local data and is forced with daily MODIS

LAI (local-FM).

Forcing JULES with daily satellite LAI (local-FM) results

in either small improvements (average reduction in RMSE

by 0.2 gCm−2 day−1) or none at all at the 12 flux tower sites

(Fig. 5c). An average RMSE of 2.2 gCm−2 day−1 across all

sites is observed when the model is forced with daily MODIS

LAI (local-FM), which is less than that for model simula-

tions using no MODIS information (local-F; average RMSE

of 2.4 gCm−2 day−1) and those which use the annual maxi-

mum MODIS LAI as the annual maximum LAI at each site

(local-FNM; average RMSE of 2.39 gCm−2 day−1).

By using MODIS data, there is only a small reduction (8

and 0.04 % for local-FM and local-FNM, respectively) in av-

erage RMSE when simulating GPP compared to model runs

that do not use it. Of the 12 sites, only seven (Harvard Forest,

Vaira Ranch, Hyytiala, Tharandt, Tumbarumba, Kaamanen

and Santarem Km67) show improved model performance

when either being forced with daily MODIS LAI (Fig. 5c)

or using the annual maximum MODIS LAI as the model an-

nual maximum LAI (Fig. 5b). At these seven sites, simulated

yearly GPP increases in total by 21 %. At the remaining sites,

JULES performs better using the default phenology module

(Fig. 5a).

Of the seven sites where JULES’ performance improved

using MODIS data, forcing JULES with daily satellite phe-

nology (local-FM) only resulted in improved model perfor-

mance at Santarem Km67 (Fig. 5c) and at the remaining six

sites, using the default phenology with the annual maximum

MODIS LAI set to be the annual maximum LAI (Fig. 5b),

JULES’ performance improved. Even with the addition of

MODIS data, the model still performed poorly at Bondville,

with only a slight improvement in predicted GPP (1 and

15 % reduction of RMSE for local-FM and local-FNM, re-

spectively) compared to using only local data (RMSE of

3.66 gCm−2 day−1).

The sites which display the largest improvements in sim-

ulated GPP, when forced with MODIS LAI, are those which

have low LAI values (54 and 24 % reduction in RMSE at

Vaira Ranch and Fort Peck, respectively) (Fig. 5c). Small im-

provements were also observed at the tropical sites (13 and

14 % reduction in RMSE at Santarem Km67 and Santarem

Km83, respectively). At some sites, using MODIS data had

no effect on model results (El Saler) and in some cases, the

model performed worse (Tumbarumba).

The total annual simulated GPP for model runs us-

ing MODIS data (15, 334 and 15, 227 gCm−2 year−1, for

local-MF and local-NMF, respectively) is slightly lower

than when using only local data (15, 469 gCm−2 year−1),

but better than when using global data (global-WEIG;

14, 193 gCm−2 year−1). This is a result of the annual max-

imum MODIS LAI being closer to local values than global

(Fig. 5a). The increased LAI of the global data does not re-

sult in increased GPP predictions since the meteorological
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Figure 5. Comparison of modelled and observed GPP using bias and RMSE (computed using anomalies) at the 12 FLUXNET sites (HF:

Harvard Forest; VA: Vaira Ranch; MM: Morgan Monroe; HY: Hyytiala; TH: Tharandt; TUM: Tumbarumba; ES: El Saler; FP: Fort Peck;

KA: Kaamanen; S67: Santarem Km67; S83: Santarem Km83; BO: Bondville) for three sets of model simulations: (a) default phenology

model with locally observed annual maximum LAI (data values used same as in Fig. 2a (local-F)); (b) default phenology model with annual

maximum MODIS LAI (model simulations local-FNM); and (c) daily MODIS forced model simulations with annual maximum MODIS LAI

(model simulations local-FM). The site labels are coloured according to their climate zone (Table 2).

data and vegetation parameters, such as Vcmax, may have a

greater impact on predicted GPP than LAI.

Overall, when JULES is forced with daily MODIS LAI

small improvements (8 % reduction in average RMSE; local-

FM) in predicted GPP are observed at a number of sites,

though there exists a negative bias associated with using

MODIS data. By setting the annual maximum MODIS LAI

to be the annual maximum LAI at each site, the model per-

forms equally well (0.04 % reduction in average RMSE;

local-FNM) to local model simulations. We also observed

improvements in simulated GPP at sites with low LAI val-

ues, such as grasslands, when JULES is forced with daily

LAI.

4 Discussion

4.1 How well does JULES perform when using the best

available local meteorological and parameter data

sets compared to those using global data?

At more than half of the sites, JULES performs very well

when using local meteorological and parameter data sets with

a negative bias observed for the remaining sites (Fig. 2a).

At the six sites where multi-year model simulations were

performed, interannual variability is captured by the model

using local data with the exception of Santarem Km67 and

Tumbarumba. This trend is also observed with the single-

year runs.

The use of global parameter and meteorological data sets

introduces a negative bias into GPP simulations at all sites

with the exception of the mediterranean site, El Saler, and the

tropical sites (Fig. 2b). Using local parameter and global me-

teorological data to drive JULES (local-WEIG) increases the

negative bias of local model simulations (local-F) (Fig. 2f).

We observed decreases in model performance at the ma-

jority of sites, with the exceptions being the tropical sites

(Santarem Km67/Km83). At some sites, such as Hyytiala

and Kaamanen, using global meteorological data produced

similar results (Fig. 2a, f) to using FLUXNET data.

Our results compare well with the evaluation of JULES

by Blyth et al. (2011), where parameters were obtained as

though the model was embedded in a GCM. Differences be-

tween the two studies include different model versions and

global meteorological data sets used. Comparing our results

with Fig. 3 of Blyth et al. (2011), we also found simulated

photosynthesis to be underestimated for the temperate forests

(Harvard Forest, Tharandt and Morgan Monroe), grasslands

(Fort Peck), mediterranean sites (El Saler) and the tropical

forests (Santarem Km67), and overestimated for the wetlands

(Kaamanen). We observed that the use of local observations

of site characteristics, such as PFT fractions and vegetation

properties, lead to improvements in model performance at

more than half of the sites (Fig. 2a), though errors still exist

with percentage differences ranging from 2–12 %.

Differences between global and local data include PFT

fractions (Table 5), soil texture fractions, vegetation parame-

ters (Table 6) and meteorological data. At some sites, such as

Bondville and Santarem Km67/Km83, the global and local

values for LAI and Vcmax were markedly different (Fig. 6),

though for the majority of sites, global and local LAI val-

ues were quite close (Fig. 6a), whereas global Vcmax values

were underestimated compared to local values (below dashed

line in Fig. 6b). Overall, the MODIS LAI values were closer

to the local values and in general, lower than global values

(Fig. 6a).
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Figure 6. Comparison of (a) global, MODIS (site annual maximum) and local leaf area index (LAI) and (b) global and local maximum

rate of Rubisco carboxylase activity (Vcmax) at the 12 FLUXNET sites (HF: Harvard Forest; VA: Vaira Ranch; MM: Morgan Monroe; HY:

Hyytiala; TH: Tharandt; TUM: Tumbarumba; ES: El Saler; FP: Fort Peck; KA: Kaamanen; S67: Santarem Km67; S83: Santarem Km83; BO:

Bondville). The LAI data displayed for each study site refer to the annual maximum LAI of the dominant PFT. The site labels are coloured

according to their climate zone (Table 2) and in (a), the lighter shades are the MODIS data. The dashed grey lines represent LAI and Vcmax,

where global, MODIS and local values match, with overestimated global and MODIS values above the dashed line and underestimated values

below it.

In general, we found the meteorological data to play a

more important role than model parameters in determining

GPP fluxes at sites, such as Santarem Km67 and Santarem

Km83. At these sites, the meteorological forcing data was the

primary driver of productivity and biases associated with the

global meteorological data compensated for incorrect param-

eter values. However, at Tumbarumba, incorrectly predicted

GPP was due to model error rather than meteorological data

or model parameters. We performed a temperature sensitiv-

ity study at Tumbarumba using local meteorological and pa-

rameter data sets (local-F; Table 3). The winter and spring

surface air temperatures (May–October) of the FLUXNET

data were increased by increments of 1 ◦C and the model was

re-ran each time. Improvements in simulated seasonal cycle

were observed, but only at high surface air temperatures (an

increase in 7 ◦C). Since the model performed poorly when

using both global and local data meteorological data, we can

assume that this is due to the model itself rather than the forc-

ing data. Tumbarumba is classified as a sclerophyll forest and

JULES does not have this land cover type. We assigned the

Needleleaf (NL) PFT to JULES at this site. The introduction

of the correct PFT and associated parameters may improve

the results at this site.

4.2 Of the global meteorological data sets used in this

study which one compares best to FLUXNET data?

At the majority of sites, the WFDEI data set compares bet-

ter to local meteorological measurements (FLUXNET) than

the PRINCETON data set does (Fig. 4). This is likely due

to the WFDEI data set being derived from the ECMWF

Re-analysis (ERA-Interim) data set (Dee et al., 2011). The

ERA-Interim re-analysis is a higher resolution data set (∼

0.75◦× 0.75◦; equivalent to a surface resolution of about

83km× 83km at the Equator and 83km× 48km at 55◦ N)

than the NCEP-NCAR re-analysis (2.0◦×2.0◦; equivalent to

a surface resolution of about 222km×222km at the Equator

and 222km× 128km at 55◦ N), from which the PRINCE-

TON data set is derived (Kistler et al., 2001). The ERA-

Interim re-analysis also uses a more advanced data assimila-

tion system than the NCEP-NCAR re-analysis (Kistler et al.,

2001; Weedon et al., 2014).

At the sites considered, differences between global and

local values for downward short-wave and long-wave ra-

diation fluxes and surface air temperatures are quite small

(Fig. 4a, b and d), with average percentage RMSEs ranging

from 0.4–17 % (expressed as percentages of the annual mean

value), while larger differences are observed for precipita-

tion (Fig. 4c), with average percentage RMSEs ranging from

112–178 %. At the majority of sites, there is a negative bias

associated with precipitation (Fig. 4c), but this will have little

effect on GPP fluxes since JULES is relatively insensitive to

precipitation (Galbraith et al., 2010). For the remaining me-

teorological variables, there is a positive surface air tempera-

ture bias, but no dominant bias associated with the radiation

fluxes. However, at individual sites, such as the tropical sites,

Santarem Km67 and Santarem Km83, biases in the meteoro-

logical data can affect model results.
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4.3 Are improvements in simulated GPP observed

when forcing JULES with daily satellite phenology

compared to using the default phenology module?

In general, we found that using MODIS data resulted in

only small decreases in RMSE at a limited number of sites,

compared to using locally observed LAI. At sites where

model performance improved, improvements were a result

of setting the annual maximum LAI to be the annual maxi-

mum MODIS LAI rather than forcing the model with daily

MODIS LAI. The largest improvements in simulated GPP

occur at sites with low annual LAI, such as the grass-

land (Vaira Ranch, Fort Peck, Kaamanen) and cropland

(Bondville) sites and the tropical sites (Santarem Km67 and

Santarem Km83). At the boreal sites, Tharandt and Hyytiala,

the MODIS LAI tended to be quite noisy and this led to un-

derestimated GPP (Fig. 5c).

We found that at sites where the MODIS LAI time-series

was noisy (large day-to-day variations), this resulted in de-

creased model performance. At some of the flux tower sites,

the MODIS data failed to capture aspects of the seasonal

cycle of leaf phenology, such as the magnitude of the sea-

sonal cycle (Tharandt, El Saler) and the beginning and end

of the growing season (Bondville). For example, at Tum-

barumba, the MODIS instrument estimated the annual max-

imum LAI to be 6.08 m−2 m−2 and the daily LAI to be quite

noisy, whereas the ground level observations show it to be

2.5 m2 m−2 (Table 6) and LAI to be constant for much of the

year.

The MODIS instrument provides a valuable source of in-

formation that can be used by land surface models. However,

in this study, the quality of the LAI data can affect model per-

formance. At the tropical sites, MODIS was unable to cap-

ture the magnitude of seasonal variation in LAI with MODIS

overestimating the locally observed annual maximum LAI at

Santarem Km67 and Santarem Km83 by 28 and 10 %, re-

spectively (Table 6). It was also unable to correctly capture

LAI during the Amazonian rainy season, which runs from

December to June, as a result of increased cloud cover. The

MODIS LAI is very noisy in these regions, but should be

constant throughout the year.

Overall, we found JULES’ phenology module performed

very well at the temperate sites and poorly at the tropi-

cal and cropland sites. The ability of the phenology model

to simulate GPP fluxes very well at temperate sites, with

slight underestimation of the summer carbon uptake and

phase shift (leaf onset and senescence), may be due to its

design; temperature-dependent for the BL/NL PFT classes,

with model parameters tuned for temperate regions. Forcing

the model with MODIS LAI only slightly improved model

performance. However, setting the annual maximum LAI for

each PFT to be the annual maximum MODIS LAI resulted

in improved model performance, without the computational

overhead of forcing JULES with daily satellite data. More ac-

curate GPP predictions could be possible with the inclusion

of tropical PFTs, such as tropical evergreen broadleaf and

tropical deciduous broadleaf, with associated model param-

eters and a phenology model modified to take these tropical

PFTs into account.

5 Conclusions

We performed a multi-site evaluation of the JULES LSM us-

ing local, global and satellite data. In general, we found that

when using local meteorological and parameter data sets,

JULES performed very well (Fig. 2a and Table 4) at tem-

perate sites with a negative bias observed at the tropical and

cropland sites. At a limited number of sites, the model was

able to simulate interannual variability using local data, with

the exception of the tropical site, Santarem Km67, and Tum-

barumba.

The use of global data worsens model performance by in-

troducing negative biases into model simulations of GPP at

the majority of sites, with the exception of the tropical sites.

The improvement in model simulated GPP when using lo-

cal values of vegetation properties implies that global val-

ues may be incorrect. At sites where model performance im-

proved using global data, this was due to biases associated

with the meteorological data. We observed that the meteo-

rological data had a greater impact on modelled GPP fluxes

than model parameters.

The use of meteorological data extracted from global me-

teorological data sets was used to drive JULES. We found

that global meteorological data increased the negative biases

of local model simulations at all sites with the exception of

the tropical sites, where GPP predictions were improved. Of

the two global meteorological data sets used in this study,

the WFDEI data set more closely captures the local meteo-

rological conditions, though we found that the PRINCETON

data set results in improved performance at some of the sites

due to positive biases associated with the downward radiation

fluxes and surface air temperature. This implies that there

are compensating errors within the model, which need to be

identified and addressed.

LAI is an important parameter used in the calculation of

canopy photosynthesis. Model simulations using local and

MODIS data displayed improvements in modelled GPP com-

pared to using only local data. Improvements in modelled

GPP were observed at the beginning and ending of the grow-

ing season. Using MODIS data for the annual maximum LAI

allows for improved model performance without the compli-

cation of assimilating daily satellite data into the model. We

found the default phenology module allowed JULES to per-

form very well at temperate sites, but not at the tropical sites.

More realistic simulation of the seasonal cycle of GPP was

observed at sites with low LAI values, such as grasslands.

Even though we have described the MODIS data as being

noisy at a number of sites, it provides a valuable source of

information as it is a high spatial and temporal resolution
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data set. It allows a better understanding of plant response to

climate and is a useful aid to modellers.

Although only a limited number of model parameters

were modified at the 12 flux tower sites, due to limited data

availability at FLUXNET sites, we showed that with more

accurate information regarding flux tower sites, improved

predictions of GPP are possible. However, negative biases

still exist in this situation due to model error and incorrect

modelling of tropical processes. We suggest that improved

model performance with regards to the terrestrial carbon cy-

cle could be achieved with the introduction of more PFT

classes, such as tropical evergreen broadleaf and tropical de-

ciduous broadleaf, and their associated model parameters and

a phenology model that can properly simulate carbon fluxes

in both temperate and tropical regions.
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Appendix A: Deriving global model parameters used by

the global operational version of JULES

In the Global Land Cover Characterization (version 2)

database (GLCC), land cover is classified into 17 categories

using the International Geosphere–Biosphere Programme

(IGBP) scheme. Each flux tower has a land cover category

assigned to it in the GLCC database (IGBP code in Table 5).

These IGBP codes are then used to derive the annual max-

imum LAI (Table A1) and canopy height factor (Table A2)

for each PFT. The canopy height (metres) is calculated from

the canopy height factor (metres) and annual maximum LAI

by using Eq. (A1):

Canopy height= Canopy height factor × LAI
2
3 . (A1)

Table A1. Annual maximum leaf area index (LAI) of JULES vege-

tation land cover types (PFTs) (BL: broadleaf tree; NL: needleleaf

tree; C3g: C3 grass; C4g: C4 grass; sh: shrubs) for each of the 17

IGBP categories. Note that for the snow and ice, barren and water

bodies categories, there are no LAI values available.

Leaf area index of JULES PFTs

IGBP code IGBP class BL NL C3g C4g sh

1 EN forest 6.0 2.0

2 EB forest 9.0 2.0 4.0

3 DN forest 4.0 2.0

4 DB forest 5.0 2.0 4.0 3.0

5 Mixed forest 5.0 6.0 2.0

6 Closed shrub 2.0 3.0

7 Open shrub 5.0 2.0 4.0 2.0

8 Woody savannah 9.0 4.0 2.0

9 Savannah 9.0 4.0

10 Grassland 3.0 4.0 3.0

11 Permanent wetland 9.0 3.0 3.0

12 Cropland 5.0 5.0 4.0 3.0

13 Urban

14 Crop/natural mosaic 5.0 6.0 4.0 4.0 3.0

15 Snow and ice

16 Barren

17 Water bodies

Table A2. Canopy height factor (metres) of JULES vegetation land

cover types (PFTs) (BL: broadleaf tree, NL: needleleaf tree, C3g:

C3 grass, C4g: C4 grass, sh: shrubs).

BL NL C3g C4g sh

Canopy height factor 6.5 6.5 0.5 0.5 1.0
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