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The classical amyloid cascade hypothesis
of Alzheimer’s disease (AD) has driven
research and clinical practice for sev-
eral decades. It states that the deposition
of the amyloid-β peptide in the brain
parenchyma initiates a sequence of events
that ultimately lead to atrophy and AD
dementia. This proposal stimulated the
study of specific brain regions mapped
along the neurodegeneration sequence
(e.g., hippocampus) and their associated
impaired functions (e.g., episodic mem-
ory). Although anticipated by Mesulam
more than 20 years ago (e.g., Mesulam
and Asuncion Moran, 1987), it was not
until recently that this view has started to
change, largely due to the disappointing
results of trials relying on the beta-amyloid
cascade hypothesis and its variants, e.g.,
the synaptic beta-amyloid hypothesis.

A new approach based on neuro-
plasticity of neural networks has shifted
the attention from one region to the
orchestration of several brain hubs. The
connectivity account would play an
important role in revealing the transneu-
ral spread of misfolded proteins through
neural networks in neurodegenerative
disease (Pievani et al., 2011; Ibanez and
Manes, 2012), and specifically in AD (Raj
et al., 2012). In line with this view, the
metabolism hypothesis (MH) has been
proposed, which suggests that changes
in the default mode network (DMN, the
ongoing low-frequency fluctuations dur-
ing resting state between the anterior

and posterior cingulate cortex as well
as the precuneus) stimulate an activity-
dependent or metabolism-dependent
cascade that promotes the development
of the AD pathology (Buckner et al.,
2005). Notably, hyperactive neurons are
observed near amyloid plaques in ani-
mal models (Busche et al., 2008) and in
humans, connectivity hubs overlap the
anatomy of A-β deposition (Buckner et al.,
2009). Abnormal DMN activity discrimi-
nates between Mild Cognitive Impairment
(MCI), AD and controls (Rombouts et al.,
2005; Petrella et al., 2011; Seo et al., 2013;
Wang et al., 2013b), and predicts AD
conversion (Pievani et al., 2011). Thus,
default connectivity seems to be a promis-
ing approach to reveal novel mechanisms
leading to AD.

However, the DMN seems to be affected
by many other diseases (Sonuga-Barke
and Castellanos, 2007; Whitfield-Gabrieli
and Ford, 2012). Moreover, although the
altered DMN might interrupt or affect the
brain dynamic in AD patients, it actually
reflects a resting state activity unlikely to
explain, on its own, profiles of cognitive
decline in AD. The combined analysis of
brain connectivity associated with specific
cognitive processes affected by AD early in
its course with resting DMN is an unex-
plored area that could help overcome these
limitations. This approach may reveal
markers for the early or even preclinical
detection of neurocognitive impairments
in AD. A potential strategy would be to

assess the neural connectivity associated
with episodic memory tasks (Wang et al.,
2013a). However, these tasks have only
detected AD-related changes in its pro-
dromal or clinical stages (Fields et al.,
2011). A recently developed methodol-
ogy, namely short-term memory binding
(STMB, Parra et al., 2009, 2010, 2011),
is intrinsically related to brain networks
activation, and appears to be more promis-
ing for the preclinical detection of AD.
Binding functions, as originally investi-
gated in perception, require a large-scale
network integration mechanism (Varela
et al., 2001). In AD research, emerging evi-
dence suggests that binding impairments
occur at the short term memory level.
STMB is a cognitive function responsi-
ble for retaining, on a temporary basis,
intra-item features thus contributing to
the formation of objects’ identity. It has
been recently assessed with a change detec-
tion tasks, which ask participants to judge
whether the content of two consecutive
arrays of shapes, colors or shape-color
combinations is the same or different.
STMB is impaired early in AD (Parra
et al., 2009) and also in preclinical famil-
ial AD (Parra et al., 2010, 2011), pre-
served in healthy aging (Brockmole et al.,
2008), and declines earlier in AD than in
other dementias (Della Sala et al., 2012).
Moreover, STMB seems to be indexing a
pre-hippocampal phase of AD (Reiman
et al., 2010) and recruits other regions
(Parra et al., 2014). Thus, a combination of
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both neural (DMN) and cognitive (STMB)
integration processes may contribute an
early and specific marker of AD pro-
gression. A new research agenda linking
resting brain dynamics (DMN) with an
active task which (1) relies on neural net-
work integration and (2) is highly spe-
cific and sensitive for AD, would represent
a powerful approach to the early detec-
tion of AD. Importantly, the resting and
active connectivity measures drawn from
this novel approach can be tracked both
with neuroimaging (fMRI) and electro-
magnetic methods (EEG and MEG).

STMB tasks are well suited to be tracked
with EEG or MEG measurement (Luria
and Vogel, 2011; Wilson et al., 2012).
Typically, the temporal dynamic of the
integrative functions assessed by this task
would be in the order of milliseconds.
These techniques can capture the evoked
responses and their neural connections
during the whole process of STMB. This
task also provides several advantages for
EEG/MEG procedures such as high num-
ber of trials, stimuli-evoked activity pre
and post memory binding process, tempo-
ral sequencing, and categories with differ-
ent levels of difficulty.

Notwithstanding the adequacy of the
task’s parameters for EEG/MEG record-
ings, the question of why techniques
with low spatial resolution should be
considered instead of neuroimaging meth-
ods stands out. Several factors support
this selection. First, high-density elec-
troencephalography (hd-EEG) and other
electromagnetic techniques permit an
easy, low-cost, non-invasive, and acces-
sible approach for large-scale multisite
studies around the world. Second, high
density EEG/MEG technologies have
provided an increased spatial resolu-
tion of fine temporal dynamics both at
the analytical (mathematical methods)
and technical (high number of chan-
nels, photometry methods, and individual
MRI co-recordings) level, making them
more suitable to investigate AD-related
changes. Third, EEG/MEG techniques
have proven useful for characterizing AD
and also for detecting changes in preclin-
ical familial AD and MCI (Jackson and
Snyder, 2008; Stam, 2010). For example,
source EEG functional network disrup-
tion in AD is associated with cognitive
decline (Gianotti et al., 2007; Ishii et al.,

2010) (see (Kurimoto et al., 2008; Hsiao
et al., 2013) for similar results in MCI),
APOE genotype (Canuet et al., 2012) and
differentiates between other dementias
(Babiloni et al., 2004). Moreover, loss of
interregional synchronization between dif-
ferent functional brain regions also reflects
cognitive decline in AD (De Haan et al.,
2012). Furthermore, the EEG/MEG based
connectivity analysis (EMCA) can also be
used to track the effect of medication on
AD (Babiloni et al., 2006; Gianotti et al.,
2008).

There are other direct advantages of
using EMCA. The theoretical frame of
interdependence between spontaneous
and evoked neuroelectric oscillations in
terms of frequency and phase reset has
been forwarded earlier (e.g., by Basar’
group in the eighties). Nevertheless, over
the last 10 years, a real increase in technical
and mathematical sophistication in EMCA
has produced new research possibilities
with practical applications (Basar et al.,
2013; Larson-Prior et al., 2013). Regarding
brain global properties, current graph
theoretical network studies of the brain
have shown a self-organized small-world
network characterized by a combination
of focal connectivity and long-distance
connections. Graph theory is one of the
most powerful forms of connectivity anal-
ysis for AD (Pievani et al., 2011; Tijms
et al., 2013), and it can be correctly imple-
mented with EEG/MEG signals (e.g., Stam
and Van Straaten, 2012; Barttfeld et al.,
2013). Regarding time dynamics, differ-
ent networks are orchestrated in our brain
in time windows of milliseconds and the
connectivity within and between them is
not a static process. Our brain has rapid
rhythms that allow for communication
between different regions at several fre-
quencies. The high time-resolution of
intracranial signals from EEG sources
can be quantified by coherence and phase
synchronization, two methods that have
proved informative in AD (Czigler et al.,
2006; Knyazeva et al., 2012). Moreover,
recent methods provide a better charac-
terization of the physiological signal with
better spatial location and provide solu-
tions for classical problems of volume
conduction (Pascual-Marqui et al., 2011).
They also permit the comparison of spon-
taneous and stimulus-induced activations
and the identification of commonalities

between them (Lehmann et al., 2010).
Moreover, oscillatory neuronal dynamics
in the human brain using connectivity
analysis of source estimated event-related
synchronization at different frequen-
cies is now an available method (Ishii
et al., 2013). Transient momentary events
(e.g., thoughts) in electromagnetic signals
might be incorporated in temporal chunks
of processing (10–100 ms) as quasi-stable
brain states (Lehmann et al., 2006). In
brief, EMCA can track the brain dynamic
of rapid fluctuations (Barttfeld et al., 2014)
and also of transient activity during very
short periods, especially those supporting
binding or transient integration.

Thus, assessing the combination of
basal resting state influences together with
the ongoing activity during a task and
its evoked neural response may allow
for investigation and characterization of
preclinical AD-related changes in brain
dynamics. This novel approach offers new
possibilities to better understand the cog-
nitive binding problem in the course of
AD as well as the dynamics of corti-
cal integration. This research proposal
also requires tackling several methodolog-
ical and empirical challenges. Although
promising, current methods for combin-
ing connectivity measures during ongo-
ing activity and evoked responses do not
yet fully capture the single trial dynamics.
The potential use of connectivity metrics
as predictor of patients’ clinical outcome
is not well understood at present. No
single study using EMCA to assess AD
or MCI patients has combined active
and resting recordings and the analysis
of source connectivity using individual
MRI. We believe this combined approach
would disclose unknown AD mechanisms.
The research growth in these domains
of cognitive neuroscience will offer sup-
port to key strategies such as combining
STMB and EMCA to provide a neurocog-
nitive marker for the preclinical detec-
tion of AD. In support to this proposal,
recent neuroimaging studies carried out
in cases of preclinical familial AD have
revealed a temporal proximity between
the onset or appearance of STMB deficits
and amyloid-β deposition. By the average
age at which amyloid-β depositions reach
a plateau (Fleisher et al., 2012), STMB
deficits become detectable behaviorally
(Parra et al., 2010). It is worth noticing
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that these mutation carriers would be
otherwise completely asymptomatic. This
evidence warrants investigation of the
hypothesis of a link between connectiv-
ity problems as assessed by STMB and
EMCA and neurodegenerative changes in
AD. Such research would shed further light
into the link, or lack thereof, between amy-
loid changes, cognition and AD.
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