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Abstract 

In this paper, hydrothermal synthesis combined with microfabrication techniques is used for growing 

vertically-aligned ZnO nanowires (NWs) on zinc (Zn) seed layers patterned on silicon (Si) and 

polyimide (PI). The NWs have shown a hexagonal crystalline structure and vertical orientation. The 

substrate material together with the hydrothermal precursor concentration has shown to influence the 

diameter and length of the NWs. Atomic force microscopy and scanning electron microscopy have 

revealed that the substrate material affects the size of the deposited seeds and therefore the morphology 

of the NWs which show a diameter in the range 100 – 220 nm and 130 – 400 nm when grown on Si 

and PI respectively. NWs grown with an optimised concentration of 2 mM are densely packed and 

vertically-aligned with a consistent uniform distribution on both types of substrates. 
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1. Introduction 

In the past few years, zinc oxide (ZnO) nanostructures have been attracting large attention for energy 

harvesting applications (solar cells [1], nanogenerators [2]) and sensors (gas sensors [3] and biosensors 

[4]).  Till date, various ZnO nanostructures have been synthesized such as nanorods [5] [6], nanowires 

[7] [8] [9], nanoplates [10] [11], nanospikes [12], microtubes [13] and nanotubes [14] [15].  In addition, 

the combination of biocompatibility and piezoelectric properties of ZnO NWs opens new perspectives 

for biomedical and chemical sensing [16] [17]. The ability to control morphology, dimensions 

alignment and position of ZnO NWs is crucial for enabling successful and consistent integration into 

microsystems and for exploiting the NWs’ unique properties in innovative transducers and composite 

materials [18] [19]. For instance, the NWs’ diameter plays a key role for the enhancement of their 

fluorescent properties to be exploited for cancer cells detection [20] [21] [22]. Among the various 

methods available for growing ZnO NWs, hydrothermal growth is the most promising due to the 

inherent low temperature processing particularly suitable for synthesis on polymers and CMOS 

integration. Nanoimprint lithography, microcontact printing and e-beam lithography have been used to 

perform patterned growth on seed layers deposited on silicon [23] [24] [25]. However, these techniques 

are costly, not directly compatible with patterning on flexible polymer-based substrates and with large-

scale production of semiconductor devices. Photolithography has been used successfully to grow ZnO 

nanorods (NRs) on specific patterns onto silicon substrates and on flat flexible substrates (i.e., Kapton) 

[26] [27]. Although previous works have shown that different seed layer thickness and seed materials 

have a direct effect on the morphology of ZnO NWs, additional studies are needed to shed light on the 

influence of seed layer roughness and of substrate below the seed layer on the NWs’ size and 

morphology [28] [29].  

In this paper, hydrothermal synthesis and microfabrication processes have been used to grow ZnO 

NWs on precise locations on zinc seed layers patterned on silicon and polymer-on-silicon substrates. 

The morphology and crystal structure of the NWs grown on the two different substrates and at different 

precursor concentration has been analysed and compared by using x-ray diffraction, scanning electron 

microscopy and atomic force microscopy. 
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2. Theory – hydrothermal synthesis 

Hydrothermal synthesis was performed using zinc nitrate hexahydrate (�������� ∙ 6���) and HMTA 

(hexamethylenetetramine, �
�����) mixed in equimolar concentration in DI water. Previous studies 

have shown that HMTA acts as a buffer contributing to the amount of hydroxide ions available for the 

synthesis (i.e., HMTA decomposes into formaldehyde when heated) [30]:  

 

�
�������� + 10������ ⇌ 6� − � = � − ���� + 4���
���� + 4���  (1) 

 

������ + ������ → ������ + ��
�       (2) 

 

Furthermore, by increasing the pH of the precursor solution the rate of hydrolysis (formation of ��� 

ions) decreases [30]. The	���� ions needed for the formation of the ZnO nanostructures are produced 

from zinc nitrate hexahydrate: 

 

2��� + ���� → ����������        (3) 

 

The resultant hydroxide then reacts with the remaining Zn ions resulting in ZnO: 

	

���������� → ������ + ���        (4) 

 

HMTA is responsible for the formation of ZnO NWs (reaction described in equation (4)) by restricting 

the growth of the ZnO nanostructures only on the <001> facet, hence constraining the growth in one 

direction. Equation (3) describes the supersaturation stage which is a pre-requisite for the crystallisation 

of the ZnO products. By tuning this stage, either by varying time and concentration of the precursor 

solution, the morphology of ZnO NWs can be controlled. 

 

3. Materials and methods 

3.1.  Chemicals 

Reagent grade zinc nitrate hexahydrate (��������. 6��� , 98% purity) and ACS reagent grade 

hexamethylenetetramine (�
�����, 99% purity) were purchased from Sigma-Aldrich and were used 

without any further purification. Polyimide (PI-2545) was purchased from HD microsystems.  
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3.2.  Microfabrication process 

Figure 1 shows the schematic process flow used to grow ZnO NWs on patterned Zn seed layers. Firstly, 

3-inch silicon (Si) wafers were cleaned by using acetone, IPA and DI water. The substrates were 

primed with hexamethyldisilazane (HDMS) while being heated at 60 �  for 1.5 min in order to 

improve the adhesion of the photoresist (PR). 1.5 µm of PR (Figure 1(a)) was spin coated using edge 

bead removal (EBR) thus ensuring that the PR at the edge of the substrate is even. After soft-baking at 

90 �, the substrates were patterned by UV lithography (7 seconds exposure), developed for 1 min, 

rinsed in DI water and dried with nitrogen gas (Figure 1(b)). Afterwards, an adhesion layer of titanium 

(Ti) (10 nm) and zinc (Zn) seed layer (300 nm) were deposited using e-beam evaporation (Figure 1(c)). 

At this point, ZnO NWs were grown hydrothermally on the substrates (Figure 1(d)). In particular, the 

substrates were immersed in the precursor solution containing zinc nitrate hexahydrate and HMTA 

mixed in equimolar concentration in DI water. Two different concentrations (2 mM and 20 mM) were 

used for investigating the influence of precursor concentration on the growth of the ZnO NWs. The 

solution was stirred at 550 rpm while monitoring the pH throughout the process. Stirring was stopped 

when the pH reached a saturation point between 6.75-6.85 (5-10 min). Synthesis was carried out for 

16-17 hours at	90"�. Once the hydrothermal process was completed, the substrates were cleaned with 

DI water and dried in air. Afterwards, lift-off was performed thus removing the NWs grown on the 

Zn/PR/Si while leaving the NWs grown on the Zn/Si (Figure 1(e)).  

 

 

Figure 1: Fabrication process flow. 
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In order to investigate the possibility of growing ZnO NWs on polymer films, the process described 

above was modified to include the deposition of a thin film of PI on top of Si substrates (PI/Si). In this 

case, before coating the substrates with PR, 1.7 µm of PI were spin-coated and cured by increasing the 

temperature at 4"�/$%� up to 200"� for 1 hour (Figure 1(a)). 

3.3.  Measurements 

The crystalline properties of the nanostructures grown on both Si and PI/Si substrates were investigated 

using x-ray diffraction (XRD) (Bruker D8 Advance in Bragg-Brentano configuration). The morphology 

and geometry of the nanostructures were investigated using scanning electron microscopy (SEM). 

Further investigations on the structures morphology were carried out by atomic force microscopy 

(AFM) (Bruker Multimode 5). AFM scans were performed in tapping mode and using Bruker MPP-

11100-10 tips (nominal spring constant in the range 20-80 N/m and tip radius of about 12 nm).  

 

4. Results and discussion 

Vertically aligned ZnO NWs were successfully synthesized on the patterned Zn seed layers. The 

synthesis was carried out using two different concentrations (2 mM and 20 mM) on Si and PI/Si in 

order to investigate the influence of substrate material and precursor concentration on the diameter of 

ZnO NWs. 

4.1.  Crystal structure  

XRD was performed on the nanostructures grown on Si and on PI/Si. Figure 2 shows the XRD spectra 

obtained for ZnO NWs grown on bare Si and on PI/Si. In both cases, a very sharp peak is observed at 

2-theta = 35 deg. which is associated to the (002) crystalline orientation thus indicating that the ZnO 

NWs are single crystalline and vertically-oriented in the c-direction.  The peak observed at 2-theta ~ 36 

deg. is associated to the (002) plane of the Zn seed layer. The much lower amplitudes of the peaks 

associated to the Zn seed with respect to the peak associated to the ZnO NWs indicates that most of the 

Zn layer was utilised for the growth. Other peaks associated to the Ti adhesion layer, native oxide, 

titanium nitride (TiN) and other planes of ZnO are observed and indicated in Figure 2. The obtained 

XRD spectra show identical characteristics for NWs grown on Si and PI/Si thus proving that the 

developed process allows synthesising single crystalline and vertically-oriented ZnO NWs regardless 

the substrate used. 
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Figure 2: XRD spectra of ZnO NWs grown on Si substrates and PI/Si substrates (Si-NOx: native oxide). 

 

4.2. Influence of substrate material 

SEM and AFM were used to investigate the height, surface morphologies and diameter of the ZnO 

NWs. Figure 3 shows the SEM and AFM micrographs of ZnO NWs grown using 2 mM as precursor 

concentration on the Zn seed layer patterned on Si substrates (Figure (a)) and on PI films on Si (PI/Si) 

(Figure 3(b)). From Figure 3, it can be seen that the ZnO NWs grown on Si substrates are dense and 

tightly packed and have more even distribution compared to the ones grown on Pi/Si substrates. It is 

worth pointing out that the NWs are densely distributed and the distinction between a single nanowire 

and a cluster of nanowires is relatively challenging due to the finite size of the AFM tip apex. 

Particle-size distribution analysis was performed in order to estimate accurately the diameter and the 

diameter distribution of the NWs. When grown on Si substrates, the obtained NWs have a diameter in 

the range 100 nm – 220 nm with average of 130 nm (SD 40 nm) while, when grown on PI/Si, the NW’s 

diameter increased towards higher values in the range 130 nm – 400 nm with average of 265 nm (SD 

145 nm). The larger diameter and broader diameter distribution observed when PI/Si substrates were 

used is most likely due to the intrinsic polymer characteristics of the PI layer under the Zn seed layer. 

AFM measurements performed on the Zn seeds after evaporation on Si and on PI/Si revealed RMS 

roughness values ~31 nm and ~43 nm, respectively, thus showing an increase of about 27% in seeds’ 

roughness on the PI/Si substrate. Furthermore, particle-size distribution analysis showed a higher 

average for grain diameters when depositing the Zn seeds on PI/Si (572 nm, SD 65 nm) compared to 
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the ones on Si (407 nm, SD 96 nm). In addition, it is believed that the surface interactions between the 

Zn layer and PI layer are affected by the temperature increase experienced during the hydrothermal 

process. Under these conditions, a larger amount of Zn ions are required to initiate the NWs growth 

from the Zn seed thus resulting in an increase of the overall NWs diameter. 

   

Figure 3: SEM and AFM images of ZnO NWs grown using 2 mM concentration (a) on Si and (b) on PI/Si 

Figure 4 show the simultaneously acquired phase shift and amplitude images, respectively. The 

contrast in the phase image is mainly due to topographical effects (single or clustered NWs’ edges); 

otherwise there is no significant contrast thus indicating that the NWs have same chemical composition. 

The amplitude image emphasises even more the edges of the features (irrespective of their height level) 

and indicates that the NWs are of similar lateral size. From the AFM analysis, the mean height of ZnO 

nanowires grown on Si and PI/Si showed distribution with a kurtosis of 3.275 indicating Gaussian-type 

distribution and skew of 0.0517	indicating that the size of the NWs is distributed symmetrically with 

respect to the average value. ZnO NWs on PI/Si showed height distribution with a kurtosis of 3.09 and 

skew 0.31 indicating Gaussian-type distribution but distributed relatively unsymmetrically with respect 

to the average value. 

 



 

Microelectronic Engineering, Volume 145, 1 September 2015, Pages 86–90, doi:10.1016/j.mee.2015.03.039 

8 

 

Figure 4: AFM phase shift and amplitude image of ZnO NWs grown using 2 mM precursor concentration on (a) 

Si and (b) PI/Si substrates. 

 

4.3.  Influence of precursor concentration 

Figure 5 shows the SEM micrographs of ZnO NWs grown at the precursor concentration of 20 mM on 

Si substrates. It is observed that by increasing the concentration by a factor of 10 (from 2 mM to 20 

mM), the ZnO NWs diameter and length increase from about 150 nm to 1 µm and from 1.1 µm to 6 µm, 

respectively. Table 1 summarises the results obtained in this and other works in literature using similar 

precursor concentrations [29] [30]. Although, the increase of diameter and length as a function of 

precursor concentration is in agreement with the other works, the size and the size increase are much 

larger most likely due to differences in seed layer thickness and seeds diameter. A closer look at Figure 

4 shows that Ostwald’s ripening occurs when using high precursor concentration. In particular, from 

the inset of Figure 4, ZnO NWs having small diameter (~ 200 nm) can be seen next to thick ZnO NRs 

with larger diameter (~ 1 µm) due to Ostwald’s ripening which is observed in solutions where larger 

particles (nanostructures) grow at the expense of smaller particles [31]. The unstable molecules at on 

the surface of the Zn seed dissolve thus shrinking the size of the seed and therefore the number of free 

molecules within the solution increases due to the higher precursor concentration. During 

supersaturation stage (equation (3)), the free molecules deposited close to larger Zn seeds should 

dissolve. However, due to the presence of HMTA, which forces the growth in one direction, the free 

molecules do not dissolve hereby forming ZnO NWs next to ZnO NRs. Based on these observations, 

the growth of thinner NWs arising from Ostwald’s ripening can be reduced by increasing synthesis 

time and/or adjusting HMTA concentration. 
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Figure 5: ZnO NRs on Si grown using 20 mM concentration, scale: 2 µm; (inset scale: 200 nm). 

 Seed layer 
Seed layer 

deposition method 

Precursor 

concentration 

Diameter 

(approx.) 

Length 

(approx.) 

This work Zn E-beam evaporation 
2mM 100-220 nm 1.1 µm 

20mM 1 µm 6 µm 

Wang et al. [32] ZnO RF sputtering 
8mM 40 nm 65 nm 

40mM 70 nm 320 nm 

Akgun et al. [33] ZnO Sol-gel 
20mM 80 nm 600 nm 

50mM 380 nm 800 nm 

 

Table 1: Diameter and length of ZnO NWs grown on silicon substrates. 

 

5. Conclusions 

Vertically aligned ZnO NWs were grown on patterned Zn seed layers on Si and PI/Si substrates. The 

process presented allows growing ZnO NWs on specific locations on the substrates with micrometric 

accuracy. ZnO NWs grown on both Si and PI/Si substrates showed a clear hexagonal structure with a 

crystalline orientation in the (002) direction. By controlling the concentration of the precursor solution 

and also maintaining a constant pH, high quality, tightly packed and vertically aligned ZnO NWs were 

synthesized.  

The substrate showed to play a key influence on the NWs’ morphology.  In particular, the measured 

diameter and diameter distribution of NWs grown on PI/Si was observed to be much larger compared 

to the case of growth on Si. The larger diameter and diameter range is most likely due larger grain size 

of the seeds on the polymer substrates (grain diameter and roughness were 28% and 27%, respectively, 
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higher than the ones measured for the seed layers deposited on Si). In consistent agreement with other 

works, the precursor concentration has shown to influence the NWs’ diameter. In particular, an 

approximate 5-fold increase in NWs’ diameter was achieved with a 10-fold increase of precursor 

concentration. Using the combined microfabrication process and chemical synthesis presented in this 

work, ZnO NWs can be grown on different substrates (including polymer substrates) at low 

temperatures (< 100° C). The presented results give insight on the control and optimisation of ZnO 

NWs growth for large-scale fabrication on different substrates with high reproducibility. The method 

presented can be used to grow ZnO NWs on polydimethylsiloxane (PDMS), Kapton films and other 

flexible polymers. The ZnO NWs synthesised in this work can be used for application in biomedical 

sensors, novel transducers, smart materials, nanogenerators and drug delivery systems. 
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