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Abstract The Northern Hemisphere monsoons are an integral component of Earth’s hydrological cycle
and affect the lives of billions of people. Observed precipitation in the monsoon regions underwent
substantial changes during the second half of the twentieth century, with drying from the 1950s to
mid-1980s and increasing precipitation in recent decades. Modeling studies suggest that anthropogenic
aerosols have been a key factor driving changes in tropical and monsoon precipitation. Here we apply
detection and attribution methods to determine whether observed changes are driven by human influences
using fingerprints of individual forcings (i.e., greenhouse gas, anthropogenic aerosol, and natural) derived
from climate models. The results show that the observed changes can only be explained when including the
influence of anthropogenic aerosols, even after accounting for internal climate variability. Anthropogenic
aerosol, not greenhouse gas or natural forcing, has been the dominant influence on Northern Hemisphere
monsoon precipitation over the second half of the twentieth century.

1. Introduction
Human-induced changes to the hydrological cycle are among the most serious impacts of climate change,
with potential consequences for water resources, health, agriculture, and ecosystems worldwide. Warm-
ing of the atmosphere due to increasing greenhouse gas concentrations causes atmospheric water vapor
to increase in line with the Clausius Clapeyron relationship at ∼7% K−1 [Held and Soden, 2006; Willett et al.,
2010]. Consequently, global precipitation also increases, though at a lower rate (∼2% K−1) due to energy bal-
ance constraints [Allen and Ingram, 2002; Trenberth et al., 2003]. Increasing moisture transport is expected
to enhance the existing pattern of precipitation minus evaporation, with increasing tropical and decreas-
ing subtropical precipitation [Held and Soden, 2006; Seager and Naik, 2012]. The increase in precipitation
due to warming is partly offset by anthropogenic aerosols. Aerosols scatter and absorb incoming solar
radiation, causing cooling at the surface and heating of the atmosphere [Ming and Ramaswamy, 2009].
Aerosols also influence precipitation by interacting with clouds [Rotstayn and Lohmann, 2002], and models
that include this process tend to better reproduce observed temperature and precipitation records of the
twentieth century [Wilcox et al., 2013]. The asymmetrical cooling from aerosols between the Northern and
Southern Hemispheres also affects tropical precipitation by causing a southward shift of the Intertropical
Convergence Zone [Rotstayn and Lohmann, 2002; Ackerley et al., 2011; Hwang et al., 2013].

The counteracting effects of greenhouse gases and aerosols on precipitation, and the similar spatial
response patterns, can make distinguishing their influence challenging [Xie et al., 2013]. Detection and attri-
bution studies have shown that greenhouse gas forcing has influenced changes in global precipitation
[Polson et al., 2013a, 2013b; Wu et al., 2013]. These studies attribute observed changes to individual forc-
ings using statistical analysis techniques that account for the internal variability of the climate. However, the
influence of aerosols has yet to be separated from the combined anthropogenic forcing [Zhang et al., 2007;
Polson et al., 2013b] or the combined influence of all nongreenhouse gas forcings, though this is assumed
to be dominated by aerosols [Wu et al., 2013]. Anthropogenic aerosol emissions rapidly increased from the
1950s (Figure 1) and are thought to have contributed to a reduction in precipitation in monsoon regions
in Africa [Held et al., 2005] and Asia [Lau and Kim, 2006; Meehl et al., 2008; Guo et al., 2013]. Climate models
that include anthropogenic aerosol forcing better reproduce the observed decrease in South Asian mon-
soon precipitation [Bollasina et al., 2011]. Here we investigate the influence of individual forcings on summer
monsoon land precipitation for the whole Northern Hemisphere during 1951–2005, for which there are reli-
able long-term observational records. By analyzing the Northern Hemisphere monsoon system as a whole,
rather than its regional manifestations, we can more easily identify how external forcings have affected this
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Figure 1. (a) May–September NHSM precipitation anomalies (mm/month) for 1951–2005 for observational data sets,
CRU, GPCC, Zhang, and VasClimO (VasClimO is 1951–2000). Multimodel mean anomalies (different scale to observations)
are for all external forcings (ALL), greenhouse gas (GHG), anthropogenic aerosol (AA), natural (NAT), and anthropogenic
(ANT) forcing. Anomalies are with respect to 1951–2005 and smoothed with a 5 year running mean. Orange shading
shows the ALL ensemble 5%–95% range (same scale as observations). Models are masked to the GPCC data set. (b)
Global and NHSM annual anthropogenic aerosol emissions (% of 1901–2005 mean emissions). NHSM emissions are for
0◦–40◦N. Total is BC + OM + SO2, BC is black carbon, OM is organic matter, and SO2 is sulfur dioxide. The annual sulfate
loadings for the NH and NHSM region are also shown. Aerosol emissions are the CMIP5 emissions based on Lamarque et
al. [2010], and sulfate loading is the mean of 11 climate models.

important component of the global overturning circulation. Detection and attribution [Allen and Stott, 2003]
provides a unique and rigorous technique to ascertain whether the observed changes can be explained by
internal climate variability alone or whether external forcing has played a role in driving the changes. Previ-
ous studies of monsoon precipitation are limited to individual models or do not make use of such rigorous
statistical methods. In this study, large climate model ensembles are used to derive “fingerprints” of forcing
for individual and combined external forcings. Detection and attribution methods are applied to determine
which forcing, if any, can explain the observed changes.

2. Data: Observations and Models
Four observational data sets were used to calculate the mean summer (May–September) precipitation
anomalies in Northern Hemisphere summer monsoon (NHSM) region: CRUTS3.21 (CRU) [Harris et al., 2014],
Global Precipitation Climatology Centre (GPCC) [Schneider et al., 2014], VasclimO [Beck et al., 2005], and an
updated version of the data set from Zhang et al. [2007]. Each data set is aggregated to the same 5◦ × 5◦

grid, which is the lowest resolution among them. A grid box is only included in the analysis if over 70% of
the grid box is land and if it has coverage in over 90% of years.

Multimodel ensembles of climate model simulations from the Climate Model Intercomparison Project 5
(CMIP5) archive were used to derive response patterns to various forcings including all external forcings
(ALL), which combines anthropogenic (greenhouse gases, aerosols, land use, and ozone) and natural forc-
ings (volcanic and solar), greenhouse gas forcing (GHG), anthropogenic aerosol forcing (AA), natural forcing
(NAT), and all anthropogenic forcings (ANT) (Table S1 in the supporting information).

POLSON ET AL. ©2014. The Authors. 6024



Geophysical Research Letters 10.1002/2014GL060811

Figure 2. Northern Hemisphere summer monsoon region for GPCC. Percentage of years a grid box meets the NHSM
precipitation criteria for GPCC data set. Hatched areas show grid boxes defined in NHSM region based on mean annual
range and May to September precipitation for all years in 1951–2005.

3. Northern Hemisphere Summer Monsoon Region

Following Hsu et al. [2011], the NHSM region encloses grid boxes for which the mean annual range (differ-
ence between the May–September and November–March averages) in precipitation for all years exceeds
2 mm d−1 and the mean May–September precipitation exceeds 55% of the annual total. Grid boxes are
excluded if they are north of the subtropics (40◦N) or isolated. The region is fixed for all years; therefore, any
spatial shift of the monsoon is not captured. However, changes in precipitation due to possible variations in
the monsoon area should be small compared to the total precipitation in the whole region. Figure 2 shows
that the NHSM region does not change by much over the observation period, with only a few grid boxes
that meet the criteria in at least 1 year excluded from the final NHSM mask. An alternative method would
allow the region to change year by year, but this could result in the region changing size, making it difficult
to distinguish changes in precipitation rate from changes due to the NHSM region shrinking or growing over
time. The NHSM region is defined for each observational data set, and the model data are masked to match
the spatial and temporal coverage of each.

4. Detection and Attribution

The 1951–2005 time series for the mean May–September precipitation anomalies (with respect to the mean
for 1951–2005, 2000 for the VasclimO data set) are calculated for the NHSM region. The analysis ends in
2005 as many historical model simulations do not run beyond that year. A 5 year running mean is applied
to smooth the data prior to analysis, and the smoothed time series are used in a total least squares regres-
sion [Allen and Stott, 2003]. The model-derived fingerprints of forcing, F, are scaled to the observations, y, to
estimate the contribution of p forcings to the NHSM precipitation using

y = (F + 𝜀finger)𝛽 + 𝜀noise (1)

where F is a l × p matrix for p forcing fingerprints of length l representing time and y is a rank-l vector rep-
resenting the observed monsoon precipitation change; 𝛽 is a vector of scaling factors with p entries giving
the magnitude of each fingerprint in the observations, 𝜀noise is the residual associated with internal climate
variability, and 𝜀finger is variability that remains in the fingerprint after multimodel averaging.

To ensure that the observations cannot be explained by internal climate variability alone, multiple sam-
ples of climate noise, estimated from the model internal variability, are added to the noise-reduced F̃ and
ỹ (see below), and 𝛽 is recalculated. If 𝛽 > 0 at 5% significance level, then the fingerprint response pat-
tern is detected in the observations [Hegerl and Zwiers, 2011]. If 0< 𝛽 <1, the models overestimate the
observations, and if 𝛽 >1 then the models underestimate observations. Because climate models tend to
underestimate the observed variability in precipitation (Figure S14 in the supporting information), the
model variance is doubled when calculating the noise samples.

Best estimates of the noise-reduced observations and model fingerprints are calculated using

Z̃ = Z − ZṽṽT (2)

POLSON ET AL. ©2014. The Authors. 6025
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where Z≡ [F, y] and ṽ contains the eigenvector coefficients used to calculate 𝛽 when solving equation (1).
The robustness of the result is assessed by comparing the regression residual, 𝜀noise, to samples of model
variability using the F test described in Allen and Stott [2003].

In this analysis the noise samples are taken from the greenhouse gas only ensemble by subtracting the mul-

timodel mean from each individual model simulation and multiplying by
√

n
n−1

, where n is the number of

simulations in the ensemble, to avoid bias in the variance. The estimate of internal variability should not be
sensitive to the choice of a specific ensemble, and though the ALL-forced ensemble would provide the most
samples of noise, practical computational limitations prohibited its use (note that use of the ALL ensem-
ble for the one-signal and two-signal analyses yielded very similar results). The ALL ensemble was used to
calculate samples of noise for the residual consistency check. All the results presented here are based on
nonoptimized fingerprints. While optimizing the fingerprints using the internal variability covariance matrix
can enhance detectability, it also complicates interpretation by requiring truncation to a lower dimensional
space. See Allen and Stott [2003] for more details.

The ALL fingerprint is regressed onto the observation in a one-signal analysis to determine whether external
forcing is detectable in the observations. To separately investigate the aerosol impact on radiation (direct
effect) and the effect on clouds (indirect effect), the ALL forced models are also divided into two groups,
those that include both effects and those that include the direct effect only (see Table S1 and Figure S3).
The ALL fingerprint is a combination of a number of different individual forcings that for the whole NHSM
region add approximately linearly in models (supporting information). A two-signal analysis was applied to
distinguish the role of these individual forcings in driving the observed changes by simultaneously regress-
ing ANT and NAT, AA and GHG, AA and NAT, and GHG and NAT fingerprints onto the observations. We also
apply a further test by simultaneously regressing the AA, GHG, and NAT fingerprints onto observations in
a three-signal analysis. For the two-signal and three-signal analyses, all available models were used to pro-
duce the fingerprints of forcing, meaning that a different number of simulations and different models were
used for different forcings. To ensure this did not influence the results, the detection and attribution anal-
ysis was repeated with the same models used to produce the fingerprints in each pair of forcings for the
two-signal analysis and the GHG, NAT, and AA fingerprints for the three-signal analysis. The detection results
were the same for all cases regardless of the ensemble used to produce the fingerprints (see Figure S12 in
the supporting information). The residual consistency check passes for all results presented here except
for one case where the ALL fingerprint is regressed onto the Zhang observational data (highlighted in the
Figure 3 caption).

5. Results

The observed 1951–2005 monsoon precipitation anomalies show a distinctive drying pattern from 1951
to the mid-1980s, followed by increasing precipitation until 2000 (Figure 1a). During 2000–2005, there is a
striking inconsistency among the available observational data sets, likely due to the drop in the number of
stations during this period [Schneider et al., 2014]. Nevertheless, all observational data sets show a decrease
in precipitation from 1951 to 2005; fitting linear trends gives an overall decrease of 5%–11% of the mean
precipitation, depending on the data set.

Including anthropogenic aerosols substantially improves models’ ability to reproduce the observations.
The precipitation changes (Figure 1a) of the ALL, ANT, and AA multimodel means have the same general
behavior as observations, with decreasing precipitation from 1951 to mid-1980s, followed by a recovery
during the 1990s. In contrast to observations, the GHG multimodel mean shows precipitation consistently
increasing during this period. The NAT multimodel mean has no overall trend but has short-term drying
following volcanic eruptions.

The signature of anthropogenic forcing is distinctly recognizable over other forcings and is mostly associ-
ated with aerosols. While the ALL and ANT multimodel mean unsmoothed time series correlate with AA
(0.23 and 0.36, respectively, p value<0.1), GHG is negatively correlated with both ALL and ANT (−0.2 in both
cases). ALL and ANT also resemble the observations (correlation >0.3 and p values<0.05 in all but one case).
AA is positively correlated with observations, while GHG and observations are negatively correlated. Spatial
linear trend patterns also show more similarity between observed, ALL, ANT, and AA, which show drying in
many areas, than GHG which results in increasing precipitation over most of the NHSM region (Figure S2 in
the supporting information).

POLSON ET AL. ©2014. The Authors. 6026
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Figure 3. Detection and attribution of observed changes in Northern Hemisphere summer monsoon precipitation.
(a) One-signal regression for all external forcings (ALL), all external forcings for models with indirect and direct effects,
and all external forcings for models with direct effect only. (b) Two-signal regression for anthropogenic (ANT) and
natural (NAT) forcing. (c) Two-signal regression for anthropogenic aerosol (AA) and greenhouse gas (GHG) forcing.
(d) Three-signal regression for greenhouse gas (GHG), natural (NAT), and anthropogenic aerosol (AA) forcing. Results are
shown for four observational data sets, CRU (CRU), Zhang (ZHA), VasClimO (VAS), and GPCC (GPCC). Crosses show the
best guess scaling factor for the multimodel mean, thick lines are the 90% confidence interval based on the raw variance,
and thin lines are the 90% confidence intervals when model variance has been doubled. The residual consistency test
is passed, except for one-signal ALL analysis for ZHA. Stars show where forcing is detected, and two stars show where
forcing is detected but inconsistent with a scaling factor of 1.

That aerosols may be a key factor implicated in the twentieth century monsoon precipitation changes is
also suggested by increasing global aerosol emissions from the 1950s to mid-1980s, followed by a period
of decreasing emissions (Figure 1b), which mirrors the changes in precipitation, though local emissions
continue to increase during this period. This hints that aerosols from remote sources also contribute to the
NHSM changes, as several studies have suggested to be the case for the Asian monsoon [see, e.g., Cowan
and Cai, 2011]. However, it is not possible to quantify the relative influence of remote and local emissions
from the analysis in this paper.

Results for the detection and attribution analysis confirm that external forcing has played a substantial role
in driving the observed changes. When the ALL fingerprint is scaled to the observations, we find that it is
detectable (Figure 3a) and larger than simulated in models (scaling factors of around 3 to 4). Repeating the
regression for direct effect and indirect effect groups suggests that at least in the CMIP5 models, inclusion
of the indirect effect does not significantly improve detection and attribution results (Figure 3a). However,
different spatial trend patterns suggest that the indirect effect does play an important role over parts of
Asia. Models that include the indirect effect tend to simulate more drying than models that only include
the direct effect (Figure S2 in the supporting information). We add a note of caution that currently models
still have limited representation of the indirect effect, which additionally can lead to counteracting changes
[Stevens and Feingold, 2009].

Simultaneous regression of the ANT and NAT fingerprints onto the observations shows that while the ANT
fingerprint is detectable, NAT cannot be distinguished from internal climate variability (Figure 3b). Results
for AA and GHG, AA and NAT, and GHG and NAT show that anthropogenic aerosol forcing is largely respon-
sible for changes in NHSM precipitation, with its fingerprint detectable in observations (when estimated
against GHG, NAT; Figures 3c and S1), while those of other forcings generally are not. GHG estimated against
NAT yields a detectable NAT signal in some cases.

POLSON ET AL. ©2014. The Authors. 6027
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Simultaneously regressing the AA, GHG, and NAT fingerprints onto observations in a three-signal analy-
sis (Figure 3d) confirms that anthropogenic aerosol forcing, which is detectable in observations, is driving
changes in NHSM precipitation, while the influence of greenhouse gas and natural forcing cannot be
distinguished from internal climate variability.

Given the significance of the detected signal for the whole NHSM region, we tested if all regions contributed
to this finding or if it is attributable to one specific region. The analysis was repeated excluding first South
America (Figure S11a in the supporting information), then Africa (Figure S11b in the supporting informa-
tion), and finally Asia (Figure S11c in the supporting information). The results show that the detection of
anthropogenic aerosol forcing is largely insensitive to the exclusion of any one region. The detection and
attribution results were also not affected by including the midlatitude sector of the NHSM region (Figure
S11d in the supporting information).

6. Discussion and Conclusions

Northern Hemisphere monsoon precipitation underwent substantial changes during the second half of the
twentieth century. Climate models suggest that increasing greenhouse gas concentrations alone would
have caused an increase in precipitation during this period. However, this is more than offset by the influ-
ence of anthropogenic aerosols, resulting in a decrease in precipitation over the last 50 years. Internal
climate variability is also likely to have played a role in driving the observed changes. As temperatures in
the Atlantic ocean have been shown to influence Northern Hemisphere monsoon precipitation [Chiang
and Friedman, 2012], studies of multidecadal temperature variability in the tropical North Atlantic suggest
internal climate variability to be important [Zhang et al., 2013]. Satellite observations of precipitation over
both land and ocean show an intensification of monsoon precipitation over the last 30 years [Hsu et al.,
2011] which has also been linked to climate variability such as El Niño-Southern Oscillation [Wang et al.,
2013]. However, the analysis in this paper shows that the influence of anthropogenic aerosol forcing on
NHSM precipitation is detectable above this internal climate variability. It provides compelling evidence
that anthropogenic aerosols are the dominant external factor influencing the observed changes in NHSM
precipitation over the second half of the twentieth century and that these changes cannot be explained by
greenhouse gas forcing, natural forcing, or by internal climate variability alone.
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