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ABSTRACT 

Animal studies have amply demonstrated that stress exposure during pregnancy or in early post-

natal life can adversely influence brain development and have long-term ‘programming’ effects on 

future brain function and behaviour. Furthermore, a growing body of evidence from human studies 

supports the hypothesis that some psychiatric disorders may have developmental origins. Here the 

focus is on three adverse consequences of early life stress: dysregulation of the hypothalamo-

pituitary-adrenal (HPA) axis, heightened anxiety behaviour and cognitive impairments, with review 

of what is known about the underlying central mechanisms.  

Neuroactive steroids modulate neuronal activity and play a key role in neurodevelopment. 

Moreover they can negatively modulate activity of the HPA axis, exert anxiolytic actions and 

influence cognitive performance. Thus neuroactive steroids may provide a link between early life 

stress and the resultant adverse effects on the brain and behaviour. Here a role for neuroactive 

steroids, in particular the 5α-reduced/3α-hydroxylated metabolites of progesterone, testosterone 

and deoxycorticosterone, is discussed in the context of early life stress. Furthermore, the impact of 

early life stress on the brain's capacity to generate neurosteroids is considered and the evidence for 

an ability of neuroactive steroids to over-write the negative effects of early life stress on the brain 

and behaviour is examined. Enhanced understanding of the influence of early life stress on brain 

neurosteroid systems could aid the identification of new targets for developing treatments for 

stress-related conditions in humans. 

 

INTRODUCTION 

The perinatal period is a time of active neuroplasticity when the developing brain undergoes 

complex processes (e.g. neurogenesis, synaptogenesis, dendritic and axonal arborisation, 

programmed cell death and myelination) and as such brain development and neuronal organisation 

is particularly vulnerable to insults at this time. Insults such as stress during the perinatal period can 

detrimentally ‘programme’ the infant’s brain leading to profound alterations in neuroanatomy, 

physiological and neuroendocrine function and behaviour in later life.  The phenomenon of ‘early-

life programming’ of the brain and behaviour is well established in rodents (1), and a growing body 

of evidence supports the idea that various childhood/adulthood disorders in humans have their 

origins in early life. For example, in women maternal stress exposure during pregnancy is associated 

with an increased incidence of neurodevelopmental disorders (e.g. attention deficit disorder, autism, 
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schizophrenia), affective disorders (e.g. anxiety, depression), cognitive deficits and 

emotional/behavioural problems in their children later in life (2). The neuroendocrine stress axis, the 

hypothalamo-pituitary-adrenal (HPA) axis is particularly vulnerable to early life programming by 

stress (1, 3) and the resultant HPA axis dysfunction may underpin psychiatric disorders and disrupted 

cognitive processing (4, 5). 

Neuroactive steroids (endogenous steroids that exert rapid non-genomic effects on neuronal 

excitability) play a significant role in neurodevelopment in terms of neuroprotection and neuronal 

organisation: they promote neuronal survival and differentiation, myelinisation, dendritic growth 

and synaptogenesis (6-8). Hence, it is perhaps unsurprising that several neurodevelopmental 

disorders, mood disorders and cognitive decline have been associated with a perturbation in 

neurosteroid levels (9-16). Thus neurosteroids may provide a link between early life stress and 

adverse programming of the brain and behaviour. 

Here a role for neuroactive steroids in the context of early life stress will be discussed, focussing on 3 

adverse consequences of stress exposure during development: HPA axis dysregulation, increased 

anxiety and impaired cognitive ability. First these detrimental effects of early life stress and what is 

known about the central mechanisms involved are reviewed. Next the role of neuroactive steroids in 

modulating HPA axis function, anxiety behaviour and cognitive performance is considered before 

discussion of the impact of early life stress on neurosteroidogenesis and finally the potential for 

neuroactive steroids in counteracting the negative effects of early life stress on the brain and 

behaviour is examined.    

 

EFFECTS OF EARLY LIFE STRESS ON THE BRAIN AND BEHAVIOUR 

Much of the work investigating the effects of early life stress on the brain and behaviour has been 

performed in rodents.  Numerous rodent models of prenatal stress exposure are described in the 

literature, though these typically involve exposing a pregnant animal to the same stressor (e.g. 

restraint) repeatedly (17) or to a variety of different stressors (e.g. cold, forced swimming, 

overcrowding, restraint) in an unpredictable fashion (18) during a specific period of gestation. Stress 

in the early post-natal period is frequently achieved by disrupting dam-pup interaction, for example 

by repeatedly separating pups from their mothers for a few hours per day during the first 2-3 weeks 

of life (19, 20). In rats maternal exposure to stress during pregnancy or maternal deprivation in early 

post-natal life is associated with heightened anxiety-like behaviours (17, 21-23), HPA axis 
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dysregulation (18, 21, 22, 24-26), impaired neural development (27), cognitive deficits (27-29) and 

aberrant social  behaviours (30-33) in the offspring. In human studies, maternal stress and anxiety 

during pregnancy is also associated with impaired infant neurodevelopment, including delayed 

motor development, cognitive impairments, emotional problems, negative temperament and  

symptoms of attention deficit disorder (34-37).  

 

HPA axis dysregulation 

Enhanced or prolonged HPA axis responses to stress is a key feature in animals exposed to stress in 

early life, either pre- or post-natally (19, 20, 22, 25, 38).  The central mechanisms underpinning HPA 

axis dysregulation appear to involve changes in both excitatory feed-forward and inhibitory feedback 

mechanisms (Fig. 1).  

 

Excitatory inputs 

Exaggerated adrenocorticotropic hormone (ACTH) and corticosterone responses to stress induced by 

early life stress are associated with marked up-regulation in corticotropin releasing hormone (CRH) 

mRNA expression in the parvocellular neurones of the paraventricular nucleus (PVN) (22, 39-41), 

indicative of increased excitatory input to the CRH neurones. Indeed enhanced excitatory 

glutamatergic drive to the CRH neurones in the PVN has recently been demonstrated in a mouse 

model of early life stress (39)(Fig. 1).  

 

Inhibitory inputs 

Glucocorticoid (GR) and mineralocorticoid receptors (MR) mediate negative feedback control of the 

HPA axis by glucocorticoids. Enhanced and prolonged HPA axis responses to stress are associated 

with reduced hippocampal expression of GR, MR or both receptors (22, 25, 38, 42, 43), indicating a 

possible impairment of glucocorticoid negative feedback (Fig. 1).   

Insufficient inhibitory GABA input may also play a role. GABAergic neurones that project to the PVN 

modulate HPA axis activity, resulting in inhibition of the CRH neurones (via glutamatergic activation 

of PVN projecting GABAergic neurones) or activation of the CRH neurones (via GABAergic inhibition 
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of PVN projecting GABAergic neurones, i.e. disinhibition) (44). Prenatal stress results in a reduction 

in the density of parvalbumin-positive GABAergic interneurons in the medial prefrontal cortex and 

hippocampus (45, 46) (Fig. 1). Moreover, the number of GABAA receptors is significantly reduced in 

the hippocampus and the central amygdala in prenatally stressed offspring when compared with 

controls (47, 48) (Fig. 1). Whether these changes in GABAergic signaling underlie enhanced HPA axis 

responses to stress following early life stress remains to be determined, however it is interesting to 

note that a reduction in inhibitory GABA interneurones and/or GABA receptor expression is reported 

in several neuropsychiatric disorders such as schizophrenia, autism, anxiety and Tourette’s 

syndrome and that these disorders have also been linked to prenatal stress exposure (49).   

 

Anxiety behaviour 

An anxiety-like phenotype is frequently observed in animals exposed to early life stress. This has 

been demonstrated by increased ultrasonic vocalisations in neonates (50), reduced social play during 

adolescence (51), reduced open arm entries on the elevated-plus maze test (22, 23, 52) and 

decreased exploration in an open field (17, 53, 54) (Fig. 1).  

Anxious behaviours are organised by the amygdala and CRH is importantly involved in mediating 

anxiety responses (55, 56). CRH content is increased in the amygdala of prenatally stressed rodents 

(22, 57, 58), as is CRH release from amygdala homogenates (57) (Fig. 1). Increased anxiety-behaviour 

in adult prenatally stressed offspring is associated with enhanced CRH receptor binding in the 

amygdala (56) and can be attenuated by central administration of non-selective CRH receptor 

antagonists (56), indicating that altered CRH receptor expression is likely to be important in the 

expression of anxiety-like behaviours induced by early life stress. Indeed, studies using conditional 

forebrain CRH type 1 receptor (CRH-R1) knockout mice have further highlighted the importance of 

CRH-R1 in facilitating anxiogenic behavioural responses induced by early-life stress (59). 

Furthermore, increased anxiety-like behaviour in prenatally stressed rats is associated with 

increased expression of CRH-R1 mRNA in the central and basolateral nuclei of the amygdala (60), the 

PVN (21, 61) and more recently this has also been demonstrated in the amygdala of prenatally 

stressed pigs (62) (Fig. 1).  Altered expression of the CRH type 2 receptor (CRH-R2) is also likely to 

influence anxiety behaviour. In contrast to CRH-R1, activation of CRH-R2 is considered to have 

anxiolytic actions (63, 64). In line with this, is the finding of reduced CRH-R2 expression in the 

amygdala of prenatally stressed rats that display an anxious phenotype (40, 60) (Fig. 1).    



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Altered glutamate neurotransmission has also been implicated in anxious behavioural responses. 

Heightened anxiety-like behaviour in prenatally stressed rats is correlated with reduced glutamate 

release in the ventral hippocampus (65), which can be reversed with anti-depressant treatment (66).  

 

Cognitive impairments 

Cognitive impairments observed following early life stress have been demonstrated in rodents using 

learning and memory tasks such as the Morris water maze, Barne’s maze and the novel object 

recognition test (27, 28, 67-69). The hippocampus is highly susceptible to the programming effects of 

stress during the perinatal period and the resultant cognitive deficits are associated with alterations 

in hippocampal structure and function, including reduced neurogenesis (27, 70, 71), reduced brain-

derived neurotrophic factor (BDNF) expression (72, 73), decreased long term potentiation (LTP) (74-

76), altered synaptic plasticity e.g. reduced spine density, reduced dendritic length, dendritic atrophy 

and altered mossy fibre density in rodents (69, 76-81)(Fig. 1). Importantly the consequences of early 

life stress on cognitive performance and hippocampal function are long term and evidently persist 

throughout life (in contrast to the reversible effects of chronic stress on cognitive function in 

adulthood)(82). Moreover, many of these consequences are sex-specific (67, 68, 80, 81, 83, 84), 

potentially implicating a role for modulation by sex steroids, and are exacerbated by aging (53, 76).  

It is not yet clear what ‘factor’ mediates these effects of early life stress on hippocampal structure 

and function and hence impaired cognitive performance, however CRH has been implicated. CRH 

expression in the PVN is markedly elevated in several models of early life stress (19, 39, 40, 85), but 

there is also evidence that CRH expression is augmented in the hippocampus in adult prenatally 

stressed rats (86) and in middle-aged rats exposed to stress (induced by fragmented maternal care) 

in early postnatal life (69) (Fig. 1). Type 1 CRH receptors are located on hippocampal neurones (87, 

88) and CRH is known to mediate the effects of acute stress on hippocampal synaptic plasticity and 

cognitive performance (89, 90). Indeed, prolonged exposure to CRH reduces dendritic complexity in 

cultured hippocampal neurones (69) in a similar manner to that induced by early-life stress (76). 

Moreover central administration of CRH to rats in early life mimics the effects of early life stress in 

adulthood in terms of impaired memory and hippocampal cell loss and is associated with an up-

regulation CRH and CRH-R1 gene expression in hippocampal pyramidal cells (91). Thus increased 

CRH action in the hippocampus may contribute to the central mechanisms underlying the effects of 

stress during early life on hippocampal structure and function. In support of this, treatment with a 

CRH-R1 antagonist shortly after stress exposure in early postnatal life has been demonstrated to 
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prevent the deficits in learning and memory, dendritic atrophy and suppressed LTP observed in later 

life (69). Furthermore, impairments in spatial learning and memory and the associated disrupted LTP 

and reduced hippocampal dendritic spine density, induced by early life stress in wild-type mice are 

not observed in conditional forebrain CRH-R1 knockout mice raised under the same conditions (92).  

Additionally, given the critical role of the hippocampus in performing learning and memory tasks and 

the well described impact of corticosteroids on hippocampal-dependent learning (93), it is likely that 

reduced levels of hippocampal GR and/or MR in animals exposed to early life stress (22, 25, 38) may 

also contribute to alterations in cognition, though this requires further investigation. 

 

NEUROACTIVE STEROIDS  

The term ‘neuroactive steroid’ refers to active metabolites of classical steroid hormones that 

independent of their origin (i.e. those produced in the brain or in the periphery) have rapid 

membrane actions on neuronal excitability. The brain can produce these neuroactive steroids and 

when synthesised centrally they are frequently referred to as 'neurosteroids' (94) (95). Production of 

neuroactive steroids in the brain (i.e. neurosteroids) is dependent upon the expression of the 

relevant enzymes, which can show important regional differences (96). Amongst the most 

extensively studied neuroactive steroids are the progesterone metabolite, allopregnanolone (3α-

hydroxy-5α-pregnan-20-one, also 3α,5α-tetrahydroprogesterone) and 5α,3α-

tetrahydrodeoxycorticosterone (THDOC) a metabolite of  deoxycorticosterone (DOC). For 

allopregnanolone synthesis, progesterone is first converted into dihydroprogesterone (DHP; 20α-

hydroxy-4-pregnen-3-one) by 5α-reductase (the rate limiting enzyme), which in turn is converted 

into allopregnanolone by the actions of 3α-hydroxysteroid dehydrogenase (3αHSD) (Fig. 2). THDOC is 

synthesised from the adrenal steroid DOC (via the intermediate 21-hydroxy-5α-pregnane-3,20-

dione; 5α-DHDOC) by the action of the same two enzymes (Fig. 2). Both of these enzymes are 

expressed in the brain by astrocytes and oligodendrocytes (97-99), and 5α-reductase activity is also 

evident in neurones (100). While the brain is capable of synthesising progesterone from 

pregnenolone and subsequently reducing progesterone to allopregnanolone (via DHP), DOC is 

formed from progesterone in the adrenal cortex, but not in the brain (97, 98, 101-103). Nonetheless 

DOC can be converted to THDOC in the brain via the actions of 5α-reductase and 3α-HSD (98, 104). 

5α-reductase also converts testosterone into the more potent androgen, dihydrotestosterone (DHT), 

which in turn can be converted into 3α-androstandiol (5α-androstane-3α,17β-diol; hereafter 3α-diol) 

by 3αHSD or 3β-androstandiol (5α-androstane-3β,17β-diol; hereafter 3β-diol) by the actions of 
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3αHSD, 3βHSD and 17βHSD (105, 106) (Fig. 2), including in the brain (107, 108). In contrast to 3α-

diol, the formation of 3β-diol is irreversible (106). 

 

Neuroactive steroids and neuromodulation 

Neuroactive steroids can rapidly alter neuronal excitability by binding to membrane bound ion 

channel-linked receptors (95). The GABAA receptor is the principal mediator of GABAergic 

neurotransmission in the central nervous system (CNS).  GABAA receptors are ligand-gated chloride 

channels comprised of five subunits, with 19 different subunit types having been identified to date. 

The assembly of 5 subunits to form GABAA receptors results in a complex heterogeneity in their 

structure (which determines regional expression in the CNS and their pharmacological profile), 

however the most common type in the brain is a pentamer consisting of two α subunits, two β 

subunits and either a γ or δ subunit. When activated by GABA, the channel opens, permitting 

chloride ion influx and thus hyperpolarisation of the cell membrane.  

Allopregnanolone, THDOC and 3α-diol are potent positive modulators of GABAA receptors; they 

augment the inhibitory actions of GABA by prolonging the opening time of chloride ion channels 

within GABAA receptors (109-111). Subunit composition confers sensitivity of the GABAA receptor to 

modulation by neuroactive steroids, with allopregnanolone having greater efficacy at GABAA 

receptors containing the δ subunit (112). Thus, neuroactive steroids can modulate neuronal activity 

by binding to neurotransmitter receptors, hence influencing brain function and behaviour. In 

contrast to 3α-diol, 3β-diol does not enhance GABA action (113) and instead it can serve as an 

estrogen receptor-β (ERβ) agonist in the brain (114). Despite different mechanisms of action all of 

the aforementioned neuroactive steroids are able to modulate neuronal activity. The next section 

focusses on the role of neuroactive steroids in modulating the HPA axis, anxiety behaviour and 

cognition. 

 

Role in modulating HPA axis function 

Acute stress results in an increase in allopregnanolone and THDOC levels in the blood and brain 

which negatively modulates HPA axis activity, facilitating termination of the stress response and 

restoring physiological homeostasis (101). Administration of allopregnanolone has been shown to 

attenuate stress-induced HPA axis activity in male (115) and female rats (116), to attenuate 
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stimulated CRH release from hypothalamic explants and to prevent adrenalectomy-induced up-

regulation of CRH gene  expression in the PVN (117). Similarly THDOC administration attenuates the 

stress-induced increase in corticosterone secretion (118). In male rats, the suppressive actions of 

testosterone on stress-induced HPA axis activity are mediated by the 5α-reduced metabolite of 

testosterone, DHT and its metabolite, 3β-diol (114, 119, 120). Moreover, treatment with the 5α-

reductase inhibitor, finasteride results in enhanced/prolonged ACTH and corticosterone responses 

to acute stress (116, 120).  

However, central levels of allopregnanolone and 5α-reductase activity are reduced following chronic 

stress exposure (121-124).  In mice, chronic social isolation leads to a dramatic reduction in 5α-

reductase 1 mRNA expression in glutamatergic neurones in the hippocampus, basolateral amygdala 

and the medial prefrontal cortex (124). Interestingly, in humans a similar reduction is observed in 

the prefrontal cortex of depressed patients (125). In rats, chronic social isolation also results in 

reduced circulating and hippocampal levels of allopregnanolone and is associated with a depressive-

/anxiety-like phenotype and reduced glucocorticoid feedback sensitivity of the HPA axis (126). 

Importantly, these effects can be prevented if allopregnanolone is administered from the onset of 

the stress period or can be reversed when allopregnanolone is administered chronically following 

cessation of the stress exposure (126). 

 

Role in modulating anxiety behaviour 

Down-regulation of neuroactive steroid production has a potential causal role in affective disorders, 

such as anxiety and depression. Reduced neuroactive steroid levels, particularly of allopregnanolone, 

have been reported in the blood and cerebrospinal fluid of patients with anxiety disorders, 

depression (major depression and post-partum depression), post-traumatic stress disorder and 

schizophrenia (9, 125, 127-131). 

5α-reduced/3α-hydroxylated neuroactive steroids such as allopregnanolone, THDOC and 3α-diol 

have potent anxiolytic properties, in keeping with their ability to act as positive allosteric modulators 

at the GABAA receptor. Allopregnanolone, THDOC and 3α-diol have been demonstrated to reduce 

anxiety-like behaviours in rodent tests of anxiety including the elevated plus maze (132-136), light-

dark box (134, 136, 137), defensive freezing task (138) and reduce ultrasonic vocalisations in 

neonates in response to maternal separation (139, 140). Moreover allopregnanolone blocks CRH-

induced anxiogenic behaviour (117). The anxiolytic effects of allopregnanolone can be blocked with 
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a GABAA receptor chloride channel blocker (132) indicating that the anxiolytic effects of 

allopregnanolone are mediated via GABAA receptors. Furthermore, studies where allopregnanolone 

has been directly infused into the amygdala or the medial prefrontal cortex, implicate these brain 

regions as potential sites for anxiolytic actions of allopregnanolone (141, 142). 

 

Role in cognition  

Cognitive processing is also influenced by neuroactive steroids, though there are differing reports in 

the rodent literature on the direction of the effects. For example, allopregnanolone has been 

demonstrated to improve memory performance in the novel object recognition test (143) and 

Morris water maze (144) in female rats, whereas other groups have reported allopregnanolone 

impairs spatial memory in male rats (145, 146). The neuroactive metabolite of testosterone, 3α-diol 

has also been reported to enhance cognition in rats and mice (136) and 3β-diol improves 

performance in the Morris water maze (147). 

Reasons for the discrepancies may relate to the different dose and drug administration regimes, the 

age and sex of the animals, the behavioural tests used and the sedative/hypnotic/anaesthetic effects 

of neuroactive steroids that are positive modulators at GABAA receptors (148). It is important to 

note that rodent tests of cognition should be interpreted with caution, especially in the case of 

neuroactive steroid effects, since many tests rely on an aversive or stress-invoking component. For 

example, the water maze, commonly used to assess spatial memory involves forced swimming; a 

robust stressor in rodents (149, 150). The test relies on the animals finding the water ‘aversive’ 

and/or being sufficiently ‘stressed’ in order to motivate them to escape onto the hidden platform. 

Given the anxiolytic and stress suppressive actions of allopregnanolone (discussed above), one can 

envisage how findings from this sort of behavioural test could be skewed i.e. an increased latency to 

find the escape platform may not necessarily represent memory impairment, but rather may result 

from a reduced motivation to escape if the test is perceived as being less anxiogenic/stressful.   

Nevertheless, neuroactive steroids in particular allopregnanolone, have established neuroprotective 

actions in models of injury or disease (151). For example, in a transgenic mouse model of 

Alzheimer’s disease (where allopregnanolone concentrations in the cerebral cortex are markedly 

lower than in wildtype mice), allopregnanolone treatment has been shown to promote neurogenesis 

and to reverse learning and memory deficits (152), implicating allopregnanolone as a potential 

therapeutic for cognitive deficits.    
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Effects of early life stress on neurosteroidogenesis and neuroactive steroid actions in the offspring 

Given the critical role neuroactive steroids play in neurodevelopment, disruption of 

neurosteroidogenesis during pregnancy/early post-natal life is potentially damaging to the brain and 

may lead to altered development of the systems that regulate stress responses, mood, behaviour 

and cognitive function. In this section the influence of stress exposure in early life on 

neurosteroidogenesis in the brain of the fetus/neonate will be considered and the evidence for 

these effects persisting into later life will be discussed. 

 

Neurosteroidogenesis in the placenta and fetal brain 

There is evidence that prolonged exposure to elevated glucocorticoid levels or exposure to stress 

during pregnancy may reduce the capacity of the fetal brain to synthesise neurosteroids. Exposing 

pregnant rats to immobilisation stress on days 15-18 of pregnancy decreases 5α-reductase activity in 

the cerebral cortex and hypothalamus of the male fetuses on embryonic day 19 (153) and repeated 

betamethasone administration during gestation in the guinea pig results in reduced 5α-reductase 

type 2 expression in the placenta with a concomitant reduction in the fetal hippocampus (154). 

Moreover, in rats, dams exposed to stress in late pregnancy have lower levels of circulating 

allopregnanolone at birth and this predicts reduced allopregnanolone production in the brains of the 

offspring in post-natal life (28). These data suggest that exposure to elevated glucocorticoids as a 

result of stress, influences the neurosteroidogenic capacity of the placenta and the fetal brain. 

 

Neurosteroidogenesis in the neonate, juvenile, adult 

Reduced capacity for neurosteroidogenesis in the fetal brain as a result of prenatal stress exposure 

appears to persist into post-natal life. In rats, the male and female juvenile offspring of mothers 

exposed to either repeated restraint or chronic variable stressors during late pregnancy display 

reduced conversion of progesterone into its 5α-reduced metabolites in the medial prefrontal cortex 

compared with control offspring; an effect which is associated with impaired cognitive development 

and reduced dendritic spine density in the dorsal hippocampus (28, 79). Similar cognitive deficits are 

observed in the offspring of mothers who were treated with finasteride (a 5α-reductase inhibitor 

which blocks neuroactive steroid generation) in late pregnancy (155). Moreover, progesterone 

utilisation (the ratio of allopregnanolone and DHP to progesterone) is also markedly reduced in the 
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hippocampus of female juveniles born to mothers exposed to immune challenge in late pregnancy 

(29). Reduced DHP production (indicating reduced 5α-reductase activity) is also seen in the brains of 

neonates exposed to maternal separation and social isolation stress in early postnatal life (156). In 

adult males prenatal stress is associated with reduced levels of dihydrotestosterone (DHT) and 3α-

diol (5α-reduced metabolites of testosterone) in the hippocampus (157) and with increased 

corticosterone responses to acute stress, anxiogenic behaviour and reduced social interaction (157). 

The findings of reduced 5α-reduced metabolites in the brains of animals exposed to early life stress 

(be it pre- or post-natally) indicate reduced expression and/or activity of 5α-reductase. Indeed, we 

have recently demonstrated that in adult male rats, prenatal stress is associated with reduced 5α-

reductase mRNA expression in the PVN and nucleus tractus solitarii (NTS) (158), whereas in adult 

females 5α-reductase mRNA expression is down-regulated compared with control females only in 

the NTS. The reason for the sex difference is not clear, though this may result from differences in 

circulating androgens (159-161). Indeed, hepatic 5α-reductase activity is programmed during 

development by testosterone levels: castration increases while testosterone administration reduces 

hepatic 5α-reductase activity (162). In accordance, circulating testosterone levels are increased in 

adult male rats whose mothers were exposed to social stress in late pregnancy (158) and there is a 

concomitant reduction in 5α-reductase mRNA expression in the liver (163). Moreover, testosterone 

levels are significantly greater in the adolescent children born to women who were exposed to stress 

(associated with the Chernobyl disaster) from the second trimester of pregnancy onwards, indicating 

prenatal programming of testosterone levels in humans (164). Thus, elevated circulating 

testosterone levels in prenatally stressed males may contribute to reduced 5α-reductase expression 

in the liver and/or brain. Moreover, reduced 5α-reductase activity in the periphery could potentially 

also contribute to reduced neuroactive steroid levels in the brain.  

In juveniles, social isolation rearing post-weaning has also been shown to reduce expression of 5α-

reductase isoforms 1 and 2 in the nucleus accumbens and medial prefrontal cortex and is associated 

with reduced allopregnanolone and THDOC levels in the frontal cortex of male rats (165). Human 

studies further indicate that reduced 5α-reductase activity may contribute to some of the negative 

phenotypes observed in individuals exposed to stress in early life.  5α-reductase type 1 activity is 

markedly reduced in adult survivors of the World War II Holocaust. Intriguingly the largest 

reductions in 5α-activity are observed in individuals who were youngest at the time of the Holocaust 

(166), highlighting a potential developmental ‘programming’ window. Moreover there is evidence 

for intergenerational transmission of the adverse effects of Holocaust exposure from survivors to 

their offspring which involves epigenetic mechanisms (167, 168). Whether epigenetic mechanisms 
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might explain reduced 5α-reductase gene expression following early life stress requires further 

study, however altered DNA methylation has been demonstrated for other genes (e.g. GR, CRH, 

CRH-R1) in rodent models of early life stress (19, 58, 61), those exploiting natural variations in 

maternal care (169), and in humans in the offspring of parents with post-traumatic stress disorder 

(168). 

Early life stress evidently also interferes with neuroactive steroid action in the brain. Gunn and 

colleagues have elegantly demonstrated that early life stress (using a mouse model of fragmented 

maternal care) enhances excitatory glutamatergic drive to CRH-expressing neurones in the PVN of 

neonates and is associated with increased CRH expression in the PVN (39). Moreover, they have 

shown that while allopregnanolone potently supresses CRH neuronal firing in controls, the same 

treatment is ineffective on these neurones in hypothalamic slices from neonatal mice exposed to 

early life stress (39). Importantly, this neuroactive steroid insensitivity is not a result of 

allopregnanolone becoming less effective in modulating GABAA receptor function, but rather is a 

consequence of the increased glutamatergic drive onto the PVN CRH neurones (39). A similar finding 

is observed in the neonatal offspring of GABAA receptor δ-subunit knockout mice (which also display 

abnormal maternal care) (39) indicating that modulation of neuronal activity by neuroactive steroids 

during the neonatal period may be critical for normal development of the HPA axis (and hence for 

‘normal’ HPA axis responses in later life) as has been demonstrated for the normal development of 

GABAergic systems in the prefrontal cortex (170).      

 

A role for neuroactive steroids in counter-acting the adverse effects of early life stress 

Neuroendocrine stress responses and anxiety-related behaviour 

Given the role of  neuroactive steroids in modulating neuroendocrine stress responses, anxiety 

behaviour and cognitive function (discussed above) as well as the findings that stress during early 

pre- or post-natal life alters neurosteroidogenesis, it can be hypothesised that altered neuroactive 

steroid production and/or action may underpin some of the adverse effects of early life stress 

described earlier and thus neuroactive steroid administration may counteract or reverse some of the 

adverse effects associated with early life stress.   

Studies in the 1990’s, first demonstrated a role for neuroactive steroids in reversing or preventing 

some of the neuroendocrine and behavioural consequences of stress exposure in early life. 
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Allopregnanolone treatment was shown to significantly reduce maternal separation-induced 

ultrasonic vocalisations (an indicator of anxiety) in neonates (140), with allopregnanolone’s effect 

mediated via GABAA receptors (139). Moreover, the increased anxiety-like behaviour observed in 

adult prenatally stressed offspring can be prevented if pregnant dams are administered 

allopregnanolone in parallel with the stress exposure during the last week of gestation (171). 

Administration of THDOC, another 5α-reduced metabolite and a potent positive allosteric modulator 

of the GABAA receptor, during early postnatal life abolishes the adverse behavioural and 

neuroendocrine effects induced by repeated maternal separation in early life that are observed in 

adulthood, such as increased anxiety, enhanced HPA axis responses to stress and impaired 

glucocorticoid feedback (172). Together, these data indicate that during development, neuroactive 

steroids that act as positive modulators at the GABAA receptor may have stress-protective actions in 

the brain. 

More recently it has been demonstrated that peripheral administration of allopregnanolone over a 

period of 20h is sufficient to normalise ACTH secretory responses to an acute physical stressor in 

adult female rats born to mothers exposed to repeated social stress during pregnancy (158) (Fig. 3a). 

Moreover, adenovirus-mediated gene transfer to up-regulate expression of 5α-reductase and 3α-

HSD in the NTS also normalises HPA axis responses in female PNS rats (158). Notably, peripheral 

allopregnanolone treatment is ineffective in the prenatally stressed male siblings which also display 

hyperactive HPA axis responses to acute stress (Fig. 3b). However, short-term treatment with 3β-

diol, a metabolite of testosterone, does reverse the enhanced HPA axis responses to stress in PNS 

males, measured as significant reductions in ACTH (Fig. 3c) and corticosterone secretion and in CRH 

mRNA expression in the PVN (158) and reduces anxiety-like behaviour on the elevated plus maze 

(Donadio, Russell & Brunton, unpubl.). Testosterone replacement also normalises behaviour in the 

open field and pre-pulse inhibition responses (deficits of which are seen in some 

neurodevelopmental disorders such as schizophrenia and attention deficit disorder) in adult 

prenatally stressed guinea pigs, as well as having a tendency for reversing elevated ACTH secretion 

under basal conditions (173). Whether this is the result of a direct action of testosterone or an 

indirect action via one of its metabolites, e.g. DHT, 3α-diol or 3β-diol, is not known.  

The mechanisms through which neuroactive steroids normalise neuroendocrine responses to stress 

in animals exposed to early life stress remain to be elucidated. As described above, the potent action 

of allopregnanolone on GABAA receptors in supressing HPA axis activity (44), indicates GABAA 

receptors as a likely target. In contrast to allopregnanolone, 3β-diol evidently exerts its effect on the 

HPA axis via estrogen receptor-β (114). ERβ is expressed in the PVN (including in CRH neurones) and 
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NTS (174, 175), indicating there is the potential for either direct or indirect modulation of HPA axis 

activity by 3β-diol. Indeed, agonists selective for ERβ have anxiolytic and anti-depressive actions and 

attenuate swim stress-induced corticosterone secretion in rats (176).    

 

Cognitive deficits 

Neuroactive steroids, in particular allopregnanolone, are known to have neuroprotective actions 

(151). For example, allopregnanolone reduces cell death and cognitive impairments that result from 

brain injury or cerebral ischaemia (177, 178) and reverse cognitive deficits in a mouse model of 

Alzheimer's disease (152). Whether neuroactive steroid treatment also reverses cognitive 

impairments associated with early life stress, as has been shown for HPA axis dysfunction and 

anxiety behaviour (158, 172), remains to be determined.   

 

SUMMARY AND OUTLOOK 

Animal studies clearly demonstrate that exposure to stress during early life programmes the brain 

and subsequent behaviour. HPA axis dysregulation is a common feature of the ‘programmed’ 

phenotype and may contribute to heightened anxiety behaviour and cognitive deficits. Similarly, 

stress exposure during development in humans seemingly increases the propensity for psychiatric 

disorders and cognitive impairments.  

Neuroactive steroids play a critical role in brain development and can modulate HPA axis activity and 

influence anxiety behaviour and cognitive performance.  There is growing evidence that exposure to 

stress in early life reduces the capacity of the brain for neurosteroidogenesis and may also alter the 

ability of neuroactive steroids to exert their actions (Fig. 4). Whether altered neuroactive steroid 

sensitivity results from variations in the number (47), the subunit composition (179) or the 

phosphorylation  status of  the GABAA receptors (180) remains to be elucidated. Moreover, the 

mechanisms underlying the reduction in the brains ability to generate neurosteroids (e.g. by down-

regulation of 5α-reductase gene expression) also requires further study; whether this is involves 

epigenetic mechanisms or results from increased exposure to androgens during critical periods of 

brain development is not yet known.  Nonetheless, neuroactive steroids can counteract some of the 

adverse effects of early life stress exposure, such as HPA axis dysregulation and heightened anxiety 

behaviour (Fig. 3, 4); however, there are sex differences in the underlying central mechanisms.  
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The possibility that the adverse effects of early life stress may be reversed by manipulating 

neuroactive steroids is a promising proposition that warrants further research and may have 

important implications for the development of new treatments for human stress-related conditions, 

which could be tailored according to gender. 
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FIGURE LEGENDS 

Figure 1: Summary of the consequences of early stress and the possible central mechanisms 

involved 

Early life stress (pre- or post-natal) is frequently associated with dysregulation of the HPA axis, 

increased anxiety-like behaviours and impaired cognitive function. Examples of indicators of these 

adverse phenotypes are given together with a summary of the neural correlates and potential 

central mechanisms involved. Abbreviations/symbols: ↑ indicates increased/enhanced and ↓ 

indicates decreased/supressed compared with control animals; CRH, corticotropin releasing 

hormone; CRH-R1, CRH receptor type 1; CRH-R2, CRH receptor type 2; EPM, elevated plus maze; GC, 

glucocorticoid; hippo, hippocampus; HPA, hypothalamo-pituitary-adrenal; LTP, long term 

potentiation; MWM, Morris water maze. 

Figure 2: Neuroactive steroid biosynthetic pathways  

The enzymes and intermediates involved in the synthesis of allopregnanolone, 3α-diol, 3β-diol and 

tetrahydrodeoxycorticosterone (THDOC) from steroid precursors. Production of neuroactive steroids 

in specific tissues is dependent upon the expression of the relevant enzymes.  Common names are in 

bold with chemical names beneath. Enzymes are in red italics. Dashed arrows indicate a reversible 

reaction. Steroids in filled black boxes indicate those which act as positive allosteric modulators at 

GABAA receptors. 3β-diol exerts its actions via estrogen receptor-β. Abbreviations: 5αR, 5α-

reductase; HSD, hydroxysteroid dehydrogenase.  

Figure 3: Effect of allopregnanolone or 3β-diol pretreatment on ACTH responses to IL-1β in control 

and prenatally stressed (PNS) rats 

Rats were pre-treated, 20h and 2h before IL-1β (500 ng/kg i.v.), with either vehicle (oil), 

allopregnanolone (AP: 3 mg/kg and 1 mg/kg s.c.) or 3β-diol (1 mg/kg s.c.). Increase in plasma ACTH 

concentrations from basal levels in: a) control and PNS females treated with and without AP; b) 

control and PNS males treated with and without AP; c) control and PNS males treated with and 

without 3β-diol. #p<0.05 versus control/oil group; *p<0.05 versus respective oil-treated group (two-

way ANOVA). In each case values are group means + SEM. AP significantly reduced the ACTH 

response to IL-1β in control and PNS females (a), but had no such effect in male rats (b). However, 

3β-diol did normalise the ACTH response to IL-1β in PNS male rats (c). Based on data from (158). 

Figure 4: Early life stress and neuroactive steroids 
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