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Abstract: A constellation of satellites are now in orbit yiding information about terrestrial
carbon and water storage and fluxes. These combioservations show that the tropical
biosphere has changed significantly in the lastdecades from the combined effects of climate
variability and land use. Large areas of forestehasen cleared in both wet and dry forests,
increasing the source of carbon to the atmospheomcomitantly, tropical fire emissions have
declined, at least until 2016, from changes iml{aee practices and rainfall, increasing the net
carbon sink. Measurements of carbon stocks aneédlfrom disturbance and recovery and of
vegetation photosynthesis show significant regieaalability of net biosphere exchange (NBE)
and gross primary productivity (GPP) across thpitand are tied to seasonal and interannual
changes in water fluxes and storage. Comparissateflite based estimates of
evapotranspiration (ET), photosynthesis, and theedieim content of water vapor with patterns
of total water storage and rainfall demonstratepifesence of vegetation-atmosphere
irteractions and feedback mechanisms across tidprests. However, these observations of

- ocks, fluxes and inferred interactions betweemtldo not point unambiguously to either
positive or negative feedbacks in carbon and watehanges. These ambiguities highlight the
need for assimilation of these new measurementskdatth System models for a consistent
assessment of process interactions, along withstxttield campaigns that integrate ground,
aircraft and satellite measurements, to quantiéycntrolling carbon and water processes and
their feedback mechanisms.
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Plain L anguage Summary

Changes to the carbon sequestered in tropicaltfoaesl soils, as a result of human activities and
changes in rainfall, temperature, and£@&0ncentrations, have a substantial impact on Earth
climate. This review summarizes recent resultsliggting how the constellation of satellites
now in orbit are providing new understanding of ttegical carbon cycle and how it interacts
with climate variability through the water cycleychhow satellite data can be used to improve
our process description of the Earth System.
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1.0 Introduction

The distribution of temperature and precipitatibnhe Earth system depends on
atmospheric C&concentrations, which in turn are related to th@ant of fossil emissions and
the amount of C@taken up by the terrestrial and oceanic carbokssifihe tropical biosphere,
being the largest above-ground reservoir of cafbtmughton, 2005), is therefore intrinsically
coupled to the fate of the Earth system. Prioh&otiventy-first century, most changes in tropical
forests were dominated by land use (Skole and Tud®R®3; Nobre et al., 1991; Santilli et al.,
2005). However, moving into the twenty-first canptua series of large-scale droughts caused by
sea surface temperature (SST) anomalies of theftel Bbuthern Oscillation (1997-1998, 2015-
2016), and in the Tropical North Atlantic (2005120 (Marengo et al., 2005, 2010, 2015) have
increased the role of climate variability on traditorest change. Observations therefore suggest
that climate change and variability are as impdrésnand use, and possibly fertilization effects
from increasing atmospheric GOin defining the current and future state oftriogical
biosphere (Schimedt al. 2015; Exbrayat et al. 2017; Genteteal. 2019).

As these changes are impacting the current statéuaction of tropical forests, Earth
System models (ESMs) are predicting an intensiboabf hydrological and biogeochemical
cycles (e.g. Fungt al. 2005, Neeliret al. 2006, Greemt al. 2019), largely due to feedbacks
between the carbon, water, and energy cycles (B&Q8; Kurz et al., 2008; Davidson et al.
2012; Pires and Costa, 2013, Bonan and Doney 26it8yever, these predictions have
significant uncertainty because the full complexitynteractions and feedback mechanisms
between biogeochemical cycles is not adequatehgsepted or constrained with observations in
terrestrial biosphere models (e.g. Rasal. 2013; Sellerst al. 2018 and references therein). A
consequence of poorly understood feedbacks andfaalBservations is that ESMs predict a
range of possible trajectories in carbon stocksflxas varying not only in magnitude but even
in sign, suggesting tropical G®inks with both positive and negative future tiefelg.
Friedlingsteinet al. 2006, 2014a).

Our understanding of the underlying processes othniy these feedbacks has been
primarily informed by sparse measurements of serfax data used directly in the models or
upscaled to the whole tropics using temperatureraindall data (e.g. Wang al. 2013; Jungt
al. 2017). A constellation of satellites are novorbit with measurements that allow us to infer
the fluxes and states of carbon and water at atyaof spatio-temporal scales (Figure 1 and
Appendices). These measurements, provide a 10&0geord of the changing tropical carbon
and water cycles and are providing new insights imdw these changes impact tropical forest
structure, productivity, and net exchange of caréoth water with the atmosphere. Examining
the covariations of these data provide understagnaiitnow climatic (e.g. anomaly and trends of
rainfall and temperature) and anthropogenic (emd luse) changes controls these processes,
their interactions, and feedbacks.

Our objective in this review is to evaluate howelide observations have informed our
understanding of tropical forests’ carbon cycle @asdink to climate in general and the water
cycle in particular. We choose the period of 2Q016 as it spans the period with the largest
number of satellite observations, although diffesatellites have different start and end times
within this period. We examine changes in the maist dry tropics between 30° S and 25° N
across the three continents during this periodufféi@). As part of this review we summarize
unresolved processes at global scales that corincentribute large uncertainties to the global
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carbon cycle. There is also now an important oppatt to enhance the calibration of ESM
parameters and quantify their errors using the tiveéhése satellite records in order to reduce
uncertainties of the underlying processes and ingpoedictive skill. The data assimilation
methods needed to undertake such calibrationscaveamailable and in part demonstrated in this
review.

The paper is divided into five sections. Sectiaa the introduction. Section 2 focuses on
recent results on carbon storage, productivity,fanes from climate variability, land use
activities, and fire both from bottom-up and topashoremote sensing techniques. Section 3
summarizes recent results demonstrating the lieksden the tropical carbon and water cycles
as well as discussing changes in key water stégsreed by satellite and how they might affect
tropical carbon balance. In section 4, we discussmaber of additional underlying processes and
feedbacks that remain poorly observed and henoe laage uncertainty. In section 5, we
discuss how integrating and assimilating satetliiservations into terrestrial biosphere models
may better constrain these processes to ensurstty in the inferred feedback mechanisms.
This section also provides examples for combinibgeovations with a new class of models that
can assimilate these data for quantifying carbwmatér interactions (e.g. Schneidtal. 2017;
Bloomet al. 2019). Finally, we make recommendations on neseplations, joint
satellite/aircraft/ground field campaigns and mddessimilation development in Section 6.

This review pays less attention to several impan@ocesses that impact carbon and water
cycling of tropical forests in order to keep thedeh and scope of the paper reasonable, because
the topics are well-covered by other reviews, aabse there is only limited information from
remote sensing. We neglect the energy and nutighs, except when discussing their links to
the carbon and water cycles (e.g. Cleveletrad. 2011,2013 and refs therein). Aerosols from
biogenic emissions and fires also have substaefieets on water cycling and radiation (e.qg.
Andreaeet al. 2004; Poeschet al. 2015). Tropical methanogenesis processes antiingsu
methane fluxes from large-scale permanently ariengortant component of carbon/water
cycling and these processes are discussed in aanoharticles (Richey et al., 2002; Melack et
al., 2004; Parker et al., 2018; Ganesbal. 2019). Phenology has been studied using difteren
remote sensing techniques across the tropics andfthence of climate, composition, structure
and light conditions, and nutrients have been explat local to regional scales (Saleska et al.,
2003; Myneni et al., 2007; Xu et al., 2015; Wulet2016). Other components of water and
carbon fluxes such as the lateral flow of carbaough tropical aquatic systems, peatlands or
soil carbon fluxes are not discussed in the redae to the difficulty of using existing remote
sensing approaches, although we highlight the tamio¢ies in these fluxes in Sections 4.

2.0 Satellite Based Estimates of Carbon Stocks, Photosynthesis, and Net Biosphere
Exchange

Atmospheric CQrecords suggest that the land surface has aci@dtasng global carbon
sink over the recent decades, mitigating about 80¢éssil fuel emissions (e.g. Friedlingstein
al. 2019 and refs therein). A substantial fractiomhid sink is located in the tropics (Stephens et
al. 2007; Brienen et al. 2015). However, it is utai@ how the terrestrial carbon sink evolves as
climate and atmospheric composition continue toxgkebecause of anthropogenic emissions
(Friedlingstein et al. 2006). In fact, the recemirmges in climate across tropical forests, with
increasing extreme dry and wet conditions accongabby large-scale deforestation and
degradation may have significantly impacted theita ecosystem carbon storage and fluxes
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(Phillips et al. 2009; Lewis et al. 2011; Yang et2818). Nevertheless, there is a large
uncertainty in quantifying the carbon balance apical forests, which in turn is believed to be
the largest uncertainty in the global terrestraabon budget (Houghton 2005; Houghton &
Nassikas 2017). The sources of these uncertaengeattributed to: 1) difficulties in estimating
carbon stored in tropical forests, 2) inaccuracpriedicted rates of forest disturbance in the form
of human induced deforestation, degradation (inolyifires), and climate driven loss of carbon
from droughts, and 3) difficulties in predictingea of carbon uptake due to post-disturbance
recovery, changes in soil moisture, or increasetapheric CQ The relative importance of
each of these components is not known, but itssragd that all three sources of uncertainty
contribute about equally to the difficulties inigsting carbon budgets in the tropics (Houghton
et al. 2009). Complicating our understanding @ gartitioning of the carbon balance of
tropical forests are the significant seasonal ateriannual variations that have been attributed
to regional climate variability in the form of drglts and floods which adversely impacts tree
mortality and productivity (Restrepo-Coupe et @l12; Kim et al. 2012; Brienen et al. 2015).
Satellite observations of tropical forests havetibuated significantly to reducing these
uncertainties, as discussed next.

2.1 Carbon Stored in Tropical Forests

Estimates of above-ground carbon stored in livpita forests vary between 180-300 Pg C
(Malhi et al. 2010; Saatchi et al. 2011; Baccinaet2012; Bar-On et al. 2018), depending on the
period of the data, variations of the extent oé&trcover, models for converting remote sensing
measurements of forest structure to biomass, anddhtribution from soil carbon. However,
one of the largest source of uncertainty in theredes is due to the lack of forest inventory data,
unlike in most temperate forest ecosystems (Schatnall. 2015). Tropical regions are therefore
grossly under-sampled by comparison to forestsidhlatitudes, suggesting a potentially large
bias in estimating global carbon storage and fluxsthe absence of systematic national forest
inventory data over tropical forests, there havenbgeveral attempts in using remote sensing
data along with existing networks of research plotsstimate forest above-ground biomass and
its spatial distribution. Recent published estireatsing this approach, have different spatial
resolutions, cover different periods, (Saatchile2@11, Baccini et al. 2012), and exhibit some
differences in spatial patterns (Mitchard et alL20 Nevertheless, they converge in providing,
for the first time, regional estimates of carbarrat in the live vegetation (above and below
ground) across all tropical forests. These mape liaed spaceborne LIDAR (light detection
and ranging) observations from the Geoscience Lalseneter System (GLAS) onboard the
ICESAT-1 satellite to sample forest structure distied across the tropics. The methodologies
differ in their use of other satellite imagery foapping and a variety of parametric or non-
parametric algorithms in estimating the spatiafritistion of carbon stocks (Xu et al. 2016;
Mitchard et al. 2013). Spaceborne lidar samplesansidered the most reliable source of
information for quantifying forest structure andiemting above-ground biomass. The GLAS
LIDAR provided more than 8 million cloud-free samplfrom 2003 to 2008 in a relatively
systematic sampling of vertical structure of fosesbng its orbital tracks (Saatchi et al. 2015).

Figure 3 presents a map of forest stock to dematestiow these different measurements can
be used with machine learning approaches to advancenowledge of above ground biomass.
This map of forest stock is developed from a sysithef existing methodologies and an
extensive set ah-situ measurements for calibration of remote sensing tdedbove-ground
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biomass and total vegetation carbon stock. Thisazamap of tropical vegetation improves upon
previous similar products by including wood densidyiations across tropical forests in
modeling the lidar to biomass, integrating L-baadar measurements (ALOS PALSAR) in
spatial modeling that improves biomass estimatiowaodlands and dry forests, and adding a
large number of recently acquired airborne lidgada improve the potential systematic errors
in spatial patterns of biomass. The map is glabdl provides a significant improvement over
previous products in terms of spatial resolutio®0O(in) to allow assessment of carbon emissions
and uptakes at the scale where land use and atitertdnces occur (See Appendix A.1). A
coarser-resolution (1 km), static version of trasbomn map has been used in several studies for
guantifying carbon fluxes directly or as a constran earth system models (Wei et al., 2017;
Carlson et al., 2017; Fan et al., 2019).

However, in most cases, these maps may have arsgtateerror in areas of very high
biomass in the tropics due to the limited sengitiof existing satellite observations. With the
new observations from NASA’s Global Ecosystem Dymannvestigation (GEDI) satellite lidar
sensor - with more than three orders of magnitoggavements in sample size and sample
guantity compared to GLAS lidar (Hancock et al.1 &) estimates of tropical forest carbon
distribution will improve significantly in near fute. NASA-ISRO Synthetic Aperture Radar
(NISAR) mission to be launched in 2022 and the Beam Space Agency BIOMASS radar
mission (Quegan et al. 2019) to be launched in ZI2ZAB will also provide systematic
measurements and estimates of carbon stock andehanross tropics in future and will be able
to monitor net carbon fluxes from above-groundudisance and recovery processes.

2.2 Carbon Emissions from Tropical Forest Loss

Studies focused on the carbon balance in tropggabns are concerned with estimating carbon
emissions due to deforestation, timber harvestng,disturbances associated with fire or
droughts. The most common approach is based onrcédok-keeping models that track net
carbon emissions based on statistics on approximi@tenation of land use and land cover
(LULC) activities reported by countries to UNFCCnfted Nations Framework on Climate
Change) or FAO (Food and Agricultural Organizati(®R) A. Houghtoret al., 2000; Houghton,
2007; Le Quéret al., 2018; Hansis et al., 2015). The book-keepingef®fbcus on land use
activities and mostly ignore the impact of climaleese models use many broad assumptions
about the fate of cleared lands and their respecivbon stocks to estimate the net carbon
impacts (Harrigt al., 2012). Recent advances in remote sensing morgtof forest cover
change and maps of carbon stocks has introducestadirect approach for quantifying
emissions from different sources (Harris et al12®017). The methodology referred to as the
gain-loss approach provides estimates of net emissions bigpiying the land use change area
estimates, characterizedasivity data, and estimates of emissions per unit area, claraetl
by carbon stocks asnission factors. This approach requires carbon stocks estimatie a
beginning of reference period, and LULC changesduhe reference period. At the pantropical
scale, recent studies using spatial carbon mapsatdl deforestation monitoring from remote
sensing data have improved on estimates of grossiems by overlaying the deforestation, fire,
and any disturbance data on continuous maps obratensity (Harris et al., 2012). However,
these estimates are based on coarse resolutiofl@abakm) derived from the MODIS time
series imagery. With the new Landsat based fateating (Hansen et al. 2013) method, the
analysis can be performed at 1-km spatial resagluiging the pan-tropical carbon stock map for
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the year 2000 (Saatchi et al. 2011), improvingestmate of gross emissions from deforestation
across tropical forests and their changes (FiguréTAese results suggest that the spatial
information on the carbon stocks and forest cohange can readily reduce the uncertainty
associated with gross assumptions of average catboks and rates of deforestation that were
used in pre-satellite carbon budget calculatiorsu@thton, 1999). With improvements of the
resolution of satellite data on carbon stocks amest cover change, it is expected that such
bottom-up estimation of emissions from land usenglkan tropics will improve significantly.

In contrast, it is much harder to estimate the aféscted by forest degradation, and resulting
carbon losses, from satellite observations. Thartly because degradation is caused by a wide
variety of processes with different effects, inchglcommercial logging, fuelwood extraction,
sub-canopy cultivation, grazing, fire, and edged! caused by nearby deforestation (Putz and
Redford, 2010; Ordway and Asner 2020). Currentreges of carbon loss from forest
degradation in tropical countries can be as lasgean deforestation annually (~0.55 PgClyear),
from which 53% are from logging, 30% from wood fhekvest, and 17% from forest fire
(Pearson et al., 2017). This large carbon lossrigently obscured from satellite observations
and can introduce a significant uncertainty onttbpical forest carbon balance. This large
uncertainty points toward the need of satelliteepbations that permit direct observations of
biomass change, as opposed to the combinatiortigitacata and emissions factors, to greatly
improve our estimate of carbon losses from degradand moreover for the recovery of carbon
in forests that regenerate following degradation.

Tropical forests have also been losing carbon fire@ mortality resulting from extreme
water stress from climate anomalies and long-tdranges in temperature and rainfall (Phillips
et al., 2009; Lewis et al., 2011). Although maispical forests are not considered as a water-
limited ecosystem, episodic water stress from dntgigave shown to introduce large scale tree
mortality, and reduce the net primarily producfiading to a weaker forest carbon sink
(Brienen et al., 2015). For instance, in 2010raught in Amazonia turned the forest from a net
sink to a net source of carbon of approximatebyRgC/year (Van der Ladruijkx, et al.,

2015). Dry tropical forests and savanna ecosysteimnepical regions also add significantly to
the interannual variability of the carbon dynandc® to moisture availability, fire, and land use
change (Ahlsthrom et al., 2015; Pelletier et @1& Humphrey et al., 2018).

Satellite observations have been able to quartéycarbon loss of both dry and wet tropical
forests from water stress and droughts. The metbggdas focused on the direct quantification
of changes of carbon from drought-induced canoptudbance and mortality (Saatchi et al.
2012; Yang et al. 2018), monitoring the canopy briog or green-up from optical
measurements (Zhou et al. 2014; Saleska et al)20d§uantifying the carbon dynamics from
microwave radiometric measurements of vegetatidicalpdepth (Fan et al., 2019). Top-down
approaches from airborne and satellite observatbnarbon dioxide and monoxide have also
shown the decline in carbon uptake of tropical $tse@uring drought years (Gatti et al. 2014;
Van der Laar_uijkx, et al. 2015). Aside from changing growthes, water stress can also
increase the rates of tree mortality (e.g., Rowlanal. 2015). Some mortality from water stress
lags one or more years after a drought (Yang &(l8; Ito et al. 2012; Doughty et al. 2015).
However, vulnerability varies among species, siages, growth rates, and locations, with tree
vigor the best predictor of individual mortalityt Aost sites, large, long-lived trees are at the
greatest risk (Phillips et al. 2010; Bennett eRall5) of water stress.
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2.3 Carbon Emissionsfrom Fires

Fire is an important disturbance agent in the $triigd ecosystem, particularly in the dry tropics
(e.g. Andela et al. 2017; Brando et al., 2019 afsitherein) and is tightly coupled with vegetation
climate, biogeochemical cycles, and human actwitgatellite based detections of forests fire and
emissions have advanced significantly in recents/@4an Der Werf et al. 2017; Chen et al. 2017).
Emissions are often estimated using two complemgaaproaches - bottom up and top-down.
The bottom-up approaches rely on satellite-derlmethed area (Giglio et al. 2013), together with
modeled or data-constrained fuel abundances, cdinbusompleteness, and the emission factor
of a specific tracer (van der Werf et al. 2017heTGlobal Fire Emissions Database (GFED, Van
Der Werf et al. 2010) is one such database thatetadite emissions with these inputs. Fire
radiative power has also been used to quantifyofti@irrences (Kaiser et al. 2012).

The top-down approach, using bottom-up estimateseaprior knowledge, seeks to optimize
the emission estimates by fitting modeled trace masgng ratios (mainly C@ and CO) with
atmospheric observations while accounting for theeutainty of each information piece in a
Bayesian framework (Appendix A.2). Numerous sdtdl(e.g. MOPITT, TROPOMI, AIRS, and
TES, as shown in Figure 1) measure atmospherionartonoxide (CO) and these have been used
extensively as a tracer for fire carbon emissidimedes because CO has a relatively simple source
structure; direct emissions are mainly from fo$gél combustion and biomass burning, with
relatively small spatial colocations between the.tWwhe atmospheric lifetime of CO is only a few
weeks, allowing satellite observations to tracks$gort of CO from its source regions (Pfister et
al. 2005; Shindell et al. 2006; Jiang et al. 2(A&chony et al. 2013; Yin et al. 2015, 2016; Zheng
et al. 2019). Combining the information of the rdrarea and fire carbon emissions informs
estimates of fuel availability and combustion fastohelping to refine our process-based
understanding (Bloom et al. 2015, 2016; Yin eR8R0).

As shown in Figures 5 and 6, both burned area an@@issions attributed to fire, indicate a
net decline in tropical fire occurrences in thetmiecades, at least until 2016 (Jiang et al. 2017;
Worden et al. 2017). Andela et al. (2017) show&$% decline in the global burned area from
1997 to 2015 combining multiple optical and thersetkllite data sets such as from the Moderate
Resolution Imaging Spectroradiometer (MODIS), wille most significant decreases in the
savannas of Africa. While we show burned area a@dh€re, we note that total carbon derived
from either burned area or CO emissions are inrsimgly good agreement, at least at the pan-
tropical scale. Estimates agree within ~15% (Apped2) and both CO and BA based Carbon
emissions show declines of ~15% for the 2002 thnd2@{L6 time period.

Alternative burned area datasets that are alsodbaseMODIS reflectance and thermal
anomaly data using a different algorithm (Chuvietal. 2018) show similar pan-tropical declines.
This product disagrees with GFED in southern Affioding an increase in burned where GFED
shows a decline (Forkel et al. (2019). Compariregs¢htwo products show that regional trends
(~1000 km) between the two datasets can be poortelated, and trend in the burned area is
strongly affected by the start and the end yeathefnalysis, so care must be taken when using
these different satellite data sets to exploreoregichanges.

Agricultural expansion and intensification haverbseggested as the primary drivers of global
declining fire (Andela et al. 2017). However, atligr regional analysis suggested that one-third
of the African fire reduction occurred in croplandsd climate factors relating to biomass
productivity and aridity explained about 70% of thé&ned area decline in natural land cover
(Zubkova et al. 2019). These studies therefore ligighthe importance of both land-use and
changes in dryness in controlling fire emissions.
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Despite the decline in the tropical burned areantp 2016, anomalously large fires occurred
during El Nifio droughts, emitting not only large @mts of carbon but also causing negative
health, ecological, and economic impacts (Marlteale2013). During a normal year, when air
dryness in the forest understory is low (VPD<0.Pakand fuel moisture content is high (> 23%
), fire rarely extends to the intact forest arddspstad et al., 2004; Brando et al., 2019; Dadap et
al., 2019). However, in El Nino years, these twotdrs change significantly, increasing the
flammability across tropical forests, particulanigar forest edges. In addition, the large peat fire
emissions from Indonesia during the 2015 El Ninand et al. 2017; Liu et al. 2017) resulted from
nonlinear responses to regional drought. In theréy droughts associated with El Nino may act
as a positive feedback to future climate warmingd projected enhancement of ENSO events
(Field, 2016; Yin et al. 2016). Observed chanigefire dynamics are estimated to impact the
global carbon cycle through both direct fire enossi(Andela et al., 2017; Arora & Melton, 2018);
as well as indirectly through vegetation growtrerethanges under different fire frequencies (e.g.
Arora and Melton, 2018).

Future studies aimed at quantifying burned areafism@missions with higher resolution and
accuracy are needed to reduce the uncertaintyrierdudatasets. It is also critical to improve our
understanding of the complex interplay among fiegetation, climate, and human activities in
the context of climate warming where increasedrfgks are projected (Forkel et al, 2019; Andela,
et al. 2019; Knorr et al. 2016; Pechony & Shind20l10).

2.4 Carbon Uptake From Tropical Forest Gain

Tropical forests are not a static storage of cadomhaccount for one-third of the total
metabolic activity of the Earth’s vegetation asatei with the gross primary production
(Myneni et al. 1995; Zhao et al., 2005, Beer et2110). These forests capture more than 50-70
PgC per year through photosynthesis (as discussib@ inext section) and releasing a near
similar amount back to the atmosphere through eagbtc and heterotrophic respiration (Malhi,
2011). The gain of carbon in tropical wet and fdmgsts, like most forests globally, occur after
disturbance and through a recovery process. Relraftropical secondary forests following a
complete removal of forest or partial extractiortreks can partially and significantly
counterbalance carbon emissions (Pan et al., Z0dzdon et al., 2016). The process of carbon
gain in these forests depend strongly on a combmaff nutrient availability in the soil that may
be depleted due to past land use activities andtarei availability (Poorter et al., 2016).
Furthermore, regenerating forests may also be sutgetmospheric C{ertilization effects
that may enhance their recovery process and biogaasgCleveland et al., 2011; Van Der
Sleen et al., 2014, Phillips et al. 2014; Besnaral.e2018).

Direct observations of tropical forest biomass himnass gain from past disturbances have
evolved in recent years (Saatchi et al., 2011; Yetrey., 2018; Fan et al., 2019). However, the
methodologies for detecting biomass gain are lighiteareas of younger sencondary forests
(Englhart et al., 2011; Morel et al., 2011; Yu ket 2016) or at local scales with the aid of
advanced airborne observations (Dubayah et alQ;204nt et al., 2015; Meyer et al., 2014;
Saatchi et al., 2011.

Quantifying net carbon gain from secondary regdiwrdnas been difficult because of the
lack of systematic observations of secondary fdseshass accumulation (Barbosa et al., 2014).
The rate of secondary forest regeneration depepais the type and intensity of disturbance,
subsequent land use, and the processes of fogestaration, as well as the characteristics of the

This article is protected by copyright. All rights reserved.



regenerating landscape (Chazdon et al. 2008; Razirgg. 2016). Secondary forests can be
highly productive, having an average recovery odtgbout 3.05 Mg C hayr! approximately
11-20 times the uptake rate of an old growth fofesbrter et al. 2016).

Most recent satellite techniques have mainly foduseidentifying areas of secondary forests
after the last disturbance (Hansen et al., 20181edda et al., 2016; Carreiras et al., 2017), and
using other ancillary data such as ground plo&gerbiomass models to estimate the carbon
uptake. Satellite radar sensors have been abliecicily estimate secondary forest age-biomass
relationship and allow monitoring carbon uptakesito 20 years with reliable uncertainty
(Cassol et al., 2019; Yu and Saatchi, 2016). Howtheeability to provide these estimates
systematically from space at annual or sub-anmagliency requires dedicated satellite missions
such as NASA’s NISAR and ESA’s Biomass that aespéed to be launched in 2022.

2.5 Forest Gross Primary Production

Observational estimates based on vegetation indagery have revolutionized our
understanding of the spatial distribution of GrBssnary Production (GPP) (e.g. Zhou et al.
2005; Ryu et al. 2019 and references therein)ekample, the MODIS satellite visible data can
be used to quantify GPP, using a number of inpots fe-analysis and vegetation models,
providing a record of GPP changes since 2002 Z&gnget al. 2017 and references therein).
However, these data are limited by different atrhesic and surface scattering effects which
degrades the accuracy of GPP estimates, theirrsgagpand trends in the cloudy tropics (e.qg.
Maedaet al. 2016). New satellite based measurements of salaced chlorophyll fluorescence
(SIF) represent a major breakthrough for quantgyphotosynthesis beyond the leaf scale (e.g.
Sun et al. 2017). Chlorophyll fluorescence origasarom the core of photosynthetic light
reactions, in which a small fraction (roughly 2% )pbotosynthetic active radiation absorbed by
chlorophyll is re-emitted at longer wavelengthsQ@®50 nm) as fluorescence, in competition
with two other de-excitation pathways, photocheiaca non-photochemical quenching. These
measurements have typically been made at leaf szafmilse-amplitude modulation
fluorescence (Baker 2008; Genty et al. 1989; Krdu¥¥eis et al. 1991; Moya et al. 2004), but
are now possible at canopy and ecosystem scalg passive remote sensing (Mohammed et al.
2019 and refs therein). SIF, as measured by tatelplaces constraints on large scale
photosynthetic activity, and has potential to offesre mechanistic understanding of ecosystem
carbon dynamics (Flexas et al. 2002; Frankenbeaj 2011; Magney et al. 2019).

As with visible light data, spatial sampling rensmmproblem for constructing GPP based on
SIF, especially in regions with persistent deepveative clouds such as the tropics. Temporal
sampling may also be an issue as uncertaintiesmeanghe relationship between measurements
of SIF at one particular time of day and the dilny&le of photosynthesis due to changes in SIF
yield with changing light conditions (Yang et aQ15; Magney et al. 2019). Non-linearities exist
in the relationship between the SIF radiance sigeaand photosynthesis for high and low light
conditions, which can be difficult to quantify wheriegrated over the entire forest canopy layer
compared to the leaf understanding. Despite thegg@dems, a strength of SIF is its ability to
capture photosynthetic variation as a functioneafs®n and in response to episodic drought,
which is problematic using reflectance-based veigetanetrics (LAI, EVI) whose seasonality is
not directly correlated with GPP, especially inmgveen forests such as the tropics and high-
latitudes (Frankenberg et al. 2009). SIF has noswnlvetrieved from multiple overlapping
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satellites since 1995, providing a long-term detestzord of global photosynthetic change
(Parazoo et al. 2019). Figure 7 (top panel) shatismates of GPP constrained by SIF
observations from the Orbiting Carbon Observatof@20-2), (Parazoo et al. 2014; Zhastg

al. 2018, see Appendix A.3). These SIF based GPRa&sts, which compare well to upscaled
estimates based on site data and satellite imgdgagyFrankenberg et al. 2011), can also be used
to quantify the relative importance of GPP variasian the wet and dry tropics across the
Amazon and highlight model challenges in captutirgtiming and amplitude of dry and wet
season photosynthesis (Parazoo et al. 2014). Fig(vettom panel) shows the seasonality of
GPP derived from SIF assimilated into a terrest@bon cycle model (e.g. Parazaal. 2014)
for the three regions of the pan-tropics, highligéthe importance of the water cycle on GPP
(e.g., Green et al. 2017; 2019) as GPP effectivelyaries with precipitation (next section). The
data assimilation approach used in Figure 7 isfaltber described in Section 5.

2.6 Top-down Observations of NBE and Its Relationship to the CO> Growth Rate

With the advent of satellites that can quantify XGbally (e.g. Eldering et al. 2017 and
refs therein), global fluxes of GQAppendix A.4) can be quantified and net biospleehange
(NBE) can be derived from these fluxes. These distimates typically have a very coarse
spatial resolution between 500-1000 km (e.g. Liale2017, Bowman et al. 2017) and
uncertainties that vary from region to region (Apgie A.4). Consideration must be given over
which regions and time periods are large enougkdace these uncertainties to make
comparisons between years or with other data segmimgful. For example, while mean NBE
values can have bias errors that reduce confidenbeir interpretation, NBE differences, or
anomalies, are useful for evaluating changes ibarabalance, their relationship with climate
variability, and the C@growth rate. Figure 8 shows a comparison in th&NBomaly from
year to year derived from the OCO-2 and Greenh@lxsrvation SATellite (GOSAT)
satellites, and the global G@rowth rate. This comparison confirms the neang-to-one (R
value is 0.94) relationship showing how the tropmasphere affects the interannual variability
of atmospheric C® As discussed in the next section, these regiestahates of NBE, when
combined with measurements of photosynthesis (@e2tb) and water can be used to quantify
how climate drivers affect carbon balance at miroér fscales than previous estimates using
surface measurements alone (e.g. @at. 2013).

3.0 Carbon and Water Interactions And Feedbacks

3.1 Direct Impact of Water Cycle Variability on Carbon Fluxes and Stocks

Over yearly to decadal time scales, variationemsurface temperature (SST) related to
ENSO alters oceanic moisture fluxes over the tpontinents and corresponding humidity
rainfall, and temperature (Anber et al. 2015). SEheemperature and moisture changes (e.g.
Wang & Schimel et al. 2003) in turn modulate theboa balance as observed in NBE, GPP, and
the respiration component from fires as discussegkiction 2 (e.g. Sellers et al. 2018). Increases
in fire emissions across the tropics are relatadasture variability and transport modulated by
ENSO (e.g. Chen et al. 2017). Large decreasesmmdily and rainfall associated with ENSO
and coupled to human activities can also createfdire emissions as observed in Indonesia
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(Field et al. 2009; Field et al. 2016) in which wérw water tables result in the burning of both
vegetation and ancient peat; this non-linear betgatentially provides a preview of “tipping
point” behavior in which large changes in the watgle substantively alter the carbon balance
(e.g. Lenton et al. 2008), releasing carbon witigloesidence times (e.g. Bloom et al. 2016) into
the atmosphere. Similarly, both site measuremaemdssatellite-based measurements suggest the
other component carbon fluxes such as GPP aregbfraffected by varying moisture. Lee et al.
(2013) used SIF and canopy water content measutsreeshow the impact of water stress on
the Amazon forest. Guas al. (2015) uses SIF and EVI measurements with rditdalhow that
rainfall amounts larger than 2000 mm/year are edéd sustain tropical evergreen forests in the
dry season. Saatchi et al. (2013) showed that tepemoughts in the Amazon have a lasting
effect on forest carbon and forest stock usinglgatbased estimates of rainfall and canopy
water content. Satellite based estimates of rdiafal vegetation color indices show that
decreasing rainfall over several years on the Cdogest results in vegetation browning (Zhou
et al. 2014).

However only recently can we observe how thesd kud regional stresses affect
atmospheric C@at pan-tropical scales and relate them back io tbenponent carbon and
water fluxes. Humphrey et al. (2018) found a glaletdtionship between TWS as observed by
the GRACE instrument and the e@rowth rate. However, Liu et al. (2017) showedt tiis
bulk effect between water and carbon is more nuhaceoss the tropics. Liu et al. (2017) used
new regional scale (Section 2.6 and A.4) carboxetuas derived from total column
measurements of G@rom the GOSAT and OCO-2 satellites, satellitedzhestimates of fire
emissions (Section 2.3) and GPP as derived fron{&Etion 2.5), along with water vapor and
rainfall measurements to show how the tropical catbalance responds to moisture changes
across the tropics and that changes in the tdalkesairbon balance was different across each of
the main regions. Each of the three tropical regi@ America, Africa, and Maritime) had a net
flux of ~0.8 PgC; however, these changes resuth facdecrease in GPP in S. America, an
increase in respiration in Africa and both an iasein fire emissions and decrease in GPP in the
maritime region. These landmark studies show tadian balance does not uniformly respond
to climate variability but instead responds toeliéint stresses depending on the ecosystem.

Ideally changes in NBE are compared to changesiimmisture as that is a more immediate
representation of the water available to plantstemte how water affects carbon (e.g. Fung et
al. 2005; Green et al. 2019). Recent satellite oreasents from the Soil Moisture Active
Passive (SMAP) and Soil Moisture Ocean Salinity (B8f missions use microwave
measurements to estimate surface soil moistureortdmiately, radar based soil moisture
estimates over the tropics are difficult to intetpiue to attenuation of the signal within thick
vegetation or forest canopies (e.g. Babaeian @049 and refs therein). However, we do have
15+ years of satellite-based measurements of tharfd TWS, which can be used to inform
about variations in soil moisture (e.g. Genthal. 2019). For example, tropical biosphere flux
anomalies have a close relationship with TWS anmsaheasured by the Gravity Recovery and
Climate Experiment (GRACE) satellites, as showFigure 9a (left panel). The NBE is positive
(i.e. more carbon is released into the atmosplvanej the water storage has a negative
anomaly, and vice versa. TWS explains more than 6f7&#te tropical biosphere flux anomalies.
However, it is unclear how this relationship betw®BE and TWS varies between wet and dry
tropics because of the spatial resolution of NB&ad&patially, NBE is positive when the TWS
anomaly is negative (indicating a drought conditionthe Amazon and maritime region (Figure
9b right panel). In contrast, NBE and TWS are sohawgpatially correlated in Africa, which

This article is protected by copyright. All rights reserved.



may indicate a large influence from heterotroplkespiration (Liu et al. 2017) although the exact
mechanism for this behavior is unclear and mayrirelated to carbon/water exchanges (e.g.
Palmer et al. 2019). Coupling top-down NBE and T®¥8straints such as these with models of
the carbon and water cycles may help to resolv&ethemaining uncertainties and can also be
used to elucidate how water affects other carbatedjuxes such as GPP, forest stocks and
fires. These model-data fusion approaches aregudiscussed in Section 5.

3.2 Interactions and Feedbacks Between Vegetation and Water

Feedbacks between vegetation, soil moisture, anthlieare also of critical importance for
understanding tropical carbon balance as vegetatmufulates rainfall which in turn affects
water availability as vegetation contributes 30-5@the overall atmospheric moisture in the
wet tropics (Salati et al. 1979). These feedbaekshave substantive effects over short and long
time scales. Green et al. (2017) used measureroeSt§ and rainfall to show that variations in
photosynthesis can explain up to 30% of the vanetin rainfall in the dry tropics. At
interannual timescales, severe droughts can dfiegst composition and subsequent
evapotranspiration. Saatchi et al. (2013) usedawniave-based measurements to show that
forest structure shows persistent degradation 8adsyafter the 2005 Amazon drought;
hypothesizing that this could result from feedbaoks the water cycle through changes in ET.
In turn, Shi et al. (2019) used satellite basedaBd deuterium content of water vapor to provide
evidence that a decrease in Amazonian evapotratigpiin the dry-to-wet transition phase
(~September to November) occurred in 2006 as dt refstihe 2005 drought. The Southern
Amazon dry season length is also observed to easing (Fiet al. 2013) and one explanation
may be due to loss of vegetation and corresporglragotranspiration from logging, agriculture,
and repeated droughts.

In addition to new satellite observations of SHe¢tion 2.5), remote sensing observations
of the deuterium content of water vapor, vapor sues deficit, and ET have the potential for
evaluating vegetation atmosphere interactions aaddacks. Measurements of the deuterium
content of water vapor (e.g. the HDOfMratio) are now made by several satellite instnise
(e.g. Worden et al. 2007; Frankenberg et al. 200&denet al. 2019; Appendix 8). This data
allows us to look at how different moisture souraad processes affect atmospheric water
vapor, since water vapor from the ocean has ardift@sotopic signature than water vapor from
tropical transpiration. Risi et al. (2013) demoatds how these data are directly sensitive to the
relative contribution of vegetation versus oceanaisture on lower-tropospheric humidity, a
key indicator for precipitation. Figure 10 showsiap of the global mean value of the isotopic
composition (or deuterium content) of water vamsrd006 — 2010 time period in the lower
troposphere between 800 — 500 hPa. The unithgrarts per thousand-D, or per mil)
relative to the isotopic composition of ocean waker example, the isotopic composition of the
vapor that evaporates from tropical land genetadly a value between 0 and -75 per mil and
vapor originating from the ocean ranges betweertc 2200 per mil in the tropics (e.g. Risi et al.
2013; Rahul et al. 2018 and refs therein). Wateovassociated with rainfall and deep
convection will usually be depleted relative to aeceapor, due to recycling of vapor in the
convective system (Worden et al. 2007) and entramrof isotopically depleted air from the
free troposphere (e.g., Risi et al. 2008). Thedoas typically more enriched than the Amazon;
however, this could indicate that there is morgxd=smvection in the Amazon than the Congo,
as opposed to less transpiration, because deepaamvis more efficient at removing (or

This article is protected by copyright. All rights reserved.



depleting) the heavier water from water vapor tharmal rainfall processes (e.g. Galewsky et
al. 2016 and refs therein). Care must thereforaken in using these data to attribute vapor to
specific sources and processes.

Wright et al. (2017) looked at the variation of ttheuterium content of water vapor using
data from the Aura Tropospheric Emission Spectrem@ppendix A.7) to show increasing
relative contribution of transpiration to the watapor in the Southern Amazon, prior to the wet
season, and that this transpiration helped tcateithe Amazon monsoon. An important caveat is
that the isotopic composition of water vapor ddsesithe relative contribution of ET to oceanic
water during the dry season but not the absolutuabtof ET fluxes. Unfortunately, there is not
enough TES deuterium data to create a differermtesphilar to Figures 4 through 6 to
determine if there has been a large scale re-balguot tropical moisture sources. New
deuterium measurements from the AIRS instrumentr{dfo et al. 2019) have the potential to
create this satellite record.

The question of what drives seasonal changes tariS&s from the Wright et al. (2017)
paper. Here we can use satellite measurements Dffkéh the AIRS instrument
(Barkhordariaret al. 2017, Appendix A.7) to infer one possible exptaora VPD is the
difference between the amount of vapor at the sedace relative to 100% humidity. VPD is
controlled by both atmospheric and surface conatitand therefore reflects the amount of water
in the surface available for evaporation, the wassr efficiency of the plants, and the
atmospheric demand on surface moisture, as wédkrgs scale atmospheric fluxes (e.g., Seager
et al. 2015; Massman et al. 2019). As shown infiéidu, there is a seasonal increase in VPD
that corresponds to the increas&iD and suggests that seasonal evaporative demaadtiy
driving the source of the atmospheric water vapoing this time period. These comparisons of
deuterium content and VPD can be made againsiosaiaST estimates using vegetation based
measurements (e.g. Fistet@al., 2009 Maedat al. 2017) and as a residual observation of
rainfall, gravity, and river runoff (e.g. Swann akdven 2017) as shown in the bottom part of
Figure 11. The gravity derived ET estimates (Ager\.6.2) suggest that ET can be important
during the dry and dry-to-wet seasons in the humoiplics as suggested by the ET over the
Solimoes Basin, and also during the dry to wetditeon season in the dry tropics as suggested
by the ET over the Madeira Basin (Maeda et al. 20d@wever, these large seasonal differences
between the gravity based and surface measurerasatHT, estimates indicate that more work
is needed to quantify the seasonal ET acrossdpes given its importance for quantifying
tropical carbon and water feedbacks. New surfaogéeature measurements from the
ECOsystem Spaceborne Thermal Radiometer Experiome8pace Station (ECOSTRESS),
could help resolve these differences as their inguispatial resolution (~100 m) is more
comparable to ground validation sites for the paepof testing algorithms that can relate remote
sensing observations of surface temperature tootrayspiration (Fishest al. 2020). However,

a key drawback of ECOSTRESS is that its observatiwa only possible in non-cloudy
conditions. Combining ECOSTRESS and other hydralogiservations with models to better
understand variations in hydrologic variables tratnot directly observed (e.g. soil moisture) or
at times when observations are less plentiful @aydy conditions) may be useful to fill these
gaps (Purdy et al. 2018).
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3.3 21st Century Changes and Variability of Rainfall, Terrestrial Water Storage, and

Evapotranspiration

Given the importance of inter-annual variationsaimfall and TWS in explaining NBE and
GPP, we would expect that longer term changesimfialg water deficit, and soil moisture
should have an impact on carbon dynamics, prodtgctNMBE, and stocks. Our primary
approach for assessing these long-term changasgthatellite measurements are from the
Tropical Rainfall Monitoring Mission (TRMM), the @bal Precipitation Measurement Monitor
(GPM), and the Gravity Recovery and Climate Expenti(GRACE) mission (Appendix A.5).
We therefore present and evaluate decadal scatgeban these observations and how these
changes might affect tropical carbon balance. [eigi (top panel) shows the mean rainfall as
calculated by the TRMM instrument and Figure 12t panel) shows the change in rainfall
for the time periods between 2002 — 2008 and 20P91-6 using both TRMM And GPM data;
we used these time periods due to the increasa Miha periods beginning in 2008, which
resulted in a marked decrease in fire emissionsti(®e2). We do not attempt to separate how
the observed changes in the tropical water cydeelated to ENSO versus decadal variability
in oceanic temperatures or anthropogenic effectseafocus is on how these observed variations
in water affect carbon and vice versa.

To better understand changes in the terrestrig¢nmtdget, rainfall data can be compared
against the change in terrestrial water storage3Y #¢ measured by the GRACE mission
(Tapley et al., 2004). GRACE has been revolutiomametecting subsurface water storage
changes including in root zone soil moisture araligdwater that are critical for plant access to
water during times of drought and little surfaceevaand can help to reveal information on the
concept of plant water use and drought resilieAaecent paper by Rodell et al (2018) has
highlighted global trends in terrestrial water atger over the GRACE observational period,
showing the impacts of combined climate variabjlityman use and water consumption and
potential signatures of climate change. Figuret@f panel) shows the changes in TWS from
April 2002 through December 2016.

As with the rainfall data, Figure 12 (top) shaWwat there are both increases and decreases
in TWS across the moist and dry tropics but witfeaincrease in TWS during this time period
(Reager et al. 2016, Rodell et al. 2019), primaagya result of increased rainfall from La Nina.
Figure 13 (bottom panel) shows the correlation etwthe changes in TWS and rainfall for
these time periods. While GRACE data also refleéeinges in evapotranspiration and river
runoff (e.g. Swann & Koven 2017), it is useful tmgpare GRACE and TRMM/GPM together
because they reflect the primary input of moistorthe land and how much the land retains
water for possible use by the biosphere. Correlatare largest in the dry tropics but
surprisingly almost zero or even negative in malaggs in the wet tropics, which suggests that
other factors such as a change in ET or capacigpibto hold water and subsequent river run-
off (the other primary water fluxes) may be affagtthese correlations.

Based on the NBE / TWS comparisons in Figure 9might expect a net increase in carbon
storage based on the net increase in tropical s#desige or rainfall. Indeed, studies such as
Song et al. (2018) show an increase in vegetatidha Northern African dry tropics, while Zhou
et al. (2018) shows increased browning in the Casgwmciated with decreasing rainfall.
However, as discussed in the next section thexeiteence for regional changes in ET across the
tropics, and these changes, along with those obdemvT WS, should also have an impact on the
tropical carbon balance due to the covariation betwET, SIF, and vegetation and these must
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be considered as additional evidence in the trbpardoon puzzle. Using the MODIS based ET
estimates from Fishet al. (2009), Figure 14 (top) shows an estimate oftlean ET for the

2002 to 2016 time period and the change in ET adiastropics for the same time period in the
previous plots. A decline in the Amazon of abom® / month for the Western Amazon or
approximately 8% given the ET in this part of ~106 / month is observed. These data can be
compared to ET estimates based on the residuds, Tainfall, and river runoff in which ET is
derived for large basins (Swan & Koven 2017; Maetal. 2017). ET estimates from these types
of data also suggest a similar decline (Swann &e€o2017), a surprising result given that
terrestrial total water storage (TWS) is increasimthis area. Two hypotheses are able to
explain this behavior which are that GPP is dectiror that water use efficiency (WUE) is
increasing, both of which suggests that the Amazweasponding to changing climatic

conditions such as changes in humidity or radiateg. Van der Sleen et al. 2014), or more
frequent droughts (e.g. Saatchi et al. 2013). Thd&srences may also be affected by the choice
of starting dates as the ENSO events and corregppddoughts in 2010 and 2015 may have
had a much bigger impact on the biosphere thapdkgive ENSO anomalies between 2002 and
2008.

The changes in rainfall, ET, and TWS for the wepits suggest a complex picture for the
trajectories of water and carbon during'2&ntury. Reconciling our process understanding of
how water flows through the moist tropics agaihsse observations will therefore be critical
towards explaining carbon balance in the moistitsapOn the other hand, the dry tropics appear
to show well behaved relationships: TWS and raiafiad well correlated and increases/decreases
in ET are generally related to increases/decraagasnfall and TWS, suggesting that ET is
responding to changing soil moisture and raint&tat is not clear is whether the balance of
moisture from land and ocean is changing at theesate. For example, as a region goes into a
drought, does ET increase in response to increasymgess, which can moderate the drought?
Or does it decrease as plants conserve water ttairacarbon? Alternatively, does an increase
in sensible heat from a reduction in vegetatiomdase precipitation through increased moisture
transport from the ocean? Or does reduced vegetagult in reduced lower-tropospheric
humidity, a key condition for precipitation (e.gisRet al. 2013 and references therein).
Quantifying the sign and magnitude of these feekibaccritical for robust prediction of the
tropical carbon cycle. However, models are noteggtipped to easily integrate these new
satellite observations for testing and then updgatire process description that describes these
feedbacks (e.g. Risi et al. 2013). New approactetharefore necessary to fully exploit the
range of satellite data for quantifying carbon tevanteractions as discussed in Section 5. s

4.0 Other Uncertaintiesin Carbon and Water Processes, Reservoirs, and Cycling

As discussed previously, the satellite record, wéenbined with aircraft and in situ data,
has greatly expanded our knowledge of the carbdmaater cycles and how they interact.
However, many puzzles remain that are critical tolwauantifying the evolution of the
terrestrial carbon and water cycles. One mystetlydgole of temperature versus water in
modulating terrestrial carbon cycling. As discusse8ection 3 and in Humphrey et al. (2018),
CQO: growth rates show a strong relationship with waterage as discuss in Section 3 and this
contrasts with statistical analyses that find arggrrelationship between the €g@rowth rate and
temperature variations (e.g. Wang et al, 2013, &trad, 2017). A multitude of factors explain
these inconsistencies, but they are likely paytiafluenced by a) compensating/cofounding
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processes acting on net fluxes, e.g. increasedgliyiassociated with increased temperature b)
limited measurement capability for resolving sdataiations in drivers and processes below-
ground such as soil moisture and roots in a vefyicasolved manner c) errors in climatic
drivers used in analyses d) coupling between tfeters through land-atmosphere interactions,
and e) inability to directly estimate with remotnsing other components of the net carbon
balance, such as autotrophic and heterotrophidcregism. The combination of these factors
drive a multitude of uncertainties in specific pa#tys of carbon water coupling and confound
our ability to predict the evolution of the tropicarbon cycle.

As discussed in Section 2, respiration remainsabriee largest uncertainties in the carbon
budget. However, quantifying respiration is chadjmg and currently only possible using
remote sensing at very coarse scales as a resilnat carbon flux and GPP, such as discussed
in Liu et al. (2017) and Bowman et al. (2018). Reterotrophic respiration in particular, there is
large uncertainty in the effect of soil moisturel @wil carbon with different models showing
very different functional forms in the heterotrophespiration — soil moisture relationship
(Sierra et al. 2015). Consequently, heterotropéspiration is the dominant source of uncertainty
in soil carbon fluxes (Todd-Brown et al. 2013). Sopnogress has recently been made on better
understanding these relationships (Bond-Lambery.€2018; Yan et al. 2018), but this progress
is still almost entirely based on in situ data fromth less than 25 sites distributed across the
tropics. Konings et al. (2019) recently suggestetgiotrophic respiration could be constrained
with remote sensing by inverting the land surfaadon balance using the XgCBIF, and fire
data. However, uncertainties in the carbon balaoogponents and the difficulty of
disentangling autotrophic and heterotrophic resipindimit the precision of this method. Lastly,
dissolved carbon in aquatic systems can be an aptocomponent necessary to close the
carbon budget, and is likely particularly high imy of the streams flowing from peatland areas
in the tropics. However, these measurements aemsiy unconstrained by current remote
sensing.

The coupling between photosynthesis and waterlagidihteractions belowground remains
poorly understood. Root density and root water kgota highly uncertain (Powell et al. 2013),
but currently unobservable. Regions such as thg@bave shallow groundwater, but relatively
few observations of belowground processes (Fah 2043). Little is also known about how
rooting density varies with depth. Many tropicajimns contain peatlands or standing water, but
these are poorly mapped (Dargie et al. 2017). Eurtbre, research in plant hydraulics has
shown the need to account for movement of watdriwjtlants, and the close link between
belowground processes and water uptake (Bonan 2054, Kennedy et al. 2019) in order to
correctly reproduce the seasonal cycle of GPP anioh Eopical rainforests (Powell et al. 2013).
These poorly constrained processes likely conteilboithe large differences between ET
estimates, as discussed in this manuscript and wthieys (e.g. Pan et al. 2020 and refs therein).
They also underscore the importance of continumnigiprove estimates of ET, as this quantity is
critical for evaluating feedbacks between the pard soil moisture and plant hydraulics in the
carbon, water, and energy cycles.

Previous studies have also shown the importandembgraphic composition globally,
and thus presumably tropically (Friend et al. 2Gb4nodulating carbon and water balance..
Demography-resolving models that can be trainedrmhtested against remote sensing data have
become more capable of simulating tropical for@sisher et al. 2015; Xu et al. 2016), but so far
these simulations largely remain confined to regioather than pan-tropical studies. Above
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ground, large uncertainties remain in the roleetical variations of light, humidity, CQwind
and temperature across the canopy and horizoriidiyerjee & Linn 2018).

5.0 Quantifying Carbon and Water Processes and Reservoirs By Combining Satellite Data
and Models

While there are ever increasing measurements bboawater, and energy states, and to
some extent processes (e.g. SIF, deuterium), madelseeded to relate these states to the
overall tropical carbon and water budgets and pagx and forecast their future changes. In
doing so, the key challenge is to robustly combimeeobservational data, with its fundamental
link to reality, to models that summarize our tremal understanding and provide a framework.
This process is illustrated in Figure 15 in whigta] with its characterized uncertainties, and
model parameters or state, with their cayoriori uncertainties (e.g. Raupach et al. 2005;
Schneider et al., 2017), are integrated togethe&zgration of model and data are typically
informed with Bayes’ theorem. Such approaches aosvk as data assimilation or model-data
fusion methods. In this section, we introduce matih fusion and discuss its benefits and
challenges for reducing uncertainty in procesdases$, and reservoirs that control carbon and
water cycling.

A number of model-data fusion efforts have focusedssimilating satellite observations
into existing terrestrial biosphere models (e.gchkan et al. 2016; Bacour et al. 2019).
Assimilating observations into these models carstram fluxes (Macbean et al., 2018) and
processes such as &fertilization (Smith et al., 2019). These modelgresent a large diversity
of process and are therefore computationally higitensive. To maintain computational
tractability, these efforts tend to use Kalmarefgtand smoothers to optimally combine models
and data, which have the benefit of being companatly tractable but require Gaussian
assumptions about the uncertainties. Because ioflénge number of parameters, such model-
data fusion approaches also remain susceptiblguifireality (Beven, 1993; Macbean et al.
2016), compensating errors between parametersrandgses when the number of observed
dimensions is less than the number of unknownseridtively, if a carbon cycle model of
intermediate complexity is used, then Markov Chdonte Carlo approaches become
computationally tractable, removing the need taamsa Gaussian distribution in model and
observational uncertainties (Bloom et al., 201)e note that new ESM’s are being developed
using these approaches with the goal of harnesisengatellite program of record and upcoming
measurements (Schneider et al. 2017) for the parpbguantifying biogeochemical processes
and improving Earth system prediction.

We demonstrate this approach using an intermedaatwlexity model depicted in
Figure 16, which simulates the dynamics of poasérvoirs) of live and dead carbon (solid
green boxes), according to various carbon processagding fire and management (black
edged green boxes), 2) the dynamics of plant aihdsisture (blue boxes) according to
hydrological fluxes (black edge blue boxes), 3)uk#ical structure of the ecosystem, and 4)
the critical processes that drive the dynamichefdarbon and water pools, and their coupling,
such as photosynthesis and evapotranspirationg esmulation of more complex modelling
representations (e.g. Smallman et al. 2019). Theehtbat we demonstrate also operates at a
given pixel scale linked to resolution of satelbifeservations. Similar to Figure 1, observational
data (orange boxes) provide constraints on paatiicibcks and fluxes, or combinations of these
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(indicated by black lines). Optical data, suchras®fMODIS (Figure 1) provide a constraint on
plant canopies and photosynthesis; spectroscogstreams net fluxes through atmospheric
observations; radiometry constrains energy balandewater cycling; radar/LIDAR data
constrain biomass and vegetation structure.

Quantifying the various parameters (fluxes, resesyan Figure 16 involves minimizing
a cost function that depends on the observatiodsrardel so that under local environmental
forcing, the model representation has the highlesiihood of representing local observations of
carbon and water cycles and associated uncert&niyts in forcing and model structure will be
probabilistic, spanning a parameter hypervolumesddpnt on the information content and
number of observations. This fusion of model aathgroduces estimates of initial conditions
at the start of the simulation period, and the patars that describe the processes (e.g. rate
constants) and their climate sensitivity (e.g. Bhoet al. 2016). A challenge in model-data fusion
is to properly understand and propagate the unogrta the observations. Data need to be
weighted by uncertainty and bias-corrected sortiadel tests and calibration are appropriate to
the information content of the various observati&@ennecting models and data also requires
careful attention to the observation operator agpdiag and resolution of the data must be
accounted for in any model/data comparison. Funtbee, there is ongoing debate about
whether frameworks should assimilate directly obsérsatellite quantities such as reflectance,
or to assimilate their products, such as leaf aréex (e.g. Quaife et al. 2008).

An example of the use of satellite data for caising carbon balance and its sensitivity
to temperature and TWS and other carbon processé®wn in Figure 17 for South America.
For this analysis, satellite derived estimates BENSIF, CO, TWS, LA, fire emissions, and
temperature, as discussed in previous sectiongsammilated into the Carbon Data Model
Framework (CARDAMOM) (e.g. Bloom et al. 2015; Yahal. 2020), which is similar in
structure to Fig. 16.2020 A Markov Chain Monte G4NMCMC) approach is used to find the
best solution for the model parameters shown inreid6. The top panels show the modeled and
observed NBE estimates (top left) before assinoifaéind the difference between modeled and
observed (right panel). The bottom panels show et data after assimilation. OCO-2 data
was not included in the assimilation and withhel@évaluate the NBE estimate for the later time
period. The updated model parameters are thentag@dject NBE to the time period covered
by OCO-2 and shows that the model estimate anddglmsed on the data constrained
parameter uncertainty from assimilation step) agtwre NBE seasonal timing and mean and
reduce both the differences and calculated unceytaf seasonal NBE in the prediction window
with a reduction in the RMS of 0.12 PgCly to 0.¢8$C/y. Further analysis is needed to
determine if the remaining differences are duesatia @r model error. Nevertheless, this example
illustrates why the approach of integrating sateliiata into a reduced complexity models shows
promise for carbon cycle prediction over at lehsttime span of the assimilated data (e.qg.
Bloom et al. 2020), i.e. using N years of assiretiasatellite data allows for an update of the
initial conditions and carbon / water processe$ shat the model can then predict ~N years of
carbon fluxes.

6.0 Summary and Recommendations

An Earth System perspective is required to redumoedainties in tropical carbon balance and in
turn improve estimates of the tropical carbon sin# its evolution. Mechanistically, this means
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using multiple different types of observations isethtangle carbon and water processes and
their linkages, and by extension the links to thergy and nutrient cycles. Ideally these
observations of different carbon, water, and enstgtes or fluxes are jointly used within an
Earth System modeling framework to quantify therthstion of process controlling carbon
balance and how these processes vary across fhiestrBased on the previous discussions we
recommend the following:

Recommendation 1: Observations. There are several observables that we alreacdy kould
transform our understanding of the tropical carbgele and its links to the Earth System. The
effect of tropical vegetation change on the carbgrie has mainly been assessed through a
activity data. That approach should be replacedit®ct estimation of forest biomass change
requiring a new approach to the design of missionsatellite biomass which to date have
aimed at static maps for a single point in timdl ®oisture, especially in the root zone, is
thought to be a primary moderator of the tropi@bon sink based on data and models (e.g.
Green et al. 2019; Gentine et al. 2019). Likelyum, quantifying soil moisture will require use
of multiple microwave and/or radar measurementsrdler to evaluate the profile of moisture
from the canopy through the root zone. Correspaigimmproved estimates of
evapotranspiration and its subcomponents (trartgpiracanopy evaporation and soil
evaporation) are needed to evaluate vegetationdsggthere feedbacks, given the poor agreement
in the ET estimates from moist forests using topsad@approaches. Improved estimates of NBE,
at finer temporal and spatial scales, are needeattigbuting changes in carbon balance to
climate variability and human activities and thidl vequire greatly improved spatio-temporal
sampling and accuracy of XG@easurements, likely using spectrometers basad in
geostationary orbit or a constellation of soundéhese sounders also typically measure SIF, a
proxy for GPP, and which benefits from the improgadpling of these types of satellite
configurations. This top-down view from satelliisoptimized when combined with aircraft
campaigns and surface networks; surface and didagd provide ground truthing of the satellite
data and allow us to relate the top-down view tiaitkrl process knowledge. Coordinated
aircraft campaigns and surface networks with stgettissions are therefore critical towards
guantifying biogeochemical processes at pan-tropales and fully leveraging the investment
in these resources.

Recommendation 2: Process Estimation, Data Assimilation, M odeling: Many Earth System
models can assimilate satellite data for updatiatggarameters. However, we also need Earth
System Models that can represent the range of ggsesecontrolling Carbon - Water - Energy
interactions across the tropics and can also dssendurrent and projected satellite data sets to
guantify processes and feedbacks in a statisticaliyst manner. These models would also be
useful for identifying current and new observatitimst are the most important for quantifying
the evolution of the carbon sink. We recommend tdating new Earth System models so that
the model parameters and uncertainties and theariadions are more easily quantified,
structural errors are identified, and the modeh learn (or parameters inverted from
observations) from available satellite observati@g. Smith et al. 2014; Schneider et al. 2017).
Ideally such models should be formulated to takeaathge up upcoming observations of
vegetation at sub-kilometer scale from such a&®& Copernicus Hyperspectral Imaging
Mission (CHIME) and NASA Surface Biology — Geolo®BG) missions.
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An alternative approach for quantifying carbon/@tmfeedbacks is through the use of
the emergent constraint approach (e.g. &at. 2013) which uses satellite data with multiple
models to evaluate key processes controlling cemidbwever, use of satellite data for
evaluating how carbon/climate feedbacks are digteith across the tropics and the globe are still
in their beginning stages (e.g. Bownwil. 2018) and it is unclear how these studies coeld b
used to update the corresponding Earth System méateesting how different socio-economic
pathways result in future climate states.

Recommendation 3: Address Land/Atmospher e Feedbacks

While much research has been focused on the diffextts of water cycling and temperature
stress on forest composition and carbon balaneesatellite record points towards the increasing
role of vegetation / atmosphere feedbacks in maithgidhe terrestrial carbon sink. Campaigns
with an Earth System perspective are needed tteggrimte surface, aircraft, and satellite data; the
detailed processes knowledge about vegetationdsghere feedbacks and aquatic carbon

from surface measurements can be evaluated agategtative (or top-down) aircraft and
satellite observations to ensure the process loligion is also quantified.

Acknowledgements
Part of this research was carried out at the JgitFsion Laboratory, California Institute of
Technology, under a contract with the National Aanatics and Space Administration.

1) The biomass data (Appendix A.1, Saatgtal. 2011) can be found on the JPL CMS
website cmsflux.jpl.nasa.gov
2) The OCO-2 SIF data (Appendix A.3) can be found here
https://disc.gsfc.nasa.gov/datasets/OCO2_L2_ Lite &/summary?keywords=0c02%2
Ofluorescence
3) The NBE data (Liet al. 2014, Appendix A.4) are found on the JPL CMS si¢b
cmsflux.jpl.nasa.gov
4) The CO emissions for fires (Jiaggal. 2017, Appendix A.2) can be found at the JPL
CMS web site cmsflux.jpl.nasa.gov
https://dashrepo.ucar.edu/dataset/CO_Flux_Invergitinbution.html
https://doi.org/10.26024/r1r2-6620

5) The burned area data (Van der Werf 2017, Append®j &re from GFEDA4s:
http://www.globalfiredata.org

6) TRMM and GPM data (Host al. 2014, Appendix
A.5) can be found here: https://pmm.nasa.gov/trmm

7) The GRACE data (Sakumura et al. 20Agpendix A.5) are from the following site:

https://grace.jpl.nasa.gov/data/get-data/

8) The ET data (Fishest al. 2009, Appendix A.6) are on the following
website http://josh.yosh.org/

9) The AIRS data used to derive VPD (Barkhordasegal. 2017, Appendix A.7) are
archived herehttps://airs.jpl.nasa.gov/data/get_data
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10)The Aura TES deuterium data (Wordaral. 2007, Appendix A.8) are from the Langley
Atmospheric Research Center Data Archive httpesiveb.larc.nasa.gov/ (NASA,
2019).

Appendix: Description of data setsused in thisreview
A.1 Biomass

Two pan-tropical AGB maps (Baccini et al., 2012at8hi et al., 2011) have recently
been developed at grid scales of 1 km and 500 pecotisely. Both use similar input data layers,
and are principally driven by the same (thoughrmahazed) spaceborne LIiDAR dataset acquired
by ICESat GLAS between 2003 and 2009. However, tseydifferent ground datasets for
calibration and different spatial modelling methlodpes. As a result, there are significant
regional differences between them, which tend wekse when AGB estimates are aggregated
to country or biome scale (Mitchard et al., 2013)e AGB and C calculations in this paper are
based on an updated global version of the Saatehi @011) map. The global map is developed
by making use of the ICESat GLAS measurements tjoaad existing regional algorithms for
the global ecological zones from a literature rev{Vu et al., 2009; Mitchard et al., 2013;

Neigh et al., 2013; Asner and Mascaro, 2014; Masgailal., 2015; Yu and Saatchi, 2016).

The map was developed originally at 100 m spatisblution. We developed the spatial
variations of canopy height of forests in the faxhaverage Lorey’s height (basal area weighted
height) which is considered to have the most dirglettionship to above ground biomass
(Lefsky, 2010). The spatial modeling is performathg the Maximum Entropy estimation
algorithm (MaxEnt) (Phillips et al., 2006; Saatehil., 2011; Xu et al., 2016). MaxEntis a
machine learning algorithm that make use of a Bapesstimation approach to provide the
probability of biomass range for each pixel of gon@efined by the GLAS derived biomass or
height as training data. The probability mapsesben combined to develop the height or
biomass map and its pixel level uncertainty. Her@used the GLAS based heights as samples
and 12 remote sensing image layers (4 Landsatieistfiectance, 2 ALOS PALSAR HH and
HV polarizations, 2 SRTM metrics of mean and vare@anf elevation) as spatial layers for the
machine learning algorithm. We randomly select@¥h ®f the Lorey's height samples
(~4,600,000) as input for the model, and keep ¢hneaining 20% for evaluating the fit.

The height map at 100 m spatial resolution wash&rtorrected for any systematic errors,
particularly across high biomass density forestsdpics using a large dataset of airborne
scanning lidar (ALS) sampled across tropical far@stall three continents (Xu et al., 2017;
Ferraz et al., 2018; Meyer et al., 2019). Thghemap was then used with height-biomass
allometric models developed for different foregidg across the globe using ground plots (44
biomass model) to estimate above ground live bisnlA&B) from height for each pixel. The
biomass map was validated at the regional scatgwslarge number of ground plots acquired
from national forest inventory data from northeemperate and boreal regions and a suite of
research plots in tropical and sub-tropical regidiee below-ground woody live biomass (BGB)
was estimated using allometric models developeu fimot-to-shoot ratios for different forests
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types as recommended by the Intergovernmental an€limate Change (IPCC) guidelines
(IPCC, 2006; Mokany et al., 2006). We added AGB B@B values and aggregated the biomass
map to 1 km in order to reduce the uncertaintyrarfspatial resolution. A factor of 0.47 was
used to convert forest woody biomass to C contdnGroddy et al., 2004). The 1-km global
data set is currently available from the JPL Cardlamitoring System website
(https://cmsun.jpl.nasa.gov) (Carreiras et al.,7Z20The MaxeEnt machine learning algorithm
produces probability distributions for the biomeasges which we take as our uncertainties for
this map. The uncertainties are shown in Figure 17.

A.2 Fire Emissions Based on Atmospheric CO

The basis for estimates of CO emissions from bigrbasning sources shown in Figure 6 is
a 15-year inversion analysis (Jiang et al. 201&}) gises the adjoint of the GEOS-Chem model
(Henze et al. 2007) and MOPITT Version 6J multisz@cCO observations (Deeter et al. 2014).
This approach uses latitude bias-corrected MOPAta ¢(total CO columns and CO vertical
profiles) averaged on the GEOS-Chem 5° longitudé batitude grid to constrain model
estimates of monthly CO fluxes in each grid celhfrthree primary source sectors:
anthropogenic fossil fuel and biofuel, biomass mgrand oxidation from BVOCs. CO from
methane oxidation, ~28% of the global CO budgeugtdustaine et al. 2006), was estimated to
be 877 Tg (COl/yr as an aggregated global source Mddel of Emissions of Gases and
Aerosols from Nature (MEGAN), version 2.0 (Guentheal. 2006) was used to formulate the
prior CO emissions from BVOCs. Biomass burning ipfioxes are from the Global Fire
Emission Database (GFED3; Van der Werf et al. 2@b@d) global prior fluxes for fossil fuel are
from the Emission Database for Global Atmosphessdarch (EDGAR 3.2FT2000; Olivier &
Berdowski et al. 2001) with updated inventoriestfar northern hemisphere described in Jiang
et al. (2017). The monthly, gridded CO flux estiesafrom Jiang et al. (2017) are then re-
partitioned into sector CO emissions for biomaswsimg (BB), fossil fuels (FF) and biogenic
non-methane VOC emissions (BIO) using a Bayesitareénce approach that explicitly accounts
for both a priori and posterior CO flux uncertaistiBloom et al. 2015, Worden et al. 2017).
This re-partitioning also allows the use of updaequtiori estimates and here we applied
emission factor uncertainties from GFED4 (Van deariét al. 2017). As discussed in Jiang et
al,. (2015) and H. Wordest al. (2019), uncertainties for these emissions areutated by
comparing different emissions estimates using tfierdnt MOPITT CO products (profile, total
column, and near-surface) as these are sensitiiéf@oent aspects of model chemistry and the
emissions distributions; with this approach an utacety for any given grid box is
approximately 23%.

Uncertaintiesin Carbon Emissions from Firesusing BA and CO estimates: A recent
paper by Yinet al. (2020 ) assimilated CO and burned area estimasesgll as LAl and SIF
into the CARDAMOM modeling / assimilation (Figur&)lframework for the purpose of
guantifying NBE as a result of the recent fire dexl As shown in Figure 18, this analysis
indicates that after assimilation CARDAMOM estingageyearly uncertainty of ~18% for
tropical fire carbon emissions and both the burea (based on GFED) and CO based
estimates (from MOPITT) agree to within this unagrty.
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A.3 Gross Primary Production from Solar I nduced Fluorescence

Although SIF has been retrieved from multiple $asl with nearly coninuous global
coverage since 1996, no single instrument offdosig term continuous running time series
spanning multiple decades. Differences in instrunsbaracteristics and retrieval methodology
have challenged efforts to use multiple sensoessess long term change, especially at sub-
regional scale (Parazoo et al. 2019). OCO-2 cuygrefffiers the most accurate measurements at
scales traceable to canopy level measurementsuarehtly spans a record beginning
September 2014 (Parazoo et al. 2019; Magney 2048). Monthly GPP is estimated from
OCO-2 following the formalism of Parazoo et al. 12D Grid scale GPP is inferred from a
precision-weighted minimization of OCO-2 SIF, whishregressed against global GPP from
upscaled flux tower data (e.g., Frankenberg 2Gil1; Jung et al. 2011), and is also subjected to
a priori knowledge of GPP derived from an ensemblerrestrial ecosystem models (Sitch et al.
2015). SIF measurements are aggregated to 1 deteg @ver a month. The precision of the
estimate is estimated as the standard error, asguarsingle sounding measurement error of 0.5
W m2 unt! srt and divided by the square root of the number skolmtions for each grid. SIF
measurements are scaled to GPP based upon bioniicspaaling factors. The final GPP
estimate is a balance between the prior and thel&lived GPP which is screened for clouds
and scaled to daily average using cosine of s@laitlz angle weighting. Figure 7 (bottom panel)
show OCO-2 assessment of spatial and seasonalgyhtitetic variability in the tropics.

A.4 XCO2 and CO: fluxes

Net Biosphere Exchange (NBE) is optimized by adatmig GOSAT data (O’'Dell et al.
2012) including v7.3 ¥ozretrievals and OCO-2 v7 retrievals into the CM8xHID-Var
inversion framework (Liu et al. 2014; 2017; Bownedral. 2017), which uses the GEOS-Chem
adjoint model (Henze et al. 2007). GEOS-Chem {ip/w.geos-chem.org) is a global
chemical transport model (CTM) that uses GEOS (@atiEarth Observing System)
assimilated meteorological fields from the NASA BdbModeling Assimilation Office
(GMADO) (Rienecker et al., 2008). We run the moded horizontal resolution of°’4latitude) x
5° (longitude). The model has 47 vertical levelshviite top up to 0.01hPa. The inversion
covers 2010 to 2015. Due to changes of radianderaabn of GOSAT spectra in 2014, we only
analyze 2010-2013 inversion results constraine@OWAT, and 2015 constrained by OCO-2
column CQ observations. Fluxes are currently provided f@0th0 through 2013 for the
GOSAT time period and 2015 for the OCO-2 time pkmath updates to C&Xluxes soon to be
available.

The estimates of NBE using top-down fluxes can tsageificant uncertainty, even at
regional scales, they also vary significantly froegion to region so that so that no one number
adequately describes the NBE estimates. As a resuient studies (e.g. Bowmahal. 2017;

Liu et al. 2017) attempt to aggregate NBE over longer tier@opls and regions and then
quantify differences between time periods in otdereduce the error through averaging and
then through potential bias subtraction. In theeazghe Liuet al. (2017) paper, uncertainties
are tested by quantifying the expected versus BED®: signal from the flux difference.
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A.5 TRMM GPM and GRACE

The Tropical Rainfall Measuring Mission (TRMM) af&dobal Precipitation Monitoring
(GPM) missions (e.g. Kummerow et al. 1998; Houle?2@14), have provided radar and
microwave based estimates of rainfall from 199%htpresent. Uncertainties in this data set
are well described in Raunayairal. (2017); different rainfall retrieval algorithmsqvide
different estimates of rainfall with up to 100%fdrences for light rain and 30% differences for
intermediate to heavy rain. While calibration loé¢ data is therefore necessary to produce
rainfall estimates from the observed radar and owere signals and can vary depending on the
approach used (e.g., Bookhagen & Burbank 2010)Jale can quantify interannual changes in
monthly rainfall as determined through ground measents (e.g. Almazroui 2011). The
TRMM mission stopped acquiring data in early 20u5was followed by GPM that was
launched in February 2014. In this paper we usaibmed data set from the TRMM and GPM
satellites (e.g. Huffmaet al. 2007).

Monthly terrestrial water storage observationsrere available from 2002-2017 and the
ongoing GRACE follow-on mission (GRACE-FO). GRACEservations represent changes in
the global gravity field as changes in equivaleatax height with roughly 3-degrees of
resolution and a precision of 1.5 cm water equivia{@apley et al. 2004). The monthly
GRACE TWS uncertainty is estimated to be 25 mm/aorah 800 km averaging radius (Rodell
et al., 2004), approximately the same size of the sedelotisin groups in this study. We fill
observation gaps and interpolate GRACE TWS to enwmporal equivalence BandR
datasets, and calculate the arithmetic mean oétBESACE TWS retrievals (Sakumura et al.
2014).

A.6 Evapotranspiration

A6.1 PT-JPL

The Evapotranspiration (ET) data shown here isenetd by the PT-JPL algorithm (Fisher et
al. 2008) using land surface properties from MOBI8l atmospheric properties from MERRA.
The algorithm has been widely validated througltbetliterature as one of the top performing
global remote sensing ET models (e.g. Chen e0d4 2Ershadi et al. 2014; Gomis-Cebolla et al.
2019; Jiménez et al. 2018; Michel & Seidling 2008ralles et al. 2016; Polhamus et al. 2013;
Purdy et al. 2018; Talsma et al. 2018; Vinukollalet2011). Through eco-physiological constraint
functions, PT-JPL retrieves actual ET by downscplpotential ET (PET) from the Priestley-
Taylor equation (Fisher et al. 2011, Priestley &[6a, 1972):

4 1)

PET = a R,

A+y
where4 is the slope of the saturation-to-vapour pressurge, dependent on near surface air
temperature T(;) and water vapour pressure,), y is the psychrometric constamR,, is net
radiation (W n¥), anda is the Priestley-Taylor coefficient of 1.28ET is in units of W n?.

A series of scalar functions, based on atmosphmaisture, specifically vapor pressure deficit
(Da) and relative humidityRH), and vegetation indices, including normalizedesténce and soil
adjusted vegetation indicedl@VI and SAVI), simultaneously reducPET to actual ET, and
partition total ET into three sources for canomngpiration ETc), soil evaporationETs), and
interception evaporatiork(i):
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wheref,, .. is relative surface wetnesBH*) , f, is green canopy fractiofispar/fipar) (Zhang
et al.,, 2005)fr is a plant temperature constraint (Potter etl883), {1 is a plant moisture
constraint fspar/faparmax) (POtter et al., 1993), anfdy; is a soil moisture constrainRiP)
[Bouchet, 1963; Fisher et al. 2008)par is absorbed photosynthetically active radiatioARW,
fipar IS intercepted PAR, oft is the optimum temperature of plant phenology, @nd the soil
heat flux (Purdy et al., 2016}, andR,; areR,, for the canopy and the soil, respectively, based
on Leaf Area Index (LAI) derived from NDVI. PT-JR& run globally and continuously in space
and time with no need for calibration or site-sfie@arameters.

Topt = Trax at max (RnTa

PT-JPL ET Uncertainty: The most recent validation of PT-JPL ET within
ECOSTRESS demonstrates a normalized RMSE of 6% ,ai@% and correlation of 0.88 for
instantaneous retrievalBigher et al., 2020). In the tropical analysis of Fisher e(2009) in
which comparisons of the PT-JPL ET estimates wenmepared against site data, the PT-JPL
RMSE was 22.8 W r the bias was 7%, and the correlation was 0.9toAtser spatiotemporal
resolution analyses, such as discussed in this sgapty accuracies improve substantially due to
smoothing of noise and heterogeneity. Three indégetinevaluationsvinukollu et al., 2011;
Chenetal., 2014;Ershadi et al., 2014) of PT-JPL, are highlighted here (&gCabeet al .,
2016;Michel et al., 2016;Miralleset al., 2016). These studies are noteworthy because all
algorithms were run with common forcing data, theles used an extensive set of validation
datasets, and they represent independent groupshie®US, Australia, and China. The
Beijing/China study used the metrics of correlatoefficient () and slope of modeled
regression against observed ET to determine thaltFRTexhibited the highest and slope
closest to 1.0Ghen et al., 2014), relative to other well known ET modelsidily, the Australia
study used the metrics of Nash-Sutcliffe EfficieSB\SE) and Root Mean Squared Difference
(RMSD) to determine that PT-JPL exhibited the hgyi¢SE and lowest RMS[E(shadi et al.,
2014).

A6.2 ET Based on TWS, Rainfall and River Runoff

We estimate monthly total evapotranspiration acvestgrsheds in the Amazon by using
satellite observations of precipitation and terrabtvater storage (TWS), and ground-based
measurements of river runoff (Swann & Koven 201aellla et al. 2017). Here,
evapotranspiration is calculated as the monthlylueds between gridded precipitation
estimates, in-situ runoff measurements, and thegsaf TWS:
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AW =P —-R—ET 1

where4W s the change in sub-basin water stor&yes, precipitation, an® is runoff. AW is
estimated by using three Gravity Recovery and Genixperiment (GRACE) TWS retrievals
from Center for Space Research (CSR), Geoforscziemggim Potsdam (GFZ), and Jet
Propulsion Laboratory (JPL). These three GRACE Tét8evals are 1-degree land field
products (each was downloaded from
ftp://podaac-ftp.jpl.nasa.gov/allData/tellus/L3#amass/RL0O5/).

We fill observation gaps and interpolate GRACE TWw®nsure temporal equivalencePt@and

R datasets, and calculate the arithmetic mean sEtdRACE TWS retrievals (Sakumura et al.
2014). Monthly runoff in each watershed is obtaifredh the Observation Service for the
geodynamical, hydrological and biogeochemical cirdf erosion/alteration and material
transport in the Amazon, Orinoco and Congo bas$@&-HYBAM) including in-situ river-gauge
discharge measurements during 2003-2015. We usipipadon estimates from the Tropical
Rainfall Measuring Mission (TRMM; 0.250.25 and 3-hourlyspatiotemporal resolutions;
Huffman et al. 2007), Precipitation Estimation fr&&amotely Sensed Information derived from
Artificial Neural Networks (PERSIANN) product (0.28).25" and dailyspatiotemporal
resolutions; Ashouri et al. 2015), and the Clinfaesearch Unit (CRU) version 4 (®.5° and
monthly spatiotemporal resolutions). We also calculate the arithmetic mafahe three
precipitation products.

Uncertainty of ET using GRACE, runoff, and rainfall: The uncertainty of this ET product
(ogr) is calculated as (Skt al. 2019):

_ 2 2 2
Ogr = \/URAIN + 0Grace t OrunoFF

whereorai is the uncertainty estimation from the three ppitaiion productsgcrace is the
uncertainty of GRACE TWS, anmkunorris the uncertainty of runoff. We are not awarawy
monthly runoff uncertainty estimates, and assomeiorris 10% of the runoff amount in each
Amazonian sub-basin. Uncertainties for the GRAC& BRMM products are described in the
previous section. However, for the rainfall estiesaive assume the uncertainties are described
by the RMS of the different rainfall estimates désed above, which are informed by TRMM
and GPM. At basin scale, ET uncertainties typicadlyy between 10% to 20%, and are limited
by assumed uncertainty of the river runoff andfedin

A.7 Vapor Pressure Deficit (VPD)

Vapor Pressure Deficit is the difference betweenstituration vapor content of air at
temperaturd, es(T), and its actual vapor pressueg(Seager et al. 2015). These are derived
from the Atmospheric Infrared Sounder (AIRS/AMSgnbrigtsen & Lee, 2003) and can
provide a record from 2002 through the presentcdloulate VPD we use the following equation
based on monthly near surface air temperaflijrarfd dew pointTd).

VPD = ¢, x (CZ*T) x (CZ*Td>
T XeP ) T A X LT,

This article is protected by copyright. All rights reserved.



Where, ¢=0.611KPa, £=17.5, g=240.978 °CT andTgq are in °C and VPD is in KPa. The first
and the second term in the above equation areatheation vapor content of air(es) and the
actual vapor pressures, respectively.

A.8 I sotopic Composition of Lower Tropospheric Water Vapor

Satellite based measurements of the deuterium mooftevater vapor are typically obtained
by inverting spectroscopically resolved radianded are sensitive to HDO ana®l molecular
absorption at 1.6 (near infrared or NIR) and 8ronis (Thermal IR). Down-looking, Thermal IR
based measurements are typically sensitive togbhtedum content of water vapor between 800
hPa to 300 hPa whereas near-IR based measuremesenaitive to the total column of water.
Both data sets tend to have a precision ranging fre1% with an accuracy of better than 1%
(Worden et al. 2006, 2019; Frankenberg et al. 28tBneidegt al. 2020), which is sufficient
for resolving spatial and seasonal variations efdbuterium continent over tropical regions.

A.9 List of Acronyms

AGB - above ground live biomass

AIRS — Atmospheric Infrared Sounder

ALS - airborne scanning lidar

ALOS PALSAR HH and HV

BGB - below-ground woody live biomass

BB - biomass burning

BVOC - Biogenic Volotile Organic Carbons.
CARDAMOM - Carbon Data Model Framework
CHIME - Copernicus Hyperspectral Imaging Mission
CMIP - Climate Model Intercomparison Project
CMS - Carbon Monitoring System

CRU - Climate Research Unit

CSR - Center for Space Research

CTM - chemical transport model

EDGAR - Emission Database for Global Atmospheric
ENSO - El Nino Southern Oscillation

ESA — European Space Agency

ET — evapotranspiration

FAO - Food and Agricultural Organization

FF - fossil fuels

GEDI - Global Ecosystem Dynamics Investigation
GFED - Global Fire Emissions Database

GEOS - Goddard Earth Observing System
GEOS-Chem - Goddard Earth Observing System — Clgnhitodel
GFZ - GeoforschungsZentrum Potsdam

GLAS - Geoscience Laser Altimeter System
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GMADO - Global Modeling Assimilation Office

GOSAT - Greenhouse Observation SATellite

GPM - Global Precipitation Measurement

GPP - Gross Primary Production

GRACE - Gravity Recovery and Climate Experiment
GRACE-FO - GRACE follow-on mission

ICESAT - Ice, Cloud, and land Elevation Satellite

IR - infrared

JPL - Jet Propulsion Laboratory

IPCC - Intergovernmental Panel on Climate Change

LAI - Leaf Area Index

LIDAR - light detection and ranging

LULC - land use and land cover

LULUC - land use and land use change

MaxEnt - Maximum Entropy estimation algorithm

MCMC - Markov Chain Monte Carlo

MEGAN - Model of Emissions of Gases and AerosaterfiNature
MERRA - Modern-Era Retrospective analysis for Reseand Applications
MODIS - Moderate Resolution Imaging Spectroradi@net
MOPITT — Measurement of Pollution In The Troposgher
NASA — National Aeronautic and Space Administration
NBE - net biosphere exchange

NDVI - normalized difference vegetation indices

NIR - near infrared

NISAR - NASA-ISRO Synthetic Aperture Radar

NFI - national forest inventory

OCO-2 - Orbiting Carbon Observatory 2

PAR - photosynthetically active radiation

PERSIANN - Precipitation Estimation from Remot8gnsed Information derived from
Artificial

PET - potential ET

PT-JPL - Priestley-Taylor Jet Propulsion Laboratory

RH - relative humidity

SAVI - soil adjusted vegetation indices

SBG - Surface Biology — Geology

SIF - solar induced chlorophyll fluorescence

SMAP - Soil Moisture Active Passive

SMOS - Soil Moisture Ocean Salinity

SO-HYBAM - seéhttps://hybam.obs-mip.ffor complete acronym
SRTM — Shuttle Radar Topography Mission

SWOT - Surface Water Ocean Topography

SST - sea surface temperature

TES — Troposphere Emission Spectrometer

TRMM - Tropical Rainfall Monitoring Mission

TWS — terrestrial water storage

UNFCCC - United Nations Framework on Climate Change
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VOC - Volatile Organic Carbons
VPD - vapor pressure deficit
WUE - water use efficiency

This article is protected by copyright. All rights reserved.



References

Ahlstrom, A., Raupach, M. R., Schurgers, G., Sni&th Arneth, A., Jung, M., ... & Kato, E.
(2015). The dominant role of semi-arid ecosystamthe trend and variability of the land
CO2 sink. Science, 348(6237), 895-899.

Almeida, C. A. D., Coutinho, A. C., Esquerdo, JOCM., Adami, M., Venturieri, A., Diniz, C.
G., ... & Gomes, A. R. (2016). High spatial resmintiand use and land cover mapping of
the Brazilian Legal Amazon in 2008 using Landsdib/and MODIS data. Acta
Amazonica, 46(3), 291-302.

Almazroui, M. (2011). Calibration of TRMM rainfatlimatology over Saudi Arabia during
1998-2009. Atmospheric Research, 99(3-4), 400-414.

Anber, U., Gentine, P., Wang, S., & Sobel, A. HO1®). Fog and rain in the Amazon.
Proceedings of the National Academy of Science3(37), 11473-11477.

Andela, N., Morton, D. C., Giglio, L., Chen, Y., N®er Werf, G. R., Kasibhatla, P. S., ... &
Bachelet, D. (2017). A human-driven decline in glloburned area. Science, 356(6345),
1356-1362.

Andela, N., Morton, D. C., Giglio, L., Paugam, Rhen, Y., Hantson, S., ... & Randerson, J. T.
(2019). The Global Fire Atlas of individual firezsi, duration, speed and direction. Earth
System Science Data, 11(2), 529-552.

Andela, N., & Van Der Werf, G. R. (2014). Recemrnts in African fires driven by cropland
expansion and El Nino to La Nina transition. NatGfenate Change, 4(9), 791.

Anderegg, W. R., Konings, A. G., Trugman, A. T.,,Yu, Bowling, D. R., Gabbitas, R., ... &
Zenes, N. (2018). Hydraulic diversity of forestgukates ecosystem resilience during
drought. Nature, 561(7724), 538.

Andreae, M. O., Rosenfeld, D., Artaxo, P., CostaAA Frank, G. P., Longo, K. M., & Silva-
Dias, M. A. F. D. (2004). Smoking rain clouds otle® Amazon. science, 303(5662), 1337-
1342.

Aragéo, L. E., Anderson, L. O., Fonseca, M. G.,&0d. M., Vedovato, L. B., Wagner, F. H.,
... & Barlow, J. (2018). 21st Century drought-rethfires counteract the decline of
Amazon deforestation carbon emissions. Nature camgations, 9(1), 536.

Arora, V. K., Boer, G. J., Friedlingstein, P., EB.,, Jones, C. D., Christian, J. R., ... & Hajima,
T. (2013). Carbon—concentration and carbon—clirfesgdbacks in CMIP5 Earth system
models. Journal of Climate, 26(15), 5289-5314.

Arora, V. K., & Melton, J. R. (2018). Reductiongiobal area burned and wildfire emissions
since 1930s enhances carbon uptake by land. Nedurehunications, 9(1), 1326.

This article is protected by copyright. All rights reserved.



Ashouri, H., Hsu, K. L., Sorooshian, S., BraithwaiD. K., Knapp, K. R., Cecil, L. D., ... & Prat,
O. P. (2015). PERSIANN-CDR: Daily precipitationrohte data record from multisatellite
observations for hydrological and climate studigagdletin of the American Meteorological
Society, 96(1), 69-83.

Asner, G. P., & Mascaro, J. (2014). Mapping tropfoeest carbon: Calibrating plot estimates to
a simple LIDAR metric. Remote Sensing of Environiméd40, 614-624.

Babaeian, E., M. Sadeghi, S. B. Jones, C. Montak&ereecken, and M. Tuller (2019),
Ground, Proximal and Satellite Remote Sensing dfNaisture, Rev. Geophys.,
2018RG000618-87, doi:10.1029/2018RG000618.

Baccini, A. G. S. J., Goetz, S. J., Walker, W.Laporte, N. T., Sun, M., Sulla-Menashe, D., ...
& Samanta, S. (2012). Estimated carbon dioxide sions from tropical deforestation
improved by carbon-density maps. Nature climatengbka2(3), 182.

Bacour, C., F. Maignan, N. MacBean, A. Porcar-GgasteFlexas, C. Frankenberg, P. Peylin, F.
Chevallier, N. Vuichard, and V. Bastrikov (2019ndroving Estimates of Gross Primary
Productivity by Assimilating Solainduced Fluorescence Satellite Retrievals in a
Terrestrial Biosphere Model Using a ProeBssed SIF Model]. Geophys. Res.

Biogeosci., 124(11), 3281-3306, doi:10.1029/2019JG005040.

Baker, N. R. (2008). Chlorophyll fluorescence: alj@ of photosynthesis in vivo. Annu. Rev.
Plant Biol., 59, 89-113.

Banerjee, T., & Linn, R. (2018). Effect of verticanopy architecture on transpiration,
thermoregulation and carbon assimilation. Forégt, 198.

Barbosa, J. M., Broadbent, E. N., & Bitencourt,D1.(2014). Remote sensing of aboveground
biomass in tropical secondary forests: A reviewermational Journal of Forestry Research,
doi.org/10.1155/2014/715796

Barichivich, J., Gloor, E., Peylin, P., Brienen,R.Schongart, J., Espinoza, J. C., & Pattnayak,
K. C. (2018). Recent intensification of Amazon fliimy extremes driven by strengthened
Walker circulation. Science advances, 4(9), 8785.

Barkhordarian, A., S. S. Saatchi, A. Behrangi, PL&kith, and C. R. Mechoso (2019), A
Recent Systematic Increase in Vapor Pressure Defier Tropical South Americiature
Publishing Group, 9(1), 1-12, doi:10.1038/s41598-019-51857-8.

Bar-On, Y. M., Phillips, R. and Milo, R. (2018). &lbiomass distribution on Earth, Proceedings
of the National academy of Sciences, 115(25), 6666, doi:10.1038.

Barros, F. de V. et al. (2019), Hydraulic traitpkxn differential responses of Amazonian

forests to the 2015 EIl NiAmduced drought, New Phyt®#23(3), 12531266,
doi:10.1111/nph.15909.

This article is protected by copyright. All rights reserved.



Beer, C., Reichstein, M., Tomelleri, E., Ciais,Ring, M., Carvalhais, N., ... & Bondeau, A.
(2010). Terrestrial gross carbon dioxide uptakebgl distribution and covariation with
climate. Science, 329(5993), 834-838.

Bennett, A. C., McDowell, N. G., Allen, C. D., & Aerson-Teixeira, K. J. (2015). Larger trees
suffer most during drought in forests worldwide tine Plants, 1(10), 15139.

Berry, J., Wolf, A., Campbell, J. E., Baker, |.aBé, N., Blake, D., ... & Stimler, K. (2013). A
coupled model of the global cycles of carbonylisieifand CO2: A possible new window
on the carbon cycle. Journal of Geophysical Rebe&iogeosciences, 118(2), 842-852.

Besnard, S., Carvalhais, N., Arain, M. A., Black, Be Bruin, S., Buchmann, N., ... & Gough,
C. M. (2018). Quantifying the effect of forest ageannual net forest carbon balance.
Environmental Research Letters, 13(12), 124018.

Beven, Keith. 1993. “Prophecy, Reality and Unceitiain Distributed Hydrological Modelling.”
Advances in Water Resources 16 (1): 41-51.
http://www.sciencedirect.com/science/article/pill937089390028E

Bloom, A. A., & Williams, M. (2015). Constrainingesystem carbon dynamics in a data-
limited world: integrating ecological common seits@ model-data fusion framework.
Biogeosciences, 12(5), 1299-1315.

Bloom, A. A., Exbrayat, J. F., van der Velde, I, Reng, L., & Williams, M. (2016). The
decadal state of the terrestrial carbon cycle: @logtrievals of terrestrial carbon
allocation, pools, and residence times. Proceedhtise National Academy of Sciences,
113(5), 1285-1290.

Bloom, A. A. et al. (2020), Lagged effects dominttte interannual variability of the 2010-
2015 tropical carbon balance, Biogeosciences Discuss., 1-49, doi:10.5194/bg-2019-459.

Bonan, G. B. (2008). Forests and climate changeirfgs, feedbacks, and the climate benefits of
forests. science, 320(5882), 1444-1449.

Bonan, G. B., Williams, M., Fisher, R. A., & Olesdt W. (2014). Modeling stomatal
conductance in the earth system: Linking leaf water efficiency and water transport
along the soil-plant-atmosphere continuum. GeosifieModel Development7(5), 2193—
2222.

Bonan, G. B., & Doney, S. C. (2018). Climate, estsyns, and planetary futures: The challenge
to predict life in Earth system models. Scienc&(8375), 8328.

Bonan, G. B., D. L. Lombardozzi, W. R. Wieder, K. ®eson, D. M. Lawrence, F. M.
HOFFMAN, and N. Collier (2019), Model Structure a@limate Data Uncertainty in
Historical Simulations of the Terrestrial Carbonc&y(1850-2014), Global
Biogeochemical Cycles, 33(10), 1310-1326, doi:12912019GB006175.

Bond-Lamberty, B., Bailey, V. L., Chen, M., Gough, M., & Vargas, R. (2018). Globally rising

This article is protected by copyright. All rights reserved.



soil heterotrophic respiration over recent decaesure, 560(7716), 80.

Bookhagen, B., & Burbank, D. W. (2010). Toward axptete Himalayan hydrological budget:
Spatiotemporal distribution of snowmelt and raihéald their impact on river discharge.
Journal of Geophysical Research: Earth SurfaceFB)5

Bowman, K. W., Cressie, N., Qu, X., & Hall, A. (Z)1A Hierarchical Statistical Framework
for Emergent Constraints: Application to SnoMbedo Feedback. Geophysical Research
Letters, 45(23), 13-050.

Bowman, K. W., Liu, J., Bloom, A. A., Parazoo, N, Cee, M., Jiang, Z., ... & Wunch, D.
(2017). Global and Brazilian carbon response tNiBb Modoki 2011-2010. Earth and
Space Science, 4(10), 637-660.

Brando, P. M., Paolucci, L., Ummenhofer, C. C., g, E. M., Hartmann, H., Cattau, M. E., ...
& Balch, J. (2019). Droughts, wildfires, and foreatbon cycling: a pantropical synthesis.
Annual Review of Earth and Planetary Sciences583;581.

Brandt, M., Wigneron, J. P., Chave, J., TagessqgrRdnuelas, J., Ciais, P., ... & Rodriguez-
Fernandez, N. (2018). Satellite passive microwasesal recent climate-induced carbon
losses in African drylands. Nature ecology & evalni 2(5), 827.

Brienen, R. J., Phillips, O. L., Feldpausch, T.®&qor, E., Baker, T. R., Lloyd, J., ... &
Martinez, R. V. (2015). Long-term decline of the Aron carbon sink. Nature, 519(7543),
344.

Campbell, J. E., Carmichael, G. R., Chai, T., M@aarasco, M., Tang, Y., Blake, D. R., ... &
Berry, J. A. (2008). Photosynthetic control of asipleeric carbonyl sulfide during the
growing season. Science, 322(5904), 1085-1088.

Carlson, K. M., Gerber, J. S., Mueller, N. D., Hega, M., MacDonald, G. K., Brauman, K. A.,
... & West, P. C. (2017). Greenhouse gas emissidessity of global croplands. Nature
Climate Change, 7(1), 63.

Carreiras, J. M., Jones, J., Lucas, R. M., & Shimkabo, Y. E. (2017). Mapping major land
cover types and retrieving the age of secondamsstsrin the Brazilian Amazon by
combining single-date optical and radar remoteisgrdata. Remote sensing of
environment, 194, 16-32.

Cassol, H. L. G., Carreiras, J. M. D. B., MoraesCE Silva, C. V. D. J., Quegan, S., &
Shimabukuro, Y. E. (2019). Retrieving secondarg$baboveground biomass from
polarimetric ALOS-2 PALSAR-2 data in the BraziliAmazon. Remote Sensing, 11(1),
59.

Cawse-Nicholson, K., A. Braverman, E. L. Kang, Nl. M. Johnson, G. Halverson, M.

Anderson, C. Hain, M. Gunson, and S. Hook (2028hs8ivity and uncertainty
quantification for the ECOSTRESS evapotranspiragilgorithm — DiSALEXI,

This article is protected by copyright. All rights reserved.



International Journal of Applied Earth Observatiansl Geoinformation, 89, 102088,
doi:10.1016/j.jag.2020.102088.

Carreiras, J. M., Quegan, S., Le Toan, T., MinhHDT., Saatchi, S. S., Carvalhais, N., ... &
Scipal, K. (2017). Coverage of high biomass foregtthe ESA BIOMASS mission under
defnse restrictions. Remote Sensing of Environni€e, 154-162.

Change, I. P. O. C. (2006). 2006 IPCC guidelines&ional greenhouse gas inventories. 2013-
04-28]. http://lwww. ipcc-nggip. iges. or. jp./putiR006gl/index. html. .

Chazdon, R. L. (2008). Beyond deforestation: r@sgoiorests and ecosystem services on
degraded lands. science, 320(5882), 1458-1460.

Chen, Y., D. C. Morton, N. Andela, G. R. van derrf{/e. Giglio, and J. T. Randerson (2017),
A pan-tropical cascade of fire driven by El Nifiod8wern Oscillation, Nature Climate
Change, 7(12), 906-911, doi:10.1080/014311603 101ZKR.

Chen, Y., J. T. Randerson, D. C. Morton, R. S. [@sffG. J. Collatz, P. S. Kasibhatla, L. Giglio,
Y. Jin, and M. E. Marlier (2011), Forecasting Feason Severity in South America Using
Sea Surface Temperature Anomalies, Science, 334(6057-791,
doi:10.1126/science.1209472.

Chen, C., T. Park, X. Wang, S. Piao, B. Xu, R. Ka@irvedi, R. Fuchs, V. Brovkin, P. Ciais, R.
Fensholt, H. Tammervik, G. Bala, Z. Zhu, R. R. Nemand R. B. Myneni (2019), China
and India lead in greening of the world throughdlause management, Nat. Sustg?(?),
122-129, doi:10.1038/s41893-019-0220-7.

Chen, Y., Xia, J., Liang, S., Feng, J., FisheB.JLi, X., ... & Mu, Q. (2014). Comparison of
satellite-based evapotranspiration models oveeséral ecosystems in China. Remote
Sensing of Environment, 140, 279-293.

Chuvieco, E., Lizundia-Loiola, J., Pettinari, M, Ramo, R., Padilla, M., Tansey, K., ... &
Plummer, S. (2018). Generation and analysis ofiagiebal burned area product based on
MODIS 250 m reflectance bands and thermal anomdtiagh System Science Data,
10(4), 2015-2031.

Ciais, P., Bombelli, A., Williams, M., Piao, S. IChave, J., Ryan, C. M., Henry, M., Brender, P.
and Valentini, R. (2011). The carbon balance ofcafrsynthesis of recent research
studies, Philosophical Transactions of the Royai€yp A: Mathematical, Physical and
Engineering Sciences, 369(1943), 2038-2057, ddi0B®&/rsta.2010.0328.

Cleveland, C. C., Townsend, A. R., Taylor, P., Ab=Clare, S., Bustamante, M. M., Chuyong,
G.,etal. (2011). Relationships among net primary produfgtiviutrients and climate in
tropical rain forest: a patropical analysis. Ecology letters, 14(9), 939-947.

Cleveland, C. C., B. Z. Houlton, W. K. Smith, A. Rarklein, S. C. Reed, W. Parton, S. J. Del
Grosso, and S. W. Running (2013), Patterns of nenaus recycled primary production in

This article is protected by copyright. All rights reserved.



the terrestrial biosphere, Proceedings of the Natidcademy of Sciences of the United
States of America, 110(31), 12733-12737, doi:1(Bif1vas.1302768110.

Collins, M., Chandler, R. E., Cox, P. M., Huthnan¢eM., Rougier, J., & Stephenson, D. B.
(2012). Quantifying future climate change. Natutengte Change, 2(6), 403.

Cox, P. M., Pearson, D., Booth, B. B., Friedlingst®., Huntingford, C., Jones, C. D., & Luke,
C. M. (2013). Sensitivity of tropical carbon torokte change constrained by carbon
dioxide variability. Nature, 494(7437), 341.

Dadap, N.C., A.R. Cobb, A.M. Hoyt, C.F. Harvey, aha&. Konings (2019): Satellite soil
moisture observations predict fire vulnerabilitySoutheast Asian peatlands,
Environmental Research Letters, 14, 094014.

Dargie, G. C., S. L. Lewis, I. T. Lawson, E. T.Mitchard, S. E. Page, Y. E. Bocko, and S. A.
Ifo (2017). Age, extent and carbon storage of #ngral Congo Basin peatland complex,
Nature, 542(7639), 86—90, doi:10.1038/nature21048.

Davidson, E. A., de Araujo, A. C., Artaxo, P., Bald. K., Brown, I. F., Bustamante, M. M., ...
& Munger, J. W. (2012). The Amazon basin in traosit Nature, 481(7381), 321.

Deeter, M. N., Martinez-Alonso, S., Edwards, D.BHimmons, L. K., Gille, J. C., Worden, H. M.,
... & Wofsy, S. C. (2014). The MOPITT Version 6 guzt: algorithm enhancements and
validation. Atmospheric Measurement Techniques]){(3623-3632.

Doughty, C. E., Metcalfe, D. B., Girardin, C. A, Amézquita, F. F., Cabrera, D. G., Huasco, W.
H., ... & Feldpausch, T. R. (2015). Drought impatforest carbon dynamics and fluxes in
Amazonia. Nature, 519(7541), 78.

Dubayah, R. O., Sheldon, S. L., Clark, D. B., Hofthl. A., Blair, J. B., Hurtt, G. C., &
Chazdon, R. L. (2010). Estimation of tropical faresight and biomass dynamics using
lidar remote sensing at La Selva, Costa Rica. dwfmGeophysical Research:
Biogeoscienced15(G2).

Eldering, A., Wennberg, P. O., Viatte, C., Frankengh C., Roehl, C. M., & Wunch, D. (2017).
The Orbiting Carbon Observatory-2: First 18 mordhscience data products.
Atmospheric Measurement Techniques, 10(2), 549-563.

Ershadi, A., McCabe, M. F., Evans, J. P., ChaneyWN & Wood, E. F. (2014). Multi-site
evaluation of terrestrial evaporation models ustbhy XNET data. Agricultural and Forest
Meteorology, 187, 46-61.

Exbrayat, J.-F., Liu, Y. Y., & Williams, M. (2017)mpact of deforestation and climate on the
Amazon Basin’s above-ground biomass during 1993228tientific reports/(1), 1-7.

This article is protected by copyright. All rights reserved.



Fan, Y., H. Li, and G. Miguez-Macho (2013), Glopaltterns of groundwater depth, Science,
339(2010), 940-943.

Fan, L., Wigneron, J. P., Ciais, P., Chave, J.n8ta\., Fensholt, R., ... & Qin, Y. (2019).
Satellite-observed pantropical carbon dynamicsuiégplants, 1-8.

Ferraz, A. et al. (2018), Carbon storage potemtidegraded forests of Kalimantan, Indonesia,
Environ. Res. Lett., 13(9), 095001-12, doi:10.10888-9326/.

Field, R. D., G. R. van der Werf, and S. S. P. SR€09), Human amplification of drought-
induced biomass burning in Indonesia since 196@yMaseoscience(3), 185-188,
doi:10.1038/ngeo443.

Field, R. D. et al. (2016), Indonesian fire actndind smoke pollution in 2015 show persistent
nonlinear sensitivity to El Nifio-induced droughtp&eedings of the National academy of
Sciences, 113(33), 9204-9209, doi:10.1073/pnas8&24L 3.

Fisher, J. B., Malhi, Y., Bonal, D., Da Rocha, H, Be Araujo, A. C., Gamo, M., ... & Kumagali,
T. O. (2009). The land—atmosphere water flux inttbpics. Global Change Biology,
15(11), 2694-2714.

Fisher, J. B., Melton, F., Middleton, E., Hain, &nderson, M., Allen, R., ... & Kilic, A. (2017).
The future of evapotranspiration: Global requiretadar ecosystem functioning, carbon
and climate feedbacks, agricultural managementwatdr resources. Water Resources
Research, 53(4), 2618-2626.

Fisher, J. B., Whittaker, R. J., & Malhi, Y. (201BET come home: potential evapotranspiration
in geographical ecology. Global Ecology and Biogapyy, 20(1), 1-18.

Fisher, R. A., Muszala, S., Verteinstein, M., Lamge, P., Xu, C., McDowell, N. G, ... &
Spessa, A. (2015). Taking off the training whets: properties of a dynamic vegetation
model without climate envelopes, CLM4. 5 (ED). Gaestific Model Development,
8(11), 3593-3619.

Fisher, R. A., Williams, M., de Lourdes Ruivo, Mg Costa, A. L., & Meir, P. (2008).
Evaluating climatic and soil water controls on esagnspiration at two Amazonian
rainforest sites. Agricultural and Forest Meteogy0148(6-7), 850-861.

Fisher, J.B., Lee, B., Purdy, A.J., Halverson, G.H., Dohlen, M.B., Cawse-Nicholson, K.,
Wang, A., Anderson, R.G., Aragon, B., Arain, M.A., Baldocchi, D.D., Baker, J.M.,
Barral, H., Bernacchi, C.J., Bernhofer, C., Biraud, S.C., Bohrer, G., Brunsell, N.,
Cappelaere, B., Castro-Contreras, S., Chun, J., Conrad, B.J., Cremonese, E.,
Demarty, J., Desai, A.R., De Ligne, A., Foltynova, L., Goulden, M.L., Griffis, T.J.,
Grunwald, T., Johnson, M.S., Kang, M., Kelbe, D., Kowalska, N., Lim, J.-H.,
Mainassara, I., McCabe, M.F., Missik, J.E.C., Mohanty, B.P., Moore, C.E.,
Morillas, L., Morrison, R., Munger, J.W., Posse, G., Richardson, A.D., Russell,
E.S., Ryu, Y., Sanchez-Azofeifa, A., Schmidt, M., Schwartz, E., Sharp, I., Sigut, L.,

This article is protected by copyright. All rights reserved.



Tang, Y., Hulley, G., Anderson, M., Hain, C., French, A., Wood, E., Hook, S.,
(2020). ECOSTRESS: NASA'’s next generation mission to measure
evapotranspiration from the International Space Station. Water Resources
Research 56(4): 1-20, doi.org/10.1029/2019WR026058

Flexas, J., Escalona, J. M., Evain, S., Guliad/dya, |., Osmond, C. B., & Medrano, H. (2002).
Steadystate chlorophyll fluorescence (Fs) measuremenastasl to follow variations of
net CO2 assimilation and stomatal conductance guvetter jstress in C3 plants.
Physiologia plantarum, 114(2), 231-240.

Forkel, M. et al. (2019). Emergent relationshipthwespect to burned area in global satellite
observations and fire-enabled vegetation modetsy&iscienced,6(1), 57-76,
doi:10.5194/bg-16-57-2019.

Friend, A. D., W. Lucht, T. T. Rademacher, R. KatjiR. Betts, P. Cadule, P. Ciais, D. B.
Clark, R. Dankers, P. D. Falloon, A. Ito, R. KahafaKleidon, M. R. Lomas, K. Nishina,
S. Ostberg, R. Pavlick, P. Peylin, S. Schaphofél.ef2014). Carbon residence time
dominates uncertainty in terrestrial vegetatiopoeses to future climate and atmospheric
CO2., Proc. Natl. Acad. Sci. U. S. A, 111(9), 3280d0i:10.1073/pnas.1222477110.

Frankenberg, C., Yoshimura, K., Warneke, T., AlerButz, A., Deutscher, N., ... & Schrijver,
H. (2009). Dynamic processes governing lower-trppesic HDO/H2O ratios as observed
from space and ground. science, 325(5946), 1374-137

Frankenberg, C., Fisher, J. B., Worden, J., Bad@eySaatchi, S. S., Lee, J. E., ... & Yokota, T.
(2011). New global observations of the terrestt@bon cycle from GOSAT: Patterns of
plant fluorescence with gross primary productivideophysical Research Letters, 38(17).

Frankenberg, C., Wunch, D., Toon, G., Risi, C.,eegmaker, R., Lee, J. E., ... & Worden, J.
(2013). Water vapor isotopologue retrievals froghhiesolution GOSAT shortwave
infrared spectra. Atmospheric Measurement Techsigh@), 263-274.

Friedlingstein, P., Cox, P., Betts, R., Bopp, lan\Bloh, W., Brovkin, V., ... & Bala, G. (2006).
Climate—carbon cycle feedback analysis: results fiiee C4MIP model intercomparison.
Journal of climate, 19(14), 3337-3353.

Friedlingstein, P., Meinshausen, M., Arora, V. Bones, C. D., Anav, A., Liddicoat, S. K., &
Knutti, R. (2014). Uncertainties in CMIP5 climatepections due to carbon cycle
feedbacks. Journal of Climate, 27(2), 511-526.

Friedlingstein, P. et al. (2019), Global Carbon gei?019Farth Syst. Sci. Data, 11(4), 1783—
1838, d0i:10.5194/essd-11-1783-2019.

Fu, R., Yin, L., Li, W., Arias, P. A, Dickinson,.FE., Huang, L., ... & Myneni, R. B. (2013).
Increased dry-season length over southern Amazomecent decades and its implication
for future climate projection. Proceedings of thetinal Academy of Sciences, 110(45),
18110-18115.

This article is protected by copyright. All rights reserved.



Fung, I. Y., Doney, S. C., Lindsay, K., & John(2005). Evolution of carbon sinks in a
changing climate. Proceedings of the National Aoadef Sciences, 102(32), 11201-
11206.

Galewsky, J., SteerLarsen, H. C., Field, R. D., Worden, J., Risi,& Schneider, M. (2016).
Stable isotopes in atmospheric water vapor andcgtjans to the hydrologic cycle.
Reviews of Geophysics, 54(4), 809-865.

Gatti, L. V., Gloor, M., Miller, J. B., Doughty, ., Malhi, Y., Domingues, L. G., ... & Freitas,
S. (2014). Drought sensitivity of Amazonian carlbatance revealed by atmospheric
measurements. Nature, 506(7486), 76.

Gentine, P., Green, J. K., Guérin, M., Humphrey,Séneviratne, S. I., Zhang, Y., & Zhou, S.
(2019). Coupling between the terrestrial carbon\aater cycles—a review.
Environmental Research Letters, 14(8), 083003.

Genty, B., Briantais, J. M., & Baker, N. R. (198%he relationship between the quantum yield
of photosynthetic electron transport and quencbingchlorophyll fluorescence. Biochimica
et Biophysica Acta (BBA)-General Subjects, 99081/;92.

Giardina, F., A. G. Konings, D. Kennedy, S. H. A@mmmad, R. S. Oliveira, M. Uriarte, and
P. Gentine (2018). Tall Amazonian forests are $essitive to precipitation variability,
Nature Geoscience, 11(6), 405-409, doi:10.111111364.6.

Giglio, L., Randerson, J. T., & van der Werf, G.(R013). Analysis of daily, monthly, and
annual burned area using the fourgeneration global fire emissions database (GFEDA4).
Journal of Geophysical Research: Biogeoscience}1),1317-328.

Gloor, M., R. J. W. Brienen, D. Galbraith, T. Rldggausch, J. Schongart, J. L. Guyot, J. C.
Espinoza, J. Lloyd, and O. L. Phillips (2013). im#ication of the Amazon hydrological
cycle over the last two decades, Geophys. Res.4@({®), 1729-1733,
doi:10.1002/grl.50377.

Gomis-Cebolla, J., Jimenez, J. C., & Sobrino, J2819). MODIS probabilistic cloud masking
over the Amazonian evergreen tropical forests:raparison of machine learning-based
methods. International Journal of Remote Sensihg,,485-210,
DOI:10.1080/01431161.2019.1637963

Good, S. P., Noone, D., & Bowen, G. (2015). Hydgadaconnectivity constrains partitioning of
global terrestrial water fluxes. Science, 349(6244p-177.

Green, J. K., Konings, A. G., Alemohammad, S. Hirig, J., Entekhabi, D., Kolassa, J., ... &
Gentine, P. (2017). Regionally strong feedbacke/éen the atmosphere and terrestrial
biosphere. Nature Geoscience, 10(6), 410.

Green, J. K., Seneviratne, S. I., Berg, A. M., EihKK. L., Hagemann, S., Lawrence, D. M., &
Gentine, P. (2019). Large influence of soil moistan long-term terrestrial carbon uptake.
Nature, 565(7740), 476.

Gregory, J. M., Jones, C. D., Cadule, P., & Friagiein, P. (2009). Quantifying carbon cycle
feedbacks. Journal of Climate, 22(19), 5232-5250.

This article is protected by copyright. All rights reserved.



Guan, K. et al. (2015), Photosynthetic seasonafitlobal tropical forests constrained by
hydroclimate, Nature Geoscien&§4), 284—289, doi:10.1038/nge02382.

Guenther, A., Karl, T., Harley, P., Wiedinmyer, €almer, P. I., & Geron, C. (2006). Estimates
of global terrestrial isoprene emissions using MBGModel of Emissions of Gases and
Aerosols from Nature). Atmospheric Chemistry angdits, 6(11), 3181-3210.

Hall, A., P. Cox, C. Huntingford, and S. Klein (Z)1Progressing emergent constraints on
future climate change, Nature Climate Charggé), 269-278.

Hancock, S., Armston, J., Hofton, M., Sun, X., TaHg Duncanson, L. I., ... & Dubayah, R.
(2019). The GEDI simulator: a largéootprint waveform Lidar simulator for calibration
and validation of spaceborne missions. Earth armt&cience, 6(2), 294-310.

Hansen, M. C., Potapov, P. V., Moore, R., Hanckky,Turubanova, S. A. A., Tyukavina, A., ...
& Kommareddy, A. (2013). High-resolution global nsagf 21st-century forest cover
change. Science, 342(6160), 850-853.

Hansen, M. C., S. V. Stehman, and P. V. Potapot¥QR@uantification of global gross forest
cover loss, PNAS, 107(19), 8650-8655.

Hansis, E., Davis, S. J., & Pongratz, J. (2015)e¥mce of methodological choices for
accounting of land use change carbon fluxebal Biogeochemical Cycles, 29(8), 1230-
1246.

Harris, N. L., Brown, S., Hagen, S. C., Saatchis$SPetrova, S., Salas, W., ... & Lotsch, A.
(2012). Baseline map of carbon emissions from @station in tropical regions. Science,
336(6088), 1573-1576.

Harris, N. L., Goldman, E., Gabris, C., Nordling,Minnemeyer, S., Ansari, S., ... & Potapov, P.
(2017). Using spatial statistics to identify emagghot spots of forest loss. Environmental
Research Letters, 12(2), 024012.

Hauglustaine, D. A., Hourdin, F., Jourdain, L.j#ékti, M. A., Walters, S., Lamarque, J. F., &
Holland, E. A. (2004). Interactive chemistry in th&boratoire de Météorologie
Dynamique general circulation model: Descriptiod @ackground tropospheric chemistry
evaluation. Journal of Geophysical Research: Atresgs, 109(D4).

Henze, D. K., Hakami, A., & Seinfeld, J. H. (200gvelopment of the adjoint of GEOS-Chem.
Atmospheric Chemistry and Physics, 7(9), 2413-2433.

Hou, A. Y., R. K. Kakar, S. Neeck, A. A. Azarbarz®. D. Kummerow, M. Kojima, R. Oki, K.
Nakamura, and T. Iguchi (2014). The Global Preatmnh Measurement MissioBull.
Amer. Meteor. Soc95(5), 701-722, doi:10.1175/BAMS-D-13-00164.1.

Houghton, R. A. (1999). The annual net flux of carlo the atmosphere from changes in land
use 1850-19900ellus B, 51(2), 298-313.

This article is protected by copyright. All rights reserved.



Houghton, R. A. (2005). Aboveground forest biomass the global carbon balance. Global
Change Biology, 11(6), 945-958.

Houghton, R. A., Hall, F., & Goetz, S. J. (2009)portance of biomass in the global carbon
cycle. Journal of Geophysical Research: Biogeosegenl14(G2).

Houghton, R. A., Nassikas, A. A. (2017). Global aegional fluxes of carbon from land use and
land cover change 1850-2015. Global Biogeochergales, 31(3), 456-472.

Houghton, R. A., Skole, D. L., Nobre, C. A., Haakld. L., Lawrence, K. T., & Chomentowski,
W. H. (2000). Annual fluxes of carbon from defoe¢&in and regrowth in the Brazilian
Amazon. Nature, 403(6767), 301.

Huffman, G. J., Bolvin, D. T., Nelkin, E. J., Wal. B., Adler, R. F., Gu, G., ... & Stocker, E.
F. (2007). The TRMM multisatellite precipitationaysis (TMPA): Quasi-global,
multiyear, combined-sensor precipitation estimatdme scales. Journal of
hydrometeorology, 8(1), 38-55.

Humphrey, V., Zscheischler, J., Ciais, P., GudmsadsL., Sitch, S., & Seneviratne, S. .
(2018). Sensitivity of atmospheric CO 2 growth tat®bserved changes in terrestrial
water storage. Nature, 560(7720), 628.

Ito, A., & Inatomi, M. (2012). Water-use efficiencof the terrestrial biosphere: a model analysis
focusing on interactions between the global cadomhwater cycles. Journal of
Hydrometeorology, 13(2), 681-694.

Jiang, P. K., & Qiu-Fang, X. U. (2006). Abundanoel @ynamics of soil labile carbon pools
under different types of forest vegetation. Pedesphl6(4), 505-511.

Jiménez, C., Martens, B., Miralles, D. M., FishkrB., Beck, H. E., & Fernandez-Prieto, D.
(2018). Exploring the merging of the global landyperation WACMOS-ET products
based on local tower measurements. Hydrology antth System Sciences (Online), 22(8).

Jung, C. G, Shin, H. J., Park, M. J., Joh, H&Kim, S. J. (2011). Evaluation of MODIS
Gross Primary Production (GPP) by Comparing witiP@®m CO 2 Flux Data Measured
in a Mixed Forest Area. Journal of the Korean Siyadé Agricultural Engineers, 53(2), 1-
8.

Jung, M. et al. (2017), Compensatory water effiucksyearly global land CO2 sink changes to
temperature, Nature, 541(7638), 516-520, doi:1@/A@3ure20780.

Kaiser, J. W. et al. (2012). Biomass burning eroissiestimated with a global fire assimilation
system based on observed fire radiative power,dgisgence$(1), 527-554,
doi:10.5194/bg-9-527-2012.

Kennedy, D., S. Swenson, K. W. Oleson, D. M. LaweerR. Fisher, A. Carlos, and P. Gentine

(2019). Implementing Plant Hydraulics in the Comityhand Model , Version 5, 1-29,
doi:10.1029/2018MS001500.

This article is protected by copyright. All rights reserved.



Kent, R., Lindsell, J. A., Laurin, G. V., ValentjiR., & Coomes, D. A. (2015). Airborne LIiDAR
detects selectively logged tropical forest eveariradvanced stage of recovery. Remote
Sensing, 7(7), 8348-8367.

Meyer, V., Saatchi, S. S., Chave, J., Dalling, J. Bohiman, S., Fricker, G. A., ... & Hubbell, S.
(2013). Detecting tropical forest biomass dynarfiiecm repeated airborne lidar
measurements. Biogeosciences, 10(8), 5421.

Kim, Y., Knox, R. G., Longo, M., Medvigy, D., HulgrL. R., Pyle, E. H., ... & Moorcroft, P. R.
(2012). Seasonal carbon dynamics and water fluxas ia mazon rainforest. Global
Change Biology, 18(4), 1322-1334.

Knorr, W., Jiang, L., & Arneth, A. (2016). Climaté0©2 and human population impacts on
global wildfire emissions. Biogeosciences, 13(5j/-282.

Knutti, R., Sedléek, J., Sanderson, B. M., Lorenz, R., Fischer, E.&FEyring, V. (2017). A
climate model projection weighting scheme accowton performance and
interdependence. Geophysical Research Letters),44@9-1918.

Konings, A. G., A. A. Bloom, J. Liu, N. C. Parazda, S. Schimel, and K. W. Bowman (2019),
Global satellite-driven estimates of heterotroplegpiration Biogeosciences, 16(11),
2269-2284, doi:10.5194/bg-16-2269-2019.

Krause, G. H., & Weis, E. (1991). Chlorophyll flescence and photosynthesis: the basics.
Annual review of plant biology, 42(1), 313-349.

Kuai, L., Worden, J. R., Campbell, J. E., Kulang,S., Li, K. F., Lee, M., ... & Baker, I. (2015).
Estimate of carbonyl sulfide tropical oceanic scefluxes using Aura Tropospheric
Emission Spectrometer observations. Journal of G®gipal Research: Atmospheres,
120(20), 11-012.

Kummerow, C., W. Barnes, T. K. O. A. and, 1998 @09 he tropical rainfall measuring
mission (TRMM) sensor package, journals.ametsocld(@), 809—-817,
doi:10.1175/1520-0426.

Kurz, W. A., Dymond, C. C., Stinson, G., Rampley,JG Neilson, E. T., Carroll, A. L., ... &
Safranyik, L. (2008). Mountain pine beetle and $dr@arbon feedback to climate change.
Nature, 452(7190), 987.

Lambrigtsen B.H. and Lee Sung-Yung (2003) Coaligninaad synchronization of the AIRS
instrument suite, in IEEE Transactions on Geos@emz Remote Sensing, vol. 41, no. 2,
pp. 343-351.

Lee, J. E., Frankenberg, C., van der Tol, C., BeknA., Guanter, L., Boyce, C. K., ... &
Badgley, G. (2013). Forest productivity and wateess in Amazonia: Observations from

This article is protected by copyright. All rights reserved.



GOSAT chlorophyll fluorescence. Proceedings ofRlogal Society B: Biological
Sciences, 280(1761), 20130171.

Leite-Filho, A. T., V. Y. Sousa Pontes, and M. Hhsta (2019). Effects of Deforestation on the
Onset of the Rainy Season and the Duration of [PsllSin Southern Amazonia, Journal
of Geophysical Research-Atmospheres, 256(11), 323i40.1029/2018JD029537.

Lenton, T. M., Held, H., Kriegler, E., Hall, J. W.ucht, W., Rahmstorf, S., & Schellnhuber, H.
J. (2008). Tipping elements in the Earth's climgtgem. Proceedings of the National
Academy of Sciences, 105(6), 1786-1793.

Le Quéré, C., Andrew, R. M., Friedlingstein, PicBj S., Pongratz, J., Manning, A. C., ... &
Boden, T. A. (2017). Global carbon budget 2017tHESystem Science Data Discussions,
1-79.

Lewis, S. L., Brando, P. M., Phillips, O. L., vaerdHeijden, G. M., & Nepstad, D. (2011). The
2010 amazon drought. Science, 331(6017), 554-554.

Lewis, S. L., Lopez-Gonzalez, G., Sonké, B., Aff@affoe, K., Baker, T. R., Ojo, L. O., ... &
Ewango, C. E. (2009). Increasing carbon storagetatt African tropical forests. Nature,
457(7232), 1003.

Liu, J., Bowman, K. W., Lee, M., Henze, D. K., Beaez, N., Brix, H., ... & Jones, D. (2014).
Carbon monitoring system flux estimation and atttidn: impact of ACOS-GOSAT XCO2
sampling on the inference of terrestrial biosphsoigrces and sinks. Tellus B: Chemical and
Physical Meteorology, 66(1), 22486.

Liu, J., Bowman, K. W., Schimel, D. S., Parazoo\. Jiang, Z., Lee, M., ... & O’Dell, C. W.
(2017). Contrasting carbon cycle responses ofritfadal continents to the 2015-2016 El
Niflo. Science, 358(6360), eaam5690.

Lovejoy, T. E., and C. Nobre (2018). Amazon Tippkwnt, Sci. Adv., 4(2), doi:10.1126.

MacBean, N., P. Peylin, F. Chevallier, M. Schokmeg G. Schirmann (2016), Consistent
assimilation of multiple data streams in a carbgrieedata assimilation system, Geosci.
Model Dev., 9(10), 3569-3588, doi:10.5194/gmd-982616.

Maeda, E. E., Y. M. Moura, F. Wagner, T. Hilker,|ALyapustin, Y. Wang, J. Chave, M.
Mottus, L. E. O. C. Aragédo, and Y. Shimabukuro @0Tonsistency of vegetation index
seasonality across the Amazon rainforest, IntesnatiJournal of Applied Earth
Observations and Geoinformation, 52, 42-53, dalQ06.

Maeda, E. E., Ma, X., Wagner, F. H., Kim, H., Oki, Eamus, D., & Huete, A. (2017).
Evapotranspiration seasonality across the Amaza@mBEarth System Dynamics.

Magney, T. S., Bowling, D. R., Logan, B., Grossmafn Stutz, J., & Blanken, P. (2019).
Mechanistic evidence for tracking the seasonalifghmtosynthesis with solar-induced

This article is protected by copyright. All rights reserved.



fluorescence. Proceedings of the National Acaden8ciences,
https://doi.org/10.1073/pnas.1900278116

Malhi, Y., Silman, M., Salinas, N., Bush, M., Melt,, & Saatchi, S. (2010). Introduction:
elevation gradients in the tropics: laboratorigsgicosystem ecology and global change
research. Global Change Biology, 16(12), 3171-3175.

Malhi, Y. (2012). The productivity, metabolism acarbon cycle of tropical forest vegetation.
Journal of Ecology, 100(1), 65-75.

Marengo, J. A., & Bernasconi, M. (2015). Regioniffiedences in aridity/drought conditions
over Northeast Brazil: present state and futurgeptmns. Climatic Change, 129(1-2), 103-
115.

Marengo, J. A., Nobre, C. A., Tomasella, J., OyakhaD., Sampaio de Oliveira, G., De
Oliveira, R., ... & Brown, I. F. (2008). The drougsf Amazonia in 2005. Journal of
climate, 21(3), 495-516.

Marengo, J. A., Tomasella, J., Alves, L. M., SoaWsR., & Rodriguez, D. A. (2011). The
drought of 2010 in the context of historical drotggim the Amazon region. Geophysical
Research Letters, 38(12).

Margolis, H. A., Nelson, R. F., Montesano, P. MeaBdoin, A., Sun, G., Andersen, H. E., &
Wulder, M. A. (2015). Combining satellite lidarylaorne lidar, and ground plots to
estimate the amount and distribution of abovegrduinthass in the boreal forest of North
America. Canadian Journal of Forest Research, 488B)-855.

Marlier, M. E., DeFries, R. S., Voulgarakis, A.,/Rey, P. L., Randerson, J. T., Shindell, D. T.,
... & Faluvegi, G. (2013). El Nifio and health rigksm landscape fire emissions in
southeast Asia. Nature climate change, 3(2), 131.

Massmann, A., P. Gentine, and C. Lin (2019), Whee<$Vapor Pressure Deficit Drive or
Reduce Evapotranspiratiod?Adv. Model. Earth Syst., 11(10), 3305-3320,
doi:10.1029/2019MS001790.

Melack, J. M., Hess, L. L., Gastil, M., Forsberg,RB, Hamilton, S. K., Lima, I. B., & Novo, E.
M. (2004). Regionalization of methane emissionth@Amazon Basin with microwave
remote sensingslobal Change Biology, 10(5), 530-544.

Meyer, V., Saatchi, S., Ferraz, A., Xu, L., Dugle,Garcia, M., & Chave, J. (2019). Forest
degradation and biomass loss along the Chocé regiGolombia. Carbon balance and
management, 14(1), 2.

Michel, A., & Seidling, W. (2016). Forest ConditiomEurope: 2016 Technical Report of ICP
Forests: Report under the UNECE Convention on LRagge Transboundary Air
Pollution (CLRTAP).

Miralles, D. G., Jiménez, C., Jung, M., Michel, Brshadi, A., McCabe, M. F., ... & Mu, Q.
(2016). The WACMOS-ET project-Part 2: Evaluatiorgtbal terrestrial evaporation data
sets. Hydrology and Earth System Sciences, 2023:832.

Mitchard, E. T., Saatchi, S. S., White, L., AbemetK., Jeffery, K. J., Lewis, S. L., ... & Meir,

This article is protected by copyright. All rights reserved.



P. (2012). Mapping tropical forest biomass withaiaaind spaceborne LIDAR in Lopé
National Park, Gabon: overcoming problems of highrass and persistent cloud.
Biogeosciences, 9(1), 179-191.

Mitchard, E. T., Saatchi, S. S., Baccini, A., Asr@ér P., Goetz, S. J., Harris, N. L., & Brown, S.
(2013). Uncertainty in the spatial distributiontadpical forest biomass: a comparison of
pan-tropical maps. Carbon balance and managem@nt,18.

Mohammed, G. H., Colombo, R., Middleton, E. M., &&=, U., van der Tol, C., Nedbal, L., et
al. (2019). Remote sensing of solar-induced chloytfluorescence (SIF) in vegetation:
50years of progress. Remote Sensing of Environm@&ifFzbruary), 111177.
https://doi.org/10.1016.

Mokany, K., Raison, R. J., & Prokushkin, A. S. (BRQCritical analysis of root: shoot ratios in
terrestrial biomegGlobal Change Biology, 12(1), 84-96.

Moya, I., Camenen, L., Evain, S., Goulas, Y., Caro¥. G., Latouche, G., ... & Ounis, A.
(2004). A new instrument for passive remote sendinyleasurements of sunlight-induced
chlorophyll fluorescence. Remote Sensing of Envitent, 91(2), 186-197.

Myneni, R. B., Los, S. O., & Asrar, G. (1995). Rdtal gross primary productivity of terrestrial
vegetation from 1982-1990. Geophysical Researdeiset22(19), 2617-2620.

Myneni, R. B., Yang, W., Nemani, R. R., Huete, A, Bickinson, R. E., Knyazikhin, Y., ... &
Hashimoto, H. (2007). Large seasonal swings indea& of Amazon rainforests.
Proceedings of the National Academy of Sciences, 104(12), 4820-4823.

Neeff, T., Lucas, R. M., Dos Santos, J. R., BroidiE. S., & Freitas, C. C. (2006). Area and
age of secondary forests in Brazilian Amazonia ¥2082: an empirical estimate.
Ecosystems, 9(4), 609-623.

Neelin, J. D., Munnich, M., Su, H., Meyerson, J.&Holloway, C. E. (2006). Tropical drying
trends in global warming models and observationscéedings of the National Academy
of Sciences, 103(16), 6110-6115.

Neigh, C. S., Nelson, R. F., Ranson, K. J., Magydfi. A., Montesano, P. M., Sun, G, ... &
Andersen, H. E. (2013). Taking stock of circumbbfeeest carbon with ground
measurements, airborne and spaceborne LIDAR. ReSastsing of Environment, 137,
274-287.

Nepstad, D., Lefebvre, P., Lopes da Silva, U., Tsefla, J., Schlesinger, P., Solérzano, L., ... &
Guerreira Benito, J. (2004). Amazon drought andhitglications for forest flammability
and tree growth: A basiwide analysis. Global Change Biologf)(5), 704-717.

Nobre, C. A., Sellers, P. J., & Shukla, J. (19%hazonian deforestation and regional climate
change. Journal of climate, 4(10), 957-988.

This article is protected by copyright. All rights reserved.



Olivier, J. G. J., Berdowski, J. J. M., PeterdA.JH. W., Bakker, J., Visschedijk, A. J. H., &
Bloos, J. P. J. (2001). Applications of EDGAR. bmihg a description of EDGAR, 3,
1970-1995.

Ordway, E. M., and G. P. Asner (2020), Carbon deslialong tropical forest edges correspond
to heterogeneous effects on canopy structure aradifun, Proceedings of the National
Academy of Sciences of the United States of Amefit&14), 7863—7870,
doi:10.1073/pnas.1914420117.

Palmer, P. . (2018). The role of satellite obsgores in understanding the impact of El Nifio on
the carbon cycle: current capabilities and futyrparstunities, Philosophical Transactions
of the Royal Society B: Biological Sciences, 37%Q)/ 20170407-12, doi:10.1098.

Palmer, P. I, L. Feng, D. Baker, F. ChevallierBé#sch, and P. Somkuti (2019), Net carbon
emissions from African biosphere dominate pan-talpatmospheric CO2 signal, Nat
Commun, 1-9, doi:10.1038.

Pan, Y., R. A. Birdsey, J. Fang, R. Houghton, (30Allarge and persistent carbon sink in the
world's forests, 333, p 989, Science, doi:10.1126.

Pan, S. et al. (2020), Evaluation of global terrakevapotranspiration using state-of-the-art
approaches in remote sensing, machine learnindpaddsurface modeling, Hydrol. Earth
Syst. Sci., 24(3), 1485-1509, doi:10.5194/hess48b612020.

Parazoo, N. C., Frankenberg, C., Kohler, P., Joihelroshida, Y., Magney, T., ... & Yadav, V.
(2019). Towards a Harmonized Langierm Spaceborne Record of F&ted Solar
Induced Fluorescence. Journal of Geophysical RelseBiogeosciences.

Parazoo, N. C., Bowman, K., Fisher, J. B., FrankempbC., Jones, D. B., Cescatti, A., ... &
Montagnani, L. (2014). Terrestrial gross primargduction inferred from satellite
fluorescence and vegetation models. Global chamjedy, 20(10), 3103-3121.

Parker, R. J., Boesch, H., McNorton, J., ComyntPat Gloor, M., Wilson, C., ... & Bloom, A.
A. (2018). Evaluating year-to-year anomalies iipical wetland methane emissions using
satellite CH4 observationBemote Sensing of Environment, 211, 261-275.

Pelletier, J., Paquette, A., Mbindo, K., Zimba, Siampale, A., Chendauka, B., and Roberts, J.
W. (2018). Carbon sink despite large deforestatioifrican tropical dry forests (miombo
woodlands). Environmental Research Lett&8§9), 094017.

Pearson, T. R., Brown, S., Murray, L., & Sidman,(#217). Greenhouse gas emissions from
tropical forest degradation: an underestimatedcarbon balance and management,
12(2), 3.

Pechony, O., & Shindell, D. T. (2010). Driving fescof global wildfires over the past
millennium and the forthcoming century. Proceediofgthe National Academy of
Sciences, 107(45), 19167-19170.

Pechony, O., Shindell, D. T., & Faluvegi, G. (2013irect top /down estimates of biomass
burning CO emissions using TES and MOPITT versu®bolup GFED inventory.
Journal of Geophysical Research: Atmospheres, #)88054-8066.

This article is protected by copyright. All rights reserved.



Pellegrini, A. F., Ahlstrém, A., Hobbie, S. E., Riej P. B., Nieradzik, L. P., Staver, A. C., ... &
Jackson, R. B. (2018). Fire frequency drives ddazttnges in soil carbon and nitrogen
and ecosystem productivity. Nature, 553(7687), 194.

Pfister, G., P. G. Hess, L. K. Emmons, J.-F. Lamey@. Wiedinmyer, D. P. Edwards, G.
Pétron, J. C. Gille, and G. W. Sachse (2005), Qiyarg CO emissions from the 2004
Alaskan wildfires using MOPITT CO data, GeophysiRakearch Letters, 32, 11809,
doi:10.1029.

Phillips, S. J., Anderson, R. P., & Schapire, R(ZD06). Maximum entropy modeling of species
geographic distributions. Ecological modelling, (34), 231-259.

Phillips, O. L., Aragéo, L. E., Lewis, S. L., Fishé. B., Lloyd, J., Lopez-Gonzélez, G., ... &
Van Der Heijden, G. (2009). Drought sensitivitytioé Amazon rainforest. Science,
323(5919), 1344-1347.

Phillips, O. L., Van Der Heijden, G., Lewis, S. Lpez IGonzalez, G., Aragao, L. E., Lloyd,
J., ... & Amaral, I. (2010). Drought—mortality rétanships for tropical forests. New
Phytologist, 187(3), 631-646.

Phillips, O. L., & Lewis, S. L. (2014). Evaluatirige tropical forest carbon sink. Global change
biology, 20(7), 2039-2041.

Piao, S., Huang, M., Liu, Z., Wang, X., Ciais, ®gnadell, J. G., ... & Le Quéré, C. (2018).
Lower land-use emissions responsible for increagtdand carbon sink during the slow
warming period. Nature Geoscience, 11(10), 739.

Pires, G. F., & Costa, M. H. (2013). Deforestatianises different subregional effects on the
Amazon bioclimatic equilibrium. Geophysical Reséaretters, 40(14), 3618-3623.

Polhamus, A., Fisher, J. B., & Tu, K. P. (2013).&bontrols the error structure in
evapotranspiration models?. Agricultural and forasteorology, 169, 12-24.

Poorter, L., Bongers, F., Aide, T. M., ZambranoM\.A., Balvanera, P., Becknell, J. M., ... &
Craven, D. (2016). Biomass resilience of Neotrdpmeaondary forests. Nature, 530(7589),
211.

Potter, C. S., Randerson, J. T., Field, C. B., bat®. A., Vitousek, P. M., Mooney, H. A., &
Klooster, S. A. (1993). Terrestrial ecosystem puaticin: a process model based on global
satellite and surface data. Global Biogeochemigal€3, 7(4), 811-841.

Powell, T. L., D. R. Galbraith, B. O. ChristofferséA. Harper, H. M. A. Imbuzeiro, L. Rowland,
S. Almeida, P. M. Brando, A. C. L. da Costa, M.Gtsta, N. M. Levine, Y. Malhi, S. R.
Saleska, E. Sotta, M. Williams, P. Meir, and PM®orcroft (2013). Confronting model
predictions of carbon fluxes with measurements wia&on forests subjected to
experimental drought, New Phytol., 200(2), 350-38%;10.1111/nph.12390.

Priestley, C. H. B., & Taylor, R. J. (1972). On #sessment of surface heat flux and

This article is protected by copyright. All rights reserved.



evaporation using large-scale parameters. Montelgther review, 100(2), 81-92.

Pugh, T.A., Lindeskog, M., Smith, B., Poulter, Brneth, A., Haverd, V. and Calle, L., 2019.
Role of forest regrowth in global carbon sink dymasnProceedings of the National
Academy of Sciences, 116(10), pp.4382-4387.

Purdy, A. J., Fisher, J. B., Goulden, M. L., Cailier, A., Halverson, G., Tu, K., & Famiglietti,
J. S. (2018). SMAP soil moisture improves globamtranspiration. Remote Sensing of
Environment, 219, 1-14.

Putz, F. E., & Redford, K. H. (2010). The importaraf defining ‘forest’: Tropical forest
degradation, deforestation, lontgrm phase shifts, and further transitions. Biatrap
42(1), 10-20.

Quaife, T, P Lewis, M De Kauwe, M Williams, BE Lai, Disney & P Bowyer (2008)
Assimilating Canopy Reflectance data into an EcesydModel with an Ensemble Kalman
Filter. Remote Sensing of the Environment.111: 1B3G4.

Quegan, S., Le Toan, T., Chave, J., Dall, J., Bdira.-F., Minh, D.H.T., Lomas, M.,
D'Alessandro, M.M., Paillou, P., PapathanassiouR€cca, F., Saatchi, S., Scipal, K.,
Shugart, H., Smallman, T.L., Soja, M.J., Tebald&ij,Ulander, L., Villard, L., Williams,
M., (2019). The European Space Agency BIOMASS misdVieasuring forest above-
ground biomass from space. Remote Sensing of thedament 227, 44-60.

Rahul, P., Prasanna, K., Ghosh, P., Anilkumar&@\Ypshimura, K. (2018). Stable isotopes in
water vapor and rainwater over Indian sector oftlsenn Ocean and estimation of fraction
of recycled moisture. Scientific reports, 8(1), 255

Randerson, J. T., Hoffman, F. M., Thornton, PM&ahowald, N. M., Lindsay, K., LEE, Y. H.,
& Covey, C. (2009). Systematic assessment of teiaebiogeochemistry in coupled
climate—carbon models. Global Change Biology, 15(2862-2484.

Rauniyar, S. P., A. Protat, and H. Kanamori (20URgertainties in TRMM-Era multisatellite-
based tropical rainfall estimates over the Mariti@Gantinent,Earth and Space Science,
4(5), 275-302, doi:10.1002/2017EA000279.

Raupach, M. R., P. J. Rayner, D. J. Barrett, Re&fies, M. Heimann, D. S. Ojima, S. Quegan,
and C. C. Schmullius (2005). Model-data synthesiirestrial carbon observation:
methods, data requirements and data uncertaintyfigpdions, Glob Change Biol, 11(3),
378-397, doi:10.1111.

Reager, J. T., Gardner, A. S., Famiglietti, JVegse, D. N., Eicker, A., & Lo, M. H. (2016). A
decade of sea level rise slowed by climate-driwardlogy. Science, 351(6274), 699-703.

Restrepo-Coupe, N., da Rocha, H. R., Hutyra, LdR Araujo, A. C., Borma, L. S.,
Christoffersen, Bet al.D. R. (2013). What drives the seasonality of phgtohesis across

This article is protected by copyright. All rights reserved.



the Amazon basin? A cross-site analysis of eddytthwer measurements from the Brasil
flux network. Agricultural and Forest Meteorolodyg2, 128-144.

Richey, J. E., Melack, J. M., Aufdenkampe, A. KallBster, V. M., & Hess, L. L. (2002).
Outgassing from Amazonian rivers and wetlandslasge tropical source of atmospheric
CO: . Nature, 416(6881), 617-620.

Rienecker, M. M., M. J. Suarez, R. Todling, J. Baster, L. Takacs, and co-authors, (2008).
The GEOS-5 Data Assimilation System-Documentatiorecsions 5.0.1 and 5.1.0, and
5.2.0

Risi, C., Bony, S., & Vimeux, F. (2008). Influencéconvective processes on the isotopic
composition §180 andD) of precipitation and water vapor in the tropi2sPhysical
interpretation of the amount effect. Journal of @eeical Research: Atmospheres,
113(D19).

Risi, C., Noone, D., Frankenberg, C., & Worder(2013). Role of continental recycling in
intraseasonal variations of continental moisturdeduced from model simulations and
water vapor isotopic measurements. Water Reso&essarch, 49(7), 4136-4156.

Rodell, M. et al. (2015), The Observed State ofWwater Cycle in the Early Twenty-First
Century,Journal of Climate, 28(21), 8289-8318, doi:10.1175/JCLI-D-14-00555.1.

Rodell, M., Famiglietti, J. S., Wiese, D. N., Reggke T., Beaudoing, H. K., Landerer, F. W., &
Lo, M. H. (2018). Emerging trends in global frestevaavailability. Nature, 557(7707),
651.

Rodell, M., Famiglietti, J. S., Wiese, D. N., Reggke T., Beaudoing, H. K., Landerer, F. W., &
Lo, M. H. (2019). Author Correction: Emerging trenid global freshwater availability.
Nature, 565(7739), E7.

Rosenfeld, D. et al. (2014). Global observationaebsol-cloud-precipitation-climate
interactions, Rev. Geophys., 52(4), 750-808, ddl-1T5.

Rowland, L., da Costa, A. C. L., Galbraith, D. Bliveira, R. S., Binks, O. J., Oliveira, A. A. R,
... & Ferreira, L. V. (2015). Death from droughttiopical forests is triggered by
hydraulics not carbon starvation. Nature, 528(75809.

Ryu, Y., J. A. Berry, and D. D. Baldocchi (2019)h¥ is global photosynthesis? History,
uncertainties and opportunities, RSE, 223, 95-@ld#,10.1016.

Saatchi, S., Asefi-Najafabady, S., Malhi, Y., Aragh. E., Anderson, L. O., Myneni, R. B., &
Nemani, R. (2013). Persistent effects of a seveyaght on Amazonian forest canopy.
Proceedings of the National Academy of ScienceB(2)1565-570.

This article is protected by copyright. All rights reserved.



Saatchi, S. S., Harris, N. L., Brown, S., Lefsky, Mitchard, E. T., Salas, W., ... & Petrova, S.
(2011). Benchmark map of forest carbon stocksapital regions across three continents.
Proceedings of the national academy of sciencéX24), 9899-9904.

Saatchi, S., Mascaro, J., Xu, L., Keller, M., YaNg, Duffy, P., ... & Schimel, D. (2015). Seeing
the forest beyond the trees. Global Ecology andi@graphy, 24(5), 606-610.

Saatchi, S., Ulander, L., Williams, M., Quegan,L&Toan, T., Shugart, H., & Chave, J. (2012).
Forest biomass and the science of inventory froacespNature Climate Change, 2(12),
826.

Salati E, Dall'Olio A, Matsui E, Gat JR (1979). Beting of water in the Amazon Basin: An
isotopic study. Water Resour RES(5):1250-1258.

Saleska, S. R., Miller, S. D., Matross, D. M., Gitan, M. L., Wofsy, S. C., Da Rocha, H. R., ...
& Hutyra, L. (2003). Carbon in Amazon forests: upegted seasonal fluxes and
disturbance-induced lossé&kience, 302(5650), 1554-1557.

Saleska, S. R., Wu, J., Guan, K., Araujo, A. C.etduA., Nobre, A. D., & Restrepo-Coupe, N.
(2016). Dry-season greening of Amazon forests. i¢atB1(7594), E4.

Sakumura, C., Bettadpur, S., & Bruinsma, S. (20EAsemble prediction and intercomparison
analysis of GRACE timevariable gravity field models. Geophysical Resedretters,
41(5), 1389-1397.

Santilli, M., Moutinho, P., Schwartzman, S., Nepsta., Curran, L., & Nobre, C. (2005).
Tropical deforestation and the Kyoto Protocol. Gitra Change, 71(3), 267-276.

Schimel, D., Stephens, B. B., & Fisher, J. B. (20B¥fect of increasing CO2 on the terrestrial
carbon cycle. Proceedings of the National Acadefi§yctences, 112(2), 436-441.

Schneider, T., S. Lan, A. Stuart, and J. Teix&f{). Earth System Modeling 2.0: A Blueprint
for Models That Learn From Observations and Tadyetigh-Resolution Simulations,
Geophys. Res. Let#4(24), 12,396-12,417, doi:10.1002.

Schneider, A., T. Borsdorff, J. Aan de Brugh, FnAgegger, D. G. Feist, R. Kivi, F. Hase, M.
Schneider, and J. Landgraf (2020). First datafsld0® columns from the Tropospheric
Monitoring Instrument (TROPOMI), Atmospheric Measmnent Techniqued3(1), 85—
100, doi:10.5194/amt-13-85-2020.

Schuh, A. E. et al. (2019). Quantifying the ImpaicAtmospheric Transport Uncertainty on CO
2Surface Flux Estimates, Global Biogeochemical €y,c#88(7409), 70-17, doi:10.1029.

Seager, R., Hooks, A., Williams, A.P., Cook, B.,Halura, J. Henderson, N. (2015).
Climatology, variability, and trends in the U.S.péa pressure deficit, an important fire-
related meteorological quantity. J. Appl. Meteof@limatol. 54, 1121-1141.

This article is protected by copyright. All rights reserved.



Sellers, P. J., D. S. Schimel, B. Moore lll, J.,land A. Eldering (2018). Observing carbon
cycle—climate feedbacks from space, ProceedingfsedNational Academy of Sciences of
the United States of America, 115(31), 7860-786810.1073.

Sena, E. T., M. A. F. S. Dias, L. M. V. CarvalhadaP. L. S. Dias (2018). Reduced Wet-Season
Length Detected by Satellite Retrievals of Cloudmever Brazilian Amazonia: A New
Methodology, Journal of Climat81(24), 9941-9964, doi:10.1175.

Sierra, C. A., S. E. Trumbore, E. A. Davidson, &c¥, and I. Janssens (2015). Sensitivity of
decomposition rates of soil organic matter witlpees to simultaneous changes in
temperature and moisture, J. Adv. Model. Earth .SysB835-356,
doi:10.1002/2013MS000282.

Shi, M., Liu, J., Worden, J. R., Bloom, A. A., Wart§}, & Fu, R. (2019). The 2005 Amazon
drought legacy effect delayed the 2006 wet seassatoGeophysical Research Letters,
46(15), 9082-9090.

Shindell, D. T., Faluveqi, G., Stevenson, D. SgIKM. C., Emmons, L. K., Lamarque, J. F., ...
& Wild, O. (2006). Multimodel simulations of carb@emonoxide: Comparison with
observations and projected neéuture changes. Journal of Geophysical Research:
Atmospheres, 111(D19).

Skole, D., & Tucker, C. (1993). Tropical deforesgiatand habitat fragmentation in the Amazon:
satellite data from 1978 to 1988. Science, 260(p11905-1910.

Smallman, T.L., J. -F. Exbrayat, M. Mencuccini,AA.Bloom and M. Williams (2017)
Assimilation of repeated woody biomass observatmmstrains decadal ecosystem carbon
cycle uncertainty in aggrading forests J. Geoplay$Research Biogeosciences 122: 528-
545,

Smallman, TL and M. Williams (2019). Descriptiordaralidation of an intermediate
complexity model for ecosystem photosynthesis atagh@transpiration: ACM-GPP-ETv1.
Geophys. Mod. Dev.12, 2227-2253

Smith, M. J., Palmer, P. I., Purves, D. W., VandgrwW!. C., Lyutsarev, V., Calderhead, B., ... &
Emmott, S. (2014). Changing how earth system modé$i done to provide more useful
information for decision making, science, and siyciBulletin of the American
Meteorological Society, 95(9), 1453-1464.

Smith, W. K., A. M. Fox, N. MacBean, D. J. P. Mopaad N. C. Parazoo (2019), Constraining
estimates of terrestrial carbon uptake: new oppdrés using longerm satellite
observations and data assimilation, New Phytol(P2905-112, doi:10.1111/nph.16055.

Song, X. P., Hansen, M. C., Stehman, S. V., PotapoV., Tyukavina, A., Vermote, E. F., &
Townshend, J. R. (2018). Global land change fro8216 2016. Nature, 560(7720), 639.

This article is protected by copyright. All rights reserved.



Sori, R., Nieto, R., Vicente-Serrano, S. M., Druighof., & Gimeno, L. (2017). A Lagrangian
perspective of the hydrological cycle in the Comieer basin. Earth System Dynamics,
8(3), 653.

Staal, A., O. A. Tuinenburg, J. H. C. Bosmans, MlrRfyren, E. H. van Nes, M. Scheffer, D. C.
Zemp, and S. C. Dekker (2018). Forest-rainfall adses buffer against drought across the
Amazon Nature Climate Change, 1-8, doi:10.1038/s41558-018-0177-y.

Staver, A. C., Archibald, S., & Levin, S. A. (201The global extent and determinants of
savanna and forest as alternative biome statesn&xi334(6053), 230-232.

Stephens, B. B., Gurney, K. R., Tans, P. P., Swedhe Peters, W., Bruhwiler, L., ... & Aoki,
S. (2007). Weak northern and strong tropical leemtban uptake from vertical profiles of
atmospheric CO2. Science, 316(5832), 1732-1735.

Sun, Y., Frankenberg, C., Wood, J. D., SchimelsDJung, M., Guanter, L., ... & Gu, L. (2017).
OCO-2 advances photosynthesis observation fromesgacsolar-induced chlorophyll
fluorescence. Science, 358(6360), eaam5747.

Swann, A. L. S., and C. D. Koven (2017). A Direstifhate of the Seasonal Cycle of
Evapotranspiration over the Amazon Basin, J. Hyateworol.,18(8), 2173-2185,
doi:10.1175/JHM-D-17-0004.1.

Talsma, C., Good, S., Miralles, D., Fisher, J., tdas, B., Jimenez, C., & Purdy, A. (2018).
Sensitivity of Evapotranspiration Components in R&srSensing-Based Models. Remote
Sensing, 10(10), 1601.

Tapley, B. D., Bettadpur, S., Ries, J. C., Thomp#$vrF., & Watkins, M. M. (2004). GRACE
measurements of mass variability in the Earth sysfcience, 305(5683), 503-505.

Tebaldi, C., & Knutti, R. (2007). The use of thelthimodel ensemble in probabilistic climate
projections. Philosophical transactions of the fep&iety A: mathematical, physical and
engineering sciences, 365(1857), 2053-2075.

Todd-Brown, K. E. O., J. T. Randerson, W. M. P&st\l. Hoffman, C. Tarnocai, E. A. G.
Schuur, and S. D. Allison (2013), Causes of vamatn soil carbon simulations from
CMIP5 Earth system models and comparison with efasieins,Biogeosciences, 10(3),
1717-1736, doi:10.5194/bg-10-1717-2013.

Van der Laan/Luijkx, I. T., Van der Velde, I. R., Krol, M. C., &ti, L. V., Domingues, L. G.,
Correia, C. S. C., ... & Wiedinmyer, C. (2015). Rasse of the Amazon carbon balance to
the 2010 drought derived with CarbonTracker SoutieAca. Global Biogeochemical
Cycles, 29(7), 1092-1108.

Van der Sleen, P., P. Groenendijk, M. Vlam, N. PARten, A. Boom, F. Bongers, T. L. Pons,
G. Terburg, and P. A. Zuidema (2014). No growtmatation of tropical trees by

This article is protected by copyright. All rights reserved.



150 years of CO2 fertilization but water-use e#fiay increased, Nature Geoscierg),
24-28, d0i:10.1038/nge02313.

Van der Werf, G. R., Randerson, J. T., Giglio,@ollatz, G. J., Mu, M., Kasibhatla, P. S., ... &
van Leeuwen, T. T. (2010). Global fire emissiond #dre contribution of deforestation,
savanna, forest, agricultural, and peat fires (32909). Atmospheric chemistry and
physics, 10(23), 11707-11735.

Van Der Werf, G. R., Randerson, J. T., Giglio,\tan Leeuwen, T. T., Chen, Y., Rogers, B. M.,
... & Yokelson, R. J. (2017). Global fire emissi@sdimates during 1997-2016.

Vinukollu, R. K., Meynadier, R., Sheffield, J., &Md, E. F. (2011). Multimodel, multi
sensor estimates of global evapotranspiration: &gy, uncertainties and trends.
Hydrological Processes, 25(26), 3993-4010.

Wang, G., & Schimel, D. (2003). Climate changenelie modes, and climate impacts. Annual
Review of Environment and Resources, 28(1), 1-28.

Wang, W., Ciais, P., Nemani, R. R., Canadell, JR&o0, S., Sitch, S., ... & Myneni, R. B.
(2013). Variations in atmospheric CO2 growth rategpled with tropical temperature.
Proceedings of the National Academy of Scienceg(32), 13061-13066.

Wang, X., et al. (2014), A two-fold increase oflwam cycle sensitivity to tropical temperature
variations, Nature, 506, 212, doi: 10.1038/natugd B2

Wei, Z., Yoshimura, K., Wang, L., Miralles, D. Gasechko, S., & Lee, X. (2017). Revisiting
the contribution of transpiration to global terredtevapotranspiration. Geophysical
Research Letters, 44(6), 2792-2801.

Wenzel, S., Cox, P. M., Eyring, V., & FriedlingsteP. (2014). Emergent constraints on climate-
carbon cycle feedbacks in the CMIP5 Earth systemeatsoJournal of Geophysical
Research: Biogeosciences, 119(5), 794-807. https://doi.org/10.1002/2013JG002591

Williams, M, T.C. Hill & C.M. Ryan (2013). Using bmass distributions to determine
probability and intensity of tropical forest digbance, Plant Ecology and Diversity: 6, 87-
99.

Wolf, A., W. R. L. Anderegg, and S. W. Pacala (20I®ptimal stomatal behavior with
competition for water and risk of hydraulic impaént, Proc. Natl. Acad. S¢i
doi:10.1073/pnas.1615144113.

Worden, J., Bowman, K., Noone, D., Beer, R., CloughEldering, A., ... & Kulawik, S. S.
(2006). Tropospheric Emission Spectrometer obsemnsbf the tropospheric HDO/H20
ratio: Estimation approach and characterizationrda of Geophysical Research:
Atmospheres, 111(D16).

This article is protected by copyright. All rights reserved.



Worden, J., Noone, D., Bowman, K., Beer, R., ElugrA., Fisher, B., ... & Lampel, M. (2007).
Importance of rain evaporation and continental eation in the tropical water cycle.
Nature, 445(7127), 528.

Worden, J. R., Bloom, A. A., Pandey, S., Jiang\¥orden, H. M., Walker, T. W., ... &
Rockmann, T. (2017). Reduced biomass burning eamsseconcile conflicting estimates
of the post-2006 atmospheric methane budget. Nabmenunications, 8(1), 2227.

Worden, J. R. et al. (2019), Characterization araduation of AIRS-based estimates of the
deuterium content of water vap@tmospheric Measurement Techniques, 12(4), 2331—
2339, doi:10.5194/amt-12-2331-2019.

Worden, H. M., A. A. Bloom, J. R. Worden, Z. Jiakg,A. Marais, T. Stavrakou, B. Gaubert,
and F. Lacey (2019), New constraints on biogenissions using satellite-based estimates
of carbon monoxide fluxegstmospheric Chemistry and Physics, 19(21), 13569-13579,
doi:10.5194/acp-19-13569-2019.

Wu, J., Albert, L. P., Lopes, A. P., Restrepo-Cquye Hayek, M., Wiedemann, K. T., ... &
Tavares, J. V. (2016). Leaf development and denpbgraxplain photosynthetic
seasonality in Amazon evergreen foreStsence, 351(6276), 972-976.

Wright, J. S., Fu, R., Worden, J. R., Chakrabdsty Clinton, N. E., Risi, C., ... & Yin, L. (2017).
Rainforest-initiated wet season onset over thel®saotAmazon. Proceedings of the
National Academy of Sciences, 114(32), 8481-8486.

Xu, L., Saatchi, S. S., Yang, Y., Myneni, R. B.afkenberg, C., Chowdhury, D., & Bi, J.
(2015). Satellite observation of tropical foresais@nality: spatial patterns of carbon
exchange in Amazonia. Environmental Research Lsti€X8), 084005.

Xu, L., Saatchi, S. S., Yang, Y., Yu, Y., & White,(2016). Performance of non-parametric
algorithms for spatial mapping of tropical forestisture. Carbon Balance and
Management, 11(1), 18.

Xu, L., Saatchi, S. S., Shapiro, A., Meyer, V.,rBer A., Yang, Y., ... & Lewis, S. L. (2017).
Spatial Distribution of Carbon Stored in Forestshaf Democratic Republic of Congo.
Scientific Reportsy7(1), 15030.

Xu, X., D. Medvigy, J. S. Powers, J. M. Becknetid&K. Guan (2016)Diversity in plant
hydraulic traits explains seasonal and inter-anmaahtions of vegetation dynamics in
seasonally dry tropical forests, New Phyt@+16, doi:10.1111/nph.

Yan, Z., B. Bond-Lamberty, K. E. Todd-Brown, V. RBailey, S. Li, C. Liu, and C. Liu (2018). A
moisture function of soil heterotrophic respiratibat incorporates microscale processes,
Nat. Commun.9(1), 1-10, doi:10.1038/s41467-018-04971-6.

Yang, Y., Saatchi, S. S., Xu, L., Yu, Y., Choi, Bhillips, N., ... & Myneni, R. B. (2018). Post-
drought decline of the Amazon carbon sink. Natummunications, 9(1), 1-9.

This article is protected by copyright. All rights reserved.



Yang, X., Song, Z., Liu, H., Van Zwieten, L., Soryg, Li, Z., ... & Wang, H. (2018). Phytolith
accumulation in broadleaf and conifer forests atmern China: implications for phytolith
carbon sequestration. Geoderma, 312, 36-44.

Yang, X., Tang, J., Mustard, J. F., Lee, J., & Rus®l. (2015). Solar-induced chlorophyl
fluorescence correlates with canopy photosyntt@sdiurnal and seasonal scales in a
temperate deciduous forest . Geophysical Reseattérk, 42, 2977-2987.

Yin, Y., Ciais, P., Chevallier, F., Van der Werf, B., Fanin, T., Broquet, G., ... & Wang, Y.
(2016). Variability of fire carbon emissions in egorial Asia and its nonlinear sensitivity
to El Nifio. Geophysical Research Letters, 43(10)472.

Yin L, Fu R, Shevliakova E, Dickinson RE (2013).wwell can CMIP5 simulate precipitation
and its controlling processes over tropical Soutirefica? Clim Dyn41(11-12):3127—
3143.

Yin, Y., Chevallier, F., Ciais, P., Broquet, G. rtemns-Cheiney, A., Pison, I., & Saunois, M.
(2015). Decadal trends in global CO emissions as bg MOPITT. Atmospheric
Chemistry & Physics Discussions.

Yu, Y., & Saatchi, S. (2016). Sensitivity of L-baB&R backscatter to aboveground biomass of
global forests. Remote Sensing, 8(6), 522.

Yin, Y. et al. (2020), Fire decline in dry tropicatosystems enhances decadal land carbon sink,
Nat Commun, 1-7, doi:10.1038/s41467-020-15852-2.

Yu, Y., & Saatchi, S. (2016). Sensitivity of L-baB&AR backscatter to aboveground biomass of
global forests. Remote Sensing, 8(6), 522.

Zarin, D. J., Ducey, M. J., Tucker, J. M., & SaM4,A. (2001). Potential biomass accumulation
in Amazonian regrowth forests. Ecosystems, 4(73-&G8.

Zemp, D. C., C. F. Schleussner, H. Barbosa, anHiMta (2017), Self-amplified Amazon forest
loss due to vegetation-atmosphere feedbacks. Nan@m. DOI: 10.1038.

Zubkova, M., Boschetti, L., Abatzoglou, J. T., &gBo, L. (2019). Changes in Fire Activity in
Africa from 2002 to 2016 and Their Potential DrizeGeophysical Research Letters.

Zhang, Q., Xiao, X., Braswell, B., Linder, E., Bare., & Moore lll, B. (2005). Estimating light
absorption by chlorophyll, leaf and canopy in aidecus broadleaf forest using MODIS
data and a radiative transfer model. Remote SemdiBgvironment, 99(3), 357-371.

Zhang, Y., X. Xiao, X. Wu, S. Zhou, G. Zhang, YnQand J. Dong (2017). Data Descriptor: A
global moderate resolution dataset of gross prirpasguction of vegetation for 2000—
2016, Nature Publishing Group, 1-13, doi:10.1038&2017.165.

Zhang, Y., J. Joiner, S. H. Alemohammad, S. Zhad,R. Gentine, (2018). A global spatially
contiguous solar-induced fluorescence (CSIF) datasag neural networks,
Biogeosciences, 15 (19), 5779-5800

This article is protected by copyright. All rights reserved.



Zhao, M., Heinsch, F. A., Nemani, R. R., & RunnigW. (2005). Improvements of the
MODIS terrestrial gross and net primary productitobal data set. Remote sensing of
Environment, 95(2), 164-176.

Zhou, L., Tian, Y., Myneni, R. B., Ciais, P., Sda{&S., Liu, Y. Y., ... & Hwang, T. (2014).
Widespread decline of Congo rainforest greenneiseipast decade. Nature, 509(7498),
86.

Zhou, X., Peng, C., Dang, Q. L., Chen, J., & Parfan(2005). Predicting forest growth and
yield in northeastern Ontario using the procesethasodel of TRIPLEX1. 0. Canadian
Journal of Forest Research, 35(9), 2268-2280.

This article is protected by copyright. All rights reserved.



Figure 1. Schematic of the flow of carbon (greamj water (blue) in the terrestrial biosphere
and different satellite instruments that can plamestraints on these fluxes.

Figure 2: The global biome distribution. The traicegion discussed in this paper is highlighted
by the rectangle.

Figure 3: Distribution of above ground live biomassbon density and uncertainty. (see
Appendix A for description of data used to genetaie map)

Figure 4. (Top Panel) Total emissions from forastuibance by combining the land use
activities and fires derived from the Landsat tiseeies (Hansen et al., 2013) and MODIS

burned area (Van Der Werf et al., 2017) produtthite areas are regions with biomass changes
below detection levels. The emissions are calcdlatdd0 km spatial resolution using the pan-
tropical forest carbon map multiplied by annuakgirdisturbance maps aggregated from high
resolution burned areas (500 m) and forest covangd (30 m) data. The global emissions
calculated at 10 km and for the period of 2002-2@&6e aggregated to develop the mean annual
emissions. (Bottom Panel) the average differemteden two periods.

Figure 5: (top) Area (percentage) burned each fggahe years between 2002-2016 as measured
from MODIS. (bottom) The change in burned areatlfics time period. Areas in white are below
detection.

Figure 6: Same as Figure 5 but now for CO emisstsnmeasured by the Terra MOPITT
instrument.

Figure 7: (topMean tropical gross primary production for the tipeziod between 2002-2016 based on
integrating OCO-2 SIF data into an ensemble oégtrial carbon cycle models. (bottom) The seastynali
of GPP for the three tropical regions.

Figure 8. The relationship between atmospherie @Owth rate anomaly (GtC/year) and the
tropical biosphere flux anomaly (GtC/year) consteal by satellite column Gbservations,
GOSAT data (red/black symbols) are shown for 202013 and OCO-2 data (green hash
symbols) is for 2015.

Figure 9: (left) The tropical biosphere flux anogntbm the previous figure as a function of
GRACE TWS. (right)Net biosphere exchange (NBE) {uatC/box) (shaded) from atmospheric
flux inversion and total water equivalent (TWS)rftaur) from GRACE in 2015 relative 2011.
Black dashed contours have negative TWS value815 Pelative to 2011, while the grey solid
lines have positive TWS values in 2015 relative@d 1.

Figure 10: The mean deuterium content of water végrahe tropics for the years 2005 — 2010

from the Aura TES instrument (see Appendix A.8)e Timits dD) are in parts per thousand
relative to the isotopic composition of ocean watemper mil / SMOW.
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Figure 11: (top) Seasonality of the Amazon VPD (&pgix A.7) and deuterium content of
tropospheric water vapor (Appendix A.8) for the vxatazon (left) and dry Amazon (right).
(bottom) Seasonality of ET (Appendix A.6) as dediyeom a residual of GRACE, TRMM, and
river runoff (red) and satellite surface measurem@nue). Basin maps for Solimoes (left) and
Madeira (right) are used to grid ET for the bottiigures to ensure the comparisons between
data sets are consistent.

Figure 12: (top) The total mean rainfall from usil@MM and GPM for the 2002 — 2016 time
period and (bottom) the difference in rainfall beem the 2009-2016 and 2002 — 2008 time
periods.

Figure 13: (top) The change in TWS from GRACE infomthe same time periods as Figure 12.
(bottom) The correlation between TWS and rainfatlthe 2002-2016 time period.

Figure 14: Same as Figure 12 but for evapotransmpirédased on MODIS and re-analysis
(Appendix A.6)

Figure 15: A notional schematic (courtesy Duanei¥éa) of how observations are assimilated
into an Earth System model to evaluate a quantiiyterest (e.g. Soil Carbon , Water Use
Efficiency), which can then be compared to validatilata sets for the purpose of validation and
uncertainty quantification. The updated model thelps inform our understanding of the Earth
System and its evolution as well as provide infdramaon which observations can be used to
reduce uncertainty further in our knowledge of Hagth System.

Figure 16: A schematic of a terrestrial carbon eyobdel and how different satellite derived
data sets can be used to inform different compaenaithis model.

Figure 17: Monthly CARDAMOM NBE estimates (red = din, dark pink = 28—

75" percentile and light pink =5-95" percentile) over South America for 2010-2015. (Top
Left) The CARDAMOM estimate and uncertainty (reégimg) for NBE prior to assimilation of
satellite data and (Top right) the difference betwebserved NBE and model (black data are
from GOSAT and blue data are from OCO-2). (Bottoaft) CARDAMOM estimates after
initial conditions and process parameters weretcained by 2010-13 GOSAT-derived CMS-
Flux NBE (black line), as well as land surface data (biomass, leaf area, soil carbon and
fluorescence) and atmospheric CO inversion dataBkes2015 OCO-2-derived CMS-Flux NBE
(blue line) was withheld from the assimilation farrposes of validation. (Bottom Right)
Observed — Model after assimilation of data. Theleheand methodologies are described in
Bloom et al (2015 and 2016).

Figure 18: The uncertainy map for the above gratardon shown in Figure 3. The uncertainty
map is derived from a Bayesian approach describégppendix A.1. The error is given at the
1-km pixel level (Saatchi et al., 2011).

Figure 19: Estimate of tropical carbon emissionagithe CO and burned area estimates
assimilated into CARDAMOM (Section 4.2), adapteahi Yinet al. (2019)
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