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Abstract—Automatic parallelization has largely failed to keep
its promise of extracting parallelism from sequential legacy code
to maximize performance on multi-core systems outside the
numerical domain. In this paper, we develop a novel dynamic
commutativity analysis (DCA) for identifying parallelizable loops.
Using commutativity instead of dependence tests, DCA avoids
many of the overly strict data dependence constraints limiting
existing parallelizing compilers. DCA extends the scope of au-
tomatic parallelization to uniformly include both regular array-
based and irregular pointer-based codes. We have prototyped
our novel parallelism detection analysis and evaluated it exten-
sively against five state-of-the-art dependence-based techniques
in two experimental settings. First, when applied to the NAS
benchmarks which contain almost 1400 loops, DCA is able to
identify as many parallel loops (over 1200) as the profile-guided
dependence techniques and almost twice as many as all the
static techniques combined. We then apply DCA to complex
pointer-based loops, where it can successfully detect parallelism,
while existing techniques fail to identify any. When combined
with existing parallel code generation techniques, this results
in an average speedup of 3.6× (and up to 55×) across the
NAS benchmarks on a 72-core host, and up to 36.9× for the
pointer-based loops, demonstrating the effectiveness of DCA in
identifying profitable parallelism across a wide range of loops.

Index Terms—commutativity analysis, parallelization.

I. INTRODUCTION

Compilers for automatic parallelization have failed to deliver
on their promise to seamlessly transition sequential legacy
software into the multicore era [1], [2]. Despite intensive
research, the problem of discovering and exploiting parallelism
hidden in sequential code is far from solved [3], except for
limited success in a few narrow domains (e.g., regular array-
based computations) [4].

Researchers have moved to the use of runtime information
to supplement static analyses [5], [6], [7], [8], [9], [10], [11],
[12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22],
[23]. Using a subset of all potential inputs, these analyses are
not guaranteed to be correct for every possible workload. In
practice, however, it has been shown that they can be applied
without sacrificing program safety [8], [9], [24].

On the other hand, recent work has shown that depen-
dence analysis, even when informed with perfect profiling
information, is inherently unable to identify any further latent
parallelism [25].

A promising approach to overcome the limitations of both
static and dynamic dependence analyses is the use of commu-

tativity analysis [26], [27], [28]. In a nutshell, commutativity
analysis detects code regions whose order of execution can be
exchanged without affecting the program outcome.

Our key insight is that some dependences detected by static
and dynamic dependence analyses are not, in fact, fatal to
parallelization, and therefore cause some loops to be needlessly
discarded. Instead, commutativity analysis focuses on the more
crucial issue of whether any such dependences have a detectable
effect on the eventual result.

In this paper, we develop a novel Dynamic Commutativity
Analysis (DCA) that combines both static and dynamic infor-
mation for the discovery of profitable parallelism in sequential
legacy code. Unlike previous commutativity approaches, DCA
focuses on loops as the program regions that typically capture
most of the program execution time.

DCA handles, in uniform manner, both loops that are
in the scope of traditional dependence approaches (such as
affine loops) and loops that are beyond the capabilities of
traditional methods, such as Pointer-Linked Data Structure
(PLDS) traversals, which are usually dealt with ad hoc. This
is achieved by modelling the observable live-out [29] effects
of computations as invariants while simultaneously allowing
other “non-essential” computations to violate transient data
dependence relations.

This paper contributes a method allowing programmers to
parallelize programs that are outside the scope of traditional
parallelizing compilers. We also explore aspects that affect
profile-driven parallelizing techniques such as the profitability
and safety of parallelization. DCA improves detection of
profitably parallelizable loops which are correctly identified
as such even when limited, yet representative, input is used.
We envision DCA being used as part of an interactive or semi-
automatic parallelism advisor, where the user has the final
word over any code transformations.

A. Motivating Examples

Consider the simple loop traversal over an array in Fig. 1(a),
performing a map operation written in C. Such patterns can
readily be detected as parallel using data dependences to reason
about the independence of array accesses across the iteration
space of this loop. However, using a different data structure
to write what is in essence the same trivial code, shown in
Fig. 1(b), defeats dependence analysis.
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1 for (i = 0; i < N; ++i) {
2 array[i]++;
3

4 }

(a) Array-based loop.

1 while (ptr) {
2 ptr->val++;
3 ptr = ptr->next;
4 }

(b) PLDS-based loop.

Figure 1. Simple loops that perform the same map operation. The right-hand
side version defeats dependence analysis.

1 Graph *g;
2 int *dist;
3 WorkList *frontier, *next_frontier;
4 . . .
5 push(frontier, g->adjacent[source]);
6 /* while there is still work in the frontier */
7 while (frontier->size) {
8 /* top-down step */
9 while (frontier->size) {

10 /* remove node from worklist to process */
11 current = pop(frontier);
12 /* go over its adjacent nodes */
13 Node *n = current->next;
14 while (n) {
15 if (dist[n->vert] > dist[current->vert]) {
16 dist[n->vert] = dist[current->vert] + 1;
17 /* this node’s distance was updated,
18 * so recheck its neighbors */
19 push(next_frontier, n);
20 }
21 n = n->next;
22 } /* end of adjacent node loop */
23 } /* end of top-down step */
24 swap(frontier, next_frontier);
25 } /* end of worklist loop */

Figure 2. A BFS implementation from Lonestar [30] employing complex and
irregular PLDS-based loop traversals.

Dependence analysis tries to establish the read and write
operations that occur at a program’s memory locations and
associate these locations with various relations (e.g., read-after-
write dependence). In Fig. 1(b), the ptr pointer is being read
in order to update the ptr->val data element of each node
in the linked list. More crucially, ptr itself is being updated
(i.e., read and written) to point to the next node for processing
by the next loop iteration. This creates a cross-iteration read-
after-write dependence on ptr which dependence analysis
finds present even when profiling information is used. Hence,
in this case dependence analysis is inherently incapable of
determining the independence of iterations and cannot further
propose this loop as a valid candidate for parallelization.

While there have been various attempts to deal with such
codes (e.g., pattern matching), they have been proven inflexible
and very limited against real programs. Consider Fig. 2 that
shows a Breadth-First Search (BFS) graph traversal from the
Lonestar benchmark suite [30]. BFS employs a worklist to
iterate over all the nodes of a graph, traverses the adjacent
nodes for each of them and conditionally updates their distance
from the selected source node. Its result is the array dist
containing the distance of each node from source.

The issues with parallelization of the innermost loop in Fig. 2
(lines 14–22) are similar to those discussed above. In addition,
dependences between loop iterations induced by the dynam-

ically updated frontier and next_frontier worklists
via the push and pop operations prevent conventional paral-
lelization of the top-down step.

This motivates the development of a new method that extends
the automatic detection of parallelizable code in real-world
programs, addressing some of the aforementioned problems. To
this end, we propose Dynamic Commutativity Analysis (DCA);
an analysis which utilizes liveness-based commutativity, instead
of dependences, to detect potentially parallel loops. By using
the live-out variables of a loop (i.e., those consumed later in
the program), DCA focuses on the parts of the computation
that have an impact on its outcome, irrespective of its traversal
idiom. Moreover, using liveness, DCA observes if the outcome
remains unaffected when permuting the iterations of a loop,
thus strongly suggesting that this loop’s iterations can be
executed in any order, or in fact in parallel with appropriate
synchronization. In other words, we say that DCA detects the
loop as commutative.

For example in Fig. 2, the significant result of the outermost
loop is the variable dist, which is indeed found as live-out
after line 25. In this case, DCA determines that this update
loop (lines 9–23) is also commutative and can subsequently
be executed in parallel. This is because processing of the
current nodes produces the same dist values, regardless
of the order it occurs.

Overall, DCA detects more potential parallelism in complex
and diverse loops in a uniform manner, overcoming obstacles
which thwart dependence analysis.

B. Contributions

This paper makes the following contributions:
• We introduce Dynamic Commutativity Analysis (DCA), a

technique for testing the commutativity and hence potential
parallelizability of arbitrarily complex loops, the program
regions with the highest parallelization potential, including
traversals of Pointer-Linked Data Structures.

• We show that DCA is substantially more effective in detect-
ing parallelizable loops from a wide range of benchmarks,
outperforming a combination of state-of-the-art dependence-
based approaches.

• We demonstrate that our approach is able to discover
loops with significant parallelization profitability and high
precision.

C. Overview

The rest of this paper is structured as follows: Section II
reviews existing commutativity concepts, Section III describes
our notion of liveness-based loop commutativity, Section IV
describes DCA, Section V evaluates our approach, Section VI
discusses related work, and Section VII concludes.

II. BACKGROUND

A number of different notions of commutativity for paral-
lelization can be found in the literature [26], [27], [28]. We
briefly discuss them here to set the scene for our novel analysis
in Section IV.
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A. Separability-Based Commutativity

A pioneering notion of commutativity has been first intro-
duced in [26]. It views computation as composed of separable
operations on objects, where each operation has a receiver
object and several parameters that are passed by value to it.
If all the operations required to perform a given computation
commute without affecting the final result, then the compiler
can generate parallel code. This approach quickly reaches its
limits for real-world applications, since it requires programming
in a very restrictive object-oriented style. Later work has
focused on verifying commutativity conditions for linked data
structures [31], limited to operations that produce semantically
equivalent states in different execution orders.

B. Output-Based Commutativity

[27] proposes an alternative notion of commutativity analysis
for individual functions, which considers the output of a
function at its point of use. A candidate function is symbolically
executed in two different call orders to create an abstract
representation of the result for each order. This symbolic result
is then used as input to all functions that could potentially
read it, and, in turn, these “reader” functions are symbolically
executed. If the outputs of these reader functions are identical,
then the initial function is commutative. Whilst this notion
of commutativity has strength in handling e.g., unordered
container data structures in the same spirit as [31], it is limited
to the repeated, possibly commutative invocations of a single
function.

C. Liveness-Based Commutativity

Commutativity based on liveness [29] has been introduced
in [28], and used as part of a formal characterization of
parallel algorithmic skeletons. The key idea here is to restrict
commutativity requirements to only those variables, which are
live-out at a region of interest. This allows for the separation
of transient variables (and associated computations), whose
values are not used anywhere later in the code, to be relaxed.
While developing the concept, the paper did not provide an
analysis for the liveness-based commutativity property. In this
paper we seek to provide a practical dynamic analysis for this
notion of liveness-based commutativity when applied to loops
and demonstrate its use in parallelizing real-world sequential
applications.

D. Applicability of Parallelization

Identifying a code region (i.e., function, loop, etc.) as
commutative does not immediately guarantee its correct parallel
execution.

The separability-based commutativity model in [26] already
fulfills a lot of the requirements for parallelization as a natural
consequence of its strict computation model and also employs
a series of conservative checks to guarantee the safe paralleliza-
tion of a method. For output-based commutativity [27], the step
to parallelism is not clearly described and the evaluation takes
place in a simulation environment with infinite-issue capability.

At this stage in our approach, we combine DCA’s profile-
guided nature with reemployment of data dependences to
extract parallelism and guide synchronization, similarly to [8].
Wherever safe parallelization cannot be conclusively deter-
mined, we lean on the user for final approval (Section IV-D).

III. LIVENESS-BASED LOOP COMMUTATIVITY

The notion of commutativity has a natural interpretation
for loops: a loop is commutative if rearranging its iterations
preserves the outcome of the original program. This section
introduces our notion of liveness-based loop commutativity.
We consider loops, permutations of their iterations, and the
values of variables which they touch. Ideally, for a loop to be
declared commutative, we would like to check that, given some
values for its live-in variables [29], permuting its iterations
has no impact on the values of its live-out variables. This is
clearly infeasible due to a combinatorial explosion of possible
permutations and inputs, and a similar problem would impede
the use of symbolic techniques, despite recent progress [32].
We take a more pragmatic approach, described fully in
section Section IV, checking for a selected set of iteration
permutations, and with representative inputs. Interestingly, our
results (Section V-D) show that in practice there is a close
correspondence between this pragmatic commutativity checking
scheme and the more comprehensive version described above.

IV. DYNAMIC COMMUTATIVITY ANALYSIS

Our analysis consists of a static and a dynamic stage.
Fig. 3 depicts the components of our approach. We have also
implemented a parallelization stage to evaluate the effectiveness
of our scheme. To easily follow DCA’s operation, we provide
examples in C of the intermediate code generated by each step
in Fig. 4, for the simple loops of Fig. 1.

A. Static Stage

Our analysis goes over the source of an input program and
selects loops for further processing. For every loop nest, each
loop is considered separately by a series of compiler passes
operating on intermediate representation code.

1) Iterator/Payload Separation: One of the crucial aspects
of this stage is our ability to detect which parts of the loop form
the iterator code and which the actual computation, i.e., the
payload, using a generalized iterator recognition analysis [33].
Intuitively, this analysis identifies the set of variables that are
updated on each iteration and determine if execution continues
in the loop body or exits out of it.

This allows the static stage of DCA to tackle a range of non-
affine loop iterators, while avoiding the use of a limited ad hoc
scheme. We have already discussed the challenges of dealing
with a wider range of iterator styles in Section I-A. Fig. 4(a)
highlights which lines would be identified and separated as
iterator from the code of Fig. 1.
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Figure 3. Overview of Dynamic Commutativity Analysis.

2) Payload Outlining: Next, we outline the payload part of
the loop in a separate function. This allows us easier handling
of the code section in subsequent stages and in particular during
execution when coupled with our instrumentation. We identify
the live-in, live-out and live-through variables of the outlined
region and provide them to the outlined function as arguments.
By construction the iterator values are consumed as live-in
variables. Fig. 4(b) shows the resulting code after outlining.

3) Iterator Linearization: We proceed by instrumenting the
identified iterator code in order to extract its values during
profiling. This process linearizes our subsequent accesses to
values of the iterator and is similar in spirit to the linearization
described in [34]. Our variant is able to tackle a wider range
of loop idioms and data structure traversals as it is powered
by a generalized iterator recognition.

Fig. 4(c) shows the code from Fig. 4(b) after inserting calls
to the DCA runtime library. While this is depicted in a separate
standalone loop (lines 1–4) for simplicity, in practice it can
simply be accomplished by proper placement of these calls in
the loop header when operating with low-level intermediate
representation code.

4) Commutativity Testing Instrumentation: This stage con-
cludes by placing additional calls to our runtime, enabling
commutativity testing of the loop (Fig. 4(d)). These calls serve
two basic purposes: (i) permute the order of the loop iterations,
and (ii) verify the commutativity property of the tested loop.
Their operation during execution is discussed in detail in the
next section. The final output is an instrumented program along
with auxiliary reports on the loops that were transformed.

1 for (i = 0; i < N; ++i) {
2 array[i]++; // payload
3

4 }

while (ptr) {
ptr->val++; // payload
ptr = ptr->next;

}

(a) Iterator/Payload Separation.

1 for (i = 0; i < N; ++i) {
2 payload1(i, array);
3

4 }
5

6 void
7 payload1(int it, int *v1) {
8 v1[it]++;
9 }

while (ptr) {
payload2(ptr);
ptr = ptr->next;

}

void
payload2(struct node *it) {

it->val++;
}

(b) Payload Outlining.

1 for (i = 0; i < N; ++i) {
2 rt_iterator_linearize(i);
3

4 }
5

6 for (i = 0; i < N; ++i) {
7 payload1(i, array);
8

9 }
10 . . .

while (ptr) {
rt_iterator_linearize(ptr);
ptr = ptr->next;

}

while (ptr) {
payload2(ptr);
ptr = ptr->next;

}
. . .

(c) Iterator Linearization.

1 for (i = 0; i < N; ++i) {
2 rt_iterator_linearize(i);
3

4 }
5

6 rt_iterator_permute();
7

8 while(rt_iterator_next()) {
9 payload1(

10 rt_iterator_get(),
11 array);
12 }
13 . . .
14 rt_verify();
15 . . .

while (ptr) {
rt_iterator_linearize(ptr);
ptr = ptr->next;

}

rt_iterator_permute();

while(rt_iterator_next()) {
payload2(

rt_iterator_get()
);

}
. . .
rt_verify();
. . .

(d) Commutativity Testing Instrumentation.

Figure 4. Code output for the intermediate steps (top to bottom) of DCA’s
static stage for an array-based (left) and a PLDS-based loop (right) respectively.

B. Dynamic Stage

During the dynamic stage of our analysis, the instrumented
program produced by the static stage is executed multiple times
using different configuration modes applied by our runtime
library. The goal of this stage, in the spirit of Section III, is to
determine commutativity for a loop by executing its iterations in
different orders and comparing the resulting outcome with the
one obtained by the original, programmer-intended execution
order (i.e., a “golden” reference).

1) Iterator Recording: Once a DCA-transformed loop is
reached during execution, the linearization step records the
iterator values, using a random-access sequence container. Next,
a set of permutation schedules is selected which control the
exact reordering of the loop iterations. The originally prescribed
order is executed by default for every loop under test since
the output is required as a reference for comparing against the
subsequent permuted executions.

2) DCA Execution: Exhaustively executing, using input
data from the benchmark suite, all possible permutations for
a set of iterator values is exponentially expensive for loops
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with a large trip count. Therefore, further addressing the
scalability issues discussed in Section III, we provide reduced
permutation presets (e.g., reverse or a configurable number of
random shuffles). This means accepting a chance of missing
a commutativity violating permutation, i.e., that our dynamic
analysis is generally not safe. However, as evidenced and
discussed in Section V-D, this trade-off is still surprisingly
powerful in practice.

3) Live-out Verification: The final step of the analysis tests
the candidate loop for commutativity. After the execution of
loops in the preselected iteration permutation schedules is com-
plete, the runtime compares the produced output computation
(i.e., live-outs). If the output of at least one permuted execution
differs from the original output (“golden” reference) we mark
the loop as non-commutative.

C. Parallelization

While the focus of this work is mainly on the detection
of parallelizable loops, we have also implemented a simple
parallel code generation scheme to allow evaluation. We achieve
significant speedups for PLDS-based loops (Section V-B2).

Our strategy is limited at loop-level parallelism and employs
the same techniques as described in [8] concerning identifi-
cation of variables for privatization and reduction operations.
Profiling information is used to detect privatizable variables
per loop-level by following the reader and writer statements for
each memory location. The exploitation of reduction operations
uses the approach outlined in [35]. The produced parallel code
uses the OPENMP framework which lends itself naturally and
easily to this scope of parallelism, since it does not involve
any other high-level code restructuring.

D. Safety

As already mentioned in Sections I to III, profile-guided
parallelization cannot inherently guarantee correctness for every
potential concrete input. However, it overcomes the overly
conservative nature of static analysis, unlocking more potential
parallelism. In our system, we let the user approve the cases
where correct parallelization is not conclusively guaranteed.

In this work, we have also studied the rate of loop misclassifi-
cation (false positives) and found that DCA correctly identifies
all the reported loops as parallelizable (Section V-D). This
agrees with prior research which shows that the occurrence or
absence of potentially parallelization-inhibiting dependences
are fairly stable across different program inputs [24]. As noted
above, we have used inputs provided with the benchmark suites.

E. Challenges and Limitations

Candidate loops can be deeply nested, thus we explore
commutative loops hierarchically in a top-down fashion, using
one loop per test invocation. We mitigate this by executing
several test instances at the same time.

A candidate loop can appear in different execution contexts
(e.g., different call sites of containing function) during appli-
cation runtime. Loop candidates can exhibit commutativity
in some execution contexts, but not in others. Currently, our
analysis is not context-sensitive. We leave this for future work.

TABLE I
NAS PARALLEL BENCHMARK (NPB) LOOPS REPORTED AS

PARALLELIZABLE BY THE BASELINE DYNAMIC APPROACHES, DEPENDENCE
PROFILING [8] AND DISCOPOP [9], AND AS COMMUTATIVE BY DCA.

Benchmark Loops DEPENDENCE
PROFILING

DISCOPOP DCA
(this work)

(#) (#) (#) (#)
BT 182 168 176 168
CG 47 33 21 33
DC 105 — — 41
EP 9 6 8 6
FT 42 36 34 36
IS 16 12 20 12
LU 186 160 164 160
MG 81 48 66 48
SP 250 233 231 233
UA 479 — — 466
Total 1397 696 720 1203

Execution of regions in permuted order can lead to un-
predictable behavior if those loops are not commutative. We
reliably detect these situations.

Generally, we assume that candidate loops do not contain
I/O statements or produce any other side effects not captured
by liveness (volatile memory accesses, etc.). Any such loops
are excluded during the selection step of the static stage.

V. EMPIRICAL EVALUATION

We evaluate DCA’s efficacy and the performance obtained
by simple parallelization of the detected commutative loops
against dynamic (Section V-B) and static (Section V-C) ap-
proaches. We also study aspects of its profitability and precision
(Section V-D), along with its potency at the loop scope and
beyond against expert parallelization (Section V-E).

A. Experimental Setup

Benchmarks. We use the NAS Parallel Benchmark (NPB)
suite [49] (NPB 3.3, SNU 1.0.3) to evaluate array-based loops.
The suite contains ten programs with a total of 1397 loops
(listed in Tables I and III). The NPB programs implement
numerical analysis kernels, in both sequential and OPENMP
versions, written in C (originally derived from FORTRAN). We
also use a diverse selection of programs that employ PLDS-
based loops across several benchmark suites, listed in detail
in Table II. Olden [42] benchmarks employing recursion were
rewritten in imperative form as in [38].

Inputs. We use input workload class B for NPB programs,
except for MG and IS which use class C. For the selection
of programs with PLDS loops, we use the biggest workload,
when available, otherwise we provide a custom workload to
also enable a long-running execution for the sequential version.

Compilers. DCA was prototyped on the LLVM compiler
infrastructure [50]. We also use five state-of-the-art dependence-
based tools as a baseline to compare with our approach. These
are:
• DEPENDENCE PROFILING [8]: a profile-driven dependence-

based parallelism detection approach targeting loops.
• DISCOPOP [9]: another profile-driven dependence-based

approach aiming at code regions of varying granularity.
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TABLE II
PLDS-BASED LOOPS WHICH DCA DETECTS AS COMMUTATIVE AUTOMATICALLY, WHILE EXISTING PARALLELIZATION TECHNIQUES FAIL TO IDENTIFY ANY.
THESE LOOPS CONTAIN PROFITABLE PARALLELISM THAT WAS EXPLOITED MANUALLY BY PREVIOUS WORK. THESE TECHNIQUES HAVE EITHER REPORTED

THE SPEEDUP OVER THE SEQUENTIAL EXECUTION TIME OF THAT LOOP ONLY (LOOP) OR OVER THE WHOLE PROGRAM EXECUTION TIME (OVERALL).

Benchmark Origin Loop-Containing
Function Profitability Detection Technique

Sequential
Coverage (%)

Potential
Speedup (×)

Expert
Manual

Loop Overall

429.mcf SPEC CPU2006 [36] refresh_potential 30 2.2 — DSWP variant 1 [37], [38]
300.twolf SPEC CPU2000 [39] new_dbox_a 30 1.5 — DSWP variant 2 [40]
ks PtrDist [41] FindMaxGpAndSwap 99 1.5 — DSWP variant 1
otter FOSS find_lightest_geo_child 15 2.5 — DSWP variant 2
em3d Olden [42] compute_nodes 100 ∼ 2 — DSWP variant 1
mst Olden BlueRule 100 1.5 — DSWP variant 1
bh Olden walksub 100 2.75 — DSWP variant 1
perimeter Olden perimeter 100 2.25 — DSWP variant 1
treeadd Olden TreeAdd 100 — ∼ 7 Partitioning [43]
hash Shootout ht_find 50 — ∼ 4 Partitioning
BFS Lonestar [30] BFS 99 — 21 Galois [44]
ising community main 95 — ∼ 6 ASC [45]
spmatmat SPARK00 [34] main 89 — ∼ 4 APOLLO [46]
water-spatial SPLASH3 [47], [48] INTERF 63 — 2 OPENMP

• IDIOMS [51]: a constraint-based analysis focusing on the
detection of complex reduction and histogram operations.

• POLLY [52]: a polyhedral transformation framework.
• INTEL ICC [53]: a mature industrial compiler that uses data

dependence analysis and supports auto-parallelization.
IDIOMS and POLLY are also implemented on LLVM, which
allows a loop-by-loop comparison. ICC was also used to obtain
loop profiling information across the benchmark programs that
we assessed and the INTEL OPENMP runtime library for all
parallelized execution runs. The DISCOPOP results are taken
from the literature since the tool is not available.

Configuration. To meet our evaluation goals we configured
the tools with the following criteria in mind: (i) during detection,
maximize the identification capability for each tool regardless
of profitability, (ii) while during code generation, maximize the
profitable parallelization exploitation for each tool. Hence,
we disable ICC’s parallelization profitability heuristic (i.e.,
par-threshold option) for detecting parallelizable loops,
and maximize it for the code generation phase. POLLY’s
profitability heuristic is disabled during detection (via the flag
-polly-process-unprofitable) and it is only applied
during code generation. All the static tools compile using
optimization level O2 with loop unrolling and vectorization
disabled.

Hardware. All our execution experiments were conducted
on an INTEL Xeon Gold 6154 (Skylake) CPU with 72 cores,
running at 3GHz with 540GB RAM on Ubuntu 18.04.4 LTS
(Linux kernel 4.15.0–91). Reported speedups from paralleliza-
tion are an average of 5 runs. The Coefficient of Variation (CV)
was 5% or less for all execution time measurements, except
for CG generated by POLLY where the CV was 40%.

Other. We verified DCA’s output on NPB using the internal
suite verification routines. For the PLDS programs, we used a
combination of their reference output and custom profiling.

ICC failed to compile a parallelized version of UA, so
we use its sequential execution time in all further speedup
measurements. Both DISCOPOP and DEPENDENCE PROFILING
did not report results on DC and UA.

B. Performance against Dynamic Techniques

1) Detection of Array-Based Loops: Our experimental
results on almost 1400 loops of the NPB suite show that
DCA is effective at detecting commutative array-based loops.
This is significant, since further experiments (Section V-D)
provide evidence that all the detected loops are indeed
comprehensively commutative and hence parallelizable. Given
this close correspondence, the rest of this section also refers
to commutative loops as potentially parallelizable.

For each benchmark, Table I reports the total number of loops
and the number loops that each baseline dynamic approach
reports as parallelizable, and compares these loops with the
loops detected as commutative by DCA. As seen in the table,
DCA uncovers potential parallelism that closely matches each
of the dynamic techniques. The detection effectiveness of DCA
is attributed to its ability to capture the effects of code that
spans large regions with complex control flow, function calls
and non-linear array accesses.

2) Detection of PLDS-Based Loops: While DCA is effective
at detecting commutative array-based loops, its true potential
as a unified analysis for parallelism discovery is best seen
on PLDS-based loops. DCA is able to detect automatically
as commutative a broad collection of popular PLDS-based
loops from earlier compiler studies, whereas the baseline tools,
both dynamic and static, hit their limits and fail to detect
any of them as parallel. The focus of these earlier studies
has been on profitably exploiting these loops on modern
parallel architectures rather than detecting them as parallel.
Unlike DCA, these studies rely on ad hoc manual methods to
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Figure 5. Overall speedup over sequential code achieved by DCA paralleliza-
tion for PLDS loops. The parallel code generation techniques from Table II
fail to detect parallelizable loops automatically.

identify and utilize PLDS-based loops. The PLDS-based loops
detected as commutative are summarized in Table II. The table
also reports, for each loop, its origin, coverage and potential
speedup found by ad hoc manual methods as described in the
literature [37], [38], [40], [43], [44], [45], [46]. Remarkably,
DCA detects commutative loops even in complex programs,
such as 300.twolf which contains doubly-nested linked list
traversals, similar in nature to Fig. 1(b). Other loops, such
as treeadd, employ a worklist traversal idiom akin to BFS
presented in Fig. 2.

An interesting case is 429.mcf, the only loop in Table II
known not to be statically commutative. 429.mcf performs a
complicated tree traversal, accessing sibling and predecessor
nodes, and contains a cross-iteration dependence. The depen-
dence is not exercised by the test or the reference workloads,
hence DCA reports it as commutative. Speculative paralleliza-
tion approaches in the literature rely on the assumption that
this dependence is infrequent to parallelize the loop profitably.

In summary, DCA’s uniform approach is able to discover
potential parallelism in loops such as PLDS traversals that are
well beyond the limits of dynamic dependence-based analysis
approaches. This opens a potential avenue for leveraging
techniques aiming at efficient parallelism exploitation of
complex loops, such as speculative parallelization.

3) Parallelization of PLDS-Based Loops: Our results demon-
strate that DCA’s simple parallelization scheme can yield
speedups for PLDS-based loops (up to 36×), although it is
not as widely effective as for array-based loops. Fig. 5 reports
the parallelization speedup achieved by DCA for a selection
of the PLDS-based loops found as commutative in Table II.
The selection combines simple kernels (such as spmatmat, a
sparse matrix-matrix multiplication) and loops from larger,
more complex programs (such as water-spatial, an n-body
wave simulation).

For the remaining loops in Table II, DCA’s simple par-
allelization scheme does not yield significant speedups and
requires more specialized parallel code generation techniques
(last column of that table) for profitable exploitation. However,
in the cases where DCA’s simple parallelization is not effective,
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Figure 6. Overall speedup over sequential code achieved by IDIOMS, POLLY,
ICC and DCA parallelization for NPB.

its analysis results might still be exploited by more sophisticated
parallel code generation techniques such as those reported in
Table II. Exploring the interaction between DCA’s parallelism
discovery and these parallelization techniques is part of future
work.

C. Performance against Static Techniques

1) Detection of Array-Based Loops: Similarly to Table I,
Table III reports the number of loops that each static baseline
approach reports as parallelizable. It also presents a comparison
of the combined results of all three static approaches (Combined
Static) and the number of loops detected as commutative by
DCA. DCA uncovers nearly twice as much potential parallelism
(86% of all loops) as the combined static baseline (49%).

For five out of the ten benchmarks in the suite, DCA finds
over 80% of the loops as potentially parallelizable, substantially
more than the combined static baseline, which achieves less
than 50% for the same benchmarks. ICC is more robust in
detecting parallelizable loops than the other two baseline
approaches. In some cases this is due to more aggressive
inlining of pure (i.e., no side effects) functions. On the other
hand, ICC is unable to detect complex reduction and histogram
operations discovered by IDIOMS. DCA correctly identifies all
the above loops which are executed as commutative.

In the rest of the NPB suite, DCA also achieves high
detection scores, outperforming the combined baseline. CG
contains a higher number of loops exhibiting cross-iteration
dependences, which neither DCA nor the rest of the approaches
detect. MG displays a somewhat unusual coding style with
respect to the rest of suite, using I/O in several nested loops
and contains a number of loops that the input workloads do not
exercise. We have asserted that DCA can detect these loops as
potentially parallelizable given the appropriate input conditions,
but excluded them from our final results for consistency.
Unsurprisingly, DCA detects the least number of potentially
parallelizable loops for DC, which performs numerous I/O
operations.

2) Parallelization of Array-Based Loops: Our results show
that the simple parallelization scheme proposed in Section IV-C
is generally effective for array-based loops. Overall, by
parallelizing the profitable loops among those discovered
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TABLE III
NPB LOOPS REPORTED AS PARALLELIZABLE BY THE BASELINE STATIC APPROACHES AND AS COMMUTATIVE BY DCA. “COMBINED STATIC” INDICATES

THE RESULTS OF THE STATIC TECHNIQUES (IDIOMS [51], POLLY [52] AND ICC [53]) COMBINED.

Benchmark Loops IDIOMS POLLY ICC Combined Static DCA (this work)
(#) (#) (%) (#) (%) (#) (%) (#) (%) (#) (%)

BT 182 5 3 34 19 50 27 80 44 168 92
CG 47 9 19 8 17 23 49 25 53 33 70
DC 105 14 13 11 10 23 22 39 37 41 39
EP 9 2 22 2 22 3 33 4 44 6 67
FT 42 1 2 6 14 1 2 8 19 36 86
IS 16 7 44 3 19 3 19 11 69 12 75
LU 186 3 2 19 10 81 44 90 48 160 86
MG 81 8 10 5 6 21 26 32 40 48 59
SP 250 2 1 38 15 93 37 113 45 233 93
UA 479 23 5 43 9 180 38 209 44 466 97
Total 1397 74 5 169 12 478 34 611 44 1203 86

as commutative in Section V-C1, DCA achieves an average
speedup of 3.6× (and up to 55.2×) over the sequential version
of each NPB benchmark. Fig. 6 presents the speedup results
for each benchmark.

Since profitability analysis is out of DCA’s current scope,
only the commutative loops deemed as profitable in the expert
NPB implementation (and the hottest ones for the case where
this information is not available) are selected for parallelization.
Remarkably, DCA detects as commutative all data-parallel
loops deemed profitable in the expert parallelization.

EP is a small kernel with a hot two-level loop nest performing
an integral evaluation via pseudo-random trials. Parallelizing
the outer loop which contains the complex reduction loop yields
a speedup of 55.2×. DCA also achieves significant speedups
for BT, CG, MG, SP and UA (8.6×, 2.6×, 4.5×, 6.1× and 13×
respectively). This is attributed to DCA’s ability to detect and
exploit loops that extend across many lines of code, containing
function calls and complex control flow.

For DC, FT, IS and LU, the relatively high number of
detected commutative loops does not translate into profitable
parallelism. For example, DC is an I/O intensive benchmark
manipulating data at volumes much larger than a modern
system’s memory capacity, while LU contains dependences
across hot function calls. Thus, these programs require higher
level of synchronization or extended code restructuring for
their efficient exploitation.

DCA (together with expert profitability analysis) consistently
outperforms the baseline parallelization by IDIOMS, POLLY,
and ICC, reported in Fig. 6. The same profitability analysis is
applied for IDIOMS as for DCA, whereas for ICC and POLLY
their optimal profitability analysis is used (Section V-A). ICC
and IDIOMS are able to extract some latent loop parallelism
in CG and EP, but are still outperformed by DCA. IDIOMS is
able to exploit EP, but the effectiveness of parallelization
is limited to the inner hot loop. The difference between
ICC and DCA for FT and IS is due to the unavoidable
compiler optimization differences: manually implementing
the parallelization suggestions from ICC’s reports for IS and
compiling it in our framework results in the same performance
that ICC obtains.

TABLE IV
DCA COVERS A SIGNIFICANT FRACTION OF EXECUTION TIME, PROVIDING

HIGH PRECISION DETECTION RESULTS.

Bmk Loops DCA
(this work)

Combined
Static

Found False
Positive

False
Negative

Sequential
Coverage

Sequential
Coverage

(#) (#) (#) (#) (%) (%)

BT 182 168 0 0 100 36
CG 47 33 0 0 91 7
DC 105 41 0 0 0 0
EP 9 6 0 0 100 37
FT 41 36 0 0 91 42
IS 16 12 0 0 60 56
LU 186 160 0 0 84 56
MG 81 48 0 0 87 56
SP 250 233 0 0 94 77
UA 479 466 0 0 86 57

D. Aspects of Detection Profitability and Precision

In order to assess the accuracy of DCA’s predictions, all
loops were further analyzed semi-manually, employing expert
algorithmic knowledge and a combination of targeted profiling
and testing of dependences and computations.

The results (Table IV) show that all loops determined as
commutative by DCA are indeed parallelizable (i.e., no false
positives), following the spirit of the discussion in Section III.
This result strengthens the significance of Tables I and III, as it
confirms that DCA can indeed uncover many valid opportunities
for parallelization on top of the baseline approaches.

Future work could improve DCA’s effectiveness by applying
combined tests for multiple inputs and exploring inputs leading
to execution paths that might affect commutativity.

The loops found by DCA are significant in that they cover
a considerable fraction of the total execution time for most
benchmarks in NPB, with above 80% for eight out of the ten
benchmarks in the suite and almost 100% for BT and EP.
As shown by the two rightmost columns of Table IV, DCA
consistently outperforms the combined static approaches. This
agrees with the high detection rate shown in Table III and the
parallelism that is profitably exploited as reported in Fig. 6.

Overall, DCA accurately detects a large amount of potentially
relevant and profitable parallelism, beyond the capabilities of
static analysis approaches.
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Figure 7. Overall speedup over sequential code achieved by DCA and Expert
Manual (loop-only and whole program) parallelization for NPB. DCA matches
the performance of manual parallelization by experts at the loop level.

E. Scope of Parallelization Beyond Loops

The evaluation has so far focused on the detection and
parallelization of loops, where DCA succeeds in uncovering
more hidden loop parallelism than several state-of-the-art
approaches. There exists, however, parallelism that is not strictly
confined within loops.

Fig. 7 compares the speedups of DCA on the NPB suite
with those obtained by the data-parallel loops as parallelized
by experts (Expert Manual (Loop-only)) and a full expert
parallelization beyond single-loop data parallelism (Expert
Manual). The results show that DCA succeeds in identifying
and exploiting data-parallel loops and that opportunity remains
for further parallelization beyond their scope.

DCA is successful in extracting all the available parallelism
from BT, EP and SP. It is also fairly effective on MG and
UA, where the performance discrepancy with the full expert
parallelization is due to the fact that the latter exploits whole
parallel sections, spanning across loops, thus improving locality
and minimizing synchronization costs.

The rest of the benchmarks contain parallelism that is outside
the loop-level focus of DCA. The full expert parallelization
of these benchmarks uses additional algorithmic knowledge.
DC and FT are largely restructured to take advantage of
independent work-sharing. LU uses a pipeline pattern to
overcome the bottleneck in its hottest loop nests. CG falls
under the same category, however, DCA is able to exploit
profitably some of its remaining loop-level parallelism.

The gap between loop-level parallelism and what can
be achieved by taking a wider, structural view of program
parallelism motivates further research on this topic. We believe
that commutativity analysis can also play a key role in
discovering and exploiting structured parallelism.

VI. RELATED WORK

Code analysis supporting parallelization has a long his-
tory [54], [55], [56]. Existing commutativity analyses for
parallelization have already been discussed in Section II.

A. Dynamic and Profile-Driven Analyses

Tracing and dynamic profiling have been used to capture
application properties for subsequent exploitation in benchmark

characterization [18], collaborative runtime verification [19]
and dynamic program optimization [20]. Unsafe dependence
profiling has been used to overcome the limits of static depen-
dence analysis [8], [9], [6]. This is because statically proving
the absence of dependences is generally undecidable [57],
similarly to other facts in static analyses [58], [59], [23].

Such approaches, including [5], [6], [7], [8], [10], [11],
[12], [13], [14], [15], [16], [22], combine dependence profiling
information with static dependence analyses to gain additional
information on may-dependences. SAMBAMBA [17] combines
several techniques in a dynamic framework for automatic
parallelization.

B. Parallelization in the Presence of Dependences

ALTER [60] is a dynamic technique which exploits breakable
dependences for parallelization, extracting loop parallelism by
reordering iterations or allowing stale reads. ALTER relies
on the user and, partially, on a set of tests to infer potential
annotations, and it has been evaluated on hand-picked loops,
some of which have been manually parallelized. While we share
this notion of iteration reordering and breakable dependences
with ALTER, DCA derives its tests automatically using live-outs,
it has been evaluated on standard benchmarks and demonstrates
parallelization using existing techniques.

DSWP [61], [40] and HELIX [62] are both designed to derive
parallel execution schedules for loops with data dependences.
Some variants rely on additional hardware support for the fast
communication of values and synchronization between threads,
typically outperforming their software-only counterparts. While
DSWP and HELIX focus on the exploitation of parallelism,
DCA complements them by identifying sources of profitable
parallelism.

[31] presents a technique to verify commutativity conditions,
which are logical formulae that characterize when operations
on a linked data structure commute. Code annotations for
commutative functions are also proposed in parallelization
frameworks by [63], as well as in GALOIS [64] and PAR-
ALAX [65]. [66] presents a commutativity-based programming
model called COMMSET (Commutative Set) and its associated
compiler technology. FRACTAL SYMBOLIC ANALYSIS uses
a commute operation to verify correctness of restructuring
transforms, which have a user-provided, rule-based description
in its implementation [67].

C. Speculative Parallelization

Speculative parallelization techniques optimistically execute
potentially independent regions of code. DCA avoids the usual
costs associated with speculation during runtime, and even
though user interaction might be required during analysis, in
practice, our technique offers high precision.

The LRPD test [21] is one of the earliest and most influential
pieces of work on speculative parallelization. Since then,
research has moved on to explore hardware support, compiler
extensions and software behavior characterization [68]. For
PLDS-based programs, [69] extends an earlier approach to
software-based parallelization that separates the program states
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to speculative and non-speculative by adding a mapping table
to keep track of accesses between these sections. [70] analyzes
program behavior to detect potential sequential sections that
may be executed in parallel.

We consider speculative techniques orthogonal to DCA’s
detection capabilities, that can be used on top of it for further
exploitation.

D. Parallelization with User Interaction

Parallelizing systems relying on user-provided feedback
may require that input at various stages [71]; from annotating
code [46] to validating the proposed transformations [72], [8].
In all cases the user is responsible for ensuring correctness. Our
system adopts the latter approach, similar to [8], but extending
the potential candidates to PLDS-based loops.

E. Analyzing Pointer-Linked Data Structures

[73] presents an approach that is based on programming
language annotations to exploit parallel execution of PLDSs.
Later pioneering work by Laurie Hendren has focused on the
automatic analysis and parallelization of such programs [47].
Efforts moved from pointer analysis to a programming model
where programmers describe their intentions [74]. The next
wave of research has focused on shape analysis [75], [76],
which seeks to discover and verify (shape) properties of PLDSs
statically. More recent work [77] has investigated ways of
optimizing the data layout of PLDSs.

VII. CONCLUSION

We have developed DCA, a novel analysis for identifying
parallelizable loops in sequential legacy code, which relies on
liveness-based commutativity.

We extensively evaluated DCA against five state-of-the-art
parallelization approaches on array-based benchmarks, where
it identifies as many parallelizable loops as two dynamic
techniques, and nearly twice as many as three static tools
combined. DCA also uncovers parallelism in irregular loops
dominated by PLDS structures, in the same uniform manner as
for array-based loops, where all other analyses tested fall short.
Experiments show that DCA results in an average speedup of
3.6× across NPB (and up to 55×) on a 72-core host, and up
to 36.9× for the PLDS-based loops.

Future work will extend the scope of DCA to code regions of
any granularity with the ultimate goal to support the detection
of parallel algorithmic skeletons in legacy code.
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