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ABSTRACT 

An approach for damage inspection of composite structures utilizing carbon nanotubes (CNT) networks is 

investigated. CNT are dispersed in an epoxy using a processing technique compatible with commonly 

employed composite manufacturing techniques and subsequently used as matrix for a structural glass 

fiber reinforced composite. The developed electrical conductivity of the composite system is verified 

experimentally. The electrically conductive CNT network within the GFRP is exploited through 

distributed electrical voltage measurements to sense and, ultimately, locate damage in the plane of the 

composite plate. Damage in the form of cracks or delamination interrupts the continuity of the CNT 

network separating and isolating regions of the conductive network. Employing electric potential fields 

these changes can become measurable and can provide information for inversely locating the damage. 

Electrical Resistance Tomography (ERT) is formulated and experimentally applied to measure changes in 

the potential fields and deliver electrical conductivity change maps which are used to identify and locate 

changes in the CNT networks. These changes are correlated to capture the damage in the composite. 

Different damage modes are studied to assess the capabilities of the technique. The technique shows 

sensitivity to very small damages; less than 0.1% of the inspected area. The solution of the inverse ERT 

problem delivers a conductivity change maps which offers an effective localization with nearly 10% error 

and an inspection area suppression of around 75%. The proposed methodology to create CNT networks 

enables the application of ERT for Non-Destructive Evaluation of composite materials, previously not 

possible due to lack of conductivity, thus offering damage sensing and location capabilities even in-situ. 

 

Keywords: A. Glass fibres; A. Smart materials; B. Electrical properties; C. Non-destructive testing;  

Electrical Resistance Tomography  

 

1. Introduction 

Damage assessment of composite materials and structures is becoming increasingly important as a 

consequence of their increased use in a variety of primary importance applications, such as energy and 

aerospace. Various Non-Destructive Evaluation (NDE) techniques are available to detect damage in 

*Manuscript
Click here to view linked References
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composites with the most commonly employed being ultrasonic (e.g. C-scan) and thermography. The 

latest years Acoustic Emission, Fiber Bragg Gratings and use of vibration-based methods have attracted a 

great amount of attention. In parallel, the progress in nanotechnology has enabled the development of 

novel materials routes for developing multi-functional material systems that incorporate approaches for 

damage detection.  

Products of nanotechnology, such as Carbon Nanotubes (CNT), Carbon Black (CB) or other 

nano-particles, have been proposed as additives for mechanical performance enhancement of composites 

through their incorporation in the matrix [1]. Promising results have been reported in fatigue, fracture and 

post impact performance of such systems [2]. In parallel to the mechanical performance, the integrated 

nano-particle networks within polymer matrices can be employed for damage sensing and monitoring of 

the composites performance. This added functionality enables a multifunctional performance of 

composites. Most of the reported works in this direction are based on the Electrical Resistance Change 

Method (ERCM) where the apparent macroscopic resistance of the conductive network is monitored. 

Relation has been proven between the recorded electrical resistance change and the loading incidents 

and/or the mechanical degradation of the material. Studies have covered a wide spectrum of materials; 

nanocomposite polymers [3] and polymer foams [4], Glass Fibre Reinforced Plastics (GFRP) [5-8], 

Carbon Fibre Reinforced Plastics (CFRP) [9]. Finite Element (FE) models have also been employed to 

verify the experimental findings [10]. It can be said that electrical-based methods, such as ERCM, offer 

the potential of a tool for sensing the development and evolution of damage as well as health monitoring 

of conductive composite structures.  

In order, however, for both nano-particle networks and electrical based methods to reach real 

applications at large scale, further developments are needed; developments to extend the capabilities in 

the localization of the damage and the estimation of its size based on the needs of practice. A number of 

studies have worked in extending electrical sensing principles to 2D using electrical conductivity 

mapping [11], electric potential fields [12] or other approaches [13]. A brief summary of the ideas is 

presented in [14].  

Some works have been reported in the recent in the direction of exploiting nano-particle 

networks in structural composites to provide 2D inspection information. Hou et al [15] employed a 

tomographic approach to demonstrate multifunctionality of a specially prepared CNT-based film. The 

system was used as a sensing element on the surface of a structure and was able to detect impact 

incidents. Ye et al [16] used dispersed CB and copper chloride nano-particles in Glass/Epoxy composites 
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for enabling electrical damage sensing. They proposed a tomographic approach and used the change of 

electrical resistance as a damage index. An intuitive probabilistic formulation was employed, where the 

cumulative contribution of individual sensing paths is considered for delivering damage assessment maps. 

The technique performed well in assessing and quantifying impact induced damage.  Proper et al [17] 

developed a Multi Wall CNT (MWCNT) network into a Kevlar composite. Following, an external 

electrode grid was attached on the surface of the plate to sense the potential distribution. They were able 

to point to the location of the impact damage by comparing the patterns before and after impact damage 

and relating the grid potentials to the conductivity distribution within the composite. Loyola et al. [18] 

demonstrated the performance of Electrical Impedance Tomography (EIT) as an embedded Structural 

Health Monitoring (SHM) methodology, where following a purpose-specific process a conductive and 

strain-sensitive film was deposited within the electrically non-conductive GFRP structure. The actively 

sensing region partly covered the GFRP part, was 80x80 mm in dimensions and employed 32 peripheral 

electrodes. An intuitive current pattern definition was employed being adjusted for the anisotropic 

electrical properties of the sensing region. The results indicated that EIT can detect and locate different 

modes of damage with good sensitivity. Alternative routes based on nanotechnology and multi-physics 

fields have also been proposed by Guzman de Villoria et al [19] enabling good spatial resolution for 

sensing damage in composites. Viets et al. [20] demonstrated damage mapping of carbon nano-particles 

modified GFRP via electrical resistance measurements. They dispersed MWCNT at 0.3%wt. and 0.7%wt 

and CB at 12%wt in the matrix of GFRP via three-roll mill mixing. Following, they deployed a series of 

silver ink strip electrodes over the surface of a composite part; 10 per side with the two sides being 

perpendicular. They used out-of-plane resistance measurements occurring from pairs of opposite-side 

electrodes to monitor the damage developed by impact. It was shown that the detection and localisation of 

barely visible impact-related damages via electrical resistance measurements was possible with the 

developed technique. The significant influence of the different nanoparticles and filler contents on the 

results of the damage mapping, especially regarding the sensitivity of the resistance to damage, was 

shown. More recently, Tallman et al. [21] used CB for enabling electrical monitoring of GFRP 

composites. They established a preferential aligned arrangement of the CB particles and determined the 

sensitivity of the EIT to through-hole damage as well as the ability of the technique to capture impact and 

multiple damage sites. They demonstrated the considerable potential of conductivity-based health 

monitoring for glass fiber reinforced polymer laminates with conductive networks of nanoparticles in the 

matrix. 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

4 
 

In the present work, a methodology is presented to develop a 3D CNT network in the matrix of a 

fibre reinforced composite, which is subsequently exploited to sense damage and through a proposed 

tomographic technique to provide information of the location of the damage. For developing the CNT 

network, a processing technique compatible with conventional composite manufacturing technologies is 

utilized. The sensing scheme takes a step further from the state-of-the-art in sensing studies utilizing CNT 

networks by providing a structured methodology to calculate inspection maps for locating damage in 

composite parts. Electrical Resistance Tomography (ERT) [11, 22] protocol is used for collecting and 

processing the experimental recordings, transferring technology and experience from other scientific 

fields [23, 24]. The outcome of this ERT inverse problem solution is a map of the expected electrical 

conductivity changes, corresponding to the part under inspection. From this map, one can identify regions 

of interest (e.g. high change in conductivity) and such a technique can serve as a tool for the NDE of 

composite parts. It is believed that the proposed approach is scalable and can serve as the basis for further 

applications of CNT networks in real structures.  

This work expands the state-of-the-art by presenting a case study which synergizes 

nanotechnology for composites and superior NDE techniques. It builds upon existing experience [25, 26] 

and formalizes the NDE methodology, bridging the field between the research by Proper et al [17],  Hou 

et al [15], Viets et al [20] and Tallman et al [21] in terms of combination of materials (MWCNT) and 

electrical sensing application (i.e. electrode design and positioning, post-processing framework).  

Both the material preparation process and NDE methodologies proposed are extendable to other 

nano-particle as long as the amount of nano-particles in the matrix is above the percolation threshold to 

reach a conductive network throughout the composite. In this sense, a critical advantage of the CNT 

exists as the percolation can be reached much lower in weight percentage and, consequently, the 

processing of the epoxy is less affected and the mechanical properties of the composites are not 

sacrificed. 

2. Principle idea of  the work 

The CNT reinforced GFRP essentially represents a three-phase composite system comprising the matrix, 

the CNT network and the glass fibers. Both the glass fibers and the matrix are insulating phases. The only 

path for electrical charge transport in the composite is the conductive CNT network. The network extends 

throughout the matrix of the composite providing an efficient path for electron flow, similar to a 

distributed network of resistors [27]. The conductivity of the composite system is leveraged for NDE. The 
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principle idea of this work is illustrated in a simplified way in the schematic of Figure 1. For clarity, glass 

fibers are excluded from the schematic. 

In practice, the tools in hand are a current source and a voltage meter. Injecting a current at 

different points of the CNT network stimulates different regions of the network and develops a different 

voltage distribution throughout the material. Thus, as it seems natural, when monitoring the voltage at the 

same end of the network a different voltage value will be recorded (Figure 1-a, b). Maximizing the 

sensitivity of the voltage measurement by adjusting the current injection point seems like a logical 

approach. 

When damage is considered, any defect in the CNT network (e.g. due to cracking or 

delamination) will create a local disruption in the electrical network (Figure 1-c, d). Parts of the network 

may be separated and isolated and this will have an effect on the total apparent resistance (seen by the 

current source) and the local current flow (seen at the voltage measurement ends). This means that when 

injecting a current at the same location to the network, a different electrical potential field will be 

established between the undamaged and the damaged state. Taking a step further, by injecting current at 

different points of the network, the effect of the disturbance on the boundary voltage measurements may 

be magnified or suppressed.  

These two observations form the basis of the proposed tomographic technique. Based on a vector 

of electrical potential information measured at the boundary of the composite laminate, we attempt to 

inversely calculate the conductivity distribution change within the material. Because the CNT are 

considered homogeneously distributed within the matrix in a 3D configuration, this enables a global 

monitoring of the composite laminate and can address various related damage modes. 

3. Materials, Methods and Experimental Approach 

3.1. Preparation of CNT-polymer mixture and manufacturing of the composite material 

Epoxy resin L1100 (with Hardener 295) commercially available by R&G Composite Technologies 

GmbH (Germany) was used as the host matrix. It is a low viscosity resin system, widely used in wind 

turbine blade manufacturing. The macro-scale reinforcing phase was a glass fiber twill woven fabric 

having a 163gr/m2 area weight, procured by R&G Composite Technologies GmbH (Germany). MWCNT 

produced by catalyzed Chemical Vapor Deposition (CVD) were supplied by ARKEMA (France) in raw 

powder form. The MWCNT had a diameter ranging from 10 to 15nm and length reaching up to 750nm, 

resulting in an aspect ratio between 30 and 50. The MWCNT were used as received, i.e. no treatment or 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

6 
 

functionalization took place. Any humidity present was removed by placing the CNT in an oven at 60oC 

for 12hrs prior to the mixing process.  

The dispersion and composite manufacturing procedure is shown in Figure 2. The first step is to 

disperse the MWCNT in the bisphenol-A (Part-A of the epoxy system) (Step 1). High-shear mixing 

dissolver device by VMA Getzmann GmbH (Germany) was used to homogeneously disperse the CNT. 

The targeted CNT concentration in the final composite was 0.5%wt. The required amounts are weighted 

and added into the same container. A rotating disk introduces shear forces to the mixture creating a vortex 

flow (known as the “doughnut effect”) which leads to a continuous mixing of the compound. The shear 

forces disentangle the CNT and reduce their agglomerates. The dissolver disc rotational speed was 

2500rpm and the mixing duration was 3hrs. The temperature was controlled between 40-50oC using a 

water cooled double walled container. The mixing was performed under vacuum to avoid any air 

inclusion in the mixture and consequently in the composite. The technique has proven to be effective in 

dispersing CNT in epoxy systems in order to produce electrically conductive composites, utilizing 

efficiently the advantage of high aspect ratio of the CNT [28]. 

Then the amine hardener was added (Step 2) and subsequently the nano-reinforced resin was 

used to fabricate glass fiber composites (Step 3). Prior to layup the resin was degassed for 15min. Twelve 

(12) layers having the same orientation were used. Layer by layer wet-layup was used. The lay-up took 

place on a rigid flat aluminum mould. Once the wet lay-up process was finished, the stack was 

hermetically enclosed in a vacuum bag, vacuumed and put in an oven to cure for 6hrs at 50oC. The 

produced plate had dimensions 300x300 mm and thickness of 2.5mm. The resulting fibre volume fraction 

of the composite was determined to be 47%±2.  

For the ERT campaign, square 100mm specimens were cut from the plate using a diamond-grit 

circular disk. The specimens were prepared for ERT by positioning 20 peripheral electrodes close to the 

edge of the plate. Firstly, a 1mm diameter hole is drilled at the desired point. The inner surface of the hole 

is painted with conductive silver-paint to provide a good interface and minimize contact resistance with 

the circular cross section copper electrode, which is placed tightly into the hole. A two part conductive 

epoxy (CircuitWorks® Conductive Epoxy by Chemtronics), commonly used for solderless electronic 

connections, is used to hold the electrode cables in place while allowing electrical conduction (similar to 

[15, 22]). The epoxy was cured for 4hrs at 55oC.  

3.2. Material Characterization 
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To evaluate the dispersion of CNT within the matrix Scanning Electron Micrographs (SEM) and 

electrical conductivity measurements were used. Images were taken using LEO SUPRA 35VP at various 

magnification levels for a set of random samples from the material.  

A KEITHLEY 2002 digital multimeter by Keithley Instruments Inc. (USA) was used for the 

electrical measurements. Measurements were made in three directions corresponding to the three 

principle axes of the material. Specimens were cut from the manufactured plate; oblong specimens 

100x15mm for in-plane measurements (X-axis and Y-axis) [29] and square 25x25mm specimens for the 

through thickness direction (Z-axis). Al least five (5) specimens were measured for each direction. The 

electrode contact surfaces were sanded to smooth the roughness from the peel ply and then silver painted 

twice to create a uniform and smooth coating using commercially available conductive silver paint (RS 

Components Silver Paint Conductive Adhesive).  

3.3. Damage modes assessed 

To assess the sensing capabilities of ERT on these materials, three different damage scenarios were 

evaluated (Figure 3); a through-thickness hole, an oblong notch and indentation damage. 

The through hole (Figure 3-a) is the first damage implemented to assess the capabilities of 

NDE/SHM methods. It is used to assess baseline sensitivity of the technique. Here a small hole having a 

diameter of 3mm was made to the plate. The damage corresponds to less than 0.1% of the total area of the 

composite plate being inspected.  

An oblong notch (Figure 3-b) is another typical damage mode assessed in NDE/SHM works and 

is an approach to assess the capability of the technique to detect cracks. An oblong crack was created 

using a cutting disc and a high speed rotary tool (DREMEL). The damage region represented nearly 0.2% 

of the total inspected area.  

Finally, Quasi-Static Indentation (QSI) was employed to experimentally assess the proposed 

approach as a step towards Barely Visible Impact Damage (BVID) detection. BVID is a major concern in 

structural composite parts as it is the result of accidental low energy impact event and can severely 

degrade the mechanical performance of the part. In QSI test (Figure 3-c), a hemispherical indenter (Φ 

12mm) is pushed against a simply supported specimen. The support is a circular ring (50mm diameter) 

leaving the space under the specimen, right below the indentation point free to deform. The loading 

continues until a drop in the force is recorded. Then the test is stopped, the specimen is unloaded and 

inspected. To assess the developed damage (Figure 3-d) and for direct evaluation of the ERT results, 

ultrasonic inspection (C-scan) was employed. 
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3.4. ERT theory, post-processing and application 

The forward electrical problem is to derive the voltage distribution given the conductivity distribution 

within a medium and the current injection input. Mathematically this is done by solving Equation 1 in the 

conductive medium Ω, given appropriate boundary conditions: 

∇ ∙ #$∇%& = 0  , +̅ ∈ .        (1) 

Where σ is the conductivity distribution and u is the electrostatic potential.  

The Electrical Tomography Inverse Problem (ETIP) is the process of approximating the 

conductivity distribution in the interior of a body from the knowledge of currents injected in the medium 

and voltages measured at its surface. The result of the ETIP is a conductivity change map corresponding 

to the volume under inspection. 

A series of electrodes is placed at the periphery of the part under inspection (Figure 4-a). Current 

is injected through a selected set of two electrodes (corresponding to the ground and the Vcc-positive 

supply voltage). Voltage measurements are recorded on the rest of the electrodes. The process is 

organized in a protocol which defines which electrodes are active (current bearing) and which are passive 

(voltage sensing). The recorded measurements along with the geometry of the component and electrode 

location are used as input for the inverse calculation of the conductivity change distribution. Certain sets 

of electrodes for current injection may prove more informative, based on the type, the location and the 

extent of damage. However, since the damage characteristics are unknown, there is no a-priori 

knowledge. 

ETIP is an ill-posed problem and intrinsically non-linear which means that small variations in 

the input (voltage measurements) may have large effects on the output (conductivity maps). This nature 

of inverse ERT problems sets limitations to the capabilities of the technique. It is not within the scope or 

the capacity of this work to cover all the details regarding ill-posed problems and techniques to address 

this issue. Nevertheless, interested readers are encouraged to read further in [23, 30]. Here we address 

issues relevant to the presented application of the ERT technique to exploit CNT networks for damage 

detection and assessment. 

To deal with the ill-posedness of the inverse problem, we employ a post-processing scheme 

recently proven to perform well in materials of similar nature [22]. The mathematical inversion of the 

experimental data to calculate the conductivity change map is performed following the Tikhonov 

regularization (Equation 2) [24]: 
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!"#$%ℎ'(') = min/‖!1 − 3/!"4‖2 + 7‖8 ∙ !"‖24    (2) 

Where: dσ(Tikhonov) is the conductivity change vector, dV is the experimentally recorded voltage change 

between two states, J is the Jacobian mapping the conductivity change to voltage change on the 

electrodes, λ is the regularization parameter and L is the regularization matrix. Essentially, it is a Least 

Squares approach augmented by an additional penalty to large solutions. Regularization improves the 

conditioning of the problem, enabling a numerical solution. The identity matrix was used as L to avoid 

any bias to the solution, while a heuristic approach was followed to select the value of λ.  

 For the solution of Equation 2, an FE scheme is employed in the mathematical formulation of 

the inverse problem [30, 31]. The conductivity is kept constant within each element of the FE mesh, while 

the voltage was piecewise linear. The process essentially assigns a conductivity change value to each 

element of the mesh to reach a best fit solution of J(dσ) to dV which is governed by the Jacobian of the 

inverse problem (J). The outcome is an electrical conductivity change map depicting where changes are 

expected between the two states compared; an increase in the conductivity change map is essentially a 

region where conductivity is expected to drop.  

As a step to further automate the damage assessment and to enhance the localization of the 

technique, two indices are calculated for each calculated map; the Centre of Interest (CoI) and the 

respective Region of Interests (RoI). The former refers to the mathematical areal weighted mean of the 

conductivity change distribution while the later is the 1-σ region around the CoI. Both the CoI and the 

RoI have the scope to provide a point location of the interest to limit the inspection region and 

concentrate the interest based on the calculated map. Details on the calculation can be found in [22] and 

references therein. 

 For implementing experimentally the technique, an ERT system was developed. A conceptual 

illustration of the ERT system and the process as applied in this work is shown in Figure 4-a. The 

experimental setup used in this work is shown in Figure 4-b. The ERT system consists of a programmable 

DC source (KEITHLEY 224) and a data acquisition switch board unit with an internal digital multi-meter 

(AGILENT 34970A). Dedicated routines control the switching within the cards of the data acquisition 

unit to deliver the current at the desired electrodes and take the voltage measurements according to a 

specified protocol.  

The opposite current injection protocol [30] for collecting the voltages is used. The protocol runs 

as follows. Current is injected between the first pair of electrodes (electrodes 1 & electrode 11: current 

pattern 1-11). A sub-set of voltage measurements is taken for all the electrodes with reference to the 
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ground (V@1,2,3,...,20). Then, the next current pattern is applied at the next opposite electrode pair 

(current pattern 2-12). Again the system is allowed to settle and the respective sub-set of voltage 

measurements (V@1,...,20) is recorded. This loop is continued for current patterns up to 10-20 where the 

process is ended. A total of 10 current patterns is used. For each current pattern 20 measurements are 

available. This results in signature with a global set of 200 measurements. 

For assessing each damage, a signature set is taken prior to damage as reference and another 

signature set is recorded after the damage is introduced. Their difference is the input (dV) for Equation 2.  

 

4. Results and Discussions 

4.1. Properties of the composite and observation of the percolated CNT network  

Figure 5 shows a series of SEM pictures at different magnifications. A large number of images was 

captured at random locations of the composite to verify the homogeneous dispersion of CNT. In Figure 5-

a, a macroscopic image of the fracture surface of the composite is seen where the imprints of detached 

fibers are evident. The fractured surface of the resin reveals the internal distribution of the CNT. A close 

view of the fracture surface and the fiber-matrix interface is seen In Figure 5–b, c. Individual and 

clustered CNT are evidently spread in the matrix and are identifiable by their white color in contrast to 

the darker area of the pure resin. Agglomerated CNT are indicated by ellipses. A better dispersion is 

evident in Figure 5-c, where a whole region of the resin is covered by randomly dispersed CNT. CNT are 

present in the inter-fiber region indicating a good infiltration within the layers of glass fibers. Figure 5-d 

shows a close up of an agglomerate broken at the surface and CNT protruding from the matrix in a 

random fashion. The SEM micrographs indicate a high degree of dispersion of the CNT despite the fact 

that agglomerates are present. This observation in turn gives rise to the presence of a percolated CNT 

network throughout the composite.  

To further verify the percolation of CNT network within the composite, the electrical 

conductivity of the material in the X, Y and Z directions was experimentally derived. The obtained values 

were: σX = 6.02±0.44·10-3 S/m, σY= 6.61±0.48·10-3 S/m and σZ=1.54±0.53·10-4 S/m. It is seen that the 

conductivity in the X-Y plane is essentially the same while the value for the Z direction is relatively 

lower. The difference is not considered significant as all conductivity values achieved fall at the same 

range as in the works of [3, 8, 32]. Achieving a perfectly dispersed system of CNT is extremely difficult 

and the intermediate processing steps (layup, curing etc.) play their role in not supporting this. 
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Nevertheless matter-of-factly, this may not be an issue as the achieved 3D network of CNT provides 

conductive pathways adequate for sensing load, strain and damage [3, 8].  

4.2. Sensing Baseline Damage and Cracks 

A very small current (I = 10-5A) was required to reach a signal-to-noise ratio over 50dB for the voltage 

measurements. The selection of the current was done based on practical aspects of the setup and the 

composite such as the resistance of the sample (in the range of kΩ), the maximum voltage of the power 

supply and a readable voltage level on the peripheral electrodes. This current can produce significant and 

measurable voltages to enable the detection of changes and, as will be shown later, it was sufficient to 

distinguish changes between the reference and the damaged state. In previous studies on CFRP the 

required current was 0.1A [22], an observation that reflects the role of material conductivity in the 

application of ERT. 

The first damage case was used for the baseline evaluation of the approach. A through thickness 

hole was drilled at (Xhole,Yhole) = (38.0, 23.4)mm. The damaged specimen is seen in Figure 6-a. Using the 

recorded values, a conductivity change map is calculated and shown in Figure 6-b. The map shows a 

smooth baseline in the largest portion of the inspected area. According to the inverse calculation, 

conductivity change is expected at the central bottom region of the part; close to electrodes 13 and 14. A 

dipole-like field is predicted close to electrode 13, having similarities to the observations by Proper et al 

[17], where a distributed mesh of sensors was used. No other region presents specific peaks or other 

interesting features for further evaluation. From the automated process, the CoI was calculated to be at 

(XCOI-hole,YCOI-hole) = (45.9, 30.7)mm. The respective RoI represents a 16.9% of the total inspected area. 

Evidently, the hole falls within the identified RoI. Considering the distance between the real location, the 

estimated CoI and the size of the inspected area, the localization error is nearly 10% for exactly locating 

the point of damage. Given this, it can be said that the proposed synergistic NDE approach performs 

satisfactorily capturing the damage with marginal error. 

The second damage mode that was assessed was an oblong notch. The notch was created having 

a -30o angle to the horizontal. The centre of the notch was at (Xnotch,Ynotch) = (63.0, 70.5)mm. The 

thickness of the notch was 2mm while the length of the notch was 16mm. The damaged specimen is seen 

in Figure 7-a. The inserted photograph shows the zoomed region of the notch. The conductivity change 

map calculated for this damage mode is shown in Figure 7-b. The map is smooth throughout the central 

region of the inspected area, indicating no changes. An extended region of conductivity change is 

predicted at the central top region of the part close to electrodes 3 and 4. The CoI for the case of the notch 
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is located at (XCOI-notch,YCOI-notch) = (57.2, 60.0)mm. The RoI represents 22.1% of the total inspected area. 

Despite the fact that a clear oblong shape change that would directly reflect the notch is not revealed, the 

notch falls within the identified RoI and close to the CoI with a localization error of nearly 12%. 

As seen from the reconstructed maps, the solution suffers limited resolution away from the 

electrodes. This is well known in ERT and is due to the ill-posed nature of the problem and the 

exponential decay of the electric field. In the studied case, this is expressed by low resolution and limited 

diffusion of the solution in the central region of the part.  

To increase the sensitivity in the central region of such parts, (a) the optimization of the injection 

pattern for given expected damage mode and (b) increasing the number of peripheral electrodes with 

respect to the dimensions of the inspected part could be considered.  

On the one hand, current injection strategies could be alternatively selected so as to deliver 

higher current densities close to the damaged region and thus improve the sensitivity of the technique 

[33].   

On the other hand, increasing the number of electrodes on the periphery of the part may be 

useful as a means to increase the available information of the developed potential field. This is seen in the 

study by Hou et al [15] where a series of 32 electrodes was used for films of much smaller dimensions 

(~25mm). The results provided are impressively more informative and straightforward for evaluation. It is 

believed that it is the relation of size and number of electrodes that provides this enhanced sensitivity. 

Having more data as input can provide better indications, even though there is a certain limit after which 

more data does not necessarily mean better maps. It is the independent data that is needed to increase the 

reconstruction resolution.  

Alternative approaches have been employed by Angelidis et al. [12], Proper et al. [17], 

Naghashpour et al. [34], Viets et al. [20] who did not constrain the placement of the electrodes only at the 

edges of the part. Grids of point electrodes on the surfaces of the part or strips extending over the whole 

length of the part were used as electrodes. The results indicated a very high sensitivity of the approaches, 

without considering the integration penalty of these methods (e.g. scale-up, invasiveness, cabling).  

Taking into consideration the scaling perspective of all the approaches and the requirements of structural 

cases for low mass and minimal invasion, another optimization problem is formulated where the number 

of electrodes in a given allowable region needs to be minimized over a sensible and informative 

inspection map. Thus the trade-off between the sensitivity and the electrodes needs to be considered for 
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each case studied. It is believed that the presented ERT scheme complements the works in literature and 

delivers highly informative maps at a minimal integration penalty. 

4.3. Barely Visible Impact Damage 

BVID is commonly expressed as interlaminar damage which has not propagated to the outer layers of the 

composite and thus is not distinguishable to the naked eye. NDE techniques are suitable to assess such 

damage. Indentation is employed here to simulate BVID. Figure 8-a shows a snapshot of the indentation 

experiment. The indentation point was at an off-centre position (XBVID, YBVID) = (55.0, 27.5)mm. The 

corresponding force-displacement curve recorded is shown in Figure 8-b. The experiment was terminated 

when a drop of the load was recorded which indicated the loss of load bearing capability. The specimen 

after the indentation is shown in Figure 8-c. The visual inspection revealed a permanent imprint on the 

indentation side and the debonding of some fiber bundles on the back of the specimen. The corresponding 

C-scan inspection map is shown in Figure 8-d. According to the benchmark technique, a concentrated 

change in thickness at the indentation point is revealed as a darker circular region, corresponding to the 

imprint of the indenter. The local debonding of the bundles just below the indentation point is revealed as 

dark lines extending in the Y-axis up till after the middle of the specimen. The C-scan shows that the 

delamination has not propagated in the XY plane. The rest of the part remained intact.  

The debonded bundles are impregnated with the resin and thus carry CNT. The fact that the 

bundles have been detached means that the conductive network at the region has been disrupted and the 

CNT network around the fibers has been disconnected. Locally, resistance will be larger as the cross-

section decreases and this is expected to be reflected on the electrical measurements close to the 

neighboring electrodes. 

The experimental voltage recordings before and after the indentation were used to calculate the 

conductivity change map which is shown in Figure 8-e. The main interesting section of the conductivity 

change map is at the central bottom region of the part. An oblong strip of conductivity change is predicted 

between electrodes 12 and 13 extending up to 1/3 of the plate’s Y-dimension. This region corresponds 

precisely to the real location of the imprint and the fiber bundle debonding. The rest of the map is 

relatively smooth throughout the central region of the inspected area and some minor pair-wise changes 

are predicted at the periphery of the part (top and left side).  

The CoI for the case of the notch is located at (XCOI-BVID, YCOI-BVID) = (51.3, 47.6)mm. The RoI 

represents a 25.1% of the total inspected area. Due to the extended dimensions of the real damage, the 

damage localization error in this case is relatively larger (nearly 18%) than in the other cases. 
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Nevertheless, the largest part of the damaged region, including the indentation point, falls within the 

identified RoI. Furthermore, the conductivity change region identified correlates with the imprint and the 

debonding area.  

 

5. Conclusions  

The formation of CNT networks within the matrix of an insulating composite has been shown to offer a 

new functionality to the structural material, i.e. electrical, which is leveraged for NDE. The major 

conclusions of the work are summarized here: 

(1) Polymer processing and mixing techniques compatible with widely used composite manufacturing 

techniques are employed to develop the CNT network within the matrix of the composite.  

(2) The electrical conductivity of the composite system occurring due to the CNT network has been 

measured and exhibits isotropic in-plane conductivity which is higher than the out-of-plane 

conductivity of the composite. 

(3) An approach based on ERT has been proposed and studied to exploit the created CNT networks 

within the matrix of the composites for NDE. A structured ERT methodology is presented and 

applied on CNT reinforced GFRP. Parameters for further adaption and customization of the 

methodology by interested researchers are also discussed. 

(4) Electric potential methods for sensing damage in CNT networks have proven to be sensitive to very 

small changes in the network, even as small as 0.1% of the total inspected area. It is possible to 

detect different types of damage that disrupt the structure of the CNT network and are relevant to 

composites. The changes induces in the field by the damage are measureable at the edges of the 

composite and convey sufficient information for solving the ETIP.  

(5) It is possible to calculate meaningful ETIP solutions based on the proposed formulation. The 

calculated electrical conductivity change maps of the structure convey meaningful information and 

can serve well as inspection maps to direct to the location of the damage as they capture the changes 

and directly correspond to the composite part under inspection. 

(6) The calculated features (i.e. CoI and RoI) performed well in indicating the position of the real 

damage and successfully predicted the region of it. The inspection area in all the cases was 

suppressed, reaching up to 83% decrease, which can be translated to fast inspection cycles.  

In general, very low currents were sufficient to invoke detectable voltage changes at the boundaries of the 

CNT network within the laminate. The power requirement for this technique is much less than 1W and 
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currents are very small to involve any risk. Alternative ERT strategies (e.g. injection patterns) are feasible 

and the methodology is customizable to the respective application (e.g. different geometries). The fact 

that the calculation scheme is fully compatible with FE gives potential for integration of the technique in 

more complex systems. Developing cross-property relations for such materials (e.g. strength relation to 

electrical conductivity) could enable translation of conductivity change maps to strength degradation and 

lead to structural failure prognosis within FEA formulations. 
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Figure 1. CNT network exploitation and Principle of ERT technique; (a), (b) undamaged material, (c), (d) 

damaged material. (Red: High voltage, Yellow: Medium voltage, Blue: Low voltage). 
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Figure 2. Preparation steps for producing a CNT reinforced polymer and GFRP plates with integrated 

CNT network. 

 

 
Figure 3. Investigated damage modes for composites: (a) drilled through-hole, (b) through-thickness 

notch, (c) Quasi-Static Indentation setup employed, (d) QSI induced interlaminar damage (in-plane). 
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Figure 4 – Electrical Resistance Tomography System: (a) Conceptual diagram of the part, the ERT 

system and the processing unit, (b) Developed ERT setup and tested specimen. 

 
Figure 5. CNT network inspection using SEM micrographs at different magnifications: (a) Overview of 

CNT-GFRP fracture surface, (b), (c) Dispersion of CNT in the interfiber region, (d) Close-up of broken 

CNT agglomerate and free standing CNT. (scale-bar: (a)10µm, (b) 1µm, (c) 2µm, (d) 200nm) 
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Figure 6. Through-hole damage: (a) Damaged specimen, (b) Reconstructed conductivity change map, 

where red indicates decrease in conductivity; Circle (o) indicates the real damage location, Cross (+) 

indicates the Centre of Interest, Dashed Ellipse indicates the Region of Interest. 

 
Figure 7. Oblong notch: (a) Damaged specimen, (b) Reconstructed conductivity change map, where red 

indicates decrease in conductivity; Line indicates the real damage location, Cross (+) indicates the Centre 

of Interest, Dashed Ellipse indicates the Region of Interest. 
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Figure 8. Interlaminar damage: (a) snapshot of the indentation experiment, (b) Force displacement 

diagram recorded for the CNT-GFRP. (c) Damaged specimen (d) Ultrasonic C-scan map: differentiation 

in color indicates different ultrasonic transmission and inhomogeneous structure, (e) Reconstructed 

conductivity change map, where red indicates decrease in conductivity; Circle (o) and continuous lines 

indicates the real damage location and extend, Cross (+) indicates the Centre of Interest, Dashed Ellipse 

indicates the Region of Interest. 


