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Abstract 17 

Myxomatous mitral valve disease (MMVD) is the single most common acquired heart 18 

disease of the dog and is particularly common in small pedigree breed dogs such as the 19 

cavalier king Charles spaniels (CKCS). There are limited data on the mitral valve 20 

transcriptome and the aim of this study was to use the microarray technology in conjunction 21 

with bioinformatics platforms to analyse transcript changes in MMVD in CKCS compared to 22 

normal dogs (non-CKCS). Differentially expressed genes (n = 5397) were identified using 23 

cut-off settings of fold change, false discovery rate (FDR) and P < 0.05. In total, 4002 genes 24 

were annotated to a specific transcript in the Affymetrix canine database, and after further 25 

filtering 591 annotated canine genes were identified: 322 (55%) were up-regulated and 269 26 

(45%) were down-regulated. Canine microRNAs (cfa-miR; n = 59) were also identified. 27 

 28 

Gene ontology and network analysis platforms identified between six and 10 29 

significantly different biological function clusters from which the following were selected as 30 

relevant to MMVD: inflammation, cell movement, cardiovascular development, extracellular 31 

matrix organisation and epithelial-to-mesenchymal (EMT) transition. Ingenuity pathway 32 

analysis identified three canonical pathways relevant to MMVD: caveolar-mediated 33 

endocytosis, remodelling of epithelial adherens junctions, and endothelin-1 signalling. 34 

Considering the biological relevance to MMVD, the gene families of importance with 35 

significant difference between groups included collagens, ADAMTS peptidases, 36 

proteoglycans, matrix metalloproteinases (MMPs) and their inhibitors, basement membrane 37 

components, cathepsin S, integrins, tight junction cell adhesion proteins, cadherins, other 38 

matrix-associated proteins, and members of the serotonin (5-HT)/transforming growth factor 39 

-β  signalling pathway.  40 

 41 



Keywords:  Myxomatous mitral valve disease; Canine; Transcriptome; Pathway analysis; 42 

Microarray; Cavalier king Charles spaniel. 43 

44 



Introduction 45 

Myxomatous mitral valve disease (MMVD) is the single most common acquired heart 46 

disease of the dog and is characterised by endothelial damage, stromal matrix degeneration, 47 

interstitial cell proliferation in the sub-endothelial zone and interstitial cell phenotypic 48 

changes (Buchanan, 1977; Beardow and Buchanan, 1993; Corcoran et al., 2004; Black et al., 49 

2005; Disatian et al., 2008; Han et al., 2008; Lacerda et al., 2009;  Borgarelli and Buchanan, 50 

2012). The end-stage disease results in significant mitral regurgitation which can lead to left-51 

sided congestive heart failure (Häggström et al., 2009). While much is known about the 52 

structural and cellular changes in canine MMVD, less is known about the molecular 53 

mechanisms and biochemical changes (Richards et al., 2012). Limited proteomic and 54 

transcriptomic data are available and provided interesting insights into disease pathogenesis, 55 

for example, the role of serotonin (5-hydroxytryptamine or 5-HT) in MMVD (Oyama and 56 

Chittur, 2006; Lacerda et al., 2009).  57 

 58 

The only genomics study of canine MMVD to date used the Affymetrix Canine Gene 59 

1.0 array covering approximately 23,000 gene transcripts and looked at a cohort of mixed 60 

breed dogs (Oyama and Chittur, 2006). Since that study, there have been significant advances 61 

in the quality of canine gene microarrays with much improved transcript annotation (27,681 62 

genes), transcript sensitivity (590,097 probes, 24 probes/gene) and bioinformatics tools. The 63 

study by Oyama and Chittur (2006) identified 229 probe sets that were differentially 64 

expressed (at least two-fold change; 70% up-regulated and 30% down-regulated) of which 65 

166 could be assigned to recognised genes. The main functional classes attributed to the 66 

affected genes, in descending order of importance, included cell signalling, metabolism, 67 

extracellular matrix (ECM), inflammation, cell defence, immunity, cell transport and cell 68 

structure (Oyama and Chittur, 2006). Of particular note was the ~four-fold increase in the 5-69 



HT2B receptor gene, which fits in with the serotonin hypothesis of MMVD pathogenesis. 70 

Limited numbers of gene expression studies have also been undertaken in human MMVD 71 

with a reported number of differentially expressed genes of around 400 ( Hulin et al., 2012; 72 

Sainger et al., 2012). These studies demonstrated informative changes in metallothioneins 73 

and ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin Motifs), and 74 

transforming growth factor β-2 (TGFβ-2) and bone morphogenic protein 4 (BMP-4 of the 75 

TGF-β signalling superfamily), proteoglycans, collagens, SOX-9 and CRTAC1 (cartilage 76 

acidic protein 1), genes that are implicated in ECM production and remodelling. 77 

 78 

However, the number of reported differentially expressed genes in any transcriptomic 79 

study is affected by the calculated false discovery rates (FDRs), fold change thresholds 80 

(correction for signal intensity) and batch effects. Additionally, there have been major 81 

developments in bioinformatics, canine annotated databases and analysis platforms. The aim 82 

of this study, therefore, was to use more stringent threshold criteria and quality control, in 83 

line with current recommended protocols and with an affected group consisting of the same 84 

breed (Cavalier King Charles spaniel, CKCS) in order to improve the reported differential 85 

expression of genes in canine MMVD, and to identify novel signalling pathways that might 86 

contribute to the pathogenesis of MMVD. 87 

 88 

Materials and methods 89 

Tissue sample 90 

Myxomatous mitral valve leaflets (anterior) (n = 10, Whitney grade ≥ 3) were 91 

collected from CKCS dogs presented to the Hospital for Small Animals, Royal (Dick) School 92 

of Veterinary Studies, the University of Edinburgh. All dogs previously had been clinically 93 

confirmed to have MMVD and were on a range of treatments for congestive heart failure. 94 



Control normal anterior mitral valve leaflets (n = 6) were collected from young adult dogs 95 

euthanased for reasons other than cardiac disease. All samples were collected within 10 min 96 

of death and Whitney classified by at least two investigators (CCL, MML, BMC). The valve 97 

leaflets were immediately placed in RNAlater (Invitrogen) and stored at -20 ºC. All tissue 98 

samples were collected with full owner informed consent and the study conformed to national 99 

(UK) and institutional ethical guidelines for the use of animals in research.  100 

 101 

RNA extraction and quality assessment 102 

 Tissue (100 mg) was minced, snap-frozen in liquid nitrogen and pulverised for 1 min 103 

at 2000 oscillations/min in a liquid nitrogen cooled dismembranator (Braun Mikro-104 

Dismembrator Vessel, Braun Biotech International). Phenol/guanidine HCl reagents (1 mL; 105 

TriReagent, Sigma) was added to the powdered sample and 200 µL of chloroform was added 106 

to the microcentrifuge tubes prior to centrifugation at 12,000 g for 10 min. RNA extraction 107 

from the aqueous phase and DNA digestions were carried out using commercially available 108 

kits (RNeasy Mini Kit and RNase-Free DNase Set; Qiagen). RNA purity was analysed by 109 

spectrophotometer (Thermo Scientific NanoDrop 1000, 260/280 ratio ≈ 2) and RNA quality 110 

and integrity and RNA integrity number (RIN ≥ 7) determined by electropherogram (Agilent 111 

2100 Bioanalyser). Four normal and four diseased samples reached the required quantity and 112 

quality of RNA and were stored at -80 ºC prior to reverse transcription.  113 

 114 

Microarray hybridisation 115 

The Affymetrix GeneChip WT Terminal Labelling Kit and the Ambion WT 116 

Expression Kit were used to generate amplified and biotinylated sense-strand DNA targets 117 

for the Affymetrix Canine Gene 1.0 ST Array. Each ST (Sense Target) array selected probes 118 

were distributed along the entire length of each transcript. Briefly, total RNA was reverse-119 



transcribed to single-stranded cDNA, and then converted to double-stranded cDNA. The 120 

double-stranded cDNA then underwent in vitro transcription to generate unlabelled cRNA. 121 

The cRNA was cleaned for any antisense RNA, reverse-transcribed to the dUTP incorporated 122 

second single-stranded cDNA and fragmented with uracil DNA glycosylase and 123 

apurinic/apyrimidinic endonuclease 1. The fragmented DNA was labelled by terminal 124 

deoxynucleotidyl transferase (TdT) with the Affymetrix proprietary DNA Labeling Reagent, 125 

covalently linked to biotin, and then hybridised to the array. The arrays were washed, stained 126 

and scanned. The two cycle RNA-cDNA amplification, hybridisation, and chip scanning 127 

were performed by ARK Genomics (Roslin Institute, UK). 128 

 129 

For differential gene expression analysis, all the raw Affymetrix CEL files, which 130 

contained probe-sets ID and calculated pixel intensity value for each array, were imported 131 

into Partek Genomic Suite 6.6 (PGS). Normalized signal intensity data for whole probe sets 132 

were also produced by Affymetrix Expression Console. Robust Multi-array Average (RMA) 133 

was used for data normalisation and final summarisation. QC metrics combined with 134 

principal component analysis (PCA) were generated for post-import quality assessment, and 135 

two potential outliers were identified and excluded. Analysis of variance (ANOVA) was used 136 

to identify differentially expressed genes between the two groups. Hierarchical clustering was 137 

based on the significant genes, and the original gene list was used to generate a Volcano plot 138 

(Fig. 1) for total unadjusted gene expression pattern. Finally, a list of genes of interest was 139 

generated according to the cut-off of fold-changes, FDR, and signal intensity. 140 

 141 

Multi-platform in silico categorisation and network analysis 142 

Gene categorisation and pathway analysis were conducted using a combination of 143 

ToppFun (gene list enrichment tool), DAVID 6.7 and the Ingenuity Pathways Analysis (IPA) 144 



database by uploading the differentially expressed gene list to the respective online servers. 145 

Functional analysis of a gene network identified the biological functions that were most 146 

attributable to the genes in that network (Chen et al., 2009; Huang et al., 2009).  147 

 148 

Quantitative reverse-transcription polymerase chain reaction (RT-PCR) 149 

Assays for 13 canine genes and one reference gene (Table 1) were designed using 150 

methods previously reported (Clements et al., 2006). Primers (MWG Biotech) and probes 151 

(Roche Diagnostics) were synthesised using locked nucleic acid with 5′-end labelled with a 152 

reporter fluorescein dye (FAM, 6-carboxy fluorescein) and 3′-end labelled with a dark 153 

quencher dye. In brief, quantitative RT-PCR assays were performed in triplicate in 96-well 154 

plates (LightCycler 480 system using Probes Masters; Roche Diagnostics) with one no-155 

template control for each sample with total reaction volume of 5 μL per well. The 156 

amplification was performed according to a standard protocol. Quantitative RT-PCR data 157 

were analysed using LightCycler 480 Basic Software (Roche Diagnostics).The reference 158 

genes was used to normalise target gene relative expression level and to calculate the -ΔΔCt 159 

values. 160 

 161 

Results 162 

General description 163 

RNA of sufficient quality and quantity for transcriptomic analysis was obtained from 164 

four dogs from each group (RIN > 7). There was one outlier in each group and when these 165 

were excluded 5397 differentially expressed genes were identified fulfilling the cut-off 166 

settings of fold change (> 1.5), FDR <0.05, and P < 0.05. In total, 4002 genes were annotated 167 

and 1395 probes were not assigned to a specific transcript in the Affymetrix canine database 168 

and their sequences were tracked and matched using the NCBI nucleotide BLAST and 169 



miRBase BLAST tools. Only 139 probes were successfully identified as transcript homologs 170 

to other species and 59 of these were matched with canine microRNA family members (cfa-171 

mir-RNA) (details to be included in a further report). The gene and the data sets were further 172 

filtered by individual signal intensity value and a final total of 635 differentially expressed 173 

probe sets, representing 591 annotated canine genes, were identified, 322 (55%) were up-174 

regulated and 269 (45%) genes were down-regulated (Appendix; Supplemental file 1).  175 

 176 

Quantitative RT-PCR 177 

For data validation between different platforms, differential expression of 13 genes 178 

were examined and 12 (LAMA2, ENG, COL6A3, HTR2B, MYH11, MMP12, BMP6, 179 

ANGPT1, CHAD, ADAMTS19, ACTG2, and KERA) were found to be in agreement with the 180 

microarray data, while one (SOX-9) was not (Appendix; Supplemental file 2). 181 

 182 

Gene ontology, and network and canonical pathways 183 

Using ToppFun, 28 significant terms for gene ontology (GO) and biological processes 184 

(BP) were identified. Six functional subgroups were further identified based on the biological 185 

functions of each gene ontology term (GO: BP), and included inflammation and immune 186 

response, cellular adhesion and movement, cardiovascular development, ECM, osteogenesis, 187 

and epithelial cell proliferation. In each subgroup, GO: BP terms deemed biologically 188 

relevant to MMVD were selected and identified genes that are involved in response to 189 

wounding, biological adhesion, positive regulation of cell migration, cardiovascular system 190 

development, ECM organization, ossification, and regulation of epithelial cell proliferation 191 

(Appendix; Supplemental file 3).  192 

 193 



DAVID identified 16 biological categories based on gene functions (Table 2). 194 

Functional annotation clustering analysis after data enrichment identified 10 clusters based 195 

around similar biological function (Table 3) and the specific named genes are in 196 

Supplementary file 4 (Appendix). Analysis using IPA identified 11 significant biological 197 

functions and diseases relevant to the gene set, including endocrine system disorders, cellular 198 

movement, connective tissue disorders, inflammatory disease, immune cell trafficking, 199 

cancer, haematological system development, cardiovascular disease, humoral immune 200 

response, cardiovascular system development and cell death and survival. IPA also identified 201 

33 canonical pathways with three functions applicable to MMVD, including caveolar-202 

mediated endocytosis signalling, remodelling of epithelial adherens junctions, and 203 

endothelin-1 signalling, were identified (Appendix; Supplementary file 5). Gene networking 204 

analysis identified three significant and biologically relevant networks for MMVD, including 205 

cardiovascular system development and function, cellular movement and cell-to-cell 206 

signalling (Fig. 2). By overlaying these data with the disease-functions-canonical pathway 207 

analysis, specific genes of interest were identified (Table 4). Analysis by IPA also identified 208 

the top 10 upstream regulators: IL-1B, IL-13, TGFβ1, DYSF, IFN-γ, TNF, LDL, CSF2, NFκB, 209 

and NFE2L2. Of these, LDL activation appears to be the most directly relevant to MMVD. 210 

 211 

By combining analysis from the three platforms, the following relevant functional and 212 

disease categories can be derived for the MMVD transcriptome: inflammatory response, cell 213 

movement, cardiovascular development, ECM organisation and epithelial-to-mesenchymal 214 

transition.  215 

 216 

Individual gene signal intensity 217 



Using the data from annotation clustering analysis, genes deemed biologically 218 

relevant to MMVD from the five selected categories were examined on the basis of their 219 

signal intensity and the details are shown in Table 5. The gene families of particular interest 220 

were: collagens, ADAMTS peptidases, proteoglycans, matrix metalloproteinases (MMPs) 221 

and their inhibitors (TIMPs), basement membrane components (nidogen1 and laminin2), 222 

cathepsin S, integrins, tight junction cell adhesion proteins (claudin, occludin), cadherins, and 223 

other matrix-associated proteins (fibrillin, fibronectin, periostin, fibulin, HAS2). Other genes 224 

that showed reasonably high expression, but were not necessarily significantly changed 225 

between the two groups, included: elastin, NOS, adhesion molecules (PECAM, VCAM), 226 

NOTCH, Snai1, β-catenin, members of the TGF-β superfamily (TGFβ-1, endoglin, BMP9, 227 

BMPR1B) and cytoskeleton proteins (actin, myosin, SM22). 228 

 229 

Discussion 230 

 Transcriptional profiling for this study was carried out using the Affymetrix Canine 231 

Gene 1.0 ST Array. In total, 590,097 probes against 27,681 genes (both annotated and 232 

predicted canine genes) were included according to the genome information from canFam2. 233 

The design of 26 unique 25-mer probes for each transcript allowed for the highest coverage 234 

yet and provided a more accurate detection of transcribed genes and a higher resolution than 235 

3’-biased microarrays. The only previous report of the canine mitral valve transcriptome used 236 

the first generation array Affymetrix GeneChip Canine Genome 1.0 (Oyama and Chittur, 237 

2006). The current study confirmed the previous findings of up-regulation of 5-HTR2B, 238 

endoglin and BMP-6, but did not find differences in the expression of TGF-β or TGF-β 239 

receptors.  240 

 241 



In human MMVD, the two published transcriptomic studies also reveal an 242 

orchestrated regulation of TGF-β and BMP-6, and in functional studies, control of ECM 243 

production and valve interstitial cell activation by BMP-4 (Hulin et al., 2012; Sainger et al., 244 

2012). However, there are no reports of up-regulation of 5-HTR2B in any of the human valve 245 

studies. The findings of interest in the human mitral valve transcriptome are down-regulation 246 

of metallothioneins-1 and -2 (MT1/2) and members of the ADAMTS family of proteases, and 247 

increased expression of genes encoding for ECM components, including collagens, 248 

proteoglycans and MMPs. In contrast, in the dog, ECM genes were generally down-regulated 249 

or unchanged. While canine and human MMVD share many similar features, the diseases 250 

appear to be different at least at the transcriptomic level. 251 

 252 

The possible involvement of the TGF-β signalling superfamily in MMVD is not 253 

surprising as it has important roles in cancer, fibrosis, and calcification (Geirsson et al., 254 

2012). TGF-β signalling through SMAD pathways triggers myofibroblastic differentiation of 255 

valve interstitial cells and increases expression of SMAD-targeted genes associated with 256 

ECM such as COL1A, 3A1, 6A1, 6A3, elastin and TIMP1 (Verrecchia et al., 2001; Walker et 257 

al., 2004). However, there was no differential expression of the TGF-βs and their receptors or 258 

downstream target genes between the normal and affected dogs, although high signal 259 

intensity for various members indicated their role in valve matrix homeostasis. Increased 260 

TGFβ-1 and TGFβ-3, but not TGFβ-2, expression has been shown using 261 

immunohistochemistry in canine valves (Aupperle et al., 2008). These differences between 262 

gene and protein expression may be due to post-transcriptional modification. This contrasts 263 

with human myxomatous mitral valves where there is higher transcriptional level of all 264 

isoforms of TGF- β and the downstream genes COL1A1, COL3A1 and elastin, suggesting 265 

activation of fibrotic mechanisms (Geirsson et al., 2012). 266 



The identification of LDL activation and its positive association with 17/23 267 

downstream genes using IPA was an unexpected but interesting finding for MMVD. LDL 268 

signalling through low-density lipoprotein receptor-related protein-5 (Lrp5) has been shown 269 

to play a crucial role in calcific degeneration in human aortic and mitral valves (Neufeld et al. 270 

2014). There is an association between LDL and aging in dogs which is coincidental with the 271 

natural history of MMVD, and LDL is worth considering as a potential contributing factor to 272 

MMVD in this species (Buchanan, 1977; Beardow and Buchanan, 1993; Osorio, 2009; 273 

Borgarelli and Buchanan, 2012). 274 

 275 

Increased expression of inflammation-associated cytokine genes in the diseased mitral 276 

valve appears to be a consistent finding, but is not reported in the human mitral valve (Oyama 277 

and Chittur, 2006; Hulin et al., 2012; Sainger et al., 2012). IPA identified, central to the 278 

inflammation network, up-regulation of toll-like receptor 4 (TLR4) and interleukin 18 (IL-279 

18), as well as IL-6, TLR1 and TLR8. Since there is no evidence of inflammatory cell 280 

contribution to MMVD pathogenesis, ECM degeneration and remodelling might be 281 

triggering TLR receptor signalling which could further contribute to ECM changes. Heat 282 

shock protein 70, fibronectin, hyaluronic acid, heparan sulfate, and hyaluronan, all important 283 

components of ECM remodelling in MMVD, can act as endogenous ligands for TLRs (Chao, 284 

2009). Finally, IL-6 can trigger endothelial-mesenchymal transformation (EndoMT), an 285 

important  mechanism during valve development, and potential contributor to the 286 

pathogenesis of MMVD (Mahler et al., 2013).  287 

 288 

Matrix gene expression changes have been found in canine and human MMVD, and 289 

included genes encoding for ECM and basement membrane (BM) proteins. The BM is 290 

important for maintaining endothelial integrity, and endothelial damage, activation and cell 291 



loss are features of canine MMVD (Corcoran et al., 2004; Han et al., 2013). Gene network 292 

analysis identified down-regulation of laminin beta 1 (LAMB1) and alpha 2 (LAMA2), 293 

nidogen-1 (NID1) and COL6A3, and increased expression of the protease cathepsin S (CTSS), 294 

all of which would reflect endothelial damage or BM dismantling as part of EndoMT 295 

(Lakatta and Levy, 2003; Li and Bertram, 2010). Breakdown of NID1, LAMB, COL and 296 

elastin by CTSS has been shown to impair BM integrity and stability (Sage et al., 2012; Turk 297 

et al., 2012). Increased expression of CTSK and CTSS has been reported in human MMVD, 298 

and cyclic strain increases CTSK expression in sheep mitral valve myofibroblasts (Rabkin et 299 

al., 2001; Aikawa et al., 2006; Lacerda et al., 2012). 300 

 301 

Regarding ECM proteins, there were not surprisingly high intensity signals for many 302 

collagen genes and these tended to be lower in the disease group (COL1, COL2, and COL4), 303 

but only statistically different for COL6A3. There is a marginal and localised reduction in 304 

collagen expression in MMVD, at least in mild to moderately affected dogs, and this would 305 

be reflected by these gene expression changes (Hadian et al., 2010). The reduction in 306 

COL6A3 is important because its role in BM production and force-resistant collagen bundle 307 

formation suggests a clear contribution to the pathogenesis of MMVD (Klewer et al., 1998; 308 

Kruithof et al., 2007). Collagen maturation from procollagen relies on the ADAMTS family 309 

of metalloproteases, and ADAMTS2, ADAMTS9, and ADAMTSL4 were all significantly 310 

down-regulated in the diseased canine mitral valves. Lower expression of ADAMTS2 and 311 

ADAMTS9 suggests an inactive collagen turnover state exists, and this has been shown in 312 

ADAMST9-deficient mice, and in canine MMVD using X-ray diffraction and HPLC (Hadian 313 

et al., 2010; Kern et al., 2010). ADAMTS4 also has a regulatory role on fibrillin-1 and low 314 

expression will decrease elastin fibre formation in MMVD in a manner similar to that seen in 315 

Marfan syndrome (Chandra et al., 2012).  316 



 317 

Gene expression for a limited number of MMPs and their tissue inhibitors (TIMPs) 318 

has been previously reported using a combination of microarray and PCR, and expression at 319 

the protein level has also been reported using immunohistochemistry. In the current study, 25 320 

MMPs and 4 TIMPs were identified, but in general the data contradicted previous reports in 321 

particular for MMP1, which had a low intensity signal, but has been previously reported as 322 

increased using PCR and immunohistochemistry (Oyama and Chittur, 2006; Disatian et al., 323 

2008; Aupperle et al., 2009, 2012). Remodelling activity at the time of sampling are likely to 324 

have effects on global MMPs and TIMP expression profiles and changes in expression need 325 

to be interpreted with caution (Rabkin et al., 2001; Rabkin-Aikawa et al., 2004). 326 

 327 

Overall gene ontology analysis for all studies reported to date show similar biological 328 

functions in the differentially expressed gene sets, including genes involved in cell signalling, 329 

inflammation, extracellular matrix, immunity, cell defence, and metabolism. In the current 330 

study, additional functional categories of cellular movement and epithelial-to-mesenchymal 331 

transition were identified. Three canonical pathways were selected that would appear most 332 

relevant to the pathogenesis of MMVD: caveolae-mediated endocytosis, which controls 333 

endothelial cell growth, cell migration and can affect TGF- β signalling-induced fibroblast 334 

activation; endothelin signalling, which has a variety of functions including ECM 335 

remodelling; and remodelling of epithelial adherens junction, which with vascular endothelial 336 

(VE)-cadherin can affect cell proliferation and migration (Mow and Pedersen, 1999; 337 

Salanueva et al., 2007; Galdo and Lisanti, 2008; Sowa, 2012). 338 

 339 

For all ECM products, proteoglycan (PG) genes had the highest signal intensity with 340 

lumican, versican, and biglycan being the three strongest, but only chondroadherin (CHAD) 341 



and keratocan (KERA) were significantly down-regulated in the CKCSs. KERA is a small 342 

leucine rich PG and plays a pivotal role in ECM assembly in the cornea to maintain 343 

translucency, and CHAD is an anchor to the matrix by binding tightly to collagens I, II, and 344 

VI in cartilage (Liu et al., 2003; Hessle et al., 2013). Nevertheless, the role of CHAD and 345 

KERA in the mitral valve is unknown. In a canine MMVD proteomic study, decorin and 346 

biglycan were found to be up-regulated in the early-stage MMVD, but down-regulated in the 347 

late-stage MMVD (Lacerda et al., 2009). In contrast in human MMVD, biglycan (protein), 348 

decorin (both mRNA and protein), and versican (protein) were found more abundantly 349 

expressed compared with normal mitral valves (Radermecker et al., 2003; Gupta et al., 2009). 350 

In our study, unchanged expression of the major PGs (e.g. lumican, versican, decorin, and 351 

biglycan) between diseased and normal mitral valves suggests that cellular and structural 352 

changes in end-stage MMVD had no direct effect on PG gene expression. The variation of 353 

PG expression in different studies may suggest post-transcriptional and translational 354 

modification of PG mRNA and proteins. 355 

 356 

There were no changes in the endothelium adhesion molecules VCAM-1, ICAM1 or 357 

PECAM1, but there was over-expression of E-selectin and TLRs. Strong staining for E-358 

selectin and VCAM-1 in human myxomatous mitral valves, without morphological evidence 359 

of inflammation, has been previously reported. (Müller et al., 2000) The closure and opening 360 

of the cell-cell endothelial adherens junctions, cell motility, and maintaining vascular 361 

permeability and integrity is controlled by VE-cadherin (CDH5), and there was high signal 362 

intensity for a range of CDHs (2, 11 and 13) in the microarray (Dejana and Orsenigo, 2013). 363 

High expression of the cadherins promotes cell migration and proliferation through the 364 

ERK1/2 pathway (CDH13), and mesenchymal cell (CDH11) and myofibroblast  365 

differentiation (CDH2) (Ivanov et al., 2004). CDH5 had the lowest signal intensity and was 366 



significantly reduced in the CKCS group, and down-regulation of CDH5 through NOTCH-367 

Snai1 or TGF-β signalling permits endothelial migration and EndoMT (Armstrong and 368 

Bischoff, 2004). Down-regulation of CDH5 was matched by up-regulation of Snai1 in 369 

affected valves, but NOTCH was also down-regulated, suggesting the possible presence of a 370 

NOTCH-independent Snai1 signalling pathway in canine MMVD. The pattern of cadherins 371 

expression also suggests a proliferative and migratory phenotype, with minimal osteogenic 372 

activity, and the contribution of these adhesion proteins to disease pathogenesis needs further 373 

investigation.  374 

 375 

Certain expression data suggested the presence of EndoMT, such as differential 376 

expression of genes associated with BM components, mesenchymal differentiation and 377 

NOTCH signalling pathways. There is evidence of transition into a mesenchymal phenotype 378 

in MMVD, represented by increased expression of mesenchymal markers such as α-smooth 379 

muscle actin (α-SMA, ACTA2), SM22 (TAGLN), and γ-SMA (ACTG2). This mesenchymal-380 

transition could be initiated by the up-regulation of the TGF-β superfamily members BMP6 381 

and BMPR1, increased NOTCH-Snai1 signalling, down-regulating the expression of CDH5, 382 

decreased expression of the BM components NID1 and LAMA2, and increased expression of 383 

the BM lytic enzyme CTSS. Lastly, the increased expression of hyaluronic acid synthase 2 384 

(Has2) in the CKCS could provide the hyaluronic acid rich subendothelial matrix necessary 385 

for transition of endothelial cells (Bakkers et al., 2004; Camenisch et al., 2001; Lagendijk et 386 

al., 2013). These changes in the valve transcriptome are reminiscent of the changes needed in 387 

valve development to allow the valve to form from the endocardial cushion through the 388 

migration of endothelial cells into the hyaluran-rich embryonic stroma, where they 389 

differentiate into valve interstitial cells which then generate the valve matrix (Camenisch et 390 



al., 2001; Hinton and Yutzey, 2011; de Vlaming et al., 2012). The data from the current study 391 

suggest that EndoMT contributes to MMVD pathogenesis and this area needs further study. 392 

 393 

The main limitations of this study were the small sample size, the lack of age- and 394 

breed-matched controls, the extraction of RNA from a mixed tissue type, sampling at a single 395 

disease end-point and differences in in silico analysis platforms. The difficulties in getting 396 

sufficient RNA of adequate quality from valves are illustrated by rejection of 6/10 CKCS 397 

samples, but the statistical analysis confirmed three vs. three was sufficient for credible 398 

comparison. MMVD research is hampered by the lack of suitable age- and breed-matched 399 

controls, because of the ubiquity of the disease in aged dogs and the limited sample pool 400 

when having to use family pets. This limitation cannot be overcome, but at least in this study 401 

the test group were all from the same breed reducing variability to some extent. In silico 402 

analysis show differences among different platforms and network clustering and gene-gene 403 

interaction analysis are based on several different tissue and cell types and may not 404 

necessarily be directly applicable to the mitral valve. However the use of three platforms 405 

resulted in somewhat consistent conclusions as to the major gene categories in MMVD and 406 

identified two novel categories not previously reported. Network analysis did allow for the 407 

identification of potential pathogenesis pathways that are worthy of further investigation. 408 

Furthermore, with continual updates of annotations and increased accuracy of canine 409 

genomics databases, data set reanalysis will be possible in the future. 410 

 411 

Conclusions 412 

The characterization of the MMVD transcriptome identified differentially expressed 413 

genes associated with inflammation, cell movement, development, and extracellular matrix 414 

organization and EndoMT. Signal intensity analysis identified genes important in ECM, 415 



EndoMT and valve development, with patterns of gene expression suggesting decreased 416 

collagen turnover, ECM weakening, BM disruption, increased cell migration, active 417 

endothelial and myofibroblast differentiation in MMVD affected dogs.  418 
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 606 
Table 1.  607 

Primer Sequences for Microarray Data Validation by Q-PCR are shown. 608 

Gene 

Name 
Forward Primer Reverse Primer 

Probe 

Numb

er 

LAMA2 5’CCGCATTGAGCTGACAGT

AG3’ 

5’CAAACTGGTTGAGGCCATCT3

’ 

38 

ENG 5’GGTGCTCAAGAAAGACCT

CATC3’ 

5’GCAGGACAAACTGGTCATCT

C3’ 

30 

COL6A3 5’AAGGAAGCTTCAGCACAA

AGA3’ 

5’TGAACTAGAAGCCAACCTTG

C3’ 

39 

HTR2B 5’GGTCTGGATTACAAACAG

AATCG3’ 

5’TCCCTGTTGCTCACCAGTCT3’ 6 

MYH11 5’ATGCAGCTGGCCAAGAAG

3’ 

5’TCTGAGCAATTTCATCATCGA

G3’ 

81 

MMP12 5’CCAATTTGAGTTTTGATGC

TGT3’ 

5’CACTGTTCTTTGGACTCTCTG

GA3’ 

22 

BMP6 5’TCTCCAGCGCCTCAGATTA

C3’ 

5’TGGAAGCTCACATACAGCTC

A3’ 

4 

ANGPT1 5’AGGAAACGAAAAGCAGA

ACTACA3’ 

5’ATCAGCACCATGTAAGATCA

GG3’ 

18 

CHAD 5’CCAGTCTTTCGGCAGATAC

C3’ 

5’ACATGTTTCAGTGTGGTCAC

G3’ 

20 

ADAMT

S19 

5’TCAACCCTGCAATGAGAA

GA3’ 

5’CGTATCACTCGGCAGTACAC

A3’ 

14 

ACTG2 5’GGTCATCACCATTGGCAA

C3’ 

5’TGAATCCCAGCAGACTCCAT3

’ 

11 

Sox-9 5’ 

CCAACGCCATCTTCAAGG3’ 

5’ GGAGTGCACCTCGCTCAT3’ 63 

KERA 5’ 

GACTATGCATGACTTTGACT

GTCC3’ 

5’TTTCACAGTATAAAGCAGTA

GGGAAA3’ 

29 

MRPS25 5’TCTTGGGGAAGAACAAGG

AA3’ 

5’AGTGGGCTGGGTGAGAAAG3

’ 

15 

 609 

 610 

611 



 612 
Table 2.  613 
Gene ontology chart showing the differentially expressed genes in canine mitral valves using 614 
the gene analysis platform DAVID 6.7. 615 
 616 

Gene Ontology Term 
Gene 

Counts 

Gene 

% 
p-value 

Response to wounding 43 8.5 2.10E-08 

Inflammatory response 31 6.2 9.50E-08 

Immune response 42 8.3 4.70E-05 

Cell adhesion 41 8.1 1.40E-04 

Biological adhesion 41 8.1 1.40E-04 

Defence response 37 7.3 1.80E-04 

Vasculature development 20 4 3.10E-04 

Positive regulation of cytoskeleton 

organization 
8 1.6 4.30E-04 

Blood vessel development 19 3.8 6.30E-04 

Regulation of cell proliferation 42 8.3 7.50E-04 

Blood vessel morphogenesis 17 3.4 8.90E-04 

Regulation of cytoskeleton organization 13 2.6 1.10E-03 

Innate immune response 13 2.6 1.20E-03 

Response to oxygen levels 13 2.6 1.40E-03 

Collagen metabolic process 6 1.2 1.50E-03 

Epithelial to mesenchymal transition 5 1 2.00E-03 

 617 

 618 
619 



Table 3. 620 
Functional annotation clustering using DAVID 6.7, listing the ten clusters and the relative 621 
gene density. 622 

 623 

624 

Annotation Clusters 
Enrichment 

Score 

Gene 

Count 
p-value 

Vasculature development 3.25 20 3.10E-04 

Collagen metabolic process 2.57 6 1.50E-03 

Protein processing 2.41 11 2.50E-03 

Vacuole 2.36 18 2.20E-03 

Positive regulation of cytoskeleton organization 2.24 10 4.30E-04 

Regulation of cell motion 1.91 14 7.10E-03 

Regulation of bone mineralization 1.71 5 1.30E-02 

Positive regulation of cell motion 1.71 9 1.10E-02 

Cysteine-type endopeptidase activity 1.61 9 5.40E-03 

Epithelial to mesenchymal transition 1.52 5 2.00E-03 



 625 
Table 4.  626 
Gene networking analysis using the gene analysis platform IPA. 627 
 628 
A. Cardiovascular system development 629 

Diseases and functions Genes 

Abnormal morphology of mitral valve NFATC1 

Abnormal morphology of cardiovascular 

system 

NFATC1, PPDX1, RBPJ, 

NOTCH1, ZMIZ1 

Abnormal morphology of cardiac valve NFATC1, ZMIZ1 

Morphogenesis of endocardium RBPJ 

Morphogenesis of atrioventricular valve NOTCH1 

Morphogenesis of heart NOTCH1, RBPJ, ZMIZ1 

Looping morphogenesis of heart NOTCH1, RBPJ 

Differentiation of endocardial cells NFATC1 

Differentiation of endothelial cells NFATC1, RBPJ, NOTCH1 

Development of mesenchymal cells NOTCH1 

Canonical Pathway  Genes 

Regulation of the epithelial-

mesenchymal transition pathway 

Secretase γ, RBPJ, NFκB1, 

NOTCH1, CSL-HIF-1A 

NOTCH signalling Secretase γ, RBPJ, NOTCH1, 

CSL-HIF-1A 

B. Cellular movement and connective tissue development 630 

Diseases and functions  Gene 

Cell movement of fibroblast SKAP2, WASF2, ANGPT1, 

ENPP2 

Familial thoracic aortic aneurism MYH11 

Endothelial cell development ANGPTL1, ANGPT1 

Cell movement of endothelial cells ANGPT1, ENPP2 

Injury of endothelial cells ANGPT1 

Canonical Pathway  Gene 

Integrin Signalling Arp2/3, Talin, calpain, Akt, 

integrin, JINK1/2, Lfa-1 

C. Cell-to-cell signalling and tissue development 631 

Diseases and functions  Gene 

Adhesion of fibroblast cell lines TNMD, TENC1 

Adhesion of vascular endothelial cells ITGB1, SELE 

Association of extracellular matrix ITGB1 

Attachment of smooth muscle cells ITGB1 

Binding of vascular endothelial cells ITGB1, SELE 

Morphogenesis of endothelial tube PDPN 

Basement membrane disruption NID1, Laminin 

 632 

633 



 634 
Table 5.  635 
Examples of single gene intensity changes are shown. 636 
 637 
 638 

Category Genes 

Collagen 
COL6A3↓(H) 

ADAMTS ADAMTS2↓(M), ADAMTS19↓(M), ADAMTSL4↓(M) 

PGs and GAGs KERA↓(H), CHAD↓(H) 

MMP and TIMP MMP12↑(M), MMP14↓(M), MMP16↓(M) 

Basement membrane  NID1↓(H), LAMA2↓(L), CTSS↑(H) 

Cathepsin CTSC↑(M), CTSS↑(H) 

Integrin ITFG1↑(H), ITGA↑(M), ITGA8↑(M), ITGB1↑(H), ITGB4↓(M), 

ITGBL1↑(M) 

Claudin and occludin CLDN1↑(M), CLDN11↓(H) 

Cadherin CDH5↓(H) 

Others CILP↓(H), Has2↑(M), HAPLN1↓(H) 

Caveolin, PECAM, 

ICAM, SELE, and 

VCAM 

SELE↑(L) 

NOTCH and SNAI1 NOTCH1↓(L), RBPJ↑(H) 

Catenin, VEGF, and 

NFATc 

NFATc1↓(M) 

TGF-β and superfamily ENG↓(H), BMPR1B↑(L), BMP6↑(M) 

Actin, myosin, and 

SM22 

ACTA2↑(H), ACTC1↓(H), ACTG2↑(H), TAGLN↑(H) 

 639 

Statistically significantly different genes comparing cavalier king Charles spaniels (CKCSs) 640 
and normal dogs, selected on the basis of their likely biological relevance to myxomatous 641 
mitral valvular disease (MMVD), and using the five selected categories derived from 642 
annotation clustering analysis (ToppFunn, DAVID and IPA). Genes were also examined on 643 



the basis of their signal intensity; H, high signal intensity; M, medium signal intensity; L, low 644 
signal intensity. ↑ up-regulated, ↓ down-regulated.  645 

646 



Figures Legends 647 
 648 
Figure 1. Volcano plot demonstrating the overall gene expression pattern based on the X-axis 649 
(fold-change value) and Y-axis (P). Each dot represents one gene. Two vertical (fold-change 650 
value at 1.5 and -1.5) cut-off lines and one horizontal (P = 0.05) cut-off line are shown. In 651 

general, the plot is equally distributed. The significantly down-regulated genes in zone 3 were 652 
more diffusely distributed compared with the significantly up-regulated genes in zone 4. 653 
Unchanged genes in zone 1 (P > 0.05) and zone 2 (P < 0.05) had the highest plot intensity. 654 

 655 

Figure 2. 656 
Gene networking analysis using Ingenuity pathway analysis (IPA) identified three significant 657 
and biologically relevant networks for myxomatous mitral valvular disease (MMVD), 658 

including network (1) cardiovascular system development and function, network (17) cellular 659 
movement and Network 23) cell-to-cell signalling. Green is down-regulated and red is up-660 
regulated, with fold changes shown beneath each gene. 661 
 662 
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Manuscript Highlights 

 

 

 “Gene network and canonical pathway analysis in canine myxomatous mitral valve 

disease: a microarray study”  

 

1. Most complete coverage of the mitral valve transcriptome, several orders of magnitude 

better than then only other report form 2006. 

 

2. Application of several gene analysis platforms giving greater levels of data analysis 

and gene categorisation relevant to disease pathogenesis. 

 

3. Evidence of contribution of endothelial-to-mesenchymal transition to disease 

pathogenesis; one of the more novel theories of disease to emerge in recent years. 

 

4. Identification of ~600 genes significantly implicated in MMVD giving a picture not 

only of the complexity of the disease, but important information that will allow 

hypothesis driven research to be applied to understanding this disease.  
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Note from the Scientific Editor to the Authors, 

 

Using the edited version of the manuscript (which should be downloaded from the Journal's Web site), 

please address the comments and suggestions from both reviewers.  In addition, please correct the 

following: 

 

1. Use P in italics 

 

Corrected 
 

2. Italicize n 

 

Corrected 

 

3. Correct the format of your in-text reference citations (i.e. Corcoran et al., 2014) 

 

Corrected 

 

4. Correct the format of your reference list (i.e, all authors, no &, no issue number, no pp. unless it's a book, 

etc) 

 

Corrected 

 

5. Use "L" for liter 

 

Corrected 

 

6.  In your figures, for titles, axes, etc, please use capital letter only for the first letter of the first word. 

 

Corrected 

 

7. For figures 2 and 4, please provide the tables separated in the word document. 

 

Understand what you mean, but not sure how to go about it correctly; have done as Fig. graphic & 

Fig. 2 text. What we would want is both together in the MS. 

  

8. For figure 3, your pathway may be hard to read.  Make sure that your provider the highest definition 

possible for those, and please submit them one pathway/file. 

 

Re-ordered as Fig.3 a,b,c as separate files and with best resolution we have. 

 

With kind regards, 

 

Eric Blomme, DVM, PhD, Dipl. ACVP 

Scientific Editor, The Veterinary Journal 

 

 

 

 

 

Reviewer #1:  

This is a well-written and interesting study of gene expression analysis in mitral valve tissue from dogs with 

myxomatous mitral valve disease The aim of this study was to make an improve analysis on gene 

expression compared to previous studies in canine MMVD, in order to identify novel signaling pathways 

that might contribute to MMVD 

 

The study has a number of limitations, and most of them are addressed in the limitations. The major 

limitation is that finding of a difference between MMVD dogs and control dogs may be due to breed 

differences because the MMVD dogs only include tissue from Cavalier King Charles Spaniels. Previous 

studies have shown breed differences, for example with regards to platelet aggregation response and 

circulating biomarkers (Olsen et al 2001; Moesgaard et al 2007).  

 

This a valid comment and we will make sure it is mentioned in the limitations. The intention here had 

been to limit variability by concentrating on this one breed. In fact we have evidence that the cellular 

changes seen in CKCSs are the same as for other affected dogs, so might argue the CKCS is a good 
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model of the disease in dogs and the propensity for this breed to be affected is primarily a function of 

the time to onset and not the pathogenesis (although that need one very large study to confirm).   

 

In addition, it is limitation that histopathology is not performed to confirm the diagnosis. I think this is 

important also to address these two limitations. 

 

Histopathological confirmation was undertaken. Have included a short comment in Materials and 

methods 

 

In general, more references in relation to the gene analysis would be appropriate. 

 

We would prefer to leave as is Chen and Huang refer to DAVID and TOPPFUN and were the 

developers, and IPA is a commercial product for which there is no specific development reference. 

 

Line 95: Whitney grade for control dogs are missing 

 

Grade is zero; have amended 

 

Line 98: How was MMVD clinically confirmed? 

 

All cases had been clinically confirmed by ourselves using echocardiography; have commented in 

MS.  

 

Line 99: Information of therapy is missing 

All dogs had been in the terminal stages of the disease and would have been on standard treatment 

for congestive heart failure. There might have been subtle differences in types of medication and 

dosage, but there is no way we could control for those variables; have commented in MS 

 

Line 142: Was model control for the AVOVA performed 

 

Parktek 6.6 software only runs ANOVA and so we used that to compare 4 vs 4. We are not too sure 

what is meant by “model control” in this context. 

  

Line 165: Description of the statistic in more detail is missing 

 

See above; since these programmes and platform as have their own in-built statistical methodologies, 

which we presume have been p[properly modelled we are not sure of the benefit of providing that 

detail in the MS. For qRT-PCR Mann-Whitney U test was used with Graphpad prism . 

  

Reviewer #2: Gene Network and Canonical Pathway Analysis in Canine Myxomatous Mitral Valve 

Disease:  A Microarray Study 

 

In this manuscript the authors used microarray data and several analysis tools to better understand the 

mechanism and affected genes/pathways in Cavalier King Charles Spaniels with Myxomatous Mitral Value 

Disease.  These data use the newer and better annotated canine Affymetrix array.   

  

I am accepting this paper but have several comments the authors should address: 

 

General comments: 

 

Capitalize Cavalier King Charles Spaniel throughout the entire manuscript 

 

This would be incorrect as cavalier and spaniel are not proper nouns, but King and Charles are, so 

they are capitalised. For the acronym we think capitalisation is the right form hence “CKCS” 
 

Correct spelling errors throughout the manuscript   

 

Done 

 

Abstract 

When mentioning the changed gene families please mention the general direction of change (up or down 

regulated) 

 

Can we have editorial advice as doing this for each gene might make the abstract look “messy”. We 

have regrouped the genes as “all down-regulated”, “all up-regulated” or “up and down-regulated”. 



See amended text and advise if acceptable. An alternative is ↑↓but presume this would not be 

acceptable. 

 

Introduction 

 

Include more background about MMVD.  What is the incidence of this disease?  What are theories about 

why CKCS are more susceptible to the disease? 

 

We would normally do so, but are constrained by the word count for the MS. Also much of what is 

being asked to include would be speculative. Have included one sentence on endothelial damage, VC 

activation and aberrant remodelling. 

 

What are the current theories about MMVD formation?  

 

See previous response 

 

Please rewrite the aim of the study in the last paragraph as it is unclear (lines 86-91) 

 

Has been reworded. 

 

Materials and Methods 

 

How was MMVD diagnosed in the dogs? 

 

Clinically and confirmed by echocardiography; MS amended 

 

Correct the discrepancy (or clarify the difference) between n = 6 at line 100 and n = 8 on line 117.  How  

many samples were there? 

 

Cannot find n=8 in the MS. Numbers are correct. 
 

What kind of QC parameters were used to accept the microarray data? 

 

If this means pre-hybridisation it is the RIN number which was >7, which is in the MS. If it means 

post-hybridisation we used the PCA plots, which mentioned in new line 128-130. 

 

Line 145  specify the cut-off values used 

 

Now line 134 with values entered for fold-changes etc.  

 

What was the RNA input for the Q-RTPCR reaction? Line161 

 

Not sure what is being asked here; please clarify. We used the exact same RNA samples for the 

microarray and the PCR. Have included comment in new line 145. 

 

Correct the "-" in front of delta delta Ct on line 164 or explain what the "-" means. 

 

No meaning; has been removed. 

 

Table 2 

Clarify what "Gene %" means?  Does this refer to the % of the pathway which is changed?  Add what 

general direction the pathways are changed to the table. 

 

Sentence included to clarify 

 

Table 3 

 Include which direction genes were changed (up or down regulated) 

 

Have included sentence cross-referencing to Figure 3 which shows the fold changes. If that is not 

sufficient we can include in Table 3, but this this would make it very complicated. 

 

Figure 4 

This figure is very hard to read and interpret; please make it more clear.  Suggestions include removing 

molecules from the networks which do not strengthen the authors point, building a unique heatmap 

including functional nodes and only necessary/unchanged gene changes, or representing the data in a 



different format.   

 

This has been replaced with Table 4; effectively Figure 4 without the graphic for LDL. Original Table 

4 is now Table 5 

 

Supplemental Figure 4  change title to "Identity" not Identify 

 

Done 

 

Reviewer #3: In this study, the authors used up-to date canine microarray technology to investigate the 

transcript changes in MMVD of CKCS. They found genes, biologycal function clusters and pathways 

related to MMVD. The study was well conducted and the manuscript was well written. The authors only 

need to correct some punctuations to make the article more accurate and less confusing. eg. in Line58, there 

should be comma in front of 'less is'; there should be right parenthesis some where in Line110. Please check 

your MS carefully to correct these issues. 

 
MS has been checked. 



Editor and Reviewer Comments: 
 
Note from the Scientific Editor to the Authors, 
 
As mentioned below in their comments, both reviewers have recommended your submission to be 
accepted for publication in The Veterinary Journal.  However, for unknown reasons, I am unable to open 
the manuscript file and to make final edits. Can you please consider the few comments from Reviewer #1 
below and save your manuscript in a different version of Word, as this may solve the problem? 
 
In addition, please use the other submission (751: culture of VEC and VIC) that we just send back to you as 
an example of the edits that will be necessary for you to make before we can accept the manuscript.  For 
example: 
 
Done 
 
1. P needs to be capitalized and italicized. 
 
2. "n" needs to be italicized. 
 
3. Do no include ":" after the section titles 
 
4. In your in-text references, use the following format: Corcoran et al., 2014 
 
5. Use "min", "h" and "s" 
 
6. Use Fig., not Figure 
 
7. In your reference list, the volume numbers should not be italicized. And replace all "&" by "and" 
 
All done 
 
Reviewer #1: 
 
I find the paper very fine. I have only two minor comments: 
 
I still find it important to address that the findings may be due to breed differences between the control 
group and the diseased group. I recommend that the sentence in the discussion (line 386-387): "The main 
limitations of this study were the small sample size, thee lack of age-matched controls…" is changed to 
"The main limitations of this study were the small sample size, thee lack of age-and breed-matched 
controls ..." 
 
Comment included 
 
Model control in relation to ANOVA is performed to evaluate if raw data fit the statistical model. 
Evaluation of variance homogenecity can be performed. Non parametric tests need to be used if data not 
fit the model and transformation of the data does not obtain variance homogenecity. I find it important to 
know if the raw data fit the statistical models, it is not clear to me whether it is performed 

 
We are unable to determine whether if the raw data fits the statistical model or not due to 
the small sample size. In PARTEK suite microarray analysis, the data are transformed (log2) such 
that all values are between 0 and 16. The software then normalises the data irrespective of 
sample size and analyses using ANOVA regardless of the statistical model (Gaussian). Applying 
FDR to this bioinformatics platform further corrects for any potential false discovery. This is a 
routine microarray analysis procedure and widely accepted considering the sample 
size limitation typical of this type of research. We have consulted with Mick Watson, Director of 
Edinburgh Genomics (merger of Ark Genomics and TheGenePool) and he is confident the data 
analysis is robust. 
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Ms. No. YTVJL-D-14-00750R2 

 

Gene network and canonical pathway analysis in canine myxomatous mitral valve 

disease: A microarray study 

 

The Veterinary Journal 

 

Dear Brendan, 

 

Your revised paper has been edited by your Handling Editor, Dr Eric Blomme, and 

another edited version has been uploaded to the journal website for your approval. Please 

check this edited manuscript carefully for accuracy and completeness. 

 

I would be grateful if you could address the editorial comments and annotations that Eric 

has made to your manuscript in the references. 

 

In addition, please attend to the following editorial requests: 

 

- In the Corresponding author's details, please remove "(0)" from the telephone number 

and change "Brendan Corcoran" to "B.M. Corcoran". Authors' names can be written in 

full in the main list of authors if desired. 

Done 

 

- Please change "cavalier king Charles spaniels" to "Cavalier King Charles spaniels". 

Not sure if Cavalier is a proper noun, but done as requested.  

 

- When writing numbers such as "n = 59", please write "n" in italics. 

 

Done 

 

- Please check punctuation and spacing throughout the manuscript. 

 

Done; according to my own limited grammatical skills!!! 

 

- Numbers less than 10 that are not linked to a unit should be written in full unless used as 

the start of a sentence, e.g. change "6 and 10 significantly different biological function 

clusters" to "six and 10 significantly different biological function clusters". 

 

Done 

 

- Please change "Royal (Dick) School of Veterinary Study" to "Royal (Dick) School of 

Veterinary Studies". 

Done 
 

- Please write the heading "Conclusions" in bold. 

 

Response to Editors Changes Feb



Done 

 

- References should be formatted with a hanging indent. 

 

Done 
 

- Please write the article titles for Geirsson et al. (2012), Lakatta and Levy (2003), Liu et 

al. (2003), Mow and Pedersen (1999) and Rabkin et al. (2001) in sentence case. 

 

Done 

 

- In the tables, the headings should be written in sentence case, not emboldened and 

placed on the next line below the headings "Table 1", "Table 2" and "Table 3". 

 

Done 

 

- In Table 1, please write sequences in upper case in the format 5'-

CCGCATTGAGCTGACAGTAG-3'. Please also change "Probe No." to "Probe number". 

 

Done 
 

- In Table 4, please place additional data as footnotes rather than with the heading. 

 

Done 

 

- Please check all references carefully for accuracy. Please also check that all references 

are cited in the text and that all citations are listed in the references.  

 

Done 

 

- As recommended by Eric, Fig. 2B should be converted to a Table. 

 

Done, and other figures re-numbered as appropriate. 

 

- Please remove the solid borders from around Figs. 3A, B and C. 

 

Done; now re-labelled Fig 2A, B and C. 



 

- As noted by Eric, Fig. 4 is missing. 

My mistake; this figure had been removed but the text not amended accordingly. 

The figure does not add to the text. 
 

Please ensure that your revised paper conforms fully to the requirements of our Guide for 

Authors. 

 

IMPORTANT: Your article has been edited by the Editor handling your paper and the 

Word filename includes the word 'edited'. You MUST ONLY use this version in 

preparing your revised text. You should click on download submission files link from 

your author menu on EES and ensure you are making changes to the most up to date 

version of the manuscript. 

 

You should submit your revision online by logging onto the Elsevier Editorial System for 

The Veterinary Journal: 

http://ees.elsevier.com/ytvjl/ 

 

Your username is: ****** 

 

We look forward to receiving your revised manuscript. 

 

With kind regards, 

 

Adrian 

 

Dr Adrian W. Philbey BVSc(Hon) PhD MANZCVSc(Pathology) MRCVS, 

 

Senior Scientific Editor, 

The Veterinary Journal 

 

On behalf of Dr Andrew Higgins BVetMed MSc PhD FSB MRCVS, 

 

Editor-in-Chief, 

The Veterinary Journal 

 

Editorial Office Web Portal: www.ees.elsevier.com/ytvjl 

For guidelines on how to submit your revised manuscript please go the following address: 

http://help.elsevier.com/app/answers/detail/p/7923/a_id/91 

 

__________________________________________________________ 

 

EDITOR'S COMMENTS: 

 

Note from the Scientific Editor to the Authors, 

 

Based on your revisions, I have made some final edits to prepare your submission for 

publication. Please use ONLY the edited version of the manuscript (which should be 

downloaded from the Journal's Web site) to carefully review the text and make sure that I 

did not alter the meaning of it. I also include a few comments in the reference list for you 

to address. Make all changes in a font of a different color. 

 

Finally, I could not locate figure 4, and Figure 2B would be better suited as a table. 

 



With kind regards, 

 

Eric Blomme, DVM, PhD, Dipl. ACVP 

 

Scientific Editor, 

The Veterinary Journal 

 



Professor Brendan Corcoran 
Deputy Head of School 
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Dear Editor. 

 

29/7/2014 

 

Please find enclosed manuscript “Gene network and canonical pathway analysis in canine 

myxomatous mitral valve disease: a microarray study” for consideration for publication in 

TVJ. 

 

This paper provides a large amount of data on the mitral valve transcriptome that is not 

currently available to the research community. It markedly improves on the only other study 

previously reported in 2006, not least because of major advances in transcriptome coverage 

and bioinformatics platforms. 

 

These data will permit increased numbers of hypothesis driven projects to be generated by 

the research community interested in canine MMVD, but also provide data of interest to 

colleagues working on the analogous human disease. 

 

 

 
 

Brendan Corcoran 
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