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Abstract: A constellation of satellites are now in orbit providing information about terrestrial 
carbon and water storage and fluxes. These combined observations show that the tropical 
biosphere has changed significantly in the last two decades from the combined effects of climate 
variability and land use. Large areas of forest have been cleared in both wet and dry forests, 
increasing the source of carbon to the atmosphere.  Concomitantly, tropical fire emissions have 
declined,  at least until 2016, from changes in land-use practices and rainfall, increasing the net 
carbon sink. Measurements of carbon stocks and fluxes from disturbance and recovery and of 
vegetation photosynthesis show significant regional variability of net biosphere exchange (NBE) 
and gross primary productivity (GPP) across the tropics and are tied to seasonal and interannual 
changes in water fluxes and storage.  Comparison of satellite based estimates of 
evapotranspiration (ET), photosynthesis, and the deuterium content of water vapor with patterns 
of total water storage and rainfall demonstrate the presence of vegetation-atmosphere 
interactions and feedback mechanisms across tropical forests.  However, these observations of 
stocks, fluxes and inferred interactions between them do not point unambiguously to either 
positive or negative feedbacks in carbon and water exchanges. These ambiguities highlight the 
need for assimilation of these new measurements with Earth System models for a consistent 
assessment of process interactions, along with focused field campaigns that integrate ground, 
aircraft and satellite measurements, to quantify the controlling carbon and water processes and 
their feedback mechanisms.  
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Plain Language Summary 
Changes to the carbon sequestered in tropical forests and soils, as a result of human activities and 
changes in rainfall, temperature, and CO2 concentrations, have a substantial impact on Earth’s 
climate. This review summarizes recent results highlighting how the constellation of satellites 
now in orbit are providing new understanding of the tropical carbon cycle and how it interacts 
with climate variability through the water cycle, and how satellite data can be used to improve 
our process description of the Earth System.  
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1.0 Introduction  

The distribution of temperature and precipitation of the Earth system depends on 
atmospheric CO2 concentrations, which in turn are related to the amount of fossil emissions and 
the amount of CO2 taken up by the terrestrial and oceanic carbon sinks. The tropical biosphere, 
being the largest above-ground reservoir of carbon (Houghton, 2005), is therefore intrinsically 
coupled to the fate of the Earth system. Prior to the twenty-first century, most changes in tropical 
forests were dominated by land use (Skole and Tucker, 1993; Nobre et al., 1991; Santilli et al., 
2005).  However, moving into the twenty-first century, a series of large-scale droughts caused by 
sea surface temperature (SST) anomalies of the El Niño Southern Oscillation (1997-1998, 2015-
2016), and in the Tropical North Atlantic (2005, 2010) (Marengo et al., 2005, 2010, 2015) have 
increased the role of climate variability on tropical forest change.  Observations therefore suggest 
that climate change and variability are as important as land use, and possibly fertilization effects 
from increasing atmospheric CO2,  in defining the current and future state of the tropical 
biosphere (Schimel et al. 2015; Exbrayat et al. 2017; Gentine et al. 2019).  

As these changes are impacting the current state and function of tropical forests, Earth 
System models (ESMs) are predicting an intensification of hydrological and biogeochemical 
cycles (e.g. Fung et al. 2005, Neelin et al. 2006, Green et al. 2019), largely due to feedbacks 
between the carbon, water, and energy cycles (Bonan, 2008; Kurz et al., 2008; Davidson et al. 
2012; Pires and Costa, 2013, Bonan and Doney 2018). However, these predictions have 
significant uncertainty because the full complexity of interactions and feedback mechanisms 
between biogeochemical cycles is not adequately represented or constrained with observations in 
terrestrial biosphere models (e.g. Risi et al. 2013; Sellers et al. 2018 and references therein). A 
consequence of poorly understood feedbacks and lack of observations is that ESMs predict a 
range of possible trajectories in carbon stocks and fluxes varying not only in magnitude but even 
in sign, suggesting tropical CO2 sinks with both positive and negative future trends (e.g. 
Friedlingstein et al. 2006, 2014a).   

Our understanding of the underlying processes controlling these feedbacks has been 
primarily informed by sparse measurements of surface flux data used directly in the models or 
upscaled to the whole tropics using temperature and rainfall data (e.g. Wang et al. 2013; Jung et 
al.  2017).  A constellation of satellites are now in orbit with measurements that allow us to infer 
the fluxes and states of carbon and water at a variety of spatio-temporal scales (Figure 1 and 
Appendices). These measurements, provide a 10-20 year record of the changing tropical carbon 
and water cycles and are providing new insights into how these changes impact tropical forest 
structure, productivity, and net exchange of carbon and water with the atmosphere.  Examining 
the covariations of these data provide understanding of how climatic (e.g. anomaly and trends of 
rainfall and temperature) and anthropogenic (e.g. land use) changes controls these processes, 
their interactions, and feedbacks.  

Our objective in this review is to evaluate how satellite observations have informed our 
understanding of tropical forests’ carbon cycle and its link to climate in general and the water 
cycle in particular.   We choose the period of 2001-2016 as it spans the period with the largest 
number of satellite observations, although different satellites have different start and end times 
within this period. We examine changes in the moist and dry tropics between 30° S and 25° N 
across the three continents during this period (Figure 2). As part of this review we summarize 
unresolved processes at global scales that continue to contribute large uncertainties to the global 
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carbon cycle. There is also now an important opportunity to enhance the calibration of ESM 
parameters and quantify their errors using the wealth these satellite records in order to reduce 
uncertainties of the underlying processes and improve predictive skill. The data assimilation 
methods needed to undertake such calibrations are now available and in part demonstrated in this 
review. 

The paper is divided into five sections.  Section 1 is the introduction. Section 2 focuses on 
recent results on carbon storage, productivity, and fluxes from climate variability, land use 
activities, and fire both from bottom-up and top-down remote sensing techniques.  Section 3 
summarizes recent results demonstrating the links between the tropical carbon and water cycles 
as well as discussing changes in key water states observed by satellite and how they might affect 
tropical carbon balance. In section 4, we discuss a number of additional underlying processes and 
feedbacks that remain poorly observed and hence have large uncertainty.  In section 5, we 
discuss how integrating and assimilating satellite observations into terrestrial biosphere models 
may better constrain these processes to ensure consistency in the inferred feedback mechanisms.  
This section also provides examples for combining observations with a new class of models that 
can assimilate these data for quantifying carbon / water interactions (e.g. Schneider et al. 2017; 
Bloom et al. 2019). Finally, we make recommendations on new observations, joint 
satellite/aircraft/ground field campaigns and model / assimilation development in Section 6.  

This review pays less attention to several important processes that impact carbon and water 
cycling of tropical forests in order to keep the length and scope of the paper reasonable, because 
the topics are well-covered by other reviews, or because there is only limited information from 
remote sensing. We neglect the energy and nutrient cycles, except when discussing their links to 
the carbon and water cycles (e.g. Cleveland et al. 2011,2013 and refs therein).  Aerosols from 
biogenic emissions and fires also have substantive effects on water cycling and radiation (e.g. 
Andreae et al. 2004; Poeschi et al. 2015). Tropical methanogenesis processes and resulting 
methane fluxes from large-scale permanently are an important component of carbon/water 
cycling and these processes are discussed in a number of articles (Richey et al., 2002; Melack et 
al., 2004; Parker et al., 2018; Ganeson et al. 2019).  Phenology has been studied using different 
remote sensing techniques across the tropics and the influence of climate, composition, structure 
and light conditions, and nutrients have been explored at local to regional scales (Saleska et al., 
2003; Myneni et al., 2007; Xu et al., 2015; Wu et al., 2016). Other components of water and 
carbon fluxes such as the lateral flow of carbon through tropical aquatic systems, peatlands or 
soil carbon fluxes are not discussed in the review due to the difficulty of using existing remote 
sensing approaches, although we highlight the uncertainties in these fluxes in Sections 4. 
 

2.0 Satellite Based Estimates of Carbon Stocks, Photosynthesis, and Net Biosphere 

Exchange 

Atmospheric CO2 records suggest that the land surface has acted as a strong global carbon 
sink over the recent decades, mitigating about 30% of fossil fuel emissions (e.g. Friedlingstein et 
al. 2019 and refs therein). A substantial fraction of this sink is located in the tropics (Stephens et 
al. 2007; Brienen et al. 2015). However, it is uncertain how the terrestrial carbon sink evolves as 
climate and atmospheric composition continue to change because of anthropogenic emissions 
(Friedlingstein et al. 2006). In fact, the recent changes in climate across tropical forests, with 
increasing extreme dry and wet conditions accompanied by large-scale deforestation and 
degradation may have significantly impacted the tropical ecosystem carbon storage and fluxes 
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(Phillips et al. 2009; Lewis et al. 2011; Yang et al. 2018).  Nevertheless, there is a large 
uncertainty in quantifying the carbon balance in tropical forests, which in turn is believed to be 
the largest uncertainty in the global terrestrial carbon budget (Houghton 2005; Houghton & 
Nassikas 2017). The sources of these uncertainties are attributed to: 1) difficulties in estimating 
carbon stored in tropical forests, 2) inaccuracy in predicted rates of forest disturbance in the form 
of human induced deforestation, degradation (including fires), and climate driven loss of carbon 
from droughts, and 3) difficulties in predicting rates of carbon uptake due to post-disturbance 
recovery, changes in soil moisture, or increased atmospheric CO2. The relative importance of 
each of these components is not known, but it is assumed that all three sources of uncertainty 
contribute about equally to the difficulties in estimating carbon budgets in the tropics (Houghton 
et al. 2009).  Complicating our understanding of this partitioning of the carbon balance of 
tropical forests are the significant seasonal and inter-annual variations that have been attributed 
to regional climate variability in the form of droughts and floods which adversely impacts tree 
mortality and productivity (Restrepo-Coupe et al. 2013; Kim et al. 2012; Brienen et al. 2015). 
Satellite observations of tropical forests have contributed significantly to reducing these 
uncertainties, as discussed next. 
 

2.1 Carbon Stored in Tropical Forests 

Estimates of above-ground carbon stored in live tropical forests vary between 180–300 Pg C 
(Malhi et al. 2010; Saatchi et al. 2011; Baccini et al. 2012; Bar-On et al. 2018), depending on the 
period of the data, variations of the extent of forest cover, models for converting remote sensing 
measurements of forest structure to biomass, and the contribution from soil carbon.  However, 
one of the largest source of uncertainty in the estimates is due to the lack of forest inventory data, 
unlike in most temperate forest ecosystems (Schimel et al. 2015).  Tropical regions are therefore 
grossly under-sampled by comparison to forests in mid-latitudes, suggesting a potentially large 
bias in estimating global carbon storage and fluxes.   In the absence of systematic national forest 
inventory data over tropical forests, there have been several attempts in using remote sensing 
data along with existing networks of research plots to estimate forest above-ground biomass and 
its spatial distribution. Recent published estimates using this approach, have different spatial 
resolutions, cover different periods, (Saatchi et al. 2011, Baccini et al. 2012), and exhibit some 
differences in spatial patterns (Mitchard et al. 2013). Nevertheless, they converge in providing, 
for the first time, regional estimates of carbon stored in the live vegetation (above and below 
ground) across all tropical forests.  These maps have used spaceborne LIDAR (light detection 
and ranging) observations from the Geoscience Laser Altimeter System (GLAS) onboard the 
ICESAT-1 satellite to sample forest structure distributed across the tropics. The methodologies 
differ in their use of other satellite imagery for mapping and a variety of parametric or non-
parametric algorithms in estimating the spatial distribution of carbon stocks (Xu et al. 2016; 
Mitchard et al. 2013). Spaceborne lidar samples are considered the most reliable source of 
information for quantifying forest structure and estimating above-ground biomass. The GLAS 
LIDAR provided more than 8 million cloud-free samples from 2003 to 2008 in a relatively 
systematic sampling of vertical structure of forests along its orbital tracks (Saatchi et al. 2015).   

Figure 3 presents a map of forest stock to demonstrate how these different measurements can 
be used with machine learning approaches to advance our knowledge of above ground biomass. 
This map of forest stock is developed from a synthesis of existing methodologies and an 
extensive set of in-situ measurements for calibration of remote sensing data to above-ground 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

biomass and total vegetation carbon stock. This carbon map of tropical vegetation improves upon 
previous similar products by including wood density variations across tropical forests in 
modeling the lidar to biomass, integrating L-band radar measurements (ALOS PALSAR) in 
spatial modeling that improves biomass estimation in woodlands and dry forests, and adding a 
large number of recently acquired airborne lidar data to improve the potential systematic errors 
in spatial patterns of biomass.  The map is global and provides a significant improvement over 
previous products in terms of spatial resolution (100 m) to allow assessment of carbon emissions 
and uptakes at the scale where land use and other disturbances occur (See Appendix A.1). A 
coarser-resolution (1 km), static version of this carbon map has been used in several studies for 
quantifying carbon fluxes directly or as a constraint in earth system models (Wei et al., 2017; 
Carlson et al., 2017; Fan et al., 2019).    

However, in most cases, these maps may have a systematic error in areas of very high 
biomass in the tropics due to the limited sensitivity of existing satellite observations.  With the 
new observations from NASA’s Global Ecosystem Dynamics Investigation (GEDI) satellite lidar 
sensor - with more than three orders of magnitude improvements in sample size and sample 
quantity compared to GLAS lidar (Hancock et al., 2018)- estimates of tropical forest carbon 
distribution will improve significantly in near future.  NASA-ISRO Synthetic Aperture Radar 
(NISAR) mission to be launched in 2022 and the European Space Agency BIOMASS radar 
mission (Quegan et al. 2019) to be launched in 2022-2023 will also provide systematic 
measurements and estimates of carbon stock and changes across tropics in future and will be able 
to monitor net carbon fluxes from above-ground disturbance and recovery processes.   
 

2.2 Carbon Emissions from Tropical Forest Loss 

  Studies focused on the carbon balance in tropical regions are concerned with estimating carbon 
emissions due to deforestation, timber harvesting, and disturbances associated with fire or 
droughts. The most common approach is based on carbon book-keeping models that track net 
carbon emissions based on statistics on approximate information of land use and land cover 
(LULC) activities reported by countries to UNFCCC (United Nations Framework on Climate 
Change) or FAO (Food and Agricultural Organization) (R. A. Houghton et al., 2000; Houghton, 
2007; Le Quéré et al., 2018; Hansis et al., 2015).  The book-keeping models focus on land use 
activities and mostly ignore the impact of climate. These models use many broad assumptions 
about the fate of cleared lands and their respective carbon stocks to estimate the net carbon 
impacts (Harris et al., 2012).  Recent advances in remote sensing monitoring of forest cover 
change and maps of carbon stocks has introduced a more direct approach for quantifying 
emissions from different sources (Harris et al., 2012; 2017). The methodology referred to as the 
gain-loss approach provides estimates of net emissions by multiplying the land use change area 
estimates, characterized as activity data, and estimates of emissions per unit area, characterized 
by carbon stocks as emission factors.  This approach requires carbon stocks estimates at the 
beginning of reference period, and LULC changes during the reference period. At the pantropical 
scale, recent studies using spatial carbon maps and spatial deforestation monitoring from remote 
sensing data have improved on estimates of gross emissions by overlaying the deforestation, fire, 
and any disturbance data on continuous maps of carbon density (Harris et al., 2012). However, 
these estimates are based on coarse resolution data (18.5 km) derived from the MODIS time 
series imagery.  With the new Landsat based forest clearing (Hansen et al. 2013) method, the 
analysis can be performed at 1-km spatial resolution using the pan-tropical carbon stock map for 
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the year 2000 (Saatchi et al. 2011), improving the estimate of gross emissions from deforestation 
across tropical forests and their changes (Figure 4).  These results suggest that the spatial 
information on the carbon stocks and forest cover change can readily reduce the uncertainty 
associated with gross assumptions of average carbon stocks and rates of deforestation that were 
used in pre-satellite carbon budget calculations (Houghton, 1999).  With improvements of the 
resolution of satellite data on carbon stocks and forest cover change, it is expected that such 
bottom-up estimation of emissions from land use change in tropics will improve significantly.  

In contrast, it is much harder to estimate the area affected by forest degradation, and resulting 
carbon losses, from satellite observations. This is partly because degradation is caused by a wide 
variety of processes with different effects, including commercial logging, fuelwood extraction, 
sub-canopy cultivation, grazing, fire, and edge effects caused by nearby deforestation (Putz and 
Redford, 2010; Ordway and Asner 2020).  Current estimates of carbon loss from forest 
degradation in tropical countries can be as large as from deforestation annually (~0.55 PgC/year), 
from which 53% are from logging, 30% from wood fuel harvest, and 17% from forest fire 
(Pearson et al., 2017).  This large carbon loss is currently obscured from satellite observations 
and can introduce a significant uncertainty on the tropical forest carbon balance. This large 
uncertainty points toward the need of satellite observations that permit direct observations of 
biomass change, as opposed to the combination of activity data and emissions factors, to greatly 
improve our estimate of carbon losses from degradation and moreover for the recovery of carbon 
in forests that regenerate following degradation. 

Tropical forests have also been losing carbon from tree mortality resulting from extreme 
water stress from climate anomalies and long-term changes in temperature and rainfall (Phillips 
et al., 2009; Lewis et al., 2011).  Although moist tropical forests are not considered as a water-
limited ecosystem, episodic water stress from droughts have shown to introduce large scale tree 
mortality, and reduce the  net primarily production, leading to a weaker forest carbon sink 
(Brienen et al., 2015).  For instance, in 2010, a drought in Amazonia turned the forest from a net 
sink to a net source of  carbon of approximately 0.5 PgC/year (Van der Laan‐Luijkx, et al., 
2015).  Dry tropical forests and savanna ecosystems in tropical regions also add significantly to 
the interannual variability of the carbon dynamics due to moisture availability, fire, and land use 
change (Ahlsthrom et al., 2015; Pelletier et al., 2018; Humphrey et al., 2018). 

Satellite observations have been able to quantify the carbon loss of both dry and wet tropical 
forests from water stress and droughts. The methodology has focused on the direct quantification 
of changes of carbon from drought-induced canopy disturbance and mortality (Saatchi et al. 
2012; Yang et al. 2018), monitoring the canopy browning or green-up from optical 
measurements (Zhou et al. 2014; Saleska et al. 2016), or quantifying the carbon dynamics from 
microwave radiometric measurements of vegetation optical depth (Fan et al., 2019). Top-down 
approaches from airborne and satellite observations of carbon dioxide and monoxide have also 
shown the decline in carbon uptake of tropical forests during drought years (Gatti et al. 2014; 
Van der Laan‐Luijkx, et al. 2015). Aside from changing growth rates, water stress can also 
increase the rates of tree mortality (e.g., Rowland et al. 2015). Some mortality from water stress 
lags one or more years after a drought (Yang et al. 2018; Ito et al. 2012; Doughty et al. 2015). 
However, vulnerability varies among species, sizes, ages, growth rates, and locations, with tree 
vigor the best predictor of individual mortality. At most sites, large, long-lived trees are at the 
greatest risk (Phillips et al. 2010; Bennett et al. 2015) of water stress.   
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2.3 Carbon Emissions from Fires 

Fire is an important disturbance agent in the terrestrial ecosystem, particularly in the dry tropics 
(e.g. Andela et al. 2017; Brando et al., 2019 and refs therein) and is tightly coupled with vegetation, 
climate, biogeochemical cycles, and human activities. Satellite based detections of forests fire and 
emissions have advanced significantly in recent years (Van Der Werf et al. 2017; Chen et al. 2017). 
Emissions are often estimated using two complementary approaches - bottom up and top-down. 
The bottom-up approaches rely on satellite-derived burned area (Giglio et al. 2013), together with 
modeled or data-constrained fuel abundances, combustion completeness, and the emission factor 
of a specific tracer (van der Werf et al. 2017).  The Global Fire Emissions Database (GFED, Van 
Der Werf et al. 2010) is one such database that models fire emissions with these inputs. Fire 
radiative power has also been used to quantify fire occurrences (Kaiser et al. 2012).  

The top-down approach, using bottom-up estimates as the prior knowledge, seeks to optimize 
the emission estimates by fitting modeled trace gas mixing ratios (mainly CO2 and CO) with 
atmospheric observations while accounting for the uncertainty of each information piece in a 
Bayesian framework (Appendix A.2). Numerous satellites (e.g. MOPITT, TROPOMI, AIRS, and 
TES, as shown in Figure 1) measure atmospheric carbon monoxide (CO) and these have been used 
extensively as a tracer for fire carbon emission estimates because CO has a relatively simple source 
structure; direct emissions are mainly from fossil fuel combustion and biomass burning, with 
relatively small spatial colocations between the two.  The atmospheric lifetime of CO is only a few 
weeks, allowing satellite observations to track transport of CO from its source regions (Pfister et 
al. 2005; Shindell et al. 2006; Jiang et al. 2017; Pechony et al. 2013; Yin et al. 2015, 2016; Zheng 
et al. 2019). Combining the information of the burned area and fire carbon emissions informs 
estimates of fuel availability and combustion factors, helping to refine our process-based 
understanding (Bloom et al. 2015, 2016;  Yin et al. 2020).  

As shown in Figures 5 and 6, both burned area and CO emissions attributed to fire, indicate a 
net decline in tropical fire occurrences in the past decades, at least until 2016 (Jiang et al. 2017; 
Worden et al. 2017). Andela et al. (2017) showed a 25% decline in the global burned area from 
1997 to 2015 combining multiple optical and thermal satellite data sets such as from the Moderate 
Resolution Imaging Spectroradiometer (MODIS), with the most significant decreases in the 
savannas of Africa. While we show burned area and CO here, we note that total carbon derived 
from either burned area or CO emissions are in surprisingly good agreement, at least at the pan-
tropical scale. Estimates agree within ~15% (Appendix A.2) and both CO and BA based Carbon 
emissions show declines of ~15% for the 2002 through 2016 time period. 

Alternative burned area datasets that are also based on MODIS reflectance and thermal 
anomaly data using a different algorithm (Chuvieco et al. 2018) show similar pan-tropical declines. 
This product disagrees with GFED in southern Africa finding an increase in burned where GFED 
shows a decline (Forkel et al. (2019). Comparing these two products  show that regional trends 
(~1000 km) between the two datasets can be poorly correlated, and trend in the burned area is 
strongly affected by the start and the end years of the analysis, so care must be taken when using 
these different satellite data sets to explore regional changes.  

Agricultural expansion and intensification have been suggested as the primary drivers of global 
declining fire (Andela et al. 2017). However, a further regional analysis suggested that one-third 
of the African fire reduction occurred in croplands, and climate factors relating to biomass 
productivity and aridity explained about 70% of the burned area decline in natural land cover 
(Zubkova et al. 2019). These studies therefore highlight the importance of both land-use and 
changes in dryness in controlling fire emissions.  
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Despite the decline in the tropical burned area up until 2016, anomalously large fires occurred 
during El Niño droughts, emitting not only large amounts of carbon but also causing negative 
health, ecological, and economic impacts (Marlier et al. 2013). During a normal year, when air 
dryness in the forest understory is low (VPD<0.75 kPa) and fuel moisture content is high (> 23% 
), fire rarely extends to the intact forest areas (Nepstad et al., 2004; Brando et al., 2019; Dadap et 
al., 2019).  However, in El Nino years, these two factors change significantly, increasing the 
flammability across tropical forests, particularly near forest edges. In addition, the large peat fire 
emissions from Indonesia during the 2015 El Nino (Jiang et al. 2017; Liu et al. 2017) resulted from 
nonlinear responses to regional drought.  In the future, droughts associated with El Nino may act 
as a positive feedback to future climate warming and projected enhancement of ENSO events 
(Field, 2016;  Yin et al. 2016).  Observed changes in fire dynamics are estimated to impact the 
global carbon cycle through both direct fire emissions (Andela et al., 2017; Arora & Melton, 2018);  
as well as indirectly through vegetation growth rate changes under different fire frequencies (e.g. 
Arora and Melton, 2018). 

Future studies aimed at quantifying burned area and fire emissions with higher resolution and 
accuracy are needed to reduce the uncertainty in current datasets. It is also critical to improve our 
understanding of the complex interplay among fire, vegetation, climate, and human activities in 
the context of climate warming where increased fire risks are projected (Forkel et al, 2019; Andela, 
et al. 2019; Knorr et al. 2016; Pechony & Shindell, 2010).  
 

2.4 Carbon Uptake From Tropical Forest Gain 

Tropical forests are not a static storage of carbon and account for one-third of the total 
metabolic activity of the Earth’s vegetation associated with the gross primary production 
(Myneni et al. 1995; Zhao et al., 2005, Beer et al., 2010). These forests capture more than 50-70 
PgC per year through photosynthesis (as discussed in the next section) and releasing a near 
similar amount back to the atmosphere through autotrophic and heterotrophic respiration (Malhi, 
2011).  The gain of carbon in tropical wet and dry forests, like most forests globally, occur after 
disturbance and through a recovery process.  Regrowth of tropical secondary forests following a 
complete removal of forest or partial extraction of trees can partially and significantly 
counterbalance carbon emissions (Pan et al., 2011; Chazdon et al., 2016).  The process of carbon 
gain in these forests depend strongly on a combination of nutrient availability in the soil that may 
be depleted due to past land use activities and moisture availability (Poorter et al., 2016).  
Furthermore, regenerating forests may also be subject to atmospheric CO2 fertilization effects 
that may enhance their recovery process and biomass gain (Cleveland et al., 2011; Van Der 
Sleen et al., 2014; Phillips et al. 2014; Besnard et al., 2018). 

Direct observations of tropical forest biomass and biomass gain from past disturbances have 
evolved in recent years (Saatchi et al., 2011; Yang et al., 2018; Fan et al., 2019). However, the 
methodologies for detecting biomass gain are limited in areas of younger sencondary forests 
(Englhart et al., 2011; Morel et al., 2011; Yu et al., 2016) or at local scales with the aid of  
advanced airborne observations (Dubayah et al., 2010; Kent et al., 2015; Meyer et al., 2014; 
Saatchi et al., 2011.   

Quantifying net carbon gain from secondary regeneration has been difficult because of the 
lack of systematic observations of secondary forest biomass accumulation (Barbosa et al., 2014).  
The rate of secondary forest regeneration depends upon the type and intensity of disturbance, 
subsequent land use, and the processes of forest regeneration, as well as the characteristics of the 
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regenerating landscape (Chazdon et al. 2008; Poorter et al. 2016). Secondary forests can be 
highly productive, having an average recovery rate of about 3.05 Mg C ha-1 yr-1 approximately 
11-20 times the uptake rate of an old growth forest (Poorter et al. 2016).  

Most recent satellite techniques have mainly focused on identifying areas of secondary forests 
after the last disturbance (Hansen et al., 2013; Almeida et al., 2016; Carreiras et al., 2017), and 
using other ancillary data such as ground plots or age-biomass models to estimate the carbon 
uptake.  Satellite radar sensors have been able to directly estimate secondary forest age-biomass 
relationship and allow monitoring carbon uptakes of up to 20 years with reliable uncertainty 
(Cassol et al., 2019; Yu and Saatchi, 2016). However the ability to provide these estimates 
systematically from space at annual or sub-annual frequency requires dedicated satellite missions 
such as  NASA’s NISAR and ESA’s Biomass that are planned to be launched in 2022.  

 
 

2.5 Forest Gross Primary Production 

Observational estimates based on vegetation index imagery have revolutionized our 
understanding of the spatial distribution of Gross Primary Production (GPP) (e.g. Zhou et al. 
2005; Ryu et al. 2019 and references therein). For example, the MODIS satellite visible data can 
be used to quantify GPP, using a number of inputs from re-analysis and vegetation models, 
providing a record of GPP changes since 2002 (e.g. Zhang et al. 2017 and references therein). 
However, these data are limited by different atmospheric and surface scattering effects which 
degrades the accuracy of GPP estimates, their seasonality, and trends in the cloudy tropics (e.g. 
Maeda et al. 2016).  New satellite based measurements of solar induced chlorophyll fluorescence 
(SIF) represent a major breakthrough for quantifying photosynthesis beyond the leaf scale (e.g. 
Sun et al. 2017). Chlorophyll fluorescence originates from the core of photosynthetic light 
reactions, in which a small fraction (roughly 2%) of photosynthetic active radiation absorbed by 
chlorophyll is re-emitted at longer wavelengths (660-850 nm) as fluorescence, in competition 
with two other de-excitation pathways, photochemical and non-photochemical quenching. These 
measurements have typically been made at leaf scale via pulse-amplitude modulation 
fluorescence (Baker 2008; Genty et al. 1989; Krause & Weis et al. 1991; Moya et al. 2004), but 
are now possible at canopy and ecosystem scale using passive remote sensing (Mohammed et al. 
2019 and refs therein). SIF, as measured by satellites, places constraints on large scale 
photosynthetic activity, and has potential to offer more mechanistic understanding of ecosystem 
carbon dynamics (Flexas et al. 2002; Frankenberg et al. 2011; Magney et al. 2019).  

As with visible light data, spatial sampling remains a problem for constructing GPP based on 
SIF, especially in regions with persistent deep convective clouds such as the tropics. Temporal 
sampling may also be an issue as uncertainties remain on the relationship between measurements 
of SIF at one particular time of day and the diurnal cycle of photosynthesis due to changes in SIF 
yield with changing light conditions (Yang et al. 2015; Magney et al. 2019). Non-linearities exist 
in the relationship between the SIF radiance signature and photosynthesis for high and low light 
conditions, which can be difficult to quantify when integrated over the entire forest canopy layer 
compared to the leaf understanding.  Despite these problems, a strength of SIF is its ability to 
capture photosynthetic variation as a function of season and in response to episodic drought, 
which is problematic using reflectance-based vegetation metrics (LAI, EVI) whose seasonality is 
not directly correlated with GPP, especially in evergreen forests such as the tropics and high-
latitudes (Frankenberg et al. 2009). SIF has now been retrieved from multiple overlapping 
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satellites since 1995, providing a long-term decadal record of global photosynthetic change 
(Parazoo et al. 2019). Figure 7 (top panel) shows estimates of GPP constrained by SIF 
observations from the Orbiting Carbon Observatory 2 (OCO-2), (Parazoo et al. 2014; Zhang et 
al. 2018, see Appendix A.3). These SIF based GPP estimates, which compare well to upscaled 
estimates based on site data and satellite imagery (e.g. Frankenberg et al. 2011), can also be used 
to quantify the relative importance of GPP variations in the wet and dry tropics across the 
Amazon and highlight model challenges in capturing the timing and amplitude of dry and wet 
season photosynthesis (Parazoo et al. 2014). Figure 7 (bottom panel) shows the seasonality of 
GPP derived from SIF assimilated into a terrestrial carbon cycle model (e.g. Parazoo et al. 2014) 
for the three regions of the pan-tropics, highlighting the importance of the water cycle on GPP 
(e.g., Green et al. 2017; 2019) as GPP effectively co-varies with precipitation (next section). The 
data assimilation approach used in Figure 7 is also further described in Section 5.  
 

2.6 Top-down Observations of NBE and Its Relationship to the CO2 Growth Rate 

With the advent of satellites that can quantify XCO2 globally (e.g. Eldering et al. 2017 and 
refs therein), global fluxes of CO2 (Appendix A.4) can be quantified and net biosphere exchange 
(NBE) can be derived from these fluxes.  These flux estimates typically have a very coarse 
spatial resolution between 500-1000 km (e.g. Liu et al. 2017, Bowman et al. 2017) and 
uncertainties that vary from region to region (Appendix A.4).  Consideration must be given over 
which regions and time periods are large enough to reduce these uncertainties to make 
comparisons between years or with other data sets meaningful.  For example, while mean NBE 
values can have bias errors that reduce confidence in their interpretation, NBE differences, or 
anomalies, are useful for evaluating changes in carbon balance, their relationship with climate 
variability, and the CO2 growth rate. Figure 8 shows a comparison in the NBE anomaly from 
year to year derived from the OCO-2 and Greenhouse Observation SATellite (GOSAT) 
satellites, and the global CO2 growth rate. This comparison confirms the nearly one-to-one (R2 
value is 0.94) relationship showing how the tropical biosphere affects the interannual variability 
of atmospheric CO2.  As discussed in the next section, these regional estimates of NBE, when 
combined with measurements of photosynthesis (Section 2.5) and water can be used to quantify 
how climate drivers affect carbon balance at much finer scales than previous estimates using 
surface measurements alone (e.g. Cox et al. 2013). 
 

3.0 Carbon and Water Interactions And Feedbacks 

3.1 Direct Impact of Water Cycle Variability on Carbon Fluxes and Stocks 

Over yearly to decadal time scales, variations in sea surface temperature (SST) related to 
ENSO alters oceanic moisture fluxes over the tropical continents and corresponding humidity 
rainfall, and temperature  (Anber et al. 2015). These temperature and moisture changes (e.g. 
Wang & Schimel et al. 2003) in turn modulate the carbon balance as observed in NBE, GPP, and 
the respiration component from fires as discussed in Section 2 (e.g. Sellers et al. 2018). Increases 
in fire emissions across the tropics are related to moisture variability and transport modulated by 
ENSO (e.g. Chen et al. 2017). Large decreases in humidity and rainfall associated with ENSO 
and coupled to human activities can also create larger fire emissions as observed in Indonesia 
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(Field et al. 2009; Field et al. 2016) in which very low water tables result in the burning of both 
vegetation and ancient peat; this non-linear behavior potentially provides a preview of “tipping 
point” behavior in which large changes in the water cycle substantively alter the carbon balance 
(e.g. Lenton et al. 2008), releasing carbon with long residence times (e.g. Bloom et al. 2016) into 
the atmosphere. Similarly, both site measurements and satellite-based measurements suggest the 
other component carbon fluxes such as GPP are strongly affected by varying moisture.  Lee et al. 
(2013) used SIF and canopy water content measurements to show the impact of water stress on 
the Amazon forest. Guan et al. (2015) uses SIF and EVI measurements with rainfall to show that 
rainfall amounts larger than 2000  mm/year are needed to sustain tropical evergreen forests in the 
dry season. Saatchi et al. (2013) showed that repeated droughts in the Amazon have a lasting 
effect on forest carbon and forest stock using satellite-based estimates of rainfall and canopy 
water content. Satellite based estimates of rainfall and vegetation color indices show that 
decreasing rainfall over several years on the Congo forest results in vegetation browning (Zhou 
et al. 2014). 

However only recently can we observe how these local and regional stresses affect 
atmospheric CO2 at pan-tropical scales and relate them back to their component carbon and 
water fluxes. Humphrey et al. (2018) found a global relationship between TWS as observed by 
the GRACE instrument and the CO2 growth rate.  However, Liu et al. (2017) showed that this 
bulk effect between water and carbon is more nuanced across the tropics. Liu et al. (2017) used 
new regional scale (Section 2.6 and A.4) carbon fluxes as derived from total column 
measurements of CO2 from the GOSAT and  OCO-2 satellites, satellite based estimates of fire 
emissions (Section 2.3) and GPP as derived from SIF (Section 2.5), along with water vapor and 
rainfall measurements to show how the tropical carbon balance responds to moisture changes 
across the tropics and that changes in the terrestrial carbon balance was different across each of 
the main regions. Each of the three tropical regions (S. America, Africa, and Maritime) had a net 
flux of ~0.8 PgC; however, these changes result from a decrease in GPP in S. America, an 
increase in respiration in Africa and both an increase in fire emissions and decrease in GPP in the 
maritime region. These landmark studies show that carbon balance does not uniformly respond 
to climate variability but instead responds to different stresses depending on the ecosystem. 

Ideally changes in NBE are compared to changes in soil moisture as that is a more immediate 
representation of the water available to plants and hence how water affects carbon (e.g. Fung et 
al. 2005; Green et al. 2019). Recent satellite measurements from the Soil Moisture Active 
Passive (SMAP) and Soil Moisture Ocean Salinity (SMOS) missions use microwave 
measurements to estimate surface soil moisture. Unfortunately, radar based soil moisture 
estimates over the tropics are difficult to interpret due to attenuation of the signal within thick 
vegetation or forest canopies (e.g. Babaeian et al. 2019 and refs therein).  However, we do have 
15+ years of satellite-based measurements of rainfall and TWS, which can be used to inform 
about variations in soil moisture (e.g. Gentine et al. 2019). For example, tropical biosphere flux 
anomalies have a close relationship with TWS anomalies measured by the Gravity Recovery and 
Climate Experiment (GRACE) satellites, as shown in Figure 9a (left panel). The NBE is positive 
(i.e. more carbon is released into the atmosphere) when the water storage has a negative 
anomaly, and vice versa. TWS explains more than 67% of the tropical biosphere flux anomalies. 
However, it is unclear how this relationship between NBE and TWS varies between wet and dry 
tropics because of the spatial resolution of NBE data.  Spatially, NBE is positive when the TWS 
anomaly is negative (indicating a drought condition) in the Amazon and maritime region (Figure 
9b right panel). In contrast, NBE and TWS are somewhat spatially correlated in Africa, which 
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may indicate a large influence from heterotrophic respiration (Liu et al. 2017) although the exact 
mechanism for this behavior is unclear and may be unrelated to carbon/water exchanges (e.g. 
Palmer et al. 2019). Coupling top-down NBE and TWS constraints such as these with models of 
the carbon and water cycles may help to resolve these remaining uncertainties and can also be 
used to elucidate how water affects other carbon cycle fluxes such as GPP, forest stocks and 
fires. These model-data fusion approaches are further discussed in Section 5.  
 

3.2 Interactions and Feedbacks Between Vegetation and Water 

Feedbacks between vegetation, soil moisture, and rainfall are also of critical importance for 
understanding tropical carbon balance as vegetation modulates rainfall which in turn affects 
water availability as vegetation contributes 30-50% to the overall atmospheric moisture in the 
wet tropics (Salati et al. 1979). These feedbacks can have substantive effects over short and long 
time scales. Green et al. (2017) used measurements of SIF and rainfall to show that variations in 
photosynthesis can explain up to 30% of the variations in rainfall in the dry tropics.  At 
interannual timescales, severe droughts can affect forest composition and subsequent 
evapotranspiration. Saatchi et al. (2013) used microwave-based measurements to show that 
forest structure shows persistent degradation 3-4 years after the 2005 Amazon drought; 
hypothesizing that this could result from feedbacks into the water cycle through changes in ET. 
In turn, Shi et al. (2019) used satellite based ET and deuterium content of water vapor to provide 
evidence that a decrease in Amazonian evapotranspiration in the dry-to-wet transition phase 
(~September to November) occurred in 2006 as a result of the 2005 drought. The Southern 
Amazon dry season length is also observed to be increasing (Fu et al. 2013) and one explanation 
may be due to loss of vegetation and corresponding evapotranspiration from logging, agriculture, 
and repeated droughts.  
 In addition to new satellite observations of SIF (Section 2.5), remote sensing observations 
of the deuterium content of water vapor, vapor pressure deficit, and ET have the potential for 
evaluating vegetation atmosphere interactions and feedbacks. Measurements of the deuterium 
content of water vapor (e.g. the HDO/H2O ratio) are now made by several satellite instruments 
(e.g. Worden et al. 2007; Frankenberg et al. 2009; Worden et al. 2019; Appendix 8). This data 
allows us to look at how different moisture sources and processes affect atmospheric water 
vapor, since water vapor from the ocean has a different isotopic signature than water vapor from 
tropical transpiration. Risi et al. (2013) demonstrates how these data are directly sensitive to the 
relative contribution of vegetation versus oceanic moisture on lower-tropospheric humidity, a 
key indicator for precipitation.  Figure 10 shows a map of the global mean value of the isotopic 
composition (or deuterium content) of water vapor for 2006 – 2010 time period in the lower 
troposphere between 800 – 500 hPa.  The units are in parts per thousand (δ-D, or per mil) 
relative to the isotopic composition of ocean water. For example, the isotopic composition of the 
vapor that evaporates from tropical land generally has a value between 0 and -75 per mil and 
vapor originating from the ocean ranges between -75 to -100 per mil in the tropics (e.g. Risi et al. 
2013; Rahul et al. 2018 and refs therein). Water vapor associated with rainfall and deep 
convection will usually be depleted relative to ocean vapor, due to recycling of vapor in the 
convective system (Worden et al. 2007) and entrainment of isotopically depleted air from the 
free troposphere (e.g., Risi et al. 2008).  The Congo is typically more enriched than the Amazon; 
however, this could indicate that there is more deep convection in the Amazon than the Congo, 
as opposed to less transpiration, because deep convection is more efficient at removing (or 
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depleting) the heavier water from water vapor than normal rainfall processes (e.g. Galewsky et 
al. 2016 and refs therein). Care must therefore be taken in using these data to attribute vapor to 
specific sources and processes. 
 Wright et al. (2017) looked at the variation of the deuterium content of water vapor using 
data from the Aura Tropospheric Emission Spectrometer (Appendix A.7) to show increasing 
relative contribution of transpiration to the water vapor in the Southern Amazon, prior to the wet 
season, and that this transpiration helped to initiate the Amazon monsoon. An important caveat is 
that the isotopic composition of water vapor describes the relative contribution of ET to oceanic 
water during the dry season but not the absolute amount of ET fluxes. Unfortunately, there is not 
enough TES deuterium data to create a difference plot similar to Figures 4 through 6 to 
determine if there has been a large scale re-balancing of tropical moisture sources. New 
deuterium measurements from the AIRS instrument (Worden et al. 2019) have the potential to 
create this satellite record. 
 The question of what drives seasonal changes to ET arises from the Wright et al. (2017) 
paper. Here we can use satellite measurements of VPD from the AIRS instrument 
(Barkhordarian et al. 2017, Appendix A.7) to infer one possible explanation. VPD is the 
difference between the amount of vapor at the near surface relative to 100% humidity. VPD is 
controlled by both atmospheric and surface conditions and therefore reflects the amount of water 
in the surface available for evaporation, the water use efficiency of the plants, and the 
atmospheric demand on surface moisture, as well as large scale atmospheric fluxes (e.g., Seager 
et al. 2015; Massman et al. 2019). As shown in Figure 11, there is a seasonal increase in VPD 
that corresponds to the increase in δ-D and suggests that seasonal evaporative demand is partly 
driving the source of the atmospheric water vapor during this time period. These comparisons of 
deuterium content and VPD can be made against  seasonal ET estimates using vegetation based 
measurements (e.g. Fisher et al., 2009 Maeda et al. 2017) and as a residual observation of 
rainfall, gravity, and river runoff (e.g. Swann and Koven 2017) as shown in the bottom part of 
Figure 11.  The gravity derived ET estimates (Appendix A.6.2) suggest that ET can be important 
during the dry and dry-to-wet seasons in the humid tropics as suggested by the ET over the 
Solimoes Basin, and also during the dry to wet transition season in the dry tropics as suggested 
by the ET over the Madeira Basin (Maeda et al. 2017). However, these large seasonal differences 
between the gravity based and surface measurement-based ET, estimates indicate that more work 
is needed to quantify the seasonal ET across the tropics given its importance for quantifying 
tropical carbon and water feedbacks. New surface temperature measurements from the 
ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS), 
could help resolve these differences as their improved spatial resolution (~100 m) is more 
comparable to ground validation sites for the purpose of testing algorithms that can relate remote 
sensing observations of surface temperature to evapotranspiration (Fisher et al. 2020). However, 
a key drawback of ECOSTRESS is that its observations are only possible in non-cloudy 
conditions. Combining ECOSTRESS and other hydrologic observations with models to better 
understand variations in hydrologic variables that are not directly observed (e.g. soil moisture) or 
at times when observations are less plentiful (e.g. cloudy conditions) may be useful to fill these 
gaps (Purdy et al. 2018).  
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3.3 21st Century Changes and Variability of Rainfall, Terrestrial Water Storage, and 

Evapotranspiration 

Given the importance of inter-annual variations in rainfall and TWS in explaining NBE and 
GPP, we would expect that longer term changes in rainfall, water deficit, and soil moisture 
should have an impact on carbon dynamics, productivity, NBE, and stocks. Our primary 
approach for assessing these long-term changes through satellite measurements are from the 
Tropical Rainfall Monitoring Mission (TRMM), the Global Precipitation Measurement Monitor 
(GPM), and the Gravity Recovery and Climate Experiment (GRACE) mission (Appendix A.5). 
We therefore present and evaluate decadal scale changes in these observations and how these 
changes might affect tropical carbon balance. Figure 12 (top panel) shows the mean rainfall as 
calculated by the TRMM instrument and Figure 12 (bottom panel) shows the change in rainfall 
for the time periods between 2002 – 2008 and 2009 – 2016 using both TRMM And GPM data; 
we used these time periods due to the increase in La Nina periods beginning in 2008, which 
resulted in a marked decrease in fire emissions (Section 2). We do not attempt to separate how 
the observed changes in the tropical water cycle are related to ENSO versus decadal variability 
in oceanic temperatures or anthropogenic effects as the focus is on how these observed variations 
in water affect carbon and vice versa. 

To better understand changes in the terrestrial water budget, rainfall data can be compared 
against the change in terrestrial water storage (TWS) as measured by the GRACE mission 
(Tapley et al., 2004). GRACE has been revolutionary in detecting subsurface water storage 
changes including in root zone soil moisture and groundwater that are critical for plant access to 
water during times of drought and little surface water, and can help to reveal information on the 
concept of plant water use and drought resilience. A recent paper by Rodell et al (2018) has 
highlighted global trends in terrestrial water storage over the GRACE observational period, 
showing the impacts of combined climate variability, human use and water consumption and 
potential signatures of climate change. Figure 13 (top panel) shows the changes in TWS from 
April 2002 through December 2016.  

  As with the rainfall data, Figure 12 (top) shows that there are both increases and decreases 
in TWS across the moist and dry tropics but with a net increase in TWS during this time period 
(Reager et al. 2016, Rodell et al. 2019), primarily as a result of increased rainfall from La Nina. 
Figure 13 (bottom panel) shows the correlation between the changes in TWS and rainfall for 
these time periods. While GRACE data also reflect changes in evapotranspiration and river 
runoff (e.g. Swann & Koven 2017), it is useful to compare GRACE and TRMM/GPM together 
because they reflect the primary input of moisture to the land and how much the land retains 
water for possible use by the biosphere. Correlations are largest in the dry tropics but 
surprisingly almost zero or even negative in many places in the wet tropics, which  suggests that 
other factors such as a change in ET or capacity of soil to hold water and subsequent river run-
off (the other primary water fluxes) may be affecting these correlations. 

Based on the NBE / TWS comparisons in Figure 9, we might expect a net increase in carbon 
storage based on the net increase in tropical water storage or rainfall. Indeed, studies such as 
Song et al. (2018) show an increase in vegetation in the Northern African dry tropics, while Zhou 
et al. (2018) shows increased browning in the Congo associated with decreasing rainfall.  
However, as discussed in the next section there is evidence for regional changes in ET across the 
tropics, and these changes, along with those observed in TWS, should also have an impact on the 
tropical carbon balance due to the covariation between ET, SIF, and vegetation and these must 
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be considered as additional evidence in the tropical carbon puzzle. Using the MODIS based ET 
estimates from Fisher et al. (2009), Figure 14 (top) shows an estimate of the mean ET for the 
2002 to 2016 time period and the change in ET across the tropics for the same time period in the 
previous plots. A decline in the Amazon of about 8 mm / month for the Western Amazon or 
approximately 8% given the ET in this part of ~100 mm / month is observed. These data can be 
compared to ET estimates based on the residual of TWS, rainfall, and river runoff in which ET is 
derived for large basins (Swan & Koven 2017; Maeda et al. 2017). ET estimates from these types 
of data also suggest a similar decline (Swann & Koven 2017), a surprising result given that 
terrestrial total water storage (TWS) is increasing in this area.  Two hypotheses are able to 
explain this behavior which are that GPP is declining or that water use efficiency (WUE) is 
increasing, both of which suggests that the Amazon is responding to changing climatic 
conditions such as changes in humidity or radiation (e.g. Van der Sleen et al. 2014), or more 
frequent droughts (e.g. Saatchi et al. 2013). These differences may also be affected by the choice 
of starting dates as the ENSO events and corresponding droughts in 2010 and 2015 may have 
had a much bigger impact on the biosphere than the positive ENSO anomalies between 2002 and 
2008.   

The changes in rainfall, ET, and TWS for the wet tropics suggest a complex picture for the 
trajectories of water and carbon during 21st century.  Reconciling our process understanding of 
how water flows through the moist tropics against these observations will therefore be critical 
towards explaining carbon balance in the moist tropics.  On the other hand, the dry tropics appear 
to show well behaved relationships: TWS and rainfall are well correlated and increases/decreases 
in ET are generally related to increases/decreases in rainfall and TWS, suggesting that ET is 
responding to changing soil moisture and rainfall. What is not clear is whether the balance of 
moisture from land and ocean is changing at the same rate. For example, as a region goes into a 
drought, does ET increase in response to increasing dryness, which can moderate the drought? 
Or does it decrease as plants conserve water to maintain carbon?  Alternatively, does an increase 
in sensible heat from a reduction in vegetation increase precipitation through increased moisture 
transport from the ocean? Or does reduced vegetation result in reduced lower-tropospheric 
humidity, a key condition for precipitation (e.g. Risi et al. 2013 and references therein). 
Quantifying the sign and magnitude of these feedbacks is critical for robust prediction of the 
tropical carbon cycle. However, models are not yet equipped to easily integrate these new 
satellite observations for testing and then updating the process description that describes these 
feedbacks (e.g. Risi et al. 2013). New approaches are therefore necessary to fully exploit the 
range of satellite data for quantifying carbon / water interactions as discussed in Section 5. s 

4.0 Other Uncertainties in Carbon and Water Processes, Reservoirs, and Cycling 

 
As discussed previously, the satellite record, when combined with aircraft and in situ data, 

has greatly expanded our knowledge of the carbon and water cycles and how they interact. 
However, many puzzles remain that are critical towards quantifying the evolution of the 
terrestrial carbon and water cycles. One mystery is the role of temperature versus water in 
modulating terrestrial carbon cycling. As discussed in Section 3 and in Humphrey et al. (2018), 
CO2  growth rates show a strong relationship with water storage as discuss in Section 3 and this 
contrasts with statistical analyses that find a strong relationship between the CO2 growth rate and 
temperature variations (e.g. Wang et al, 2013, Jung et al., 2017). A multitude of factors explain 
these inconsistencies, but they are likely partially influenced by a) compensating/cofounding 
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processes acting on net fluxes, e.g. increased drying is associated with increased temperature b) 
limited measurement capability for resolving spatial variations in drivers and processes below-
ground such as soil moisture and roots in a vertically resolved manner c) errors in climatic 
drivers used in analyses d) coupling between these factors through land-atmosphere interactions, 
and e) inability to directly estimate with remote sensing other components of the net carbon 
balance, such as autotrophic and heterotrophic respiration.  The combination of these factors 
drive a multitude of uncertainties in specific pathways of carbon water coupling and confound 
our ability to predict the evolution of the tropical carbon cycle. 

As discussed in Section 2, respiration remains one of the largest uncertainties in the carbon 
budget. However,  quantifying respiration is challenging and currently only possible using 
remote sensing at very coarse scales as a residual of net carbon flux and GPP, such as discussed 
in Liu et al. (2017) and Bowman et al. (2018). For heterotrophic respiration in particular, there is 
large uncertainty in the effect of soil moisture and soil carbon with different models showing 
very different functional forms in the heterotrophic respiration – soil moisture relationship 
(Sierra et al. 2015). Consequently, heterotrophic respiration is the dominant source of uncertainty 
in soil carbon fluxes (Todd-Brown et al. 2013). Some progress has recently been made on better 
understanding these relationships (Bond-Lamberty et al. 2018; Yan et al. 2018), but this progress 
is still almost entirely based on in situ data from, with less than 25 sites distributed across the 
tropics. Konings et al. (2019) recently suggested heterotrophic respiration could be constrained 
with remote sensing by inverting the land surface carbon balance using the XCO2, SIF, and fire 
data. However, uncertainties in the carbon balance components and the difficulty of 
disentangling autotrophic and heterotrophic respiration limit the precision of this method. Lastly, 
dissolved carbon in aquatic systems can be an important component necessary to close the 
carbon budget, and is likely particularly high in many of the streams flowing from peatland areas 
in the tropics. However, these measurements are essentially unconstrained by current remote 
sensing. 

The coupling between photosynthesis and water and their interactions belowground remains 
poorly understood. Root density and root water uptake is highly uncertain (Powell et al. 2013), 
but currently unobservable. Regions such as the Congo have shallow groundwater, but relatively 
few observations of belowground processes (Fan et al. 2013). Little is also known about how 
rooting density varies with depth. Many tropical regions contain peatlands or standing water, but 
these are poorly mapped (Dargie et al. 2017). Furthermore, research in plant hydraulics has 
shown the need to account for movement of water within plants, and the close link between 
belowground processes and water uptake (Bonan et al. 2014; Kennedy et al. 2019) in order to 
correctly reproduce the seasonal cycle of GPP and ET in tropical rainforests (Powell et al. 2013).  
These poorly constrained processes likely contribute to the large differences between ET 
estimates, as discussed in this manuscript and many others  (e.g. Pan et al. 2020 and refs therein). 
They also underscore the importance of continuing to improve estimates of ET, as this quantity is 
critical for evaluating feedbacks between the plant and soil moisture and plant hydraulics in the 
carbon, water, and energy cycles.  

Previous studies have also shown the importance of demographic composition globally, 
and thus presumably tropically (Friend et al. 2014) in modulating carbon and water balance.. 
Demography-resolving models that can be trained on and tested against remote sensing data have 
become more capable of simulating tropical forests (Fisher et al. 2015; Xu et al. 2016), but so far 
these simulations largely remain confined to regional rather than pan-tropical studies. Above 
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ground, large uncertainties remain in the role of vertical variations of light, humidity, CO2, wind 
and temperature across the canopy and horizontally (Banerjee & Linn 2018).  
 

5.0 Quantifying Carbon and Water Processes and Reservoirs By Combining Satellite Data 

and Models 

 
While there are ever increasing measurements of carbon, water, and energy states, and to 

some extent processes (e.g. SIF, deuterium), models are needed to relate these states to the 
overall tropical carbon and water budgets and to explain and forecast their future changes. In 
doing so, the key challenge is to robustly combine the observational data, with its fundamental 
link to reality, to models that summarize our theoretical understanding and provide a framework.  
This process is illustrated in Figure 15 in which data, with its characterized uncertainties, and 
model parameters or state, with their own a priori uncertainties (e.g. Raupach et al. 2005; 
Schneider et al., 2017), are integrated together. Integration of model and data are typically 
informed with Bayes’ theorem. Such approaches are known as data assimilation or model-data 
fusion methods. In this section, we introduce model-data fusion and discuss its benefits and 
challenges for reducing uncertainty in processes, fluxes, and reservoirs that control carbon and 
water cycling.  

A number of model-data fusion efforts have focused on assimilating satellite observations 
into existing terrestrial biosphere models (e.g. Macbean et al. 2016; Bacour et al. 2019). 
Assimilating observations into these models can constrain fluxes (Macbean et al., 2018) and 
processes such as CO2 fertilization (Smith et al., 2019). These models represent a large diversity 
of process and are therefore computationally highly intensive. To maintain computational 
tractability, these efforts tend to use Kalman filters and smoothers to optimally combine models 
and data, which have the benefit of being computationally tractable but require Gaussian 
assumptions about the uncertainties. Because of their large number of parameters, such model-
data fusion approaches also remain susceptible to equifinality (Beven, 1993; Macbean et al. 
2016), compensating errors between parameters and processes when the number of observed 
dimensions is less than the number of unknowns.  Alternatively, if a carbon cycle model of 
intermediate complexity is used, then Markov Chain Monte Carlo approaches become 
computationally tractable, removing the need to assume a Gaussian distribution in model and 
observational uncertainties (Bloom et al., 2016).  We note that new ESM’s are being developed 
using these approaches with the goal of  harnessing the satellite program of record and upcoming 
measurements (Schneider et al. 2017) for the purpose of quantifying biogeochemical processes 
and improving Earth system prediction.  

We demonstrate this approach using an intermediate complexity model depicted in 
Figure 16, which simulates the dynamics of pools (reservoirs) of live and dead carbon (solid 
green boxes), according to various carbon processes, including fire and management (black 
edged green boxes), 2) the dynamics of plant and soil moisture (blue boxes) according to 
hydrological fluxes (black edge blue boxes), 3) the vertical structure of the ecosystem, and 4)  
the critical processes that drive the dynamics of the carbon and water pools, and their coupling, 
such as photosynthesis and evapotranspiration, using emulation of more complex modelling 
representations (e.g. Smallman et al. 2019). The model that we demonstrate also operates at a 
given pixel scale linked to resolution of satellite observations.  Similar to Figure 1, observational 
data (orange boxes) provide constraints on particular stocks and fluxes, or combinations of these 
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(indicated by black lines). Optical data, such as from MODIS (Figure 1) provide a constraint on 
plant canopies and photosynthesis; spectroscopy constrains net fluxes through atmospheric 
observations; radiometry constrains energy balance and water cycling; radar/LIDAR data 
constrain biomass and vegetation structure.  

Quantifying the various parameters (fluxes, reservoirs) in Figure 16 involves minimizing 
a cost function that depends on the observations and model so that under local environmental 
forcing, the model representation has the highest likelihood of representing local observations of 
carbon and water cycles and associated uncertainty. Errors in forcing and model structure will be 
probabilistic, spanning a parameter hypervolume dependent on the information content and 
number of observations.  This fusion of model and data produces estimates of initial conditions 
at the start of the simulation period, and the parameters that describe the processes (e.g. rate 
constants) and their climate sensitivity (e.g. Bloom et al. 2016). A challenge in model-data fusion 
is to properly understand and propagate the uncertainty in the observations. Data need to be 
weighted by uncertainty and bias-corrected so that model tests and calibration are appropriate to 
the information content of the various observations. Connecting models and data also requires 
careful attention to the observation operator as sampling and resolution of the data must be 
accounted for in any model/data comparison. Furthermore, there is ongoing debate about 
whether frameworks should assimilate directly observed satellite quantities such as reflectance, 
or to assimilate their products, such as leaf area index (e.g. Quaife et al. 2008). 
 An example of the use of satellite data for constraining carbon balance and its sensitivity 
to temperature and TWS and other carbon processes is shown in Figure 17 for South America. 
For this analysis, satellite derived estimates of NBE, SIF, CO, TWS, LAI, fire emissions, and 
temperature, as discussed in previous sections, are assimilated into the Carbon Data Model 
Framework (CARDAMOM)  (e.g. Bloom et al. 2015; Yin et al. 2020), which is similar in 
structure to Fig. 16.2020 A Markov Chain Monte Carlo (MCMC) approach is used to find the 
best solution for the model parameters shown in Figure 16. The top panels show the modeled and 
observed NBE estimates (top left) before assimilation and the difference between modeled and 
observed (right panel). The bottom panels show model and data after assimilation. OCO-2 data 
was not included in the assimilation and withheld to evaluate the NBE estimate for the later time 
period. The updated model parameters are then used to project NBE to the time period covered 
by OCO-2 and shows that the model estimate and spread (based on the data constrained 
parameter uncertainty from assimilation step) can capture NBE seasonal timing and mean and 
reduce both the differences and calculated uncertainty of seasonal NBE in the prediction window 
with a reduction in the RMS of 0.12 PgC/y to 0.096 PgC/y. Further analysis is needed to 
determine if the remaining differences are due to data or model error. Nevertheless, this example 
illustrates why the approach of integrating satellite data into a reduced complexity models shows 
promise for carbon cycle prediction over at least the time span of the assimilated data (e.g. 
Bloom et al. 2020), i.e. using N years of assimilated satellite data allows for an update of the 
initial conditions and carbon / water processes such that the model can then predict ~N years of 
carbon fluxes. 
 

6.0 Summary and Recommendations 

 
An Earth System perspective is required to reduce uncertainties in tropical carbon balance and in 
turn improve estimates of the tropical carbon sink and its evolution.   Mechanistically, this means 
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using multiple different types of observations to disentangle carbon and water processes and 
their linkages, and by extension the links to the energy and nutrient cycles. Ideally these 
observations of different carbon, water, and energy states or fluxes are jointly used within an 
Earth System modeling framework to quantify the distribution of process controlling carbon 
balance and how these processes vary across the tropics. Based on the previous discussions we 
recommend the following: 
 
Recommendation 1: Observations:  There are several observables that we already know could 
transform our understanding of the tropical carbon cycle and its links to the Earth System. The 
effect of tropical vegetation change on the carbon cycle has mainly been assessed through a 
activity data.  That approach should be replaced by direct estimation of forest biomass change 
requiring a new approach to the design of missions for satellite biomass which to date have 
aimed at static maps for a single point in time. Soil moisture, especially in the root zone, is 
thought to be a primary moderator of the tropical carbon sink based on data and models (e.g. 
Green et al. 2019; Gentine et al. 2019). Likely though, quantifying soil moisture will require use 
of multiple microwave and/or radar measurements in order to evaluate the profile of moisture 
from the canopy through the root zone. Correspondingly, improved estimates of 
evapotranspiration and its subcomponents (transpiration, canopy evaporation and soil 
evaporation) are needed to evaluate vegetation / atmosphere feedbacks, given the poor agreement 
in the ET estimates from moist forests using top-down approaches.  Improved estimates of NBE, 
at finer temporal and spatial scales, are needed for attributing changes in carbon balance to 
climate variability and human activities and this will require greatly improved spatio-temporal 
sampling and accuracy of XCO2 measurements, likely using spectrometers based in a 
geostationary orbit or a constellation of sounders. These sounders also typically measure SIF, a 
proxy for GPP, and which benefits from the improved sampling of these types of satellite 
configurations. This top-down view from satellites is optimized when combined with aircraft 
campaigns and surface networks; surface and aircraft data provide ground truthing of the satellite 
data and allow us to relate the top-down view to detailed process knowledge. Coordinated 
aircraft campaigns and surface networks with satellite missions are therefore critical towards 
quantifying biogeochemical processes at pan-tropical scales and fully leveraging the investment 
in these resources. 
 
Recommendation 2: Process Estimation,  Data Assimilation, Modeling: Many Earth System 
models can assimilate satellite data for updating state parameters. However, we also need Earth 
System Models that can represent the range of processes controlling Carbon - Water - Energy 
interactions across the tropics and can also assimilate current and projected satellite data sets to 
quantify processes and feedbacks in a statistically robust manner. These models would also be 
useful for identifying current and new observations that are the most important for quantifying 
the evolution of the carbon sink. We recommend formulating new Earth System models so that 
the model parameters and uncertainties and their covariations are more easily quantified, 
structural errors are identified, and the model  can learn (or parameters inverted from 
observations) from available satellite observations (e.g. Smith et al. 2014; Schneider et al. 2017). 
Ideally such models should be formulated to take advantage up upcoming observations of 
vegetation at sub-kilometer scale from such as the ESA Copernicus Hyperspectral Imaging 
Mission (CHIME) and NASA Surface Biology – Geology (SBG) missions. 
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An alternative approach for quantifying carbon/climate feedbacks is through the use of 
the emergent constraint approach (e.g. Cox et al. 2013) which uses satellite data with multiple 
models to evaluate key processes controlling climate. However, use of satellite data for 
evaluating how carbon/climate feedbacks are distributed across the tropics and the globe are still 
in their beginning stages (e.g. Bowman et al. 2018) and it is unclear how these studies could be 
used to update the corresponding Earth System models for testing how different socio-economic 
pathways result in future climate states. 
 
 
Recommendation 3: Address Land/Atmosphere Feedbacks  
While much research has been focused on the direct effects of water cycling and temperature 
stress on forest composition and carbon balance, the satellite record points towards the increasing 
role of vegetation / atmosphere feedbacks in modulating the terrestrial carbon sink. Campaigns 
with an Earth System perspective are needed that integrate surface, aircraft, and satellite data; the  
detailed processes knowledge about vegetation / atmosphere feedbacks and aquatic carbon  
from surface measurements can be evaluated against integrative (or top-down) aircraft and 
satellite observations to ensure the process distribution is also quantified.  
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1) The biomass data (Appendix A.1, Saatchi et al. 2011) can be found on the JPL CMS 
website cmsflux.jpl.nasa.gov  

2) The OCO-2 SIF data (Appendix A.3) can be found here 
https://disc.gsfc.nasa.gov/datasets/OCO2_L2_Lite_SIF_8r/summary?keywords=oco2%2
0fluorescence 

3) The NBE data (Liu et al. 2014, Appendix A.4) are found on the JPL CMS web site 
cmsflux.jpl.nasa.gov 

4) The CO emissions for fires (Jiang et al. 2017, Appendix A.2)  can be found at the JPL 
CMS web site cmsflux.jpl.nasa.gov 

https://dashrepo.ucar.edu/dataset/CO_Flux_Inversion_Attribution.html 
 https://doi.org/10.26024/r1r2-6620 
 

5) The burned area data (Van der Werf 2017, Appendix A.2) are from GFED4s: 
http://www.globalfiredata.org. 

6) TRMM and GPM data (Hou et al. 2014, Appendix  
A.5) can be found here: https://pmm.nasa.gov/trmm 

7) The GRACE data (Sakumura et al. 2014, Appendix A.5) are from the following site: 

https://grace.jpl.nasa.gov/data/get-data/ 
8) The ET data (Fisher et al. 2009, Appendix A.6) are on the following 

website  http://josh.yosh.org/ 
9) The AIRS data used to derive VPD (Barkhordarian et al. 2017, Appendix A.7)  are 

archived here: https://airs.jpl.nasa.gov/data/get_data 
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10) The Aura TES deuterium data (Worden et al. 2007, Appendix A.8) are from the  Langley 
Atmospheric Research Center Data Archive https:// eosweb.larc.nasa.gov/ (NASA, 
2019).  
 
 

 
 

Appendix: Description of data sets used in this review 

A.1 Biomass 

Two pan-tropical AGB maps (Baccini et al., 2012; Saatchi et al., 2011) have recently 
been developed at grid scales of 1 km and 500 m respectively. Both use similar input data layers, 
and are principally driven by the same (though re-analyzed) spaceborne LiDAR dataset acquired 
by ICESat GLAS between 2003 and 2009. However, they use different ground datasets for 
calibration and different spatial modelling methodologies.  As a result, there are significant 
regional differences between them, which tend to decrease when AGB estimates are aggregated 
to country or biome scale (Mitchard et al., 2013). The AGB and C calculations in this paper are 
based on an updated global version of the Saatchi et al. (2011) map. The global map is developed 
by making use of the ICESat GLAS measurements globally and existing regional algorithms for 
the global ecological zones from a literature review (Wu et al., 2009; Mitchard et al., 2013; 
Neigh et al., 2013; Asner and Mascaro, 2014; Margolis et al., 2015; Yu and Saatchi, 2016).  

The map was developed originally at 100 m spatial resolution.  We developed the spatial 
variations of canopy height of forests in the form of average Lorey’s height (basal area weighted 
height) which is considered to have the most direct relationship to above ground biomass 
(Lefsky, 2010). The spatial modeling is performed using the Maximum Entropy estimation 
algorithm (MaxEnt) (Phillips et al., 2006; Saatchi et al., 2011; Xu et al., 2016).  MaxEnt is a 
machine learning algorithm that make use of a Bayesian estimation approach to provide the 
probability of biomass range for each pixel of a map, defined by the GLAS derived biomass or 
height as training data.   The probability maps were then combined to develop the height or 
biomass map and its pixel level uncertainty.  Here, we used the GLAS based heights as samples 
and 12 remote sensing image layers (4 Landsat visible reflectance, 2 ALOS PALSAR HH and 
HV polarizations, 2 SRTM metrics of mean and variance of elevation) as spatial layers for the 
machine learning algorithm.  We randomly selected 80% of the Lorey's height samples 
(~4,600,000) as input for the model, and keep the remaining 20% for evaluating the fit.   
The height map at 100 m spatial resolution was further corrected for any systematic errors, 
particularly across high biomass density forests in tropics using a large dataset of airborne 
scanning lidar (ALS) sampled across tropical forests in all three continents (Xu et al., 2017; 
Ferraz et al., 2018;  Meyer et al., 2019).  The height map was then used with height-biomass 
allometric models developed for different forest types across the globe using ground plots (44 
biomass model) to estimate above ground live biomass (AGB) from height for each pixel.  The 
biomass map was validated at the regional scale using a large number of ground plots acquired 
from national forest inventory data from northern temperate and boreal regions and a suite of 
research plots in tropical and sub-tropical regions. The below-ground woody live biomass (BGB) 
was estimated using allometric models developed from root-to-shoot ratios for different forests 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

types as recommended by the Intergovernmental Panel on Climate Change (IPCC) guidelines 
(IPCC, 2006; Mokany et al., 2006). We added AGB and BGB values and aggregated the biomass 
map to 1 km in order to reduce the uncertainty at finer spatial resolution. A factor of 0.47 was 
used to convert forest woody biomass to C content (McGroddy et al., 2004). The 1-km global 
data set is currently available from the JPL Carbon Monitoring System website 
(https://cmsun.jpl.nasa.gov) (Carreiras et al., 2017). The MaxeEnt machine learning algorithm 
produces probability distributions for the biomass ranges which we take as our uncertainties for 
this map. The uncertainties are shown in Figure 17. 
 

A.2 Fire Emissions Based on Atmospheric CO 

The basis for estimates of CO emissions from biomass burning sources shown in Figure 6 is 
a 15-year inversion analysis (Jiang et al. 2017) that uses the adjoint of the GEOS-Chem model 
(Henze et al. 2007) and MOPITT Version 6J multispectral CO observations (Deeter et al. 2014). 
This approach uses latitude bias-corrected MOPITT data (total CO columns and CO vertical 
profiles) averaged on the GEOS-Chem 5° longitude x 4° latitude grid to constrain model 
estimates of monthly CO fluxes in each grid cell from three primary source sectors: 
anthropogenic fossil fuel and biofuel, biomass burning and oxidation from BVOCs. CO from 
methane oxidation, ~28% of the global CO budget (Haughlustaine et al. 2006), was estimated to 
be 877 Tg (CO/yr as an aggregated global source. The Model of Emissions of Gases and 
Aerosols from Nature (MEGAN), version 2.0 (Guenther et al. 2006) was used to formulate the 
prior CO emissions from BVOCs. Biomass burning prior fluxes are from the Global Fire 
Emission Database (GFED3; Van der Werf et al. 2010) and global prior fluxes for fossil fuel are 
from the Emission Database for Global Atmospheric Research (EDGAR 3.2FT2000; Olivier & 
Berdowski et al. 2001) with updated inventories for the northern hemisphere described in Jiang 
et al. (2017).  The monthly, gridded CO flux estimates from Jiang et al. (2017) are then re-
partitioned into sector CO emissions for biomass burning (BB), fossil fuels (FF) and biogenic 
non-methane VOC emissions (BIO) using a Bayesian inference approach that explicitly accounts 
for both a priori and posterior CO flux uncertainties (Bloom et al. 2015, Worden et al. 2017). 
This re-partitioning also allows the use of updated a priori estimates and here we applied 
emission factor uncertainties from GFED4 (Van der Werf et al. 2017). As discussed in Jiang et 
al,. (2015) and H. Worden et al. (2019), uncertainties for these emissions are calculated by 
comparing different emissions estimates using the different MOPITT CO products (profile, total 
column, and near-surface) as these are sensitive to different aspects of model chemistry and the 
emissions distributions; with this approach an uncertainty for any given grid box is 
approximately 23%. 

 
Uncertainties in Carbon Emissions from Fires using BA and CO estimates: A recent 

paper by Yin et al. (2020 ) assimilated CO and burned area estimates, as well as LAI and SIF 
into the CARDAMOM modeling / assimilation (Figure 18) framework for the purpose of 
quantifying NBE as a result of the recent fire decline.  As shown in Figure 18, this analysis 
indicates that after assimilation CARDAMOM estimates a yearly uncertainty of ~18% for 
tropical fire carbon emissions and both the burned area (based on GFED) and CO based 
estimates (from MOPITT) agree to within this uncertainty. 
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A.3 Gross Primary Production from Solar Induced Fluorescence 

Although SIF has been retrieved from multiple satellites with nearly coninuous global 
coverage since 1996, no single instrument offers a long term continuous running time series 
spanning multiple decades. Differences in instrument characteristics and retrieval methodology 
have challenged efforts to use multiple sensors to assess long term change, especially at sub-
regional scale (Parazoo et al. 2019). OCO-2 currently offers the most accurate measurements at 
scales traceable to canopy level measurements, and currently spans a record beginning 
September 2014 (Parazoo et al. 2019; Magney et al. 2019). Monthly GPP is estimated from 
OCO-2 following the formalism of Parazoo et al. (2014). Grid scale GPP is inferred from a 
precision-weighted minimization of OCO-2 SIF, which is regressed against global GPP from 
upscaled flux tower data (e.g., Frankenberg et al. 2011; Jung et al. 2011), and is also subjected to 
a priori knowledge of GPP derived from an ensemble of terrestrial ecosystem models (Sitch et al. 
2015). SIF measurements are aggregated to 1 deg x 1 deg over a month. The precision of the 
estimate is estimated as the standard error, assuming a single sounding measurement error of 0.5 
W m-2 um-1 sr-1 and divided by the square root of the number of observations for each grid. SIF 
measurements are scaled to GPP based upon biome specific scaling factors. The final GPP 
estimate is a balance between the prior and the SIF-derived GPP which is screened for clouds 
and scaled to daily average using cosine of solar zenith angle weighting. Figure 7 (bottom panel) 
show OCO-2 assessment of spatial and seasonal photosynthetic variability in the tropics. 
 

A.4 XCO2 and CO2 fluxes 

Net Biosphere Exchange (NBE) is optimized by assimilating GOSAT data (O’Dell et al. 
2012) including v7.3 XCO2 retrievals and OCO-2 v7 retrievals into the CMS-Flux 4D-Var 
inversion framework  (Liu et al. 2014; 2017; Bowman et al. 2017), which uses the GEOS-Chem 
adjoint model (Henze et al. 2007). GEOS-Chem  (http://www.geos-chem.org) is a global 
chemical transport model (CTM) that uses GEOS (Goddard Earth Observing System) 
assimilated meteorological fields from the NASA Global Modeling Assimilation Office 
(GMAO) (Rienecker et al., 2008). We run the model at a horizontal resolution of 4° (latitude)  
5° (longitude). The model has 47 vertical levels, with the top up to 0.01hPa. The inversion 
covers 2010 to 2015. Due to changes of radiance calibration of GOSAT spectra in 2014, we only 
analyze 2010-2013 inversion results constrained by GOSAT, and 2015 constrained by OCO-2 
column CO2 observations.  Fluxes are currently provided from 2010 through 2013 for the 
GOSAT time period and 2015 for the OCO-2 time period with updates to CO2 fluxes soon to be 
available.  

The estimates of NBE using top-down fluxes can have significant uncertainty, even at 
regional scales, they also vary significantly from region to region so that so that no one number 
adequately describes the NBE estimates. As a result, current studies (e.g. Bowman et al. 2017; 
Liu et al. 2017) attempt to aggregate NBE over longer time periods and regions and then 
quantify differences between time periods in order to reduce the error through averaging and 
then through potential bias subtraction. In the case of the Liu et al. (2017) paper, uncertainties 
are tested by quantifying the expected versus actual XCO2 signal from the flux difference.    
 

×
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A.5 TRMM GPM and GRACE 

The Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Monitoring 
(GPM) missions (e.g. Kummerow et al. 1998; Hou et al. 2014), have provided radar and 
microwave based estimates of rainfall from 1997 to the present.   Uncertainties in this data set 
are well described in Raunayar et al. (2017); different rainfall retrieval algorithms provide 
different estimates of rainfall with up to 100% differences for light rain and 30% differences for 
intermediate to heavy rain.  While calibration of the data is therefore necessary to produce 
rainfall estimates from the observed radar and microwave signals and can vary depending on the 
approach used (e.g., Bookhagen & Burbank 2010), the data can quantify interannual changes in 
monthly rainfall as determined through ground measurements (e.g. Almazroui  2011). The 
TRMM mission stopped acquiring data in early 2015 but was followed by GPM that was 
launched in February 2014. In this paper we use a combined data set from the TRMM and GPM 
satellites (e.g. Huffman et al. 2007).  

Monthly terrestrial water storage observations are now available from 2002-2017 and the 
ongoing GRACE follow-on mission (GRACE-FO). GRACE observations represent changes in 
the global gravity field as changes in equivalent water height with roughly 3-degrees of 
resolution and a precision of 1.5 cm water equivalent (Tapley et al. 2004).    The monthly 
GRACE TWS uncertainty is estimated to be 25 mm/mo for an 800 km averaging radius (Rodell 
et al., 2004), approximately the same size of the selected basin groups in this study. We fill 
observation gaps and interpolate GRACE TWS to ensure temporal equivalence to P and R 
datasets, and calculate the arithmetic mean of these GRACE TWS retrievals (Sakumura et al. 
2014). 

 

A.6 Evapotranspiration  

A6.1 PT-JPL 
The Evapotranspiration (ET) data shown here is retrieved by the PT-JPL algorithm (Fisher et 

al. 2008) using land surface properties from MODIS and atmospheric properties from MERRA. 
The algorithm has been widely validated throughout the literature as one of the top performing 
global remote sensing ET models (e.g. Chen et al. 2014; Ershadi et al. 2014; Gomis-Cebolla et al. 
2019; Jiménez et al. 2018; Michel & Seidling 2016; Miralles et al. 2016; Polhamus et al. 2013; 
Purdy et al. 2018; Talsma et al. 2018; Vinukollu et al., 2011). Through eco-physiological constraint 
functions, PT-JPL retrieves actual ET by downscaling potential ET (PET) from the Priestley-
Taylor equation (Fisher et al. 2011; Priestley & Taylor, 1972): 

��� = � �
� + 	  �� 

(1) 

where � is the slope of the saturation-to-vapour pressure curve, dependent on near surface air 
temperature (�
) and water vapour pressure (�
), 	 is the psychrometric constant, �� is net 
radiation (W m-2), and � is the Priestley-Taylor coefficient of 1.26; PET is in units of W m-2.  
 
A series of scalar functions, based on atmospheric moisture, specifically vapor pressure deficit 
(Da) and relative humidity (RH), and vegetation indices, including normalized difference and soil 
adjusted vegetation indices (NDVI and SAVI), simultaneously reduce PET to actual ET, and 
partition total ET into three sources for canopy transpiration (ETc), soil evaporation (ETs), and 
interception evaporation (ETi): 
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where ���� is relative surface wetness (���)  , f� is green canopy fraction (f���� f����⁄ ) (Zhang 
et al., 2005), f� is a plant temperature constraint  (Potter et al. 1993), fM is a plant moisture 
constraint (f���� f�������⁄ ) (Potter et al., 1993), and f ! is a soil moisture constraint (RH$%) 
[Bouchet, 1963; Fisher et al. 2008). f���� is absorbed photosynthetically active radiation (PAR), 
f���� is intercepted PAR, Topt is the optimum temperature of plant phenology, and G is the soil 
heat flux (Purdy et al., 2016). R'( and R') are R' for the canopy and the soil, respectively, based 
on Leaf Area Index (LAI) derived from NDVI. PT-JPL is run globally and continuously in space 
and time with no need for calibration or site-specific parameters. 
 

PT-JPL ET Uncertainty: The most recent validation of PT-JPL ET within 
ECOSTRESS demonstrates a normalized RMSE of 6%, bias of 8% and correlation of 0.88 for 
instantaneous retrievals (Fisher et al., 2020). In the tropical analysis of Fisher et al. (2009) in 
which comparisons of the PT-JPL ET estimates were compared against site data, the PT-JPL 
RMSE was 22.8 W m-2, the bias was 7%, and the correlation was 0.91. At coarser spatiotemporal 
resolution analyses, such as discussed in this manuscript, accuracies improve substantially due to 
smoothing of noise and heterogeneity. Three independent evaluations (Vinukollu et al., 2011; 
Chen et al., 2014; Ershadi et al., 2014) of PT-JPL, are highlighted here (e.g, McCabe et al., 
2016; Michel et al., 2016; Miralles et al., 2016). These studies are noteworthy because all 
algorithms were run with common forcing data, the studies used an extensive set of validation 
datasets, and they represent independent groups from the US, Australia, and China. The 
Beijing/China study used the metrics of correlation coefficient (r2) and slope of modeled 
regression against observed ET to determine that PT-JPL exhibited the highest r2 and slope 
closest to 1.0 (Chen et al., 2014), relative to other well known ET models. Finally, the Australia 
study used the metrics of Nash-Sutcliffe Efficiency (NSE) and Root Mean Squared Difference 
(RMSD) to determine that PT-JPL exhibited the highest NSE and lowest RMSD (Ershadi et al., 
2014).  
 

A6.2 ET Based on TWS, Rainfall and River Runoff 
 

We estimate monthly total evapotranspiration across watersheds in the Amazon by using 
satellite observations of precipitation and terrestrial water storage (TWS), and ground-based 
measurements of river runoff (Swann & Koven 2017; Maeda et al. 2017). Here, 
evapotranspiration is calculated as the monthly residuals between gridded precipitation 
estimates, in-situ runoff measurements, and the change of TWS: 
  

�� = ��* + ��+ + ��, (2) 

��* = -1 − ����0�1�2�3� �
� + 	 ��* 

(3) 

��+ = 4���� + �53-1 − ����06� �
� + 	 -��+ − 70 

(4) 

��, = ����� �
� + 	 ��* 

(5) 

�2 = �892:82;<=
2;<= >

?

 
(6) 

�@A� = �B
C DE FDG 9���

HIJK

L

> 

(7) 
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�M = � − � − ��           1 
 
where ΔW is the change in sub-basin water storage, P is precipitation, and R is runoff. ΔW is 
estimated by using three Gravity Recovery and Climate Experiment (GRACE) TWS retrievals 
from Center for Space Research (CSR), GeoforschungsZentrum Potsdam (GFZ), and Jet 
Propulsion Laboratory (JPL). These three GRACE TWS retrievals are 1-degree land field 
products (each was downloaded from  
ftp://podaac-ftp.jpl.nasa.gov/allData/tellus/L3/land_mass/RL05/).  
We fill observation gaps and interpolate GRACE TWS to ensure temporal equivalence to P and 
R datasets, and calculate the arithmetic mean of these GRACE TWS retrievals (Sakumura et al. 
2014). Monthly runoff in each watershed is obtained from the Observation Service for the 
geodynamical, hydrological and biogeochemical control of erosion/alteration and material 
transport in the Amazon, Orinoco and Congo basins (SO-HYBAM) including in-situ river-gauge 
discharge measurements during 2003–2015. We use precipitation estimates from the Tropical 
Rainfall Measuring Mission (TRMM; 0.25°×0.25° and 3-hourly spatiotemporal resolutions; 
Huffman et al. 2007), Precipitation Estimation from Remotely Sensed Information derived from 
Artificial Neural Networks (PERSIANN) product (0.25°×0.25° and daily spatiotemporal 
resolutions; Ashouri et al. 2015), and the Climate Research Unit (CRU) version 4 (0.5°×0.5° and 
monthly spatiotemporal resolutions). We also calculate the arithmetic mean of the three 
precipitation products.  
 
Uncertainty of ET using GRACE, runoff, and rainfall:  The uncertainty of this ET product 
(NO2) is calculated as (Shi et al. 2019): 
 

NO2 = PNQRSTU + NVQRWOU + NQXTYZZU
                                                                           

 
where σRAIN is the uncertainty estimation from the three precipitation products, σGRACE is the 
uncertainty of GRACE TWS, and σRUNOFF is the uncertainty of runoff. We are not aware of any 
monthly runoff uncertainty estimates, and assume σRUNOFF is 10% of the runoff amount in each 
Amazonian sub-basin. Uncertainties for the GRACE and TRMM products are described in the 
previous section. However, for the rainfall estimates we assume the uncertainties are described 
by the RMS of the different rainfall estimates described above, which are informed by TRMM 
and GPM. At basin scale, ET uncertainties typically vary between 10% to 20%, and are limited 
by assumed uncertainty of the river runoff and rainfall. 

  
 

A.7 Vapor Pressure Deficit (VPD)  

Vapor Pressure Deficit is the difference between the saturation vapor content of air at 
temperature T, es (T), and its actual vapor pressure, ea (Seager et al. 2015). These are derived 
from the Atmospheric Infrared Sounder (AIRS/AMSU; Lambrigtsen & Lee, 2003) and can 
provide a record from 2002 through the present. To calculate VPD we use the following equation 
based on monthly near surface air temperature (T) and dew point (Td).  

J�L =  [\  × exp 9 [U ∗ �
[b + �> −  [\ × exp 9 [U ∗ �c

[b + �c
>  
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Where, c1=0.611KPa, c2=17.5, c3=240.978 °C. T and Td are in °C and VPD is in KPa. The first 
and the second term in the above equation are the saturation vapor content of air T (es) and the 
actual vapor pressure (ea), respectively. 
 

A.8 Isotopic Composition of Lower Tropospheric Water Vapor 

Satellite based measurements of the deuterium content of water vapor are typically obtained 
by inverting spectroscopically resolved radiances that are sensitive to HDO and H2O molecular 
absorption at 1.6  (near infrared or NIR) and 8 microns (Thermal IR). Down-looking, Thermal IR 
based measurements are typically sensitive to the deuterium content of water vapor between 800 
hPa to 300 hPa whereas near-IR based measurements are sensitive to the total column of water. 
Both data sets tend to have a precision ranging from 1-4% with an accuracy of better than 1% 
(Worden et al. 2006, 2019; Frankenberg et al. 2013; Schneider et al. 2020), which is sufficient 
for resolving spatial and seasonal variations of the deuterium continent over tropical regions. 
 
 

A.9 List of Acronyms 

AGB - above ground live biomass 
AIRS – Atmospheric Infrared Sounder 
ALS - airborne scanning lidar 
ALOS PALSAR HH and HV 
BGB - below-ground woody live biomass 
BB - biomass burning 
BVOC – Biogenic Volotile Organic Carbons. 
CARDAMOM - Carbon Data Model Framework 
CHIME - Copernicus Hyperspectral Imaging Mission 
CMIP - Climate Model Intercomparison Project 
CMS - Carbon Monitoring System 
CRU - Climate Research Unit 
CSR - Center for Space Research 
CTM - chemical transport model 
EDGAR - Emission Database for Global Atmospheric 
ENSO – El Nino Southern Oscillation 
ESA – European Space Agency 
ET – evapotranspiration 
FAO - Food and Agricultural Organization 
FF - fossil fuels 
GEDI - Global Ecosystem Dynamics Investigation 
GFED - Global Fire Emissions Database 
GEOS - Goddard Earth Observing System 
GEOS-Chem - Goddard Earth Observing System – Chemistry Model 
GFZ – GeoforschungsZentrum Potsdam 
GLAS - Geoscience Laser Altimeter System 
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GMAO - Global Modeling Assimilation Office 
GOSAT - Greenhouse Observation SATellite 
GPM - Global Precipitation Measurement 
GPP - Gross Primary Production 
GRACE - Gravity Recovery and Climate Experiment 
GRACE-FO - GRACE follow-on mission 
ICESAT - Ice, Cloud, and land Elevation Satellite 
IR - infrared 
JPL - Jet Propulsion Laboratory 
IPCC - Intergovernmental Panel on Climate Change 
LAI - Leaf Area Index 
LIDAR - light detection and ranging 
LULC - land use and land cover 
LULUC - land use and land use change 
MaxEnt - Maximum Entropy estimation algorithm  
MCMC - Markov Chain Monte Carlo 
MEGAN - Model of Emissions of Gases and Aerosols from Nature 
MERRA - Modern-Era Retrospective analysis for Research and Applications 
MODIS - Moderate Resolution Imaging Spectroradiometer 
MOPITT – Measurement of Pollution In The Troposphere 
NASA – National Aeronautic and Space Administration 
NBE - net biosphere exchange 
NDVI - normalized difference vegetation indices 
NIR - near infrared 
NISAR - NASA-ISRO Synthetic Aperture Radar 
NFI - national forest inventory 
OCO-2 - Orbiting Carbon Observatory 2 
PAR - photosynthetically active radiation 
PERSIANN  - Precipitation Estimation from Remotely Sensed Information derived from 
Artificial  
PET - potential ET 
PT-JPL - Priestley-Taylor Jet Propulsion Laboratory 
RH - relative humidity 
SAVI - soil adjusted vegetation indices 
SBG - Surface Biology – Geology 
SIF - solar induced chlorophyll fluorescence 
SMAP - Soil Moisture Active Passive 
SMOS - Soil Moisture Ocean Salinity 
SO-HYBAM – see https://hybam.obs-mip.fr/ for complete acronym 
SRTM – Shuttle Radar Topography Mission 
SWOT - Surface Water Ocean Topography 
SST - sea surface temperature 
TES – Troposphere Emission Spectrometer 
TRMM - Tropical Rainfall Monitoring Mission 
TWS –  terrestrial water storage 
UNFCCC - United Nations Framework on Climate Change 
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VOC – Volatile Organic Carbons 
VPD – vapor pressure deficit 
WUE - water use efficiency 
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Figure 1: Schematic of the flow of carbon (green) and water (blue) in the terrestrial biosphere 
and different satellite instruments that can place constraints on these fluxes. 
 
Figure 2: The global biome distribution. The tropical region discussed in this paper is highlighted 
by the rectangle. 
 
Figure 3: Distribution of above ground live biomass carbon density and uncertainty. (see 
Appendix A for description of data used to generate this map) 
 

Figure 4. (Top Panel) Total emissions from forest disturbance by combining the land use 
activities and fires derived from the Landsat time series (Hansen et al., 2013) and MODIS 
burned area (Van Der Werf et al., 2017) products.  White areas are regions with biomass changes 
below detection levels. The emissions are calculated at 10 km spatial resolution using the pan-
tropical forest carbon map multiplied by annual forest disturbance maps aggregated from high 
resolution burned areas (500 m) and forest cover change (30 m) data.  The global emissions 
calculated at 10 km and for the period of 2002-2016 were aggregated to develop the mean annual 
emissions.  (Bottom Panel) the average difference between two periods. 
 
Figure 5: (top) Area (percentage) burned each year for the years between 2002-2016 as measured 
from MODIS. (bottom) The change in burned area for this time period. Areas in white are below 
detection. 
 
Figure 6: Same as Figure 5 but now for CO emissions as measured by the Terra MOPITT 
instrument.  
 
Figure 7: (top) Mean tropical gross primary production for the time period between 2002-2016 based on 
integrating OCO-2 SIF data into an ensemble of terrestrial carbon cycle models. (bottom) The seasonality 
of GPP for the three tropical regions.  
 
Figure 8. The relationship between atmospheric CO2 growth rate anomaly  (GtC/year) and the 
tropical biosphere flux anomaly (GtC/year) constrained by satellite column CO2 observations, 
GOSAT data (red/black symbols) are shown for 2010 – 2013 and OCO-2 data (green hash 
symbols) is for 2015. 
 
Figure 9: (left) The tropical biosphere flux anomaly from the previous figure as a function of 
GRACE TWS. (right)Net biosphere exchange (NBE) (unit: GtC/box) (shaded) from atmospheric 
flux inversion and total water equivalent (TWS) (contour) from GRACE in 2015 relative 2011.  
Black dashed contours have negative TWS values in 2015 relative to 2011, while the grey solid 
lines have positive TWS values in 2015 relative to 2011. 
 
Figure 10: The mean deuterium content of water vapor for the tropics for the years 2005 – 2010 
from the Aura TES instrument (see Appendix A.8). The units (δD) are in parts per thousand 
relative to the isotopic composition of ocean water, or per mil / SMOW. 
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Figure 11: (top) Seasonality of the Amazon VPD (Appendix A.7) and deuterium content of 
tropospheric water vapor (Appendix A.8) for the wet Amazon (left) and dry Amazon (right). 
(bottom) Seasonality of ET (Appendix A.6) as derived from a residual of GRACE, TRMM, and 
river runoff (red) and satellite surface measurements (blue).  Basin maps for Solimoes (left) and 
Madeira (right) are used to grid ET for the bottom figures to ensure the comparisons between 
data sets are consistent.  
 
Figure 12: (top) The total mean rainfall from using TRMM and GPM for the 2002 – 2016 time 
period and (bottom) the difference in rainfall between the 2009-2016 and 2002 – 2008 time 
periods. 
 
Figure 13: (top) The change in TWS from GRACE in cm for the same time periods as Figure 12. 
(bottom) The correlation between TWS and rainfall for the 2002-2016 time period. 
 
Figure 14: Same as Figure 12 but for evapotranspiration based on MODIS and re-analysis 
(Appendix A.6) 
 
Figure 15: A notional schematic (courtesy Duane Waliser) of how observations are assimilated 
into an Earth System model to evaluate a quantity of interest (e.g. Soil Carbon , Water Use 
Efficiency), which can then be compared to validation data sets for the purpose of validation and 
uncertainty quantification. The updated model then helps inform our understanding of the Earth 
System and its evolution as well as provide information on which observations can be used to 
reduce uncertainty further in our knowledge of the Earth System. 
 
Figure 16: A schematic of a terrestrial carbon cycle model and how different satellite derived 
data sets can be used to inform different components of this model. 
 
Figure 17: Monthly CARDAMOM NBE estimates (red = median, dark pink = 25th – 
75th percentile and light pink =  5th -95th percentile) over South America for 2010-2015. (Top 
Left) The CARDAMOM estimate and uncertainty (red shading) for NBE prior to assimilation of 
satellite data and (Top right) the difference between observed NBE and model (black data are 
from GOSAT and blue data are from OCO-2). (Bottom Left) CARDAMOM estimates after 
initial conditions and process parameters were constrained by 2010-13 GOSAT-derived CMS-
Flux NBE (black line), as well as land surface datasets (biomass, leaf area, soil carbon and 
fluorescence) and atmospheric CO inversion datasets. The 2015 OCO-2-derived CMS-Flux NBE 
(blue line) was withheld from the assimilation for purposes of validation. (Bottom Right) 
Observed – Model after assimilation of data. The model and methodologies are described in 
Bloom et al (2015 and 2016).  
 
Figure 18: The uncertainy map for the above ground carbon shown in Figure 3. The uncertainty 
map is derived from a Bayesian approach described in Appendix A.1.  The error is given at the 
1-km pixel level (Saatchi et al., 2011). 
 
Figure 19: Estimate of tropical carbon emissions using the CO and burned area estimates 
assimilated into CARDAMOM (Section 4.2),  adapted from Yin et al. (2019) 
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Figure 2: The global biome distribution. The tropical region discussed in this paper is highlighted 8 
by the rectangle. 9 
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Figure x The relationship between atmospheric CO2 growth rate anomaly  (GtC/year) and the 
tropical biosphere flux anomaly (GtC/year) constrained by satellite column CO2 observations, 
and the relationship between tropical biosphere flux anomaly  (GtC/year) and tropical TWE 
anomaly (unit: m3/ m3 ) (right panel). Here we display anomalies for five years: 2010, 2011, 
2012, 2013, and 2015. The red star is 2015, and the green star is 2011. 
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Figure y Net biosphere exchange (NBE) (unit: GtC/box) (shaded) from atmospheric flux inversion and total water 
equivalent (TWE) (contour) from GRACE in 2015 relative to the baseline year 2011.  Black dashed contours have negative 
TWS values in 2015 relative to 2011, while the grey solid lines have positive TWS values in 2015 relative to 2011. 
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 74 
Figure 11: (top) Seasonality of the Amazon VPD (Appendix A.7) and deuterium content of 75 
tropospheric water vapor (Appendix A.8) for the wet Amazon (left) and dry Amazon (right). 76 
(bottom) Seasonality of ET (Appendix A.6) as derived from a residual of GRACE, TRMM, and 77 
river runoff (red) and satellite surface measurements (blue).  Basin maps for Solimoes (left) and 78 
Madeira (right) are used to grid ET for the bottom figures to ensure the comparisons between 79 
data sets are consistent.  80 
  81 
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Caption: Monthly CARDAMOM NBE estimates (red = median, dark pink = 25th – 75th percentile and light pink 
= 5th -95th percentile) over the Australian continent for 2010-2015. CARDAMOM initial conditions and process 
parameters were constrained by 2010-13 GOSAT-derived CMS-Flux NBE (black line), as well as land surface 
datasets (biomass, leaf area, soil carbon and fluorescence) and atmospheric CO inversion datasets. The 2015 OCO-
2-derived CMS-Flux NBE (blue line) was withheld from the assimilation for purposes of validation. The model and 
methodologies are described in Bloom et al (2019, in prep [should be in BGD soon]).
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