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Colása

aHuman Computer Technology Laboratory, Escuela Politécnica Superior, Universidad
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Abstract

Discriminative confidence based on multi-layer perceptrons (MLPs) and
multiple features has shown significant advantage compared to the widely
used lattice-based confidence in spoken term detection (STD). Although the
MLP-based framework can handle any features derived from a multitude of
sources, choosing all possible features may lead to over complex models and
hence less generality. In this paper, we design an extensive set of features and
analyze their contribution to STD individually and as a group. The main
goal is to choose a small set of features that are sufficiently informative while
keeping the model simple and generalizable. We employ two established
models to conduct the analysis: one is linear regression which targets for the
most relevant features and the other is logistic linear regression which targets
for the most discriminative features. We find the most informative features
are comprised of those derived from diverse sources (ASR decoding, duration
and lexical properties) and the two models deliver highly consistent feature
ranks. STD experiments on both English and Spanish data demonstrate
significant performance gains with the proposed feature sets.
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1. Introduction

1.1. Spoken Term Detection

The enormous amount of speech information now stored in audio repos-
itories motivates the development of automatic audio indexing and spoken
document retrieval methods. Spoken Term Detection (STD), defined by
NIST as searching vast, heterogeneous audio archives for occurrences of spo-
ken terms (NIST, 2006), is a fundamental building block of such systems
(Mamou and Ramabhadran, 2008; Can et al., 2009; Vergyri et al., 2007;
Akbacak et al., 2008; Szöke et al., 2008b,a; Thambiratmann and Sridharan,
2007; Wallace et al., 2010; Jansen et al., 2010; Parada et al., 2010; Chan and
Lee, 2010; Chen et al., 2010; Motlicek et al., 2010), and its development has
been strongly influenced by NIST STD evaluations (NIST, 2006, 2013).

The standard STD architecture is comprised of two main stages: indexing
by the Automatic Speech Recognition (ASR) subsystem, then search by the
STD subsystem, as depicted in Figure 1. The ASR subsystem transforms the
input speech into word or sub-word lattices. The STD subsystem comprises a
term detector and a decision maker. The term detector searches for putative
occurrences of the query terms in the word/sub-word lattices – it hypothesizes
detections – and the decision maker then decides whether each detection is
reliable enough to be considered as a hit or should be rejected as a false alarm
(FA). A tool provided by NIST is used for performance evaluation. It must
be noted that the ASR subsystem must run just once and therefore the STD
subsystem cannot make use of the speech signal directly.

Figure 1: The standard STD architecture and evaluation.
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Searching the output of a Large Vocabulary Continuous Speech Recogni-
tion (LVCSR) system, i.e., word lattices, has been shown to work well when
the query terms are only composed of in-vocabulary (INV) words, since these
will be in the LVCSR system vocabulary and therefore will occur in the word
lattices. However, as noted by Logan et al. (2000), about 12% of users’
queries typically contain out-of-vocabulary (OOV) words, which will never
be found in the word lattices, because they do not appear in the LVCSR
system vocabulary. Common approaches to solve this problem usually in-
volve producing sub-word (typically phone/phoneme) lattices with the ASR
subsystem, and then searching for sub-word representations of the enquiry
terms (Saraçlar and Sproat, 2004; Mamou et al., 2007; Can et al., 2009; Szöke
et al., 2006; Wallace et al., 2007; Parlak and Saraçlar, 2008). Other sub-word
units are possible, such as syllables (Meng et al., 2007), graphemes (Wang
et al., 2008; Tejedor et al., 2008) or multi-grams (Pinto et al., 2008; Szöke
et al., 2008a).

In STD, a confidence score is assigned to each putative occurrence de-
tected in the lattice, which reflects the possibility of it being a real occurrence.
A widely used confidence score that can be derived from the lattice is defined
as follows:

cf =

∑
πα,πβ

p(O|πα, Kte
ts , πβ)P (πα, K

te
ts , πβ)∑

ςp(O|ς)P (ς)
(1)

where Kte
ts denotes a detection of K, which is a partial path that starts at

ts and ends at te and corresponds to the pronunciation of term K. cf is the
confidence of Kte

ts . πα and πβ denote paths before and after K respectively,
with πα starting from the beginning of the audio and πβ ending at the end of
the audio. ς in the denominator represents any full path in the lattice. Note
that a particular term occurrence may correspond to a group of overlapped

detections {Ktie
tis
}. In that case, the detection group is treated as a single

detection, and cf is derived by a certain merging scheme (Wang et al., 2011).
In this work, we simply choose the best confidence of the group members as
cf .

Based on the confidence scores, the decision maker determines which
putative occurrences are reliable enough to be called detections. If a detection
actually appears in the audio, it is called a hit. Otherwise, it is called a
false alarm. Any occurrence of the query term in the audio that is not
hypothesized by the STD system is called a miss.
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To evaluate STD system performance, NIST defines an evaluation metric
called actual term weighted value (ATWV) (NIST, 2006), which integrates
the hit rate and false alarm rate into a single metric and then averages over
all search terms:

ATWV =
1

|∆|
∑
K∈∆

(
NK
hit

NK
true

− β NK
FA

T −NK
true

)
(2)

where ∆ denotes the set of search terms and |∆| represents the number of
terms in this set. NK

hit and NK
FA represent the number of hits and false alarms

of term K respectively and NK
true is the number of actual occurrences of K in

the audio. T denotes the audio length in seconds, and β = 999.9 is a weight
factor.

1.2. Motivation and organization of this paper

Various factors impact the performance of STD systems, such as acoustic
properties of speech signals, lexical characteristics of search terms, occur-
rence rates and positions of terms within the evaluation data, etc. These
factors also influence the reliability of detections and hence can be utilized
in estimating the confidence of detections. Research has been conducted
on confidence estimation utilizing various informative factors, in both auto-
matic speech recognition and keyword spotting, e.g., Rohlicek et al. (1989);
Cox and Rose (1996); Bergen and Ward (1997); Kemp and Schaaf (1997);
Ou et al. (2001); Ayed et al. (2002); Jiang (2005), and various methods have
been employed to combine the heterogeneous informative factors, including
decision trees (DT), general linear models (GLMs), generalized additive mod-
els (GAMs) and multi-layer perceptrons (MLPs) (Chase, 1997; Gillick et al.,
1997; Zhang and Rudnicky, 2001). It has been found that features derived
from multiple sources – with appropriate normalization – can be combined to
serve as a good measure of confidence, which can in turn be used to evaluate
the correctness of a recognition hypothesis or a keyword detection.

In STD, Vergyri et al. (2007) used MLPs to combine various informative
factors into a discriminative confidence. We extended this to a discrimina-
tive confidence normalization technique (Wang et al., 2009b). This technique
provides a general framework which allows any informative factors, or fea-
tures, to be combined and integrated into an unbiased confidence measure
for STD. For example, Wang et al. (2009b) used some term-dependent fea-
tures to compensate for the high diversity among OOV terms, and Tejedor
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et al. (2010) extensively studied various prosodic, lexical and duration-based
features.

Although the MLP-based discriminative confidence normalization ap-
proach provides a general solution for integrating multiple informative fac-
tors, and leads to improved performance, the integration itself remains a
‘black-box’ to a large extent due to the use of MLPs. Contributions from
genuinely informative features and trivial features are not separable and so
too many features are used because it is not possible to select only the useful
ones. Using more features requires more complex model structures, which
may reduce the capacity of the model to generalize to new data. This is par-
ticularly problematic when the data for training the MLP model are limited;
this is the case when the search terms are OOV, since these never occur in
training data.

This serves as the motivation for the study on feature analysis presented
here. Ideally, we would wish to test the contribution of each potentially-
informative feature to overall STD performance, and choose those only that
have a significant contribution to discriminative confidence estimation. This
not only saves cost in model training and scoring, but more importantly
reduces the chance of over-fitting to the training data.

We could use the MLP model itself to analyze and select the features,
however, this requires relatively heavy computation; more importantly, using
such a complex model as an MLP for feature selection could result in coming
to conclusions that do not generalize well. We therefore use simple and well-
known models to conduct an analysis on feature relevance; we then use the
results of this analysis in an STD system built using MLP-based confidence
estimation and normalization.

In previous work (Tejedor et al., 2010), we employed linear regression
(LR) to conduct the relevance analysis and feature selection. We found that
STD performance could be reduced by using less-relevant features, whilst
more informative features generally improved performance. This is consis-
tent with our hypothesis that blindly pooling together both informative and
uninformative features may lead to lower model generality and hence perfor-
mance reduction.

A particular concern with our previous LR analysis, however, is that LR
focuses on the most relevant features, while the STD task, which is essen-
tially a classification problem, requires the most discriminative features. This
raises doubts about the LR-based analysis since the most relevant features
are not necessarily the most discriminative ones. Moreover, in our particu-
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lar application, LR is employed to predict binary variables (hit/FA). This is
essentially a classification task, for which LR is normally considered to be
problematic.

We therefore consider the logistic linear regression (LLR) to conduct
feature analysis and selection. LLR is an extension of LR, which is more
suitable for classification tasks and targets the most discriminative features.
An interesting finding is that the relevance-oriented LR analysis and the
discrimination-oriented LLR analysis lead to highly consistent feature ranks.
This confirms that the simple LR analysis is an effective feature selection
approach for STD. Note that some researchers have shown that LR and LLR
tend to provide consistent results with abundant training data, which coin-
cides with our findings (Hellevik, 2009).

In addition to this extension of previous work, we also extend our paper
in two other directions: we include more features (particularly phone-level
features) in the analysis; we study two languages (English and Spanish)
in two domains (meetings for English; read speech in Spanish) in order to
discover general as well as task-specific features.

We conduct our analysis on OOV terms. The main reason is that STD
usually suffers from significant performance degradation on OOV terms, and
the unreliable confidence estimation is known to be a major cause (Wang,
2009). We are interested in tackling this difficulty by involving the most
discriminative features within the discriminative confidence normalization
framework. For INV terms, the standard lattice-based confidence is usually
sufficient to obtain a high ATWV, and thus the complicated feature selection
is applicable but not essential.

The rest of the paper is organized as follows: in the next section we in-
troduce some background information including a summary of some related
work and a short review of the discriminative confidence estimation frame-
work. Then in Section 3 we present the experimental configurations used in
this work. Section 4 presents the features considered for study. Individual
feature analysis based on histograms, LR and LLR is presented in Section
5. Section 6 presents an incremental feature selection approach based on
LR and LLR. Section 7 presents STD experiments based on the two feature
selection techniques. The paper is concluded in Section 8 together with some
discussion and ideas for future work.
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2. Preliminary discussion

The contribution of this paper is to start from a large set of candidate pre-
dictive features and find the most informative feature set for STD confidence
estimation, based on the discriminative confidence normalization framework.
We commence by summarizing some related work, particularly focusing on
collecting the candidate feature set, feature selection and feature combina-
tion. Given this background knowledge, we then present the discriminative
confidence normalization framework on which our analysis is based.

2.1. Related work

The task of STD is related to ASR, information retrieval, statistic model-
ing, decision theory, etc; a full literature review would therefore be impossible
in the scope of this paper. Considering the main research purpose, we focus
only on past work related to feature analysis.

2.1.1. Feature collection

Many informative features for confidence estimation have been proposed
in the literature. Cox and Rose (1996) studied second-phone-recognition nor-
malized acoustic likelihood, duration, number of phonemes and number of
decoding hypotheses in a simple Bayesian classifier as confidence measure in
an LVCSR system. Bergen and Ward (1997) used senone-score-normalized
acoustic likelihood derived from the word recognizer as a confidence measure
for word and phone recognition, and word clustering in a semi-continuous
HMM-based recognizer. Kemp and Schaaf (1997) employed various statistics
derived from lattices, such as link probability, acoustic stability and hypoth-
esis density as inputs for linear discriminant analysis, neural network and de-
cision tree-based classifiers in an LVCSR system. Chase (1997) proposed fea-
tures derived from decoding, such as the content of the N-best list, language
model score, word pronunciation, word frequency in acoustic training mate-
rial, separate-phoneme-recognition score, separate-frame-by-frame recogni-
tion score, a match count at frame level, a phonologically-based similarity
measure and an empirically derived confusion-based distance, senone-based
acoustic likelihood normalization, frame-based word duration and number
of phones of the word as input features for a post-classifier based on DT,
GLMs, GAMs and neural networks for an LVCSR system. Gillick et al.
(1997) studied word duration, language model score, acoustic score normal-
ized by the best score, n-best score (as the fraction of the n-best list that
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contains the given word in the correct position) and the active node count
(as the average number of active states on each frame over a word) as input
features for a general linear model in an LVCSR system. The study reported
in (Zhang and Rudnicky, 2001) included acoustic features, language model
features, word lattice features, N-best features, and parser-based features
derived from the language model features and the grammar (parsing-mode
and slot-backoff-mode) as input features for three different post-classifiers
(DT, neural network and support vector machine (SVM)) in an LVCSR sys-
tem. Recent work (Goldwater et al., 2009) has proposed disfluency-based fea-
tures, speaker sex, broad class-based features, turn boundary-based features,
language model-based features, pronunciation-based features (word length,
number of pronunciations, number of homophones, number of neighbors, and
frequency-weighted homophones/neighbors), prosodic features (pitch, inten-
sity, speech rate, duration and log jitter) and concluded that extreme prosodic
values, words following a speaker turn and preceding disfluent interruption
contribute most to a high word error rate (WER). To the best of our knowl-
edge, there has not been such a systematic analysis of relevant features for
STD.

For keyword spotting/spoken term detection, Rohlicek et al. (1989) pro-
posed to use duration-normalized acoustic likelihood as a confidence measure
for each keyword in a filler model-based keyword spotting system, and Manos
and Zue (1997) studied various features in a filler model-based keyword spot-
ting system to compute the confidence score for each word, which included a
segment phonemic match score, a score based on the probability of the par-
ticular segmentation, a lexical weight, a phone duration-based score, and a
bigram transition score. Ou et al. (2001) employed word posterior likelihoods
derived from keyword, anti-keyword and non-keyword models and duration
as features in a neural network classifier for utterance verification within a
filler model-based keyword spotting system whereas Ayed et al. (2002) used
information based on the number of frames, the phone posterior probability,
the frame-based phone posterior probability and the duration-based phone
posterior probability along with the number of phones as lexical feature in an
SVM classifier for utterance verification in an LVCSR-based keyword spot-
ting system.

2.1.2. Feature selection

A straightforward approach to feature selection is based on ranking, where
features are selected according to their relevance to some decision target. The
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relevance can be computed according to various criteria, such as Pearson cor-
relation coefficient R2, Fisher’s criterion, T -test criterion, classification error
rate (CER) with single variable classifiers (Furey et al., 2000; Tusher et al.,
2001; Hastie et al., 2001; Forman, 2003) or criteria derived from information
theory (Bekkerman et al., 2003; Forman, 2003; Torkkola, 2003). A partic-
ular disadvantage of the ranking approach is that it does not consider any
dependencies amongst the features and so may select suboptimal features in
the sense of predictive capability as a group.

Various group-selection approaches have been proposed to deal with that
problem. The first category uses machine learning techniques (decision trees,
FOCUS algorithm (Almuallim and Dietterich, 1991, 1994), Relief algorithm
(Kira and Rendell, 1992a,b; Kononenko, 1994), Naive-Bayes induction algo-
rithms (Duda and Hart, 1973; Good, 1965; Langley et al., 1992)) to evaluate
the predictive power of a subset of features and then chooses the subset
with the best predictive capability (Kohavi and John, 1997). An obvious
shortcoming of this approach is that the feature set selected depends on
which particular machine learning technique is used. Another difficulty is
related to the large search space, i.e., the power set of features whose size
exponentially increases. Strategies that have been proposed to deal with
the search efficiency include best-first, branch-and-bound, simulated anneal-
ing, randomized hill climbing and genetic algorithms (see (Kohavi and John,
1997) for a review). Each strategy has pros and cons, and a discussion on
this can be found in (Guyon and Elisseeff, 2003; Saeys et al., 2007).

The second category of group-selection approaches searches for the opti-
mal feature set by choosing the best feature one-by-one according to some
intermediate criterion such as Euclidean distance, information gain or gain
ratio (Ben-Bassat, 1982), or Chi-squared coefficient. Multivariate feature
selection such as correlation-based feature selection (Hall, 1999), Markov
blanket filter (Koller and Sahami, 1996) and fast correlation-based feature
selection (Yu and Liu, 2004) has been reported as well. The incremental tree
we use in this paper belongs to this category and the intermediate criteria
we chose are correlation and cross entropy.

The last category of group-selection approaches performs feature selection
together with model training. This means that the selection approach is
specific to the model that is being trained. This approach has been studied
in the context of decision trees such as CART (Breiman et al., 1984) and
random forests (Liaw and Wiener, 2002), weighted naive Bayes (Duda et al.,
2001), weight vector of SVMs (Guyon et al., 2002; Weston et al., 2003) and
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regression/selection by Lasso (Tibshirani, 2011).
It is also possible to combine different selection approaches (Bi et al.,

2003). Interested readers are referred to (Guyon and Elisseeff, 2003; Saeys
et al., 2007) for more details regarding various selection methods and their
combination.

2.1.3. Feature combination

Although many sorts of models can be used to combine multiple fea-
tures, discriminative models have an advantage when the decision boundary
is complex because they do not assume any form of distribution over the
data. This means they are well-suited for combining features derived from
heterogeneous sources, which may have different dynamic ranges or even be
represented in different ways (e.g., continuous features and discrete features).
We therefore focus our review on discriminative model-based feature combi-
nation and confidence estimation.

Among various discriminative models, MLPs (Mathan and Miclet, 1991;
Weintraub et al., 1997; Ou et al., 2001; Vergyri et al., 2006), linear discrim-
inative functions (Sukkar and Wilpon, 1993; Gillick et al., 1997; Kamppari
and Hazen, 2000), GLMs and GAMs (Siu et al., 1997), DTs (Neti et al.,
1997; Hauptmann et al., 1998) and SVMs (Zhang and Rudnicky, 2001; Ayed
et al., 2002; Sudoh et al., 2006; Shafran et al., 2006) are the most popular.
Comparisons between DTs, GLMs, GAMs and neural networks have been
carried out by Chase (1997), and linear classifiers and neural networks are
compared in (Schaaf and Kemp, 1997). Both studies concluded that neural
networks outperformed the other discriminative models. Hernández (2000)
compared linear discriminant functions, neural networks and fuzzy logic-
based systems, and reported that the fuzzy logic-based systems provided the
best result. Zhang and Rudnicky (2001) studied DTs, neural networks and
SVMs, and reported that the best performance was given by the SVM. Wang
et al. (2012) employed MLPs, SVMs and DTs and concluded that all discrim-
inative models provided marginal performance gains and that which model
is superior is determined by the properties of the query terms, e.g., whether
they are in-vocabulary or out-of-vocabulary.

2.2. Discriminative confidence normalization

We have mentioned that discriminative models can be employed to com-
bine heterogeneous features and produce a discriminative confidence measure
for decision making. This confidence measure, however, may not be directly
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suitable for STD since it is not optimal with respect to the evaluation metric,
i.e., ATWV. In addition, we wish to employ more term-dependent features
in confidence estimation so that the diversity among search terms can be
compensated for. This is particularly important for OOV term detection, in
the light of high diversity among OOV terms. The discriminative confidence
normalization framework, which is motivated by the term-specific threshold
(TST) approach proposed by Vergyri et al. (2007), aims to address these con-
cerns. Since all our STD experiments are conducted based on this framework,
we now present a brief overview of it.

Decision 
Maker

Linear bias
compensation

ATWV
optimization

Term
Detector

Discriminative
conf. estimation

MLP

Figure 2: The diagram of discriminative confidence estimation and normalization for STD.

Figure 2 illustrates the framework, where multiple features including the
lattice-based confidence clat are fed into an MLP model, from which the dis-
criminative confidence cdisc is generated. A linear transform is then applied
to compensate for possible bias introduced by lattice approximation and dis-
criminative training. Finally, the de-biased discriminative confidence c′disc is
normalized by a transform ζK to compensate for the diverse occurrence rate
of different terms. The resulting confidence ζK(c′disc) is unbiased, discrim-
inative, term-dependent and optimal for the STD metric ATWV. Building
such a framework requires training the MLP and estimating the parameters
α and γ for the linear transform; more details can be found in (Wang et al.,
2012).

The work in this paper focuses on the first part of this framework, i.e.,
discriminative confidence estimation (shaded in Figure 2). Our goal is to
find a set of features that contribute most to STD, and then use them in the
framework of Figure 2 to produce a discriminative confidence measure that is
suitable for STD. Therefore, we need to build the entire STD architecture and
the discriminative confidence framework to test the analysis results within a
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practical STD system.

2.2.1. MLP-based discriminative confidence

An MLP has been used to derive the discriminative confidence. This MLP
is a feed-forward artificial neural network that maps input features into an
output response. The structure of the MLP is comprised of an input layer,
which contains as many units as the number of input features, a hidden layer
with a sigmoid activation, and an output layer with a softmax activation,
as shown in Figure 3. This output layer contains two units, corresponding
to the hit and FA classes respectively. The Weka tool (Hall et al., 2009)
has been used to build the MLP structure and to derive the discriminative
confidence in Figure 2.

f 1 P(C |d)hit

P(CFA|d)

f 2

f 3

Figure 3: The MLP structure used to derive the discriminative confidence with three input
features f1, f2 and f3.

3. Experimental setup

In order to set the analysis presented in following sections in context, we
first introduce the experimental settings used in this work. This involves the
speech, text and lexicon data we used for model training, system develop-
ment and performance evaluation, as well as the configurations of our STD
experiments and feature analysis.
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3.1. Data profile

The data profile involves search terms, speech and text databases for
training the models, tuning parameters and evaluating performance. We
selected two languages on which to conduct our study: English (which is the
most common language used in STD research) and Spanish. By comparative
study, we hope to identify universal features that are generally effective for
multiple languages/domains, plus some language/domain-dependent features
that are important for particular languages/domains. We present the data
profile for each language in turn below.

3.1.1. English data

For English, our STD system operates in the domain of multi-party meet-
ings. We first chose 557 single-word terms from the 50k dictionary used by
the AMI RT05s LVCSR system (Hain et al., 2006) for the purpose of system
development, among which 490 terms were used to train the MLP model for
discriminative confidence estimation and 67 terms were used to tune the rest
of the parameters, particularly the parameters in linear bias compensation
(see Figure 2). In addition, a disjoint set of 484 single and multi-word terms
was chosen for performance evaluation. All these terms are OOV - we made
this choice because OOV terms are much more difficult to detect and score
compared to INV terms, and tend to gain more from the discriminative con-
fidence normalization framework which is the subject of our study. Figure 4
shows the length distribution of the evaluation terms.

The speech data are recorded with individual headset microphones at
several sites, including ICSI, NIST, ISL, LDC, the Virginia Polytechnic In-
stitute and State University and various partners of the AMI project. The
training set, which is used to train the acoustic models (AMs) of the ASR
subsystem, is the same as the one used to train the AMI05 LVCSR system
(Hain et al., 2006), except that all utterances containing the evaluation terms
were deleted. This data purging ensures the evaluation terms are truly OOV
in every respect, including acoustic model training. After OOV purging, 80.2
hours of speech were left to train the AMs. The development set, which is
used to tune system parameters and collect training samples for the MLP
model in discriminative confidence estimation, is the standard NIST RT04s
dev set. Finally, the evaluation set consists of the NIST RT04s and RT05s
eval sets plus the speech corpus AMI08 recorded at the University of Ed-
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inburgh in the AMIDA project1. The total size of the evaluation set is 11
hours of speech which contains 2735 occurrences of the evaluation terms.
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Figure 4: Term length distribution of the English data on the evaluation set.

The text corpus that was used to train the language models for the ASR
subsystem was provided by the AMI project and is the same as the one used
by the AMI RT05s LVCSR system (Hain et al., 2006). This corpus contains
text from various sources such as news, transcripts of speech corpora and
a large amount of web text, amounting to 521.4M words. The 50k AMI
dictionary was used to convert the word-based text corpus to a phoneme-
based corpus.

Feature analysis can be regarded as a step in system development. The
same speech data and search terms used to train the MLP model are em-
ployed to train the analysis models (linear regression and logistic linear re-
gression) and perform feature quality check.

1http://www.amiproject.org
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3.1.2. Spanish data

For Spanish, the Albayzin database (Moreno et al., 1993) was selected to
build the system and conduct the analysis. This database involves reading
style speech recorded in a silent environment. Some of the sentences are
chosen from the general domain and others are from the geographical domain.
The geographical domain utterances involve entity names in Spain, such
as mountains, rivers and cities. Phonetic balance was considered in the
database design. The training data involve 3.3 hours of speech from the
general domain, and the development and evaluation sets involve 3.6 hours
and 2 hours of speech in the geographical domain, respectively. Finally, the
transcripts of the training speech data are used to train language models;
due to the simple grammar of the utterances, this naive approach works well
in phone recognition.
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Figure 5: Term length distribution of the Spanish data on the evaluation set.

For STD, we chose 605 single-word terms from the development utter-
ances to conduct system development, among which 500 terms were used to
train the MLP model for discriminative confidence estimation and 105 terms
were used to tune other parameters. Finally, a disjoint set of 400 single-word
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terms including name entities (mountains, rivers, cities, etc) and common
words from the evaluation utterances was selected to evaluate STD. These
terms, which are again all OOV, occur a total of 11329 times in the evalua-
tion data. As in English experiments, feature analysis employs the same data
and search terms used to construct the MLP, to train the analysis models
and evaluate feature quality. Figure 5 shows the length distribution of the
evaluation terms.

Comparing the two languages, we see that the English data are more
conversational and spontaneous, while the Spanish data are more clean and
constrained. This contrast allows a comparative study. We note that a search
term may involve one or several words. In phone-based STD, however, the
single-word and multi-word terms are treated in a unified way since all the
terms are converted into phone sequences. For a clear presentation of the
data profile, Table 1 shows the top-20 terms that occur most frequently in
the English and Spanish evaluation data.

3.2. System configuration

For both English and Spanish experiments, we built phoneme-based STD
systems. The acoustic models are state-clustered triphones built on 39 di-
mensional Mel frequency cepstral coefficient (MFCC) features using the HTK
tool (Young et al., 2006). The n-gram language models (LM) were built us-
ing the SRI LM toolkit. For English, we choose a 6-gram model due to its
high performance on the development set; for Spanish, we choose a simpler
2-gram due to the limited amount of training text and the simple grammar
of the utterances.

For STD, the Lattice2Multigram tool developed by the Speech@FIT group
of the Brno University of Technology (BUT) is used to conduct lattice search
and retrieve potential term occurrences. We have extended this tool to sup-
port complex confidence measures, including the discriminative confidence
studied in this work. Additionally, certain letter-to-sound (LTS) approaches
need to be designed for inferring pronunciations of OOV terms. For English,
we employed an enhanced joint-multigram model (Deligne et al., 1995; Wang
et al., 2009a) trained with the AMI dictionary for this purpose; for Spanish,
we chose a simple mapping approach to derive the pronunciation. More de-
tailed information about the experimental settings can be found in (Wang,
2009) and (Tejedor, 2009).
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English Spanish
ID Term #Occ. # Phones Term #Occ. # Phones

1 remote 310 5 comunidad 536 9
2 control 216 7 dime 504 4
3 minutes 73 6 ŕıos 474 4
4 project 65 7 nombre 300 6
5 information 57 8 comunidades 248 11
6 marketing 57 8 pasa 244 4
7 budget 55 5 autónoma 232 8
8 speech 52 4 ciudades 222 8
9 target 49 6 mayor 200 5
10 recognition 48 9 cuál 196 4
11 euros 46 5 habitantes 196 9
12 fifty 43 5 caudal 190 6
13 television 41 8 pico 166 4
14 course 41 4 dónde 166 5
15 features 36 5 picos 162 5
16 twenty 34 6 metros 160 6
17 question 31 7 tiene 158 5
18 system 27 6 sistema 150 7
19 email 26 4 mediterráneo 148 11
20 mouse 26 3 longitud 144 8

Table 1: Top 20 most frequent terms of the evaluation set, their number of occurrences
and their number of phones for English and Spanish data.
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4. Features in analysis

This section presents the features studied in this work. Some of the fea-
tures are motivated by the relevance analysis on ASR in (Goldwater et al.,
2009) and others were selected due to properties of STD. Table 2 summarizes
the features, where each feature is assigned a number to assist the presenta-
tion in the following sections.

These features are categorized into six groups, according to the infor-
mation source: lattice-based features, lexical features, Levenshtein distance-
based features, duration-based features, position-based features and prosodic
features. The prosodic features can be further categorized into two sub-
groups: pitch-based and energy-based.

• Lattice-based features: This group of features includes the lattice-based
confidence cf (d), the effective occurrence rate R0(K), and the effective
false alarm rate R1(K) defined as follows:

R0(K) =

∑
i cf (d

K
i )

T
(3)

and

R1(K) =

∑
i (1− cf (dKi ))

T
(4)

where cf (d
K
i ) represents the lattice-based confidence of the i-detection

of the term K and T is the total length of the audio in seconds.

Other features belonging to this group include the maximum (max),
minimum (min) and mean acoustic scores and language model scores
of all the phones of the detected term. In general, the lattice-based
features reflect reliability of the putative detection under consideration,
as compared to alternative terms in the same speech segment and to the
acoustic and language model score distribution over phones of terms.

• Lexical features: This group of features includes the total number
of graphemes, phones, vowel graphemes, consonant graphemes, vowel
phones and consonant phones for each term. These features reflect
lexical properties of search terms, particularly term length and crude
information about the consonant-vowel structure.
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Feature number Feature Type
1 Lattice-based confidence (cf (dKi )) Lattice-based
2 Effective occurrence rate (R0(K)) Lattice-based
3 Effective FA rate (R1(K)) Lattice-based
4 Max phone acoustic score Lattice-based
5 Min phone acoustic score Lattice-based
6 Mean phone acoustic score Lattice-based
7 Max phone language model score Lattice-based
8 Min phone language model score Lattice-based
9 Mean phone language model score Lattice-based
10 Number of graphemes Lexical
11 Number of phones Lexical
12 Number of vowel graphemes Lexical
13 Number of consonant graphemes Lexical
14 Number of vowel phones Lexical
15 Number of consonant phones Lexical
16 Max Levenshtein distance Levenshtein distance
17 Min Levenshtein distance Levenshtein distance
18 Mean Levenshtein distance Levenshtein distance
19 Duration Duration
20 Phonetic speech rate Duration
21 Vowel speech rate Duration
22 Max phone duration Duration
23 Min phone duration Duration
24 Mean phone duration Duration
25 Position Position
26 Max pitch Prosodic (pitch)
27 Min pitch Prosodic (pitch)
28 Mean pitch Prosodic (pitch)
29 Max phone pitch Prosodic (pitch)
30 Mean phone pitch Prosodic (pitch)
31 Min phone pitch Prosodic (pitch)
32 Voicing percentage Prosodic
33 Max energy Prosodic (energy)
34 Min energy Prosodic (energy)
35 Mean energy Prosodic (energy)
36 Max phone energy Prosodic (energy)
37 Mean phone energy Prosodic (energy)
38 Min phone energy Prosodic (energy)

Table 2: Features and types of features under analysis.
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• Levenshtein distance features: This group includes the maximum, mini-
mum and mean Levenshtein distance from the current term to the other
terms in the vocabulary. These features try to measure the degree of
confusability, and therefore are highly dependent on the vocabulary
used.

• Duration features: This group of features consists of the duration of
the detection, the ‘phonetic speech rate’ (term duration divided by
the number of phones of the term) and the ‘vowel speech rate’ (term
duration divided by the number of vowels of the term). In addition,
the maximum, minimum and mean phone duration also belong to this
group. These features provide information in two ways: the speech
rate is directly related to reliability of the ASR output; the distribu-
tion of the duration over phones can be useful in identifying abnormal
detections.

• Position features: This group has just a single feature which represents
the position of the detection. There are three values that this feature
can take: the beginning of the lattice, the end of the lattice, or another
position. This feature is included to represent the fact that speech
decoders have less reliability at the beginning and end of utterances.

• Prosodic features: This group of features reflects the prosody of speech:
pitch (maximum, minimum and mean pitch for each detection), energy
(maximum, minimum and mean energy for each detection) and voic-
ing percentage (i.e., the percentage of voiced speech for each detection
in the speech signal). As additional features, they also include the
maximum and minimum pitch and energy values of all the phones cor-
responding to the term detected and the mean pitch and energy per
phone. All these features were computed using Praat (Boersma and
Weenink, 2007). Together, they provide some information about pitch
and energy dispersion and abnormal pitch or energy values.

To summarize: this work extends our previous study (Tejedor et al., 2010)
by including a number of new features, particularly the phone-based features
(i.e., acoustic and language model scores, phone duration, and pitch and
energy per phone). Compared with the studies reported by others, such as
Ou et al. (2001); Ayed et al. (2002); Wang et al. (2012), the novel features
in this work are those involving: Levenshtein distances, position, prosodic
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features, all the lexical features except the number of phones, and all the
duration features except the duration of the detection.

5. Individual feature analysis

In this section, we investigate the contribution of the features presented
in the previous section. The goal of the investigation is to select the most in-
formative according to their contribution to STD performance. As discussed
already, conducting this analysis using the MLP in conjunction with the
STD metric ATWV is possible but computationally costly and risks losing
generalization capacity. We therefore use simpler models to obtain rank-
ings according to intermediate evaluation metrics. In this work we use linear
regression and logistic linear regression as the analysis tools, and correspond-
ingly, choose the regression residual (R2) and cross entropy as the evaluation
metrics for LR and LLR respectively. Generally speaking, LR looks for fea-
tures that are most relevant to the detection decision, while LLR targets the
features that are most important for the decision and therefore is probably
more directly related to the STD results.

The feature analysis starts with data preparation. First of all, STD ex-
periments were conducted on the development set and a set of putative detec-
tions was obtained. Each detection was assigned a decision variable, which
is 1 for hits and 0 for FAs. Combining the features presented in the previous
section and the decision variable, these detections form the training dataset
for the analysis models. Given that the number of FAs is much higher than
the number of hits, this training set was first balanced in terms of hits and
FAs by adding randomly selected repetitions of hits until there was an equal
number of hits and FAs. In order to avoid over-fitting, we divided this set
into two equal-size subsets and used the first part for training the models
(learning set) and the second part for evaluation (verification set) in terms
of R2 and/or cross entropy.

5.1. Histogram-based analysis

We first present an intuitive analysis of the discriminative power of each
individual feature. First, we collect all detection instances from the develop-
ment set belonging to the hit and FA classes, and then for each feature, we
draw distributions of the feature values within the two classes. The overlap
proportion of the two distributions reflects the discriminative capability of
the feature. The results are shown in Figures 6–17. We can observe that
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Figure 6: Distributions of the lattice-based features for English data on the whole devel-
opment set. The solid green (light grey) curve represents hits and the dashed red (dark)
curve represents FAs. ‘ph.’ denotes phone, ‘acou.’ denotes acoustic and ‘conf.’ denotes
confidence.

the lattice-based features and the lexical features posses good discriminative
capability in general. The position feature and the prosodic features (pitch,
voicing percentage) exhibit less discriminative power. The energy-based fea-
tures do not contribute much either, except the min energy in Spanish data
that exhibits moderate discrimination. The contribution of the Levenshtein
distance-based features is also moderate. In addition, some features behave
differently in the English and the Spanish experiments. For instance, the
duration-based features contribute less significantly to the English system
than to the Spanish system. This may be attributed to the unreliable du-
ration estimation with the English data that belong to the meeting domain,
and therefore are highly spontaneous. More detailed analysis will be given
in the next section.

5.2. Regression analysis

In this section, we employ linear regression to study the relevance of
features to the decision results, i.e., hits/FAs. LR can be simply formulated
as follows:

y = WF (5)
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Figure 7: Distributions of the lexical features for English data on the whole development
set. The solid green (light grey) curve represents hits and the dashed red (dark) curve
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where F is a (R+ 1)× 1 matrix involving the R features participating in the
regression plus a constant element for bias, and W holds the parameters of
the model in a 1× (R+ 1) matrix – these are the weights on the features in
F . W is usually trained with respect to squared error defined as follows:

E =
1

N

N∑
i=1

(yi − ti)2 (6)

where N is the number of detections in the learning/verification set, and
yi is the output of the regression model for the i-th detection. ti is the
decision label, which has been coded as 1 and 0 for hits and FAs respectively.
Note that the squared error E is directly related to the Pearson correlation
coefficient R2, defined as follows:

R2 =
S2
ty

SttSyy
(7)

where Sty is the covariance of t and y and is defined as
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Sty =
1

N

N∑
i=1

(ti − t̄)(yi − ȳ) (8)

where t̄ and ȳ represent the mean of t and y respectively. Stt and Syy are
obtained using the same formula by replacing t with y or vice versa. The
squared error E and R2 are directly related:

R2 = 1− Ẽ

Stt
(9)

where Ẽ is the squared error obtained with the optimal parameter W . For
this reason we use R2 as the evaluation metric in LR analysis.

As a starting point, we use LR to analyze individual features. In this
configuration, the resulting R2 represents the relevance of each feature to the
decision result. Figure 18 presents R2 obtained in the verification set with
all individual features for the two languages under investigation. We can see
that the lattice-based confidence (#1) is the most relevant for both languages.
This is not surprising since this feature incorporates a multitude of useful in-
formation derived from ASR decoding and represents a theoretically-sound
confidence measure. We also find that there are quite a few features be-
sides the lattice-based confidence that exhibit high relevance to the decision,
e.g., effective FA rate (#3), lexical features (#10 - #15) and Levenshtein
distance-based features (#17 and #18). The effective FA rate is prominent
because it is designed to approximate the FA prior, and the lexical and Lev-
enshtein distance-based features are directly related to the confusion degree
of a term and thus convey information about potential errors. Finally, we
find features derived from some groups such as pitch are generally less rele-
vant, indicating that the pitch information, which may be more relevant to
long acoustic contexts, is less informative for the STD task which focuses on
local detections. This confirms the findings of the histogram-based analysis
reported previously.

An interesting observation is that the features derived from duration and
energy exhibit much more significant relevance to decision in Spanish than
in English data. This has been observed in the histogram analysis. The
different speaking styles of the English data (spontaneous meeting data) and
Spanish data (clean read speech data) may contribute to the difference. First
of all, we notice that duration is a good prior for error detection. For ex-
ample, ASR tends to produce more errors for short words (Goldwater et al.,

29



Figure 18: R2 obtained for each individual feature for English and Spanish data on the
verification set. “Lev. Dist.” refers to the Levenshtein distance-based features.

2009; Kao et al., 2011) and compensating for duration reduces the word error
rate (Gadde, 2000). In STD, decision errors tend to be reduced by integrat-
ing duration-based features, if they are reliable. This explains why duration
contributes to the Spanish data. For the English data which are spontaneous
meeting speech, however, the speaking style varies in a significant way, which
leads to unreliable duration-based decision. The same argument applies to
the energy-based features. In addition, ASR is inherently more difficult for
meeting data than read speech, so more noise can be expected in features
relating to duration (remembering that these are obtained from an alignment
between the acoustic models and the speech data during decoding); conse-
quently, noise is propagated into all other features which somehow rely on
this alignment (e.g., values of pitch or energy for specific phones). This noise
leads to less discriminative features for correct/incorrect term detections. In
contrast, the Spanish data are rather clean and constrained in speaking style,
and these features are more informative; for example, abnormal duration and
energy are good indicators for potential errors.

To enable a clearer understanding, we limit ourselves now to discussion of
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English Spanish
Rank Feature R2 Feature R2

1 Lattice-based confidence 0.3435 Lattice-based confidence 0.4010
2 Number of phones 0.1787 Duration 0.3781
3 Effective FA rate 0.1770 Phonetic speech rate 0.2135
4 Number of graphemes 0.1597 Mean phone duration 0.2131
5 Number of consonant phones 0.1496 Effective FA rate 0.2026
6 Number of consonant graphemes 0.1341 Vowel speech rate 0.1986
7 Duration 0.1169 Number of phones 0.1873
8 Effective occurrence rate 0.1070 Min phone duration 0.1758
9 Number of vowel phones 0.1030 Number of consonant phones 0.1755
10 Mean Levenshtein distance 0.0967 Min energy 0.1632

Table 3: Top 10 relevant features obtained with LR for English and Spanish data. R2

results on verification set are also reported for both languages.

the top 10 relevant features, as presented in Table 3 for English and Spanish
data. We observe that 5 features out of the top 10 are shared across English
and Spanish data: lattice-based confidence (which is always the most rele-
vant feature), effective FA rate, duration, number of phones and number of
consonant phones. This agreement suggests that these features are generally
informative for confidence estimation and decision making in STD. Again,
we find that most of the top 10 features are related to lattice statistics and
lexical properties for English data, while for Spanish data, a large portion of
the top 10 features are derived from lattice statistics, duration and energy.

5.3. Discriminative analysis

In the discriminative analysis, we use logistic linear regression to test the
capability of each individual feature to distinguish hits from false alarms.
LLR is a simple extension of linear regression by compressing the regression
result to the range [0, 1] using the logistic function, and thus belongs to the
family of generalized linear models. It is formulated as follows:

y = σ(WF ) (10)

where W and F are parameters and features respectively, and σ(x) is the
sigmoid function given by:
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σ(x) =
1

1 + e−x
. (11)

Theoretically, LLR outputs the posterior probabilities of detections being
hits given the features, assuming a wide range of distributions over those
features for the hit and FA classes. The objective of LLR is cross entropy
(CE), defined as follows:

CE = − 1

N

N∑
i=1

tilogyi −
1

N

N∑
i=1

(1− ti)log(1− yi) (12)

where N is the number of detections in the learning/verification set and yi
and ti are the output of LLR and the decision label of i-th detection respec-
tively. In contrast to R2, cross entropy has a probabilistic interpretation and
is more related to discriminative behavior, and therefore LLR analyzes the
contribution of features to detection results from the perspective of discrim-
inative power instead of relevance.

In this section we use LLR to analyze individual features, with cross en-
tropy as the metric. Figure 19 presents the results for English and Spanish
data in the verification set, and Table 4 presents the top 10 discriminative fea-
tures. Note that, in both representations, lower CE indicates better discrim-
ination. We first observe that both for English and Spanish data, features
derived from lattices, lexical properties, and Levenshtein distance character-
istics are among the most informative, and pitch features are unimportant.
Features derived from duration and energy exhibit much more importance
for Spanish than for English data. All these observations are consistent with
those we obtained with the LR analysis. The consistency is maintained when
looking at the top-10 most discriminative features: LR and LLR result in very
similar top 10 lists. This consistency indicates that the most discriminative
features for decision are also those most relevant to the decision results.

5.4. Leave-one-out feature analysis

The leave-one-out analysis is another way to investigate contribution of
individual features. Although closely related to the individual analysis, the
leave-one-out experiment examines how much is lost if a feature is removed
from the feature set, and therefore reflects how much unique and additional
contributions a particular feature provides.
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Figure 19: CE obtained for each individual feature for English and Spanish data on the
verification set. “Lev. Dist.” refers to the Levenshtein distance-based features. “Pos.”
stands for the Position feature.

English Spanish
Rank Feature CE Feature CE

1 Lattice-based confidence 0.4483 Lattice-based confidence 0.3828
2 Effective FA rate 0.5833 Duration 0.4414
3 Number of phones 0.5850 Phonetic speech rate 0.5611
4 Number of graphemes 0.6026 Mean phone duration 0.5614
5 Number of consonant phones 0.6057 Effective FA rate 0.5668
6 Duration 0.6147 Vowel speech rate 0.5751
7 Number of consonant graphemes 0.6189 Number of phones 0.5855
8 Effective occurrence rate 0.6225 Min phone duration 0.5899
9 Mean Levenshtein distance 0.6341 Number of consonant phones 0.5946
10 Number of vowel phones 0.6371 Number of graphemes 0.6064

Table 4: Top 10 relevant features obtained with LLR for English and Spanish data. CE
results on verification set are also reported for both languages.
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Figure 20: R2 reduction with LR in the leave-one-out experiment for English and Spanish
data on the verification set. “Lev. Dist.” refers to the Levenshtein distance-based features.
“Pos.” stands for the Position feature.

Figure 20 and Figure 21 present the R2 reduction in LR and the cross
entropy increase in LLR for English and Spanish data in the verification
set when a particular feature is removed from the feature set. We first ob-
serve that for both the English and Spanish data, missing the lattice-based
confidence leads to the most significant R2 reduction and cross entropy in-
crease. Some other features exhibit similar but less significant change, such
as the duration-based features (e.g., min phone duration), the Levenshtein
distance-based features and the energy-based features. Note that these fea-
tures are also in the top-10 most informative features in the individual anal-
ysis, indicating that they are not only informative by themselves but also
complementary with others.

In contrast, some features can be removed without any change in R2 and
cross entropy, for instance, the lexical features. This does not mean that
these features are less informative; instead, it is the high correlation with
other features (e.g., duration) that marginalizes their contribution. This
suggests that it is important to select features based on group contribution
instead of individual performance, as we will present in the next section.
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Figure 21: Cross entropy increase with LLR in the leave-one-out experiment for English
and Spanish data on the verification set. “Lev. Dist.” refers to the Levenshtein distance-
based features. “Pos.” stands for the Position feature.

6. Incremental feature analysis

In this section we select groups of features, noting that simply selecting
the n individually-best features is suboptimal because of strong correlation
among features. Figure 22 plots correlation matrices for English and Spanish
data, where the grey level is proportional to the correlation between the pair
of features indexed by the row and column numbers. We can see that some
groups of features are strongly inter-related. In this work, we choose an
incremental greedy selection approach, which enriches the n-best feature set
one by one. At each step, the feature which provides the greatest increase in
R2 (for LR) or decrease in CE (for LLR) is selected.

6.1. Regression analysis

Again, we start with linear regression. The most relevant features are
selected one by one by examining the R2 increase caused by adding a new
feature to the linear regression model. To investigate model generalization,
we split the training samples into two equal-size subsets (as for the individual
feature analysis), of which one is used for model training and feature selec-
tion (referred to as the learning set), and the other is used for evaluating
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Figure 22: The correlation matrices for English (top) and Spanish (bottom) data. Darker
means stronger correlation (either positive or negative).
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the quality of the selection (referred to as the verification set). Since STD
performance is highly related to hit/FA classification, we also present the
Classification Error Rate besides R2, which is defined as

CER =

∑
i:yi<0.5 ti +

∑
i:yi≥0.5(1− ti)

N
(13)

where yi and ti are regression output and decision label respectively, and N
is the number of samples being tested.

Figure 23 presents the experimental results on English data, where the
four curves represent respectively R2 and CER obtained on the learning and
verification sets. We observe that, on the learning set, the R2 value increases
rapidly as the first few features are added; with more features involved, only a
little further increase in R2 is obtained and the curve plateaus. This suggests
that only the first 4−5 features provide useful information and the remainder
can be ignored. R2 on the verification set displays a similar behavior: again,
as the initial few informative features are added, R2 increases quickly.

We also observe that the CER curves exhibit smooth descent, as features
are added using LR-based incremental selection. This means that R2 and
CER are closely correlated, and that features selected based on R2 are likely
to be those with the best discriminative power.

Table 23 reports the first 10 features selected. We see that these features
belong to diverse feature groups (lattice, duration and lexical properties),
confirming the importance of involving features that are derived from com-
plementary information sources.

Similarly, the results on the Spanish data are shown in Figure 24. As in
the English experiments, the first few features lead to significant R2 increase
and CER decrease, while the remaining features contribute very little. For
the most-contributing features shown in Table 6, we observe again that they
are composed by diverse features from diverse information resources (lattice,
duration and energy). Different from English data, duration and energy-
based features show more significant contribution for Spanish experiments,
which is also consistent with the individual analysis.

Another observation is that the minimum phone duration contributes to
both English and Spanish. This suggests that an abnormal speaking speed
tends to indicate an error. Note that phone duration is different from term
duration: the former relates to the speaking speed or to strange alignments
in ASR errors, while the latter relates more to the length of the search term,
and so they are complementary.
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Figure 23: R2 and CER results with LR-based incremental feature selection for English
data on the learning and verification sets.

Learning Verification
Feature R2 CER% R2 CER%
Lattice-based confidence 0.3296 21.34 0.3435 20.48
+Effective FA rate 0.4271 18.20 0.4317 17.32
+Number of phones 0.4511 16.39 0.4528 16.30
+Min phone duration 0.4595 16.06 0.4670 15.51
+Max phone language model score 0.4630 16.19 0.4684 15.61
+Min Levenshtein distance 0.4643 16.04 0.4695 15.62
+Effective occurrence rate 0.4651 16.23 0.4707 15.54
+Mean phone acoustic score 0.4658 16.14 0.4716 15.39
+Min phone energy 0.4664 15.90 0.4728 15.26
+Min energy 0.4698 15.85 0.4735 15.31

Table 5: The first 10 features selected by LR-based incremental feature analysis for English
data. R2 and CER results on learning and verification sets are also reported.
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Figure 24: R2 and CER results with LR-based incremental feature selection for Spanish
data on the learning and verification sets.

Learning Verification
Feature R2 CER% R2 CER%
Lattice-based confidence 0.4389 15.80 0.4011 17.96
+Duration 0.5697 9.43 0.5425 10.52
+Effective FA rate 0.5915 9.21 0.5683 10.33
+Min phone duration 0.6049 9.32 0.5821 9.78
+Mean phone acoustic score 0.6118 8.97 0.5906 9.53
+Min energy 0.6148 9.04 0.5936 9.65
+Max phone duration 0.6177 8.85 0.5981 9.59
+Effective occurrence rate 0.6199 9.22 0.6013 9.90
+Vowel speech rate 0.6219 9.26 0.6020 9.86
+Min phone acoustic score 0.6235 9.24 0.6032 9.92

Table 6: The first 10 features selected by LR-based incremental feature analysis for Spanish
data. R2 and CER results on learning and verification sets are also reported.
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Figure 25: CE and CER results with LLR-based incremental feature selection for English
data on learning and verification sets.

6.2. Discriminative analysis

In the next experiment we used LLR to perform the incremental selection.
The experimental settings are the same as in the regression analysis with
LR, except that the selection model and metric are changed to LLR and CE.
Again, CER values are presented to show the discriminative power of the
selected features.

Figure 25 presents the experimental results on English data, where the
four curves represent CE and CER on the learning and verification sets. We
observe that the four curves show very similar behavior: with the first 3
features, the CE/CER is substantially reduced and then little further reduc-
tion can be obtained by adding more features. The consistency between CE
and CER confirms that the cross entropy is directly related to classification
performance, and the consistency between the learning and verification sets
indicates the learning possesses good generality.

Table 7 reports the first 10 selected features. Comparing with Table 5
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Learning Verification
Feature CE CER% CE CER%
Lattice-based confidence 0.4602 19.76 0.4483 18.70
+Effective FA rate 0.3860 16.42 0.3846 15.97
+Number of phones 0.3718 15.79 0.3724 14.88
+Min phone duration 0.3654 15.56 0.3604 14.45
+Mean phone acoustic score 0.3640 15.50 0.3591 14.36
+Max phone language model score 0.3628 15.37 0.3593 14.36
+Min phone energy 0.3619 15.37 0.3581 14.28
+Min energy 0.3592 15.10 0.3577 14.20
+Min Levenshtein distance 0.3583 15.36 0.3569 14.38
+Max phone duration 0.3578 15.13 0.3572 14.51

Table 7: The first 10 features selected by LLR-based incremental feature analysis for En-
glish data. CE and CER results on learning and verification sets are also reported.

obtained with LR, we see that the first 4 features are exactly the same,
although the rest less informative features show differences. This suggests
again that keeping a small set of the most useful features is the best approach
in obtaining best performance.

The Spanish results are shown in Figure 26. We find the same trend
and consistency as in the English experiments: the first few features lead to
substantial CE/CER reduction while the remaining features contribute little;
the CE and CER curves are highly consistent, and the results on learning
and verification sets also exhibit consistency.

Table 8 reports the first 10 selected features. Comparing with the LR
results in Table 6, the first 4 features match though the rest of the features
show differences.

The results we obtained so far clearly show that the most relevant features
obtained by LR and the most discriminative features obtained by LLR largely
coincide for STD tasks, so that we can choose any technique to conduct
the selection. However, this does not mean LR and LLR are the same:
comparing the CER values obtained with LR and LLR, we see that using
the LLR method results in lower CER: LLR is a more suitable method for
the classification problem than LR.
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Figure 26: CE and CER results with LLR-based incremental feature selection for Spanish
data on learning and verification sets.

Learning Verification
Feature CE CER% CE CER%
Lattice-based confidence 0.3364 13.03 0.3828 14.87
+Duration 0.2451 8.72 0.2795 10.03
+Effective FA rate 0.2238 7.97 0.2527 8.99
+Min phone duration 0.2204 8.01 0.2487 8.83
+Min Levenshtein distance 0.2175 7.98 0.2472 8.79
+Min energy 0.2159 7.87 0.2462 8.89
+Vowel speech rate 0.2148 7.80 0.2467 8.79
+Max phone duration 0.2131 7.72 0.2436 8.64
+Max phone acoustic score 0.2123 7.75 0.2421 8.66
+Number of consonant graphemes 0.2117 7.75 0.2422 8.70

Table 8: The first 10 features selected by LLR-based incremental feature analysis for Span-
ish data. CE and CER results on learning and verification sets are also reported.
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6.3. Individual and incremental feature analysis comparison

Comparing the individual analysis and incremental analysis, we observe
that the best candidates in the incremental selection are not necessarily the
most discriminative individuals. For example, the minimum phone dura-
tion is selected as the 4th most important feature for English with the LR
incremental analysis, but not among the top-10 discriminative features in
the individual analysis. This is understandable, as the incremental selection
focuses on group discriminative capability, therefore complementarity with
other features is more important than individual discrimination. For our ex-
ample, the minimum phone duration reflects the speaking speed or strange
alignments in ASR errors, which is complementary with the features that
have been selected: the lattice-based confidence that represents ASR quality,
effective FA rate that reflects decision preference, and the number of phones
that reflects length of search terms.

7. Feature selection for spoken term detection

In this section we apply the features obtained with the incremental selec-
tion to improve spoken term detection. Specifically, the selected features are
input into the discriminative confidence estimation framework (see Figure
2), where an MLP model is used to integrate these features and produce the
discriminative confidence measure. With feature selection, a less complex
MLP can be constructed, which should have better generalization, and of
course a lower computational cost.

7.1. MLP training

The MLP models are trained using the same data that are used in the
linear regression and logistic linear regression analyses, i.e., a balanced set of
detections obtained from the development set. We use a 3-layer MLP (see
Figure 3), where the input layer collects all input features, and the output
layer contains two units that correspond to hits and FAs respectively. A
standard error back-propagation algorithm (Bishop, 1995) is employed to
train the model, and K-fold cross-validation (K = 10) is employed to select
the number of units in the hidden layer.

7.2. Phone recognition experiments

We first report performance of the ASR systems. Since we work with
phone-based systems, ASR performance can be evaluated in terms of the
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English Spanish
PER 40.49% 32.00%
Average lattice density 805 2150

Table 9: PER and lattice density with the English and Spanish ASR systems.

phone error rate (PER). Table 9 presents the results. We observe that the
Spanish system attains a lower PER than the English system. This can be
explained mainly by the difference in speaking style in the databases used
(read for Spanish vs. spontaneous for English). This result does not imply
that the Spanish STD system is better than the English STD system. In
any case, STD performance is impacted by a multitude of factors besides
the PER, such as the selection of search terms, the method of confidence
estimation, the treatment for overlapped detections and the decision strategy.
Among these factors, the quality of lattices is particularly important (see
Section 6). We therefore present the lattice density, computed as the average
number of nodes per second (Stolcke, 2002) for both languages in Table 9.
We find that the Spanish system generates denser lattices than the English
system, which imposes a significant impact on quality of the lattice-based
confidence, as we will see shortly.

7.3. STD results

We test STD performance based on a discriminative confidence mea-
sure derived from features obtained by the incremental selection. Since the
LR and LLR-based approaches result in slightly different feature ranks, we
present the results with both approaches. Tables 10 and 11 show the ATWV
results on the English and Spanish data respectively. We observe that for
both languages, the optimal ATWV results are obtained with the 3− 5 most
informative features selected by the incremental selection. Including more
features does not improve STD. We remark that some of the new features
proposed in this paper contribute to the best feature set when evaluating
STD performance, e.g., the minimum phone duration and the maximum
phone language model score.

Note that the lattice-based confidence itself provides a low ATWV for the
Spanish data. This can be attributed to the weak (2-gram) and mismatched
(trained on the general domain and tested on the geographical domain) LM.
On the one hand, this leads to unreliable lattice-based confidence (which
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LR LLR
Feature ATWV Feature ATWV
Lattice-based confidence 0.2905 Lattice-based confidence 0.2905
+Effective FA rate 0.2898 +Effective FA rate 0.2898
+Number of phones 0.2911 +Number of phones 0.2911
+Min phone duration 0.2957 +Min phone duration 0.2957
+Max phone language model score 0.2984 +Mean phone acoustic score 0.2951
+Min Levenshtein distance 0.2947 +Max phone language model score 0.2956
+Effective occurrence rate 0.2947 +Min phone energy 0.2921
+Mean phone acoustic score 0.2957 +Min energy 0.2896

Table 10: ATWV results on the English data with features incrementally selected based on
LR and LLR with the best result in bold font.

involves LM scores), and on the other hand, this weak LM leads to dense
lattices which in turn generates a high number of FAs. Both of the above
result in an ATWV lower than that of the English system. The average
lattice density has been reported in Table 9.

For the LR-based selection, we observe that choosing the 5 best features
provides the best STD performance on the English data, whereas for the
Spanish data, choosing the 3 best features is enough to achieve the maximum
improvement. Paired t-tests show that, on English data, the best ATWV gain
over the single best feature (i.e., lattice-based confidence) is weakly significant
(p < 0.02), whereas the gain is highly significant (p < 0.001) on the Spanish
data.

With LLR-based selection, the 4 best features give the best improvement
on the English data and the 5 best features do for the Spanish data. Paired
t-tests show that the best ATWV gain over the single best feature is highly
significant (p < 0.001) on the Spanish data, but insignificant for English.

These results demonstrate that both feature selection methods are highly
effective in improving STD performance by including on the few most infor-
mative features and excluding unuseful features. Although slightly different
in terms of ATWV, the LR and LLR analyses resulted in highly consistent
feature ranks.
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LR LLR
Feature ATWV Feature ATWV
Lattice-based confidence 0.0576 Lattice-based confidence 0.0576
+Duration 0.2295 +Duration 0.2295
+Effective FA rate 0.2343 +Effective FA rate 0.2343
+Min phone duration 0.2314 +Min phone duration 0.2314
+Mean phone acoustic score 0.2296 +Min Levenshtein distance 0.2366
+Min energy 0.2267 +Min energy 0.2320
+Max phone duration 0.2242 +Vowel speech rate 0.2360
+Effective occurrence rate 0.2263 +Max phone duration 0.2236

Table 11: ATWV results on the Spanish data with features incrementally selected based on
LR and LLR with the best result in bold font.

8. Conclusions

This paper studied various features for STD within the discriminative
confidence estimation framework. Two analysis tools based on linear regres-
sion and logistic linear regression are employed to study the contribution of
these features to STD individually and as a group. The experiments were
conducted on two databases: one contains English meeting speech and the
other contains Spanish read speech. Our analysis shows that for both the
English data and the Spanish data, the lattice-based confidence, the effective
FA rate and the minimum phone duration are generally the most important,
and the best feature set is composed of features derived from diverse sources
(ASR decoding, duration and lexical properties). Although based on dif-
ferent criteria, the LR and LLR analyses lead to highly consistent feature
ranks. This indicates that for STD, the most relevant features are also the
most discriminative. In spite of the complexity in methodology and data,
the candidate features proposed have been demonstrated to deliver signifi-
cant performance improvements when compared to a baseline using the single
best feature.

Future work involves more advanced analyzing approaches, especially var-
ious approaches to automatic relevance detection (ARD), and sparse discrim-
inative analysis (SDA). Extending the incremental search to more compre-
hensive search approaches such as evolutionary algorithms might be another
interesting direction.
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tem for NIST STD 2006 - English. In: Proc. NIST spoken term detection
workshop (STD 2006). Gaithersburg, Maryland, USA, pp. 1–26.
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