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Abstract

The structure and friction of fatty-acid surfactant films adsorbed on iron-oxide surfaces

lubricated by squalane are examined using large-scale molecular dynamics simulations. The

structures of stearic-acid and oleic-acid films under static and shear conditions, and at various

surface coverages, are described in detail, and the effects of unsaturation in the tail group are

highlighted. At high surface coverage, the measured properties of stearic-acid and oleic-acid

films are seen to be very similar. At low and intermediate surface coverages, the presence of a

double bond, as in oleic acid, is seen to give rise to less penetration of lubricant in to the sur-

factant film, and less layering of the lubricant near to the film. The kinetic friction coefficient

is measured as a function of shear rate within the hydrodynamic (high shear rate) lubrication

regime. Lubricant penetration and layering is observed to be correlated with friction coeffi-

cient. The friction coefficient with oleic acid depends only weakly on surface coverage, while

stearic acid admits more lubricant penetration, and its friction coefficient increases signifi-

cantly with decreasing surface coverage. Connections between film structure and friction are

discussed.
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1 Introduction

The adsorption of surfactant molecules on to solid surfaces can be used to control the chemical and

physical properties of materials. The range of applications is vast, from dispersing solid particles

in colloidal suspensions, through to altering the tribological properties of a solid surface. One of

the most important applications, from an economical point of view, is the adsorption of surfac-

tant molecules on to lubricated metal, metal-oxide, and glassy inorganic surfaces in automotive

engines, in order to minimize chemical corrosion and mechanical wear, and to control friction. In

order to understand how chemistry controls the performance of a surfactant in this application, it

is necessary to obtain a clear picture of the structure of the surface-adsorbed film and its mod-

ification of the interface between the inorganic surface and the hydrocarbon lubricant. Current

commercial surfactants are subject to strict confidentiality agreements, but in general terms they

are often relatively simple, amphiphilic molecules, each possessing a polar head group and an

aliphatic tail. The binding of the molecules to the surface must be neither too strong (in which case

surface corrosion can occur) nor too weak (in which case, the surface film is too fragile). Canon-

ical surfactant molecules include long-chain carboxylic acids, with aliphatic tails consisting of 16

to 18 carbons. Detailed structural information on surface-adsorbed films at the solid-oil interface

can be gleaned from techniques such as sum frequency spectroscopy (SFS) and polarized neu-

tron reflectometry (PNR). For example, PNR was used to investigate the structure of palmitic acid

[hexadecanoic acid, CH3(CH2)14COOH] adsorbed on to iron-oxide surfaces from hexadecane.1

At the bulk-solution concentrations studied, palmitic acid forms a dense tilted monolayer with an

apparent thickness of 16 Å. The existence of a second, diffuse layer was assumed in order to fit the

reflectometry results; this layer had a thickness of 35-45 Å, depending on solution concentration.

Stearic acid [octadecanoic acid, CH3(CH2)16COOH] and oleic acid [(9Z)-octadec-9-enoic acid,

CH3(CH2)7(CH)2(CH2)7COOH] have been widely studied in a variety of tribological contexts.

The effects of unsaturation on the frictional properties of stearic acid and oleic acid on mica lu-

bricated with n-hexadecane have been examined experimentally using surface-force apparatus.2

Both fatty acids form disordered monolayers on mica over adsorption times of up to 1 day. For
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surfaces separated by H = 50 Å films consisting of fatty acid and any co-adsorbed lubricant, the

friction coefficient of stearic acid at a sliding velocity of vs = 4 µm s−1 (and nominal shear rate

γ̇ = vs/H = 800 s−1) was found to be lower than that of oleic acid. Under high loads (in excess of

3.5 MPa) the fatty acid molecules were removed from the surface under sliding, and the measured

friction coefficient approached that of pure n-hexadecane. In recent work, it has been shown that

in the boundary lubrication regime (high load, low sliding velocity), the presence of stearic acid

adsorbed on steel surfaces results in a friction coefficient that increases with sliding velocity, while

the presence of oleic acid leads to the opposite trend.3 The presence of the trans isomer of oleic

acid (elaidic acid) gives the same trend as stearic acid, showing that the structure of the adsorbed

film (which is dictated by molecular structure) can have a qualitative effect on friction. The fric-

tional and anti-wear effects of adsorbed stearic and oleic acids have been examined for a variety of

surfaces, including steel,4 TiO2 crystallites,5,6 and copper/copper sulfide.7

The aim of the current work is to elucidate the microscopic structure of stearic-acid and oleic-

acid films adsorbed on to iron-oxide surfaces from a model base oil (squalane), to calculate the

kinetic friction coefficient as a function of sliding velocity, and to explore whether any links can be

made between the structure and friction. These particular fatty acids allow the effects of unsatura-

tion on structure and friction to be isolated, while iron oxide and squalane are good representatives

for components of combustion engines. For the most part, detailed experimental studies of friction

between surfaces are limited to high loads and low sliding velocities, i.e., the boundary friction

regime. In some critical areas of a combustion engine, the loads and sliding velocities are very

high, and pressures up to 1 GPa and shear rates up to 109 s−1 are possible. In this so-called hy-

drodynamic lubrication regime, atomistically detailed molecular simulations can provide unique

insights on the structure and frictional properties of adsorbed surfactant films. Examples of sys-

tems studied using atomistic molecular-dynamics (MD) simulations include generic models of

surfaces, lubricant, and friction modifiers,8 molybdenum sulfide,9,10 confined polymers and hy-

drocarbons,11,12 zinc dithiophosphate in hexadecane between iron-oxide surfaces,13 and various

silane monolayers between silica surfaces.14–16 More idealized, coarse-grained models have been
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studied with a view to understanding the fundamentals of sliding friction,17–23 and the friction

of complex fluids such as polymers, polymer brushes, etc.24–38 Some important studies of MD

methodology have also appeared in the literature, including how to simulate sliding friction under

conditions of constant lubricant chemical potential,39 and the pros and cons of simulating sliding

friction under either constant surface separation or constant load.16,40

The results from the current work provide insights on the links between structure and friction.

Relevant experimental measurements are not yet available for comparison with the simulation

results. Nonetheless, a preliminary comparison of simulation results with PNR and SFS mea-

surements for fatty amines on iron-oxide surfaces in oil41 shows excellent agreement in terms of

density profiles and molecular tilt angles, validating the simulation approach.42 In addition to pro-

viding molecular-scale insight on the properties of adsorbed fatty acids at the iron oxide-squalane

interface, the current simulation results allow an investigation of some generic properties of lubri-

cant films under high-shear conditions, such as the dependence of friction coefficient on shear rate,

and the phenomenon of shear thinning.

The rest of this article is organized as follows. The simulation model and methods are detailed

in Section 2. The results are presented in Section 3, arranged in terms of structure under static

conditions (Section 3.1), structure under shear conditions (Section 3.2), and friction coefficients

(Section 3.3). Conclusions are presented in Section 4.

2 Model and methods

Classical MD simulations were performed using LAMMPS.43,44 The atomic coordinates for the

(100) surface of iron (III) oxide (hematite, α-Fe2O3)45 were used to produce a slab containing

2400 atoms, with lateral (xy) dimensions of 55.1 Å× 50.4 Å, and a thickness of approximately

10 Å. Two such slabs were used to confine a lubricant layer of squalane, and surfactant molecules

(either stearic acid or oleic acid) were adsorbed on to the interior surfaces of the slabs. The system

was accommodated in a cuboidal simulation box with periodic boundary conditions applied in the
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x and y directions. Three surface coverages were considered, each with a different number of lubri-

cant molecules, but with a similar total number of atoms (N ' 27 000 atoms including the surface

atoms): 72 surfactants on each interior surface (giving a surface coverage Γ = 2.59 nm−2) and 168

squalanes; 36 surfactants (Γ = 1.30 nm−2) and 192 squalanes; 16 surfactants (Γ = 0.58 nm−2) and

240 squalanes. In each case, the average surface-surface separation (measured in the z direction

between the innermost layer of atoms on each iron-oxide surface) was in the region of Hz = 75-

90 Å, which was large enough so that no significant lubricant structuring was evident in the middle

of the fluid layer. Some representative simulation snapshots are shown in Figure 1. In the fol-

lowing, squalane will be referred to as the ‘lubricant’. In real systems, the amount of ‘lubricant’

between surfaces can be very small – particularly in the boundary lubrication regime – and hence

the distinction between ‘lubricant’ and adsorbed ‘surfactant’ becomes blurred. In the simulated

systems, this distinction remains clear and we use the terms ‘lubricant’ and ‘surfactant’ to refer to

the squalane and stearic acid/oleic acid, respectively.

Figure 1: Simulation snapshots of the surfactant film, with and without lubricant. (a) Stearic acid
at Γ = 2.59 nm−2 under static conditions. (b) Oleic acid at Γ = 2.59 nm−2 under static conditions.
(c) A single stearic acid film at Γ = 2.59 nm−2 with sliding velocity vs = 10 m s−1 (lubricant
not shown). (d) A single stearic acid film at Γ = 0.58 nm−2 with sliding velocity vs = 10 m s−1,
showing the ‘piling up’ effect (lubricant not shown). These figures were prepared using VMD.46

Interactions involving surfactant and lubricant molecules were described using the DREID-
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ING force field,47 which discriminates between the hybridization states of atoms through bonding

constraints, and hence can represent the differences in interactions involving stearic acid and oleic

acid. The surfactant molecules were taken to be in the protonated (electrically neutral) form, which

should be favored in a low-polarity solvent. Partial charges on surfactant head-group atoms were

determined using Gaussian 0348 at the B3LYP level with the 6-311+G(d,p) basis set, and these

values were used in combination with the non-electrostatic interactions from the DREIDING force

field. The atom partial charges were found to be the same for both stearic acid and oleic acid:

hydroxyl H +0.46 e; hydroxyl O −0.65 e; carbonyl C (C1) +0.73 e; carbonyl O −0.52 e; alkyl

C (C2) −0.05 e; alkyl C (C3) +0.03 e. All other surfactant atoms had zero partial charges. The

iron-oxide surface interactions were represented by the Lennard-Jones-type potential developed

by Berro et al.13 In particular, the partial charges on the surface atoms were +0.771 e on Fe and

−0.514 e on O. The surface atoms were restrained in the prescribed crystal structure by harmonic

bonds between neighboring atoms within 3 Å of one another: the force constant was chosen to

be 130 kcal mol−1 Å
−2

, which kept the surface structure rigid, but did not adversely affect ther-

mostatting (see below). All LJ-type interactions were cut-off at 10 Å, and cross interactions were

evaluated using the Lorentz-Berthelot mixing rules. Electrostatic interactions were evaluated using

a slab implementation of the particle-particle particle-mesh algorithm.

The MD equations of motion were integrated using the velocity-Verlet algorithm with an inte-

gration time-step of 1 fs. A Nosé-Hoover thermostat was applied to keep a constant temperature

T = 298 K. Pressure was controlled by applying a normal load (Pzz = 1000 atm) to the outer-

most layer of atoms in the upper slab, keeping the z coordinates of the outermost layer of atoms

in the lower slab fixed in space.49 Calculations of the stress tensor showed that the hydrostatic

pressure within the fluid film was equal to its target value. Under shear conditions, the outermost

layer of atoms in each slab was given a constant sliding velocity of ±vs/2 in the x direction. The

values of vs were 0.625, 1.250, 2.500, 5.000, 10.000, and 20.000 m s−1, and the thermostat was

then only applied in the y direction (perpendicular to the xz shear plane) so as not to perturb the

steady-state velocity profile vx(z). The kinetic friction coefficient µ can be obtained using the
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extended Amontons-Coulomb law FL = F0 + µFN, where FL and FN are, respectively, the aver-

age total lateral and normal forces acting on the outermost layer of atoms in each slab, and F0 is

the load-independent, Derjaguin offset representing adhesive surface forces. In the present case,

because the normal force (load) is so high, the approximation FL/FN = F0/FN + µ ' µ is very

accurate and computationally expedient. It was checked for some test cases that a linear fit of FL

as a function of FN gives an insignificant value of F0 and the same result for µ within the statisti-

cal uncertainties. In general, the formula µ ' FL/FN is appropriate for the cases of non-adhesive

surfaces (small F0) and any surfaces under high applied loads (large FN).19

The simulation setup consisted of placing surfactant molecules close to, but not directly on,

the interior surfaces of two well-separated slabs (Hz ' 200 Å), and introducing several perfectly

ordered layers of squalane molecules in between. The system was then allowed to equilibrate and

compress slowly under the applied load. Equilibration runs were typically in the range of 20-40 ns,

and production runs were 20 ns. All calculations were run on BP’s High Performance Computing

facility in Houston, USA. Even with such resources, the calculations were demanding: a typical

20 ns simulation took around 5 days running in parallel on 60 Nehalem or Westmere cores.

3 Results and discussion

Some simulation snapshots are shown in Figure 1, for stearic acid and oleic acid at high surface

coverage and under static conditions, and stearic acid under shear conditions at high and low

surface coverages. In what follows, some properties are expressed as functions of the distance

from the surface, denoted by z. This is taken as the distance from the innermost layer of atoms on

each slab.

3.1 Structure under static conditions

The structure of the adsorbed surfactant film under static conditions is considered first. Figure 2

shows the atomic mass-density profiles ρ(z) resolved in to surfactant and lubricant contributions.
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Results are shown for stearic acid and oleic acid, and under three different surface coverages Γ.

The surfactant film gets thicker with increasing surface coverages: the tail of ρ(z) extends further

in to the lubricant. Broadly speaking, the surfactant forms a film that extends up to about 20 Å

from the surface, and there is no evidence for multilayer formation. At the highest surface coverage

(Γ = 2.59 nm−2) the lubricant near the surfactant layer shows only a small degree of modulation

that signals layering. With decreasing surface coverage, the lubricant develops more structure,

reflecting the increasing influence of the hard iron-oxide surface. In essence, the surfactant film is

‘soft’ and leads to a blurring of the interface between surface and lubricant.
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Figure 2: Atomic mass-density profiles ρ(z) of surfactant and lubricant molecules, as functions of
the distance from the surface z, under static conditions. Panels (a)-(c) and (d)-(f) show the results
for stearic acid and oleic acid, respectively, at the indicated values of surface coverage Γ. Black
solid lines: surfactant atoms. Red dashed lines: lubricant atoms.

Ostensibly, the profiles for stearic acid and oleic acid are very similar, but there is a subtle

and important difference at the lowest surface coverage (Γ = 0.58 nm−2): the squalane appears to

penetrate further in to the stearic-acid film than in to the oleic-acid film. This is signaled by the first

two peak heights in the squalane density profile being greater with stearic acid than with oleic acid.

An associated feature is that the stearic-acid density profile has a small tail that extends further in
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to the lubricant, while the backbone atoms of oleic acid form only two ‘adlayers’. The difference

in film structure between stearic and oleic acids can be highlighted by calculating the center-of-

mass, zCOM, of the surfactant molecules within a surface film. For a given surface coverage, a

more compact surfactant film will give a smaller value of zCOM. The results are shown in Table

1. Except for the highest surface coverage, stearic acid gives a higher value of zCOM than does

oleic acid, showing that the stearic-acid film is more diffuse, i.e., the lubricant penetrates further

in to the film and leads to swelling. At the highest surface coverage, the packings of stearic acid

and oleic acid should be similar. At low and intermediate surface coverages, oleic acid forms a

more compact film that admits less lubricant penetration. Unsaturated molecules usually pack less

well in the bulk solid phase, leading to a reduction in melting point as compared with saturated

molecules, but for an adsorbed monolayer in intimate contact with liquid-phase squalane, this

structure-property relationship is not expected to carry over.

Table 1: Properties of systems with stearic-acid and oleic-acid films at surface coverage Γ: center-
of-mass distance zCOM of the surfactant molecules within a film under static conditions; fit param-
eters µ0 and γ̇0 of eq 4 describing the shear-rate dependence of the kinetic friction coefficient.

Surfactant Γ/nm−2 zCOM/Å µ0 γ̇/106 s−1

Stearic acid 0.58 3.8 0.0489±0.0031 1.21±0.45
Stearic acid 1.30 4.9 0.0586±0.0018 2.24±0.37
Stearic acid 2.59 7.5 0.0693±0.0031 22.5±3.1
Oleic acid 0.58 2.9 0.0659±0.0013 27.2±1.6
Oleic acid 1.30 4.4 0.0635±0.0030 21.4±3.3
Oleic acid 2.59 7.5 0.0635±0.0028 21.3±3.0

The thickness of the film can also be characterized by the distances of certain backbone atoms

from the surface. The distance of the terminal carbon (C18) from the surface could reasonably be

taken to represent the height of the film, denoted by h. The height probability distribution p(h)

in Figure 3 shows the following features. At high surface coverage (Γ = 2.59 nm−2) the height

distribution is rather broad, but with a peak in the region of h = 20 Å. At low surface coverage

(Γ = 0.58 nm−2) p(h) is dominated by two peaks at h ' 1 Å and 4 Å. At intermediate surface

coverage (Γ = 1.30 nm−2) p(h) is a superposition of the distributions at the two extremes. These

results show that at high surface coverage, the surfactant molecules are primarily pointing upwards,
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due to the packing of the molecules. At low surface coverage, the molecules lie either completely

flat so that the terminal carbon atoms are on the surface, or somewhat upright. These basic trends

are illustrated by the simulation snapshots shown in Figure 1. There are only small differences

between stearic acid and oleic acid. Stearic acid shows a long tail in p(h), as observed previously

in the density distribution ρ(z) in Figure 2. The relative weights of the 1 Å and 4 Å peaks in oleic

acid are shifted in favor of the longer-distance peak, due to the more rigid backbone arising from

the presence of the unsaturated C9-C10 bond.
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Figure 3: Probability distribution p(h) of the film height h, defined as the distance of the terminal
carbon atom (C18) from the surface. Panels (a)-(c) and (d)-(f) show the results for stearic acid
and oleic acid, respectively, at the indicated values of surface coverage Γ. Black solid lines: static
conditions. Red dashed lines: shear conditions with vs = 10 m s−1.

Of particular interest in this work is the effect of the double bond between carbons C9 and C10.

Figure 4 shows the probability distribution p(z) of the distance z of the C9 atom from the surface.

The distributions are qualitatively similar to those for the C18 atom, except that at high surface

coverage, the main peak is at h ' 10 Å, i.e., half-way along the chain. There is a difference in

p(z) between stearic acid and oleic acid at Γ = 1.30 nm−2, with the oleic acid showing a broader

distribution up to a higher maximum distance of around 15 Å, as opposed to 13 Å for stearic acid.
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This is presumably due to the stiffer backbone of the oleic acid molecule.
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Figure 4: Probability distribution p(z) of the distance z of the C9 atom from the surface. Panels (a)-
(c) and (d)-(f) show the results for stearic acid and oleic acid, respectively, at the indicated values
of surface coverage Γ. Black solid lines: static conditions. Red dashed lines: shear conditions with
vs = 10 m s−1.

Figure 5 shows the distribution of the angle θ between a vector from the carboxyl C1 atom

to the C9 atom, and the surface plane. At high surface coverage, stearic acid and oleic acid show

broad ‘upright-molecule’ peaks centered on θ ' 45◦ and θ ' 60◦, respectively, and small ‘flat-

molecule’ peaks in the region of θ < 15◦. The increase in upright angle with the introduction of

the C9-C10 double bond is likely to be connected with the increase in molecular rigidity. As the

surface coverage is reduced, molecules are more likely to lie flat on the surface, and less likely to

remain upright. This was shown earlier in the atom-height distributions p(h) and p(z) (Figures 3

and 4, respectively).

The structure within the surfactant film was examined further using the two-dimensional radial

distribution function (RDF), g(r), calculated separately for the head-group carbon (C1), one of the

central carbons (C9), and the terminal carbon (C18). The particle coordinates were projected on to

the surface (xy) plane, and the RDF was calculated in the usual way.50 Figure 6 shows the results.
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Figure 5: Probability distribution p(θ) of the angle θ between the surface plane and the vector
joining the carboxylic carbon and the terminal carbon atom. Panels (a)-(c) and (d)-(f) show the
results for stearic acid and oleic acid, respectively, at the indicated values of surface coverage Γ.
Black solid lines: static conditions. Red dashed lines: shear conditions with vs = 10 m s−1.

At each surface coverage, the C1 RDF shows the most structure, with the major peaks occurring

at multiplies of r = 5 Å, which is the unit-cell dimension of the hematite surface.45 This shows

that the surface dictates the head-group packing in the surfactant film. The C9 and C18 RDFs

show progressively less structure as the influence of the surface on the aliphatic tails decreases.

At high surface coverage (Γ = 2.59 nm−2), there is very little difference between the structures

of the stearic-acid and oleic-acid films. At intermediate and low surface coverages (Γ = 1.30 and

0.58 nm−2, respectively) the C9 and C18 RDFs for stearic acid show more structure than those

for oleic acid. This is consistent with the observation that there is more lubricant penetration in to

the stearic-acid film; the interdigitation of the squalane molecules with the stearic-acid molecules

could help retain some structuring of the C9 and C18 carbons in the plane of the surface.
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Figure 6: Two-dimensional radial distribution functions, g(r), for C1, C9, and C18 carbons in the
surface (xy) plane; the C9 and C1 functions are shifted up by 1 and 2 units, respectively. Panels (a)-
(c) and (d)-(f) show the results for stearic acid and oleic acid, respectively, at the indicated values
of surface coverage Γ. Black solid lines: static conditions. Red dashed lines: shear conditions with
vs = 10 m s−1.

3.2 Structure under shear conditions

Simulation timescales limit the range of sliding velocities and shear rates that can be surveyed.

In this work, sliding velocities in the range vs = 0.625-20 m s−1 have been studied. With average

surface-surface separations in the range Hz = 75-90 Å, these velocities correspond to nominal shear

rates γ̇ = vs/Hz in the range 7×107-3×109 s−1. The effective shear rate in the middle of the fluid

layer is given by γ̇eff = (∂vx/∂ z)y and will, in general, be different from γ̇ due to stick or slip at the

boundaries. Stick or slip can be represented by a length parameter λ defined by γ̇eff = vs/(Hz+λ ),
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where λ > 0 for slip and λ < 0 for stick at the liquid-solid boundary. Fitting the linear portion of

vx(z) in the middle of the liquid layer and extracting γ̇eff yields λ . Examples for stearic acid and

oleic acid with Γ = 2.59 nm−2 and vs = 20 m s−1 are shown in Figure 7. The fits give a stick length

of λ '−25 Å in each case. λ < 0 because the surfactant film is strongly anchored to the surface,

and so the thickness of the flowing lubricant layer is less than Hz. Taking in to account that there is

one surfactant film on each surface, the effective dynamical thickness of each film is |λ |/2 ' 12-

13 Å. The slip planes are located at z = −λ/2 and z = Hz +λ/2, and these are indicated by the

vertical dotted lines in Figure 7. It was not possible to obtain reliable stick lengths at lower sliding

velocities; while values of λ are of order 10% of the liquid-layer thickness, the statistical errors

approach 100%. Given that the difference between the nominal and effective shear rates is only

of order 10% (and with a large statistical uncertainty), the nominal shear rate will be used in what

follows.
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Figure 7: Velocity profiles vx(z) for stearic acid (filled symbols) and oleic acid (open symbols) with
sliding velocity vs = 20 m s−1. Straight lines have been fitted to the linear region 20 Å either side of
the mid-point of the liquid layer z = Hz/2, where Hz' 87.5 Å for both systems. The gradient is the
effective shear rate γ̇eff = vs/(Hz+λ ). The fits yield for stearic acid γ̇eff = (3.18±0.14)×109 s−1

and λ = (−25.1± 5.0) Å (solid line) and for oleic acid γ̇eff = (3.21± 0.26)× 109 s−1 and λ =
(−24.7±2.3) Å (dashed line); the two lines are almost indistinguishable on the plot. The apparent
slip planes at z =−λ/2 and z = Hz +λ/2 are indicated by vertical dotted lines.
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Figure 8 shows the mass-density profiles of the surfactant and lubricant at vs = 10 m s−1.

Surprisingly, they differ only slightly from those under static conditions (Figure 2). Looking at

high surface coverage (Γ = 2.59 nm−2) the surfactant-film thickness (∼ 15 Å) compares well with

the dynamical film thickness (12-13 Å) obtained from the stick length.
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Figure 8: Mass-density profiles ρ(z) of the backbone atoms (all atoms except H) in the surfactant
and lubricant molecules, as a function of the distance from the surface z, under shear conditions
with vs = 10 m s−1. Panels (a)-(c) and (d)-(f) show the results for stearic acid and oleic acid,
respectively, at the indicated values of surface coverage Γ. Black solid lines: surfactant atoms.
Red dashed lines: lubricant atoms.

One might anticipate that the surfactant molecules tilt under the application of shear, and this

is confirmed in Figure 5: essentially, shear leads to an increasing preference for an angle in the

range θ ' 30-45◦, and a lower probability of having angles close to 90◦. At the same time, the

molecules will, on average, sample more extended conformations due to being dragged by the

neighboring lubricant molecules undergoing shear flow. This is shown explicitly in Figure 9(a),

where the root-mean-square end-to-end (C1-C18) distance
√
〈R2

ee〉 is plotted as a function of shear

rate for each surfactant and surface coverage. Oleic acid is ‘shorter’ than stearic acid due to the

presence of the C9-C10 cis double bond. The magnitude of the molecular elongation under shear

is less sensitive to surface coverage for oleic acid than for stearic acid: oleic acid has an intrinsic
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molecular rigidity, whereas the elongation of stearic acid molecules is more strongly influenced by

the crowding effects of neighboring adsorbed molecules.
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Figure 9: (a) Root-mean-square end-to-end distance (C1-C18) as a function of shear rate γ̇:
SA/2.59, SA/1.30, and SA/0.58 mean stearic acid at Γ = 2.59, 1.30, and 0.58 nm−2, respectively;
OA/2.59, OA/1.30, and OA/0.58 mean oleic acid at Γ = 2.59, 1.30, and 0.58 nm−2, respectively.
(b)-(d) Kinetic friction coefficient µ as a function of shear rate γ̇ . Points: simulation data. Black
lines: fits to eq 4. Panels (b), (c), and (d) show the results for stearic acid (filled symbols and
solid lines) and oleic acid (open symbols and dashed lines) at coverages of Γ = 2.59, 1.30, and
0.58 nm−2, respectively.

The net result of molecular tilt and molecular elongation is that the density profiles (and the

overall fluid density in the layer) remain practically unaltered. This is not surprising as the applied

normal load of Pzz = 1000 atm is being supported by the fluid film whether it is under shear or not.

Figures 3 and 4 show the height distributions of the C18 and C9 atoms, respectively, under both

shear and static conditions. At high surface coverage, the main effect of shear is to shift the C18

peak from about 20 Å to around 15 Å (in good agreement with the dynamical thickness obtained

above from the stick length); the shifts are much less significant at lower surface coverages. The

effects of shear on the C9 positions are very small, showing that it is the C9-C18 portion of the
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molecule that responds most to the applied shear. As noted above, the molecules are tilting over

more, but this does not have a large impact on the distributions of C9 or C18 heights (and the

density profiles) due to the simultaneous molecular extension.

Figure 6 shows the C1, C9, and C18 two-dimensional RDFs at vs = 10 m s−1. At high surface

coverage (Γ = 2.59 nm−2) the effect of shear is very small, with only a small increase in structure

in the C9 RDFs. At intermediate surface coverage (Γ = 1.30 nm−2) the C1 RDF is practically

unchanged by shear, while the C9 and C18 RDFs develop a little more structure. The stearic-acid

RDFs show a greater response to shear than the oleic-acid RDFs, presumably due to the inherent

molecular rigidity of the unsaturated molecule. At the lowest surface coverage, all of the RDFs

signal an increase in structure with the application of shear, due to the shear alignment of the

surfactant tails. The primary peak in the C1 RDF of the oleic-acid film shows the greatest increase,

which could be correlated with less lubricant penetration: while the head-group ordering in the

stearic-acid film may be compromised by interactions with lubricant molecules, the head-group

ordering in the oleic-acid film can increase unhindered by lubricant molecules.

3.3 Friction coefficients

The measured friction coefficients µ are plotted as functions of the nominal shear rate γ̇ = vs/Hz

in Figure 9(b)-(d). The general shear-rate dependence of friction will be discussed first, and then a

comparison of stearic acid and oleic acid at different surface coverages will be made.

The friction coefficient increases sub-linearly with shear rate. This has now been observed in

simulations many times19,26,31,32,34–37 and in experiments.51–55 For the most part, the dependence

of frictional forces on sliding velocity has been derived theoretically as being logarithmic,52–57

while others have tried to fit such a dependence with various power laws.34,35 The current sim-

ulation results are consistent with a logarithmic dependence at high shear rates, which may be

rationalized using a simple Eyring-like, activated-hopping argument as follows.3,32,58 Consider

the velocity of a fluid-phase molecule adjacent to a planar surface (xy). In the laboratory frame and
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in a direction (say x) parallel with the surface, the average velocity of the molecule will be

〈vx〉= (k+− k−)d (1)

where k± are rate constants for hopping over molecular-scale energy barriers in the +x and −x

directions, and d is a characteristic distance between barriers. These barriers would arise from

processes such as molecules squeezing between neighboring molecules, from one solvation cavity

to the next. Under static conditions and in a quiescent fluid, the rates will be equal (k± = k0) and

the average velocity will be 〈vx〉= 0. Now consider the case of a sliding surface with velocity +vs.

The surface does work on the fluid molecule, pushing it over barriers in the +x direction more

than in the−x direction, so that in the laboratory frame, 〈vx〉> 0. This suggests that the associated

hopping rates are

k± = k0 exp(±µPzzd3/kBT ) = k0 exp(±µ/µ0) (2)

where µPzzd2 = Pxzd2 is an estimate of the extra force exerted on the molecule by the surface

given a fixed downward pressure Pzz, µPzzd3 is the corresponding energy, and µ0 = kBT/Pzzd3 is a

dimensionless number. Given these rates, the average velocity in the laboratory frame is

〈vx〉= 2k0d sinh(µ/µ0) = 2v0 sinh(µ/µ0) (3)

where v0 = k0d is a characteristic speed. If 〈vx〉 is proportional to the sliding velocity vs and hence

the shear rate γ̇ (assuming little slip or stick at the surface) then 〈vx〉/v0 can be written as γ̇/γ̇0.

With this assumption, solving eq 3 for µ gives

µ = µ0 ln
[
(γ̇/2γ̇0)+

√
1+(γ̇/2γ̇0)2

]
. (4)

At low shear rates γ̇/γ̇0� 1, µ ≈ µ0γ̇/2γ̇0, while at high shear rates γ̇/γ̇0� 1, µ ≈ µ0 ln(γ̇/γ̇0), as

required. The results in Figure 9(b)-(d) have been fitted with eq 4 and the fit parameters are given

in Table 1.
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The friction coefficient for each of the surfactants, surface coverages, and shear rates is shown

on a universal plot of µ/µ0 against γ̇/γ̇0 in Figure 10(a). Excellent collapse of the results on to eq 4

is demonstrated, although it should be pointed out that the restriction to high shear rates precludes

a proper examination of the crossover from high-shear conditions to low-shear conditions where

γ̇/γ̇0 < 1. This crossover has been explored with coarse-grained models and excellent data collapse

was seen under low-shear conditions.32 Although it is difficult to associate a ‘bulk’ viscosity with

such systems containing a heterogeneous distribution of surfactant and lubricant, an effective value

can be defined by η = Pxz/γ̇ = µPzz/γ̇ . From eq 4, in the low-shear regime γ̇→ 0, µ/γ̇→ µ0/2γ̇0,

and so the relative viscosity (compared to its low-shear value) is

η

η0
=

ln
[
(γ̇/2γ̇0)+

√
1+(γ̇/2γ̇0)2

]
(γ̇/2γ̇0)

. (5)

The plot of η/η0 against γ̇/γ̇0 in Figure 10(b) shows that, effectively, the lubricating fluid film

undergoes shear thinning. Both bulk squalane and confined squalane films are known to undergo

significant shear thinning (reduction of shear viscosity by an order of magnitude) over a compara-

ble range of shear rates.59,60

Returning to Figure 9(b)-(d), there are some significant differences between the friction coef-

ficients in systems with stearic acid and oleic acid. In the case of stearic acid, for a given shear

rate, the friction coefficient is significantly lower at the highest surface coverage than at lower sur-

face coverages. On the other hand, with oleic acid, the friction coefficient is roughly independent

of surface coverage. It is not possible to explain this difference completely, but there are some

apparent correlations between the friction coefficient and the structural characteristics of the sur-

factant and lubricant layers. Recall the density profiles in Figure 2. At the highest surface coverage

(Γ= 2.59 nm−2) the density profiles of the fatty acids are very similar, and indeed the friction coef-

ficients are practically identical. At the two lower surface coverages, the lubricant layer penetrates

further in to the stearic-acid film than in to the oleic-acid film; in addition, the oscillations in the

lubricant-density profile are of larger amplitude and longer range with stearic acid than with oleic
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Figure 10: (a) Kinetic friction coefficient µ and (b) effective viscosity η as a function of shear rate
γ̇ , plotted in scaled form according to eq 4 and 5, respectively. Points: simulation data; SA/2.59,
SA/1.30, and SA/0.58 mean stearic acid at Γ = 2.59, 1.30, and 0.58 nm−2, respectively; OA/2.59,
OA/1.30, and OA/0.58 mean oleic acid at Γ= 2.59, 1.30, and 0.58 nm−2, respectively. Black lines:
(a) eq 4; (b) eq 5.

acid. An additional observation from movies of the simulation trajectories is that the stearic acid

molecules tended to sporadically ‘pile up’ to form structures of greater thickness than an adsorbed

monolayer; a typical snapshot of this transient structure is shown in Figure 1(d). All of these

observations point to the lubricant having more intimate contact with the iron-oxide surface with
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stearic acid than with oleic acid, at low surface coverage, and consequently developing more struc-

ture through the lubricant layer. This seems to be correlated with a higher friction coefficient. It

appears that surfactant ordering within the plane of the film is not strongly correlated with friction;

the relatively small differences between the two-dimensional RDFs of stearic acid and oleic acid

are a consequence of lubricant penetration, rather than the cause.

4 Conclusions

In this work, molecular simulations have been used to investigate the structure and friction of a

confined fluid film consisting of stearic acid or oleic acid adsorbed on iron-oxide surfaces, lubri-

cated by squalane. The primary aim was to determine the effects of surface coverage, shear rate,

and unsaturation in the fatty-acid tail on the observed properties.

Density profiles under static conditions show that at low and intermediate surface coverages,

oleic acid forms a more compact surfactant film than does stearic acid, leading to less penetration

by the lubricant; the presence of a double bond on the backbone of oleic acid gives it an inherent

rigidity, but it does not seem to compromise packing efficiency, which is largely dictated by the

hematite structure at the surface coverages considered. At high surface coverage, the film proper-

ties of the two fatty acids appear to be very similar. With both fatty acids at low and intermediate

surface coverages, orientational distribution functions show that there are significant proportions

of molecules lying flat on the surface, as well as pointing out in to the lubricant. The main effect

of unsaturation is to make the oleic-acid molecules adopt slightly more upright conformations than

stearic-acid molecules at high surface coverage.

Density profiles and two-dimensional radial distribution functions show that the surfactant film

does not change significantly under the application of shear. The orientational distribution func-

tions show that the surfactant molecules tilt significantly under shear, while calculations of the

end-to-end distance show that the molecules elongate. These two competing effects cancel each

other out, leading to the film thickness being insensitive to the applied shear.
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The kinetic friction coefficient was measured as a function of shear rate and surface coverage

for each fatty acid. Molecular simulations are limited to the hydrodynamic lubrication regime,

meaning high shear rates. It was confirmed that the friction coefficient increases logarithmically

with shear rate, and a simple theoretical justification was put forward. At the highest surface cover-

age, the friction coefficients with stearic acid and with oleic acid are very similar for a given shear

rate. With decreasing surface coverage, the friction coefficient with oleic acid is almost constant,

whereas that with stearic acid increases. These observations can be related to the structural prop-

erties of the surfactant film, and in particular, the degree of penetration of the lubricant: a higher

degree of lubricant penetration implies more intimate contact with the surface; this gives rise to

more structure in the lubricant layer, which is apparently correlated with an increase in friction

coefficient. As the surface coverage is reduced, there is more penetration of lubricant in to the

stearic-acid film than in to the oleic-acid film, and this correlates well with the behavior of the

friction coefficient. Turning this argument around, friction is reduced when there is less lubricant

penetration in to the surfactant film, and hence the slip plane is located nearer to the surfactant-

lubricant interface than to the surface-surfactant interface. Although it was not possible to measure

stick/slip lengths precisely in the simulations, their values are negative implying that the surfactant

sticks to the surface, and that the slip occurs near to the surfactant-lubricant interface.

The calculations reported in this work were extremely demanding, and so the study was fo-

cused on the specific comparison between stearic acid and oleic acid. There are a large number of

other systems of interest that should be studied, in particular to make links with experiment and

industrial applications. Mention was already made of a comparison between experimental41 and

simulation results for the structure of fatty amines adsorbed on iron oxide.42 The effects of specific

chemical interactions, stereoisomerism, surface roughness and asperities, surfactant polydispersity,

and impurities all deserve to be examined systematically in future work.
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