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Lost memories and useless coins:
Revisiting the absentminded
driver∗

Wolfgang Schwarz
12 November 2014

Abstract. The puzzle of the absentminded driver combines an unstable
decision problem with a version of the Sleeping Beauty problem. Its analysis
depends on the choice between “halfing” and “thirding” as well as that between
“evidential” and “causal” decision theory. I show that all four combinations
lead to interestingly different solutions, and draw some general lessons about
the formulation of causal decision theory, the interpretation of mixed strategies
and the connection between rational credence and objective chance.

1 Introduction

Sometimes it is controversial what rationality demands in a given situation. One-boxers
and two-boxers disagree on the choice to make in Newcomb’s problem, halfers and thirders
disagree on the beliefs to have in the Sleeping Beauty problem. Such disagreements often
trace back to different general perspectives on rationality. At the heart of Newcomb’s
problem lies the divide between causal and evidential decision theory. At the heart of the
Sleeping Beauty problem arguably lies a tension between evidentialism and conservatism
in epistemology. In this paper, I want to look at a case that raises both of these issues,
as well as several others. The case was introduced in [Piccione and Rubinstein 1997], and
goes as follows.

An absentminded driver has to take the second exit off the highway in order
to get home. If she turns off at the first exit, she reaches a desolate area and
has to spend the night in her car. If she continues at both exits, she has to
stay at a motel at the end of the highway. Due to her absentmindedness,
she cannot tell upon arriving at an exit whether it is the first or the second
(unless, of course, she knows that she turns off at the first).

∗ Ancestors of this paper were presented at the ANU in 2007 and the Formal Epistemology Workshop
in Munich in 2012. Thanks to Alma Barner, Rachael Briggs, Kenny Easwaran, Alan Hájek, Daniel
Nolan, Michael Titelbaum, David Wiens and three anonymous referees for comments and discussion.
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Our main question is what the driver ought to do. The answer varies between evidential
and causal decision theory, and even between different formulations of the latter. In
addition, what the driver ought to do depends on what she ought to believe, and this,
too, turns out to be controversial: we will find essentially the same two options as in
the Sleeping Beauty problem. We will also see that if the driver makes her choice by
tossing a coin, then her degree of belief in the two possible outcomes (heads and tails)
does not always match what she knows to be the objective chance. Consequently, several
widespread ideas about the role of chance in game theory and decision theory threaten
to break down.

The point of this paper is not to take sides in the debate between causal and evidential
decision theory or between halfing and thirding. In fact, I will argue that all four
combinations give defensible answers to the puzzle if one keeps in mind the general
perspective that motivates these combinations.

2 Absentmindedness and two types of expected utility

Before we begin, I should make some clarifications about the driver’s predicament. The
driver suffers from an unusual kind of absentmindedness. Her problem is not that she
is likely to pass an exit without noticing it. On the contrary, she is certain to make a
deliberate, rational choice at every exit she reaches. Her problem is that if she decides to
stay on the highway at the first exit, then the monotony of the traffic will make her forget
the whole event before she reaches the second exit, so that she arrives at that exit in the
very same state of mind in which she arrived at the first exit. The two exits may look
different, but the differences don’t help the driver to figure out which is which. For some
reason there are no signposts, and the driver can’t leave marks to counteract the memory
loss brought on by the traffic. For example, she can’t tie a knot in her handkerchief
after continuing at the first exit and thus use the handkerchief to find out where she is.
Throughout her journey, the driver is aware of all these facts.

Subject to the constraints of the scenario, we assume that the driver is ideally rational,
and knows that she is ideally rational. We model her beliefs by a probability measure
P over possible states of affairs so that the probability assigned to a state represents
the degree to which she believes that the state obtains. Similarly, the degree to which
she desires the different states to obtain is represented by a utility function V . The
driver would mostly like to get home, but also has a slight preference for staying at the
motel over spending the night in her car. For concreteness, let’s say that V (Car) = 0,
V (Home) = 4 and V (Motel) = 1. We assume that due to the memory loss caused by the
highway, her beliefs and desires are in all relevant respects the same whenever she gets
to an exit.

It follows that if the driver’s beliefs and desires determine a particular choice as uniquely
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rational, then that is what she is going to do at every exit. It may therefore be reasonable
for the driver to assume that whatever she does at the present exit is also what she does
at the other exit (if reached). She might then reason as follows.

“I can either leave the highway here or continue. If I leave, I must be at the first exit,
for I know that I make the same choice at every exit, and I couldn’t be at the second
exit after leaving at the first. So if I leave, I’ll end up spending the night in the car.
Alternatively, if I continue on the highway, then it is clear that I’ll continue at both exits,
so I’ll spend the night in the motel. That is the slightly better outcome, so I should
continue.”
There is something odd about this line of reasoning. The driver is right that if she

leaves the highway, then she is probably at the first exit and will spend the night in her
car. Leaving the highway is bad news. Continuing is also bad news, since it equally
entails that the driver won’t get home, although it is not quite as bad news as leaving.
But arguably the driver’s aim is not to receive good news; it is to bring about good
outcomes. The two aims often go together, but they come apart in situations in which a
particular choice of action would be evidence for a desirable or undesirable state of affairs
without having any influence over whether that state obtains. Famously, taking both
boxes in Newcomb’s problem is evidence that the opaque box is empty, but it doesn’t
cause the box to be empty. Similarly, if our driver decides to leave the highway, this is
strong evidence that she is at the first exit, but it doesn’t have any genuine influence
over where she is. If she is actually at the second exit, then nothing she can do will bring
it about that she is (right now) at the first exit. Likewise if she decides to continue: this
is evidence that she would continue at the other exit, but it doesn’t control the other
(earlier or later) decision.

The different aims – receiving good news vs. bringing about good outcomes – show up
in different formulations of decision theory. Causal decision theory, as formulated e.g. in
[Savage 1954] and [Lewis 1981], advises agents to maximise expected utility in the sense
of

EU(A) =
∑

S∈W

P (S)V (S&A),

where W is a suitable partition of states of affairs (which is here assumed to be finite).
Roughly speaking, a partition is “suitable” if (a) it is fine-grained enough to distinguish
relevantly different outcomes, and (b) the agent’s choice has no causal influence over
which of the states obtains.1

Richard Jeffrey’s [1965] evidential decision theory instead says that agents should

1 For more precise statements, see e.g. [Lewis 1981] and [Joyce 1999: ch.5]. While it is not essential for
my discussion, I assume that states, acts and outcomes are all entities of the same kind (propositions),
and that outcomes can be identified with conjunctions of states and acts; see [Joyce 1999: ch.2] for
discussion. See also [Skyrms 1984: ch.4] and [Joyce 2002] on the causal interpretation of [Savage 1954].
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choose the option with the highest conditional expected utility, defined by

CEU(A) =
∑

S∈W

P (S/A)V (S&A).

Conditional expected utilities are invariant under different choices of W , so the need to
define suitability disappears.
Intuitively, the conditional expected utility of a proposition represents the extent

to which the agent hopes, or desires, that the proposition is true. That’s because
the degree to which an agent desires that a disjunction of incompatible propositions
X and Y is true can plausibly be identified with the average of the degree to which
she desires the disjuncts X and Y , weighted by their relative probability. That is,
V (X ∨ Y ) = P (X/X ∨ Y ) · V (X) + P (Y/X ∨ Y ) · V (Y ). Since the act A is equivalent
to the disjunction of S&A, for all S ∈W , it follows that V (A) = CEU(A). The advice
of evidential decision theory thus amounts to the advice to choose the option for which
you have the strongest desire that it be chosen. From the perspective of causal decision
theory, this is not always correct, as sometimes you may desire that you make a particular
choice merely because that would be evidence for something good, without contributing
at all to bringing it about.2

If we analyze the driver’s problem in causal decision theory, we find that what the
driver should do inversely depends on what she believes she will do. Suppose she is
confident that she will leave the highway. She can then infer that she is probably at
the first exit, in which case the best choice is to continue. On the other hand, if she is
confident that she will continue, then she knows that her journey eventually brings her
to both exits, in which case it would be reasonable to give equal credence to being at the
first exit and being at the second. Leaving the highway then has an equal probability of
bringing her to the desolate area and bringing her home. Since getting home is much
better than the other two outcomes, the best choice is then to take the risk and turn off.
Either way, if the driver is confident that she will do one thing, she is better off doing
the other!
Let’s spell this out in a bit more detail. The outcome of the driver’s present choice

depends on whether she is at the first exit or at the second. If she is at the second
exit, then her choice settles whether she reaches home or the motel. If she is at the first
exit, the outcome also depends on what she will do at the second exit. At the first exit,
the driver has causal control over whether she’ll face another decision problem at the

2 There are other ways to understand desire on which desirability isn’t represented by conditional
expected utility. Roughly speaking, conditional expected utilities measure the extent to which the
agent would be pleased to learn that the relevant proposition is true. Something else is in play when
one expresses a positive attitude towards counterfactual scenarios in which Kennedy was not killed by
saying, “I wish Oswald hadn’t killed Kennedy”. The causal expected utility EU(A) of a proposition A

arguably captures this kind of subjunctive desirability of A. See e.g. [Etlin 2008: ch.2] for discussion.
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second exit, but she doesn’t have direct control over her choice at that exit. Different
possibilities about that choice should therefore be represented by different states in the
partition W . So we have three states: First & Continue2, First & Leave2, and Second.
Here Continue2 means that the driver either continues at the second exit or would have
continued if she had reached it. The decision matrix for the driver’s problem then looks
as follows.

First & Continue2 First & Leave2 Second
Continue 1 4 1

Leave 0 0 4

Two comments on this matrix before we continue. First, some outcomes in the matrix
are ruled out by the assumption that the driver makes the same choice at every exit. For
example, she then can’t be at the second exit and leave. I nevertheless assume that the
combination of Second and Leave has a well-defined utility of 4. If that seems problematic,
we could allow that the driver reserves a very small probability for the hypothesis that
she makes different choices at the two exits – small enough to make no great difference
to the following calculations.
A second complication arises from the interpretation of Continue2 and Leave2. I said

that Continue2 means that the driver either does or would continue at the second exit if
she were to reach it. One might argue that the driver should be certain that if she were
to reach the second exit, she would continue, for the (“backtracking”) reason that she
could only reach the second exit by having continued at the first, in which case she would
also continue at the second. In the opposite direction, one might worry that if the driver
leaves at the first exit, then there is no fact of the matter about what she would do if
she were to reach the second. Either way, the above matrix would not be an adequate
representation of the driver’s decision problem.

These difficulties could be avoided by moving from a Savage-Lewis type formulation of
causal decision theory to Joyce’s [1999] formulation in terms of subjunctive conditional
probabilities. All the results of the present paper can be replicated in that framework.
To fix the right interpretation of Continue2 and Leave2 in the Savage-Lewis framework,
it may help to imagine that the first exit eventually leads to another highway with yet
another exit that the driver can’t tell apart from the first. (The driver has to spend the
night in her car no matter what she does at that exit.) We can then read Continue2 as
the counterfactual-free proposition that the driver will continue at whatever exit she
reaches after the first.

To compute the expected utilities, we need to know the probability of the three states.
I will assume for the whole of this paper that conditional on reaching both exits, the
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driver gives equal credence to being at the first and being at the second:

P (First/Continue1) = P (Second/Continue1) = 1/2. (1)

Call this the symmetry assumption. (Continue1 means that the driver continues at the
first exit.) I will also assume for now – although not for the whole of the paper – that
the driver is confident that she makes the same choice at every exit; more specifically,

P (Continue1/Continue2) = P (Continue2/Continue1) = 1. (2)

Call this the uniformity assumption. (The precise value 1, like 1/2 in the symmetry
assumption, serves mainly to simplify the calculations.)

Now let c be the driver’s degree of belief that she will continue. Notice that Continue
can be defined as (First & Continue1)∨(Second & Continue2). Symmetry and uniformity
then entail that3

P (First & Continue2) = c/2; (3)
P (First & Leave2) = 1− c; (4)

P (Second) = c/2. (5)

Hence

EU(Continue) = c/2 · 1 + (1− c) · 4 + c/2 · 1 = 4− 3c; (6)
EU(Leave) = c/2 · 0 + (1− c) · 0 + c/2 · 4 = 2c. (7)

The two are equal at c = 4/5. If the probability of continuing is greater than 4/5, leaving
maximises expected utility, if it is less than 4/5, continuing is best. The grass is always
greener on the other side.
In evidential decision theory, we would replace the probability of the states by their

probability conditional on the relevant choice. Conditional on Leave, all probability goes

3 Proof: I first show that P (Continue1) = P (Continue2) = c. Observe that Second entails Continue1,
wherefore Continue entails Continue1. More specifically, Continue1 is the disjunction of Continue
and Second & Leave2. By uniformity, the latter has probability 0, as does Continue1 & Leave2. Hence
c = P (Continue) = P (Continue1) = P (Continue1 & Continue2). Since Continue2 & Leave1 also has
probability 0, it follows that P (Continue2) = P (Continue2 & Continue1) = c.

Now Continue2 divides into First & Continue2 and Second & Continue2, so c =
P (First & Continue2) + P (Second & Continue2). By uniformity, it follows that c =
P (First & Continue2) + P (Second & Continue1). Moreover, by symmetry, P (First & Continue1) =
P (Second & Continue1), and so P (First & Continue2) = P (Second & Continue1) by uniformity.
Hence P (First & Continue2) = P (Second & Continue1) = c/2. Second & Continue1 is equivalent to
Second. The remaining possibility First & Leave2 must then have probability 1 − c.
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to the state First & Leave2. Conditional on Continue, the driver’s probability is evenly
divided between First & Continue1 and Second. Thus

CEU(Continue) = 1/2 · 1 + 0 · 4 + 1/2 · 1 = 1, (8)
CEU(Leave) = 0 · 0 + 1 · 0 + 0 · 4 = 0. (9)

These values match the driver’s informal reasoning above, on which the choice between
Continue and Leave is effectively a choice between Motel and Car.

3 Rational indecision

In causal decision theory, the driver faces an unstable decision problem: a situation
where any tendency to do one thing makes it advisable to do something else. Decision
problems of this kind were mentioned in [Gibbard and Harper 1978] and have been
studied in [Weirich 1985], [Harper 1986], [Skyrms 1990], [Arntzenius 2008], and [Joyce
2012], among others. One thing brought out by these discussions is that decision theory
has implications not just about what agents should do, but also about what they should
believe that they will do.
Consider our driver. A simplistic application of causal decision theory would assume

that the driver’s beliefs about what she will do are externally given as part of the decision
problem. Let’s say the driver is 95 percent confident that she will continue. By the
calculations of the previous section, we would then conclude that she ought to leave.
However, if the driver recognizes that leaving is the rational choice, shouldn’t that make
her reconsider her belief that she will continue? Moreover, how could she have arrived
at the belief that she will continue in the first place? Knowing that she is rational, she
knows that she will do whatever maximises expected utility. Her beliefs about what she
will do thus can’t be treated as externally fixed. They have to match her beliefs about
expected utility.
So to find out what the driver ought to do, we must first find out what she ought

to believe. Brian Skyrms’s work on the dynamics of rational deliberation (see [Skyrms
1990]) here proves useful. Suppose the driver begins her deliberation in a state where she
is 95 percent confident that she will continue. She can then figure out that leaving has
a higher expected utility. Since she knows that she is rational, this should increase her
degree of belief that she will leave. However, as soon as P (Leave) goes up, the expected
utilities change, so she has to re-assess whether leaving is still the optimal choice. If
P (Leave) gets too high, Continue becomes the better option, in which case the driver’s
probability in Leave should decrease. If the details are filled in sensibly, this process
always leads to an equilibrium, a point where the probabilities no longer change. In the
case of the driver, the equilibrium lies at P (Continue) = 4/5. Here the two options have
equal expected utility, so the probability is no longer pulled in either direction.
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So from the perspective of causal decision theory, the driver’s degree of belief that she
will continue should be 4/5. Since Continue and Leave then have equal expected utility,
both acts are permissible. But they are only permissible because P (Continue) = 4/5. At
the point when the decision is made, the driver must not have made up her mind: she
must still be undecided what to do. If she had made up her mind that she will continue,
then continuing would not be in line with causal decision theory. In that sense, causal
decision theory primarily recommends not an act, but a deliberational state – a state of
indecision. That state is what makes both options permissible.

To say that the driver should be in a certain state of indecision does not imply that
indecision is a further option. By stipulation, the driver has only two options: leave and
continue. Nonetheless, the driver’s deliberation can lead to a state of indecision. The
hallmark of unstable decision problems is that it must end in such a state.

If deliberation ends in a state of indecision, some non-deliberative cognitive mechanism
must break the tie and select an action. From the agent’s point of view, the tie-breaking
mechanism will appear stochastic. Consider the driver at the end of deliberation, where
she is 80 percent confident that she will continue. She knows that further deliberation
won’t settle what she will do, for she knows that the unique deliberation equilibrium
in her decision problem lies at an 80 percent probability for Continue. So she knows
that her eventual act is chosen by her tie-breaking mechanism. Yet she is 80 percent
confident that she will continue. So she must be 80 percent confident that the tie-breaking
mechanism will decide in favour of Continue. From the driver’s point of view, then, it’s
as if her actions are chosen by an internal flip of a coin whose bias is set by her state of
indecision. As William Harper [1986: 31] puts it, the driver “will have reasoned [her]self
into becoming a chance device”.
At this point, the uniformity assumption has become implausible. The driver knows

that she faces the same decision problem at every exit, but what she will end up doing
depends on the outcome of the tie-breaking, which may well be different on different
occurrences of the same problem. Let us quickly compute the equilibrium state without
the uniformity assumption – assuming instead that, from the driver’s perspective, the
outcomes of different tie-breakings are independent.

In equilibrium, the driver has figured out the extent c to which she ought to be inclined
towards continuing, reflected in her present degree of belief that she will continue. She also
knows that if she is at the first exit, then continuing would lead her to another instance
of the same decision problem, where she’ll reach the same state of indecision, so that the
probability of continuing will again be c (because the tie-breakings are independent). So
P (First & Continue2) = P (First) · c. What is P (First)? For a start, First divides into
First & Continue1 and First & Leave1. By the symmetry assumption,

P (First & Continue1) = P (Second & Continue1) = P (Second) = 1− P (First). (10)

8



Moreover, the driver knows that no matter at which intersection she is, her inclination
towards continuing is c; so

P (Continue1/First) = P (Continue) = c. (11)

Since P (First & Leave1) = P (Leave1/First)P (First) = (1−P (Continue1/First))P (First),
it follows that P (First) = 1− P (First) + (1− c)P (First), which resolves to P (First) =
1/(c + 1). Hence the equilibrium probabilities of the three states are

P (First & Continue2) = c/(c + 1); (12)
P (First & Leave2) = (1− c)/(c + 1); (13)

P (Second) = c/(c + 1), (14)

which yields

EU(Continue) = c

c + 1 · 1 + 1− c

c + 1 · 4 + c

c + 1 · 1 = 4− 2c

c + 1 ; (15)

EU(Leave) = c

c + 1 · 0 + 1− c

c + 1 · 0 + c

c + 1 · 4 = 4c

c + 1 . (16)

In equilibrium, both options must have the same expected utility, which means that
c = 2/3. So without the uniformity assumption, the driver’s tendency towards continuing
should be 2/3, not 4/5.
This is a rather satisfying result: if the driver always continues with probability 2/3,

then she gets home with probability 2/3 · 1/3 = 2/9, reaches the motel with probability
2/3 · 2/3 = 4/9, and the desolate area with probability 1/3. Her expected payoff is
2/9 · 4 + 4/9 · 1 + 1/3 · 0 = 4/3. In general, if at every exit, c is the probability for
continuing, then the expected payoff is (1− c) · 0 + c(1− c) · 4 + c2 · 1 = 4c− 3c2, which
has its maximum at c = 2/3.

Recall that evidential decision theory told the driver to continue, for a guaranteed payoff
of 1. Agents following the causal theory therefore seem to have a greater expected payoff
than agents following the evidential theory. This is noteworthy because asymmetrically
unstable situations like the driver’s are often presented as intuitive problems for causal
decision theory (e.g. [Richter 1985], [Egan 2007]). In my view, causal decision theory
– when properly spelled out – gets such cases exactly right. Suppose the driver follows
the evidential advice and decides to continue. She then gives equal credence to being at
the first exit and being at the second. So she is 50 percent confident that the present
exit leads home. But she much prefers getting home to the other two outcomes – and
note that it makes no difference on the evidential account whether the utility of getting
home is 4 or 4 million. Shouldn’t this make her reconsider her decision? Shouldn’t she
be tempted to take the exit and try her luck?
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Confronted with the better expected payoff of causal decision theory, friends of evidential
decision theory might complain that we have given the causal agent an unfair advantage
by allowing her to remain in a state of indecision. However, we can grant that the
evidential agent, too, has the capacity to remain in a state of indecision. But evidential
decision theory doesn’t seem to recommend a state of indecision. What’s true is that if
we gave the evidential agent a further option to randomise her choice, then she might
decide to randomise in such a way that continuing has probability 2/3 (as we will see).
But our causal agent hasn’t been given any new options. She was deliberating only
between Continue and Leave. There was no further possibility of delegating her choice
to a stochastic mechanism, and this is not what she decided to do.4

On the other hand, evidential decision theory unequivocally recommends Continue only
if we hold fixed the uniformity assumption. That assumption is warranted if the driver
decides to continue; so continuing is indeed an equilibrium in the evidential deliberation
dynamics. But there is also an equilibrium state of indecision in which the driver is
not certain that she will choose the same act at every exit. The evidential driver can
also reason herself into becoming a chance device. The conditional and unconditional
expected utilities then coincide. For assume the driver is certain that at any exit she will
continue with probability c. Then P (Continue/First & Continue2) = P (Continue) = c,
and so P (First & Continue2/Continue) = P (First & Continue2); similarly for the other
two states. Intuitively, the hypothesis Continue no longer affects the probability that she
continues at the other exit, nor does it shed any light on whether the present exit is the
first or the second; it is merely information about the outcome of a chance process. The
states have become evidentially independent of the acts, and so the conditional expected
utilities coincide with the unconditional expected utilities.

In evidential decision theory, the driver’s decision problem therefore has two solutions:
the driver can decide to continue, or she can be in state of indecision where she is 2/3
inclined towards continuing, at which point both acts are permissible. Which equilibrium
will be reached depends on the starting point and on the details of the deliberation
dynamics.

I have argued that a state of indecision is not a further option. Reasoning oneself into
becoming a chance device is not the same as deciding to randomize one’s acts by using a
chance device. Admittedly, the distinction is subtle. One might argue that if indecision is
a possibility, then it should be formally treated as a further option. Instead of pursuing
this matter in abstract generality, let’s see what happens to the driver if we explicitly
add randomisation as an option.

4 Pace [Lewis 1981: 29f.].
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4 Randomisation: a puzzle and an alleged solution

The scenario we are going to look at for the rest of the paper is the same as before,
except that the driver now has the additional option of tossing a coin of any bias she
likes. Let’s say that heads means leave, tails continue.
It then makes sense to redefine the uniformity assumption to say that the driver is

confident that she chooses the same bias at every exit she reaches. As we saw at the end
of the previous section, the optimal coin to choose at every exit seems to have bias 2/3
towards tails, since the expected payoff from choosing a coin with bias c at every exit is
4c− 3c2, which is maximal for c = 2/3. (Here and henceforth, ‘bias’ always means bias
towards tails, i.e. towards continuing.) Given the redefined uniformity assumption, we
might therefore expect that evidential decision theory recommends this choice. After all,
conditional on choosing any particular bias, the driver is certain that this is her choice at
every exit, so comparing conditional expected utilities amounts to considering which coin
would be best given that it is tossed at every exit.

Oddly, this is not what we find – at least on a prima facie plausible way of modelling
the situation. Instead, we find that causal decision theory recommends the coin with bias
2/3, while evidential theory seems to recommend a sub-optimal coin with bias around
0.53.
The causal argument mirrors the argument at the end of the previous section, but I

will spell it out a bit more carefully this time. To apply causal decision theory, we first
have to find a suitable partition of states. This is not entirely straightforward, because
the eventual outcome depends (among other things) on the result of the present coin
toss, which is partly under the driver’s control: by choosing a certain bias, she can make
it more or less likely that she will continue, but she doesn’t have any further control
over how the coin lands. To model this, we will follow the advice of [Lewis 1981] and
[Skyrms 1984] and use a partition of states which, combined with a choice of the driver,
only determines an objective chance for the relevant outcomes. Thus Second is still a
complete state, because it determines, combined with any choice of a particular coin, the
chances of getting home and of reaching the motel. In general, the cells in our decision
matrix are propositions assigning objective probabilities to the three ultimate outcomes.
I will call such propositions lotteries.

Second represents the driver as being at the second exit. In the other states, she
is at the first exit; combined with the choice of a bias, this determines an objective
probability for reaching the second exit. That’s not yet a complete lottery, because the
objective probabilities of the eventual outcomes further depend on what coin the driver
is disposed to choose at the second exit. In the previous section, we divided First into
First & Continue2 and First & Leave2. Similarly, we now divide First by all possible
choices the driver could make at the second exit.
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Let ‘Bias2 = x’ be the proposition that the driver either chooses bias x at the second
exit or would have chosen bias x if she had reached the exit. (The counterfactuals have to
be treated with the same caution as in section 2.) If there are uncountably many possible
values of Bias2, we get uncountably many states, which leads to minor complications
further down the line. To keep things simple, let’s assume – as seems realistic anyway
– that the driver has only a finite number of coins at her disposal. Let B be the set
of available bias values. It doesn’t matter exactly which values are in B; I assume it
contains at least all ratios n/m for moderately sized n and m with m ≥ 1 and n ≤ m.
Now we have finitely many states, each of which, combined with one of the driver’s

options, determines a lottery: an assignment of objective chance to the three eventual
outcomes. What is the utility of such a lottery? Plausibly, it is the average of the utility
of the outcomes, weighted by the chances. For example, the utility of tossing the 2/3
coin at the second exit is 1/3 times the utility of getting home (4) plus 2/3 times the
utility of reaching the motel (1). Let Bias = b be the proposition that the driver chooses
bias b at the present exit. It follows that for all b, c ∈ B,

V (First & Bias2 =c & Bias=b) = (1− b)0 + b(1− c)4 + bc1 = 4b− 3bc; (17)
V (Second & Bias=b) = (1− b)4 + b1 = 4− 3b. (18)

This fixes the utilities of all lotteries – the cells in the decision matrix. Next we need to
know a few things about how the driver’s degrees of belief are distributed over the states.
By probability theory, P (First & Bias2 =c) = P (Bias2 =c)P (First/Bias2 =c). As argued
in the previous section, the driver’s degree of belief in First, given that she continues with
probability c at the first exit, should be 1/(c + 1); that is, P (First/Bias1 =c) = 1/(c + 1).
By uniformity, we then also have P (First/Bias2 = c) = 1/(c + 1). It follows that
P (Second/Bias2 =c) = 1− P (First/Bias2 =c) = c/(c + 1). Hence

P (First & Bias2 =c) = P (Bias2 =c)/(c + 1); (19)

P (Second) =
∑
c∈B

P (Bias2 =c)c/(c + 1). (20)

Putting all this together, the expected utility of the driver’s options are given by

EU(Bias=b) =
∑
c∈B

P (Bias2 =c)4b + 4c− 6bc

c + 1 . (21)

As before, what the driver ought to do depends on what she believes she will do. For
example, if the driver is certain that she chooses a coin with bias 1, then the expected
utility of choosing bias 1 is (4 + 4− 6)/(1 + 1) = 1, while the expected utility of choosing
bias 1/2 (say) is (2 + 4 − 3)/(1 + 1) = 3/2. So Bias = 1 is not an equilibrium in the
deliberation dynamics: the more the driver is inclined towards bias 1, the more her other
options appear better. An equilibrium choice would be a value of c on which EU(Bias=b)
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is maximal for b = c. The only such choice is (unsurprisingly) 2/3. If the driver is certain
that she’ll choose bias 2/3, the expected utility of bias b is (4b + 8/3− 4b)/(5/3) = 8/5.
This is constant, so the deliberation is no longer pulled anywhere else.5

The recommendation of evidential decision theory is now easy to compute. Conditional
on any Bias = b, the driver can be confident that Bias2 = b. The conditional expected
utility of choosing bias b is therefore the “diagonal” of (4b + 4c− 6bc)/(c + 1), with b = c,
which works out to

CEU(Bias=b) = (8b− 6b2)/(b + 1). (22)

This has its maximum at b =
√

336/12− 1 ≈ 0.53, where the conditional expected utility
is around 5/3. So evidential decision theory recommends a coin with bias 0.53.
As I mentioned above, that is a puzzling result. By using conditional expectations,

evidential decision theory effectively represents the driver’s choice as a choice of which
bias to use not only at the present exit, but at every exit. Given that the optimal bias
to use at every exit is 2/3, one might therefore have expected evidential decision theory
to recommend bias 2/3. But now we find that causal decision theory recommends 2/3,
while evidential decision theory recommends something else. As a consequence, drivers
who follow the causal advice score higher utility, on average, than drivers who follow the
evidential advice. This time, friends of evidential decision theory can’t even complain
that causal agents have secretly been given further options, in the form of states of
indecision, for causal decision theory doesn’t recommend a state of indecision.
The puzzle goes further. As Piccione and Rubinstein [1997] point out, drivers who

follow the evidential advice seem to undergo a curious change of mind. Suppose at the
start of her journey, the driver already considered what she ought to do at every exit,
and saw that 2/3 is the optimal bias. (If the driver has to fix a bias once at the start of
her journey, both causal and evidential decision theory say she ought to choose bias 2/3.)
As soon as she reaches an exit, she would now change her mind and prefer a coin with
bias 0.53. What could justify this change of opinion? It doesn’t seem to be prompted
by her learning any interesting facts: if she had anticipated at the start of the journey
everything she would observe at the exit, she still would have regarded the coin with bias
2/3 to be optimal.

One might be tempted to put the blame on evidential decision theory. After all, causal
decision theory gives the intuitively correct advice. In essence, this is the answer of
[Aumann et al. 1997] to Piccione and Rubinstein’s puzzle.6 To anyone who has followed

5 There are also equilibrium states of indecision. In general, any state in which the expected bias is 2/3
is a stable solution.

6 Neither Aumann et al. nor Piccione and Rubinstein actually mention the connection to evidential and
causal decision theory. Piccione and Rubinstein implicitly assume evidential decision theory by setting
c = b. In addition, they overlook the fact that the probability of being at the first exit (evidentially)
depends on the chosen bias b. Instead they assume that P (First) has a fixed value of 3/5, based on
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the deadlocked philosophical debate over causal vs. evidential decision theory, such a
simple diagnosis should raise suspicion.
Indeed, set aside the debate between causal and evidential decision theory. On either

account it is plausible that conditional expected utilities measure the agent’s degree of
desire, or hope, that the relevant proposition is true. By the above argument, the driver
should therefore be happy to discover that she uses a coin with bias 0.53 rather than 2/3.
Is this correct? It is certainly not what the driver would have thought at the start of her
journey. There, she would have preferred to learn that she uses bias 2/3. Whence her
change of mind, in the absence of any relevant new information?

To understand what is going on here, we need to look at another puzzle that was also
introduced in [Piccione and Rubinstein 1997] (as ‘example 5’) and has gained fame in
philosophy by the exchange between [Elga 2000] and [Lewis 2001]: the Sleeping Beauty
problem.

5 Halfing and Thirding

The scenario is probably familiar. On Sunday night, while Sleeping Beauty is asleep,
a fair coin is tossed. If it lands tails, Beauty will be awoken on Monday and again on
Tuesday, but before the second awakening, all her memories of Monday will be erased. If
the coin lands heads, Beauty will be awoken only on Monday and made to sleep through
Tuesday. Beauty knows all these facts.

The parallels to the absentminded driver should be obvious. Imagine the driver decides
to use a fair coin, and focus on the outcome of the toss at the first exit. If the outcome
is tails, the driver reaches both the first and the second exit (“Monday” and “Tuesday”),
but will have lost all memories of the first by the time she reaches the second. If the coin
lands heads, she only reaches the first exit (“Monday”).7

The “Sleeping Beauty problem” is the question what Beauty should believe about the
outcome of the coin toss when she wakes up on Monday morning. Analogously, we can
ask what the driver should believe about the outcome of the first toss when she arrives

the driver’s prior decision to use bias c = 2/3 and the fact that P (First) = 1/(c + 1). Setting c = b

then yields the payoff function (6b − 3b2 + 8)/5, which has its maximum at b = 1/3. The corrected
evidential formula (8b − 6b2)/(b + 1) appears in the appendix of [Rabinowicz 2003].

Aumann et al. [1997] object that by setting c = b, Piccione and Rubinstein erroneously represent
the driver’s present choice as controlling her choice at the other exit. They suggest that if the driver
is certain that she chooses bias c, then the expected utility of Bias=b is (4b + 4c − 6bc)/(c + 1), which
agrees with our formula (21). According to Aumann et al., the optimal bias is then the value of b

that maximises that function when plugged in for c: 2/3.
7 One disanalogy between the two cases is that the driver’s coin is tossed after she arrives at the first
exit, while Beauty’s coin is usually assumed to be tossed before she wakes up on Monday. However,
that timing is plausibly inessential to the Sleeping Beauty problem. Since the outcome of the toss has
no effect until Tuesday morning, the coin might as well be tossed on Monday instead of Sunday.
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at the first exit. Halfers say her credence in heads should be 1/2; thirders say it should
be 1/3.
Numerous arguments have been given for either side, and this is not the place to

recapitulate the whole debate. Broadly speaking, considerations of diachronic rationality
tend to support halfing, while considerations of evidential support tend to support
thirding. For example, halfing may be supported by the following principle of doxastic
conservatism:

If an agent rationally assigns positive credence to a proposition A which is
certain not to change its truth-value, then her credence in A should remain
unchanged as long as she receives no evidence which, by the lights of her own
previous beliefs, has any bearing on the truth of A.

Everyone agrees that on Sunday, Beauty’s credence in heads should be 1/2. On Monday
morning, she then learns various facts (including “centred” facts): that she is awake, that
the sky is overcast, and so on. For each of these, we can ask whether Beauty’s Sunday
credence in heads would have been any different if she had already known that she would
learn the relevant fact when awakening. The answer is plausibly ‘no’. In that sense,
whatever Beauty learns on Monday is, by the lights of her previous beliefs, neutral on
the outcome of the coin toss. By the principle of doxastic conservatism, her new credence
in heads should therefore still be 1/2.8

A standard argument for thirding, by contrast, looks just at Beauty’s evidence on
Monday morning. Regarding the outcome of the coin toss, Beauty’s evidence includes (i)
her knowledge of the general setup, (ii) her experience of being awake, and (iii) the fact
that she has no memories from later than Sunday. By itself, (i) lends equal support to
the four combinations Heads & Monday, Heads & Tuesday, Tails & Monday, Tails &
Tuesday; (iii) rules out any further possibilities (such as Heads & Wednesday), and (ii)
excludes Heads & Tuesday. The remaining possibilities should therefore have probability
1/3 each – assuming that Beauty should believe these propositions to the degree to which
they are supported by her present evidence.9

8 This line of thought occurs in [Elga 2000] and [Lewis 2001], and is further developed e.g. in [Bradley
2011], [Schwarz 2012a] and [Schwarz 2012b]. One complication here is that Beauty may be forced to
violate doxastic conservatism if the coin lands tails: for example, her credence in the proposition that
the sky is overcast on either Monday or Tuesday will be high on Monday evening, but low on Tuesday
morning, although she doesn’t acquire any relevant information. (At least this should be so if we
assume, as we did for the driver, that her belief state on Monday morning is identical to her belief
state on Tuesday morning.) One might think that this threat of diachronic irrationality somehow
undermines the force of doxastic conservatism at the earlier transition from Sunday to Monday. In
[Schwarz 2012b] I argue that it doesn’t.

9 The argument from evidential support can be found, in different variations, e.g. in [Piccione and
Rubinstein 1997], [Dorr 2002], [Arntzenius 2003], [Horgan 2004], [Horgan 2008] and [Horgan and
Mahtani 2013].
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These considerations apply with equal force to the absentminded driver. Of course, the
driver plausibly doesn’t use a fair coin, so we have to generalise the halfer and thirder
positions. Suppose the driver knows that the coin she chooses at the first exit has bias
c towards tails. The halfer position then suggests that her credence in tails, when she
arrives at the first exit, should equal c. Thirding, on the other hand, suggests that her
credence should equal 2c/(c + 1). Let me re-run the above argument for thirding to
explain why. Imagine the driver knows that she reaches the first exit at a time called
“Monday” and the second (if she continues) at “Tuesday”. When she arrives at the first
exit, her relevant evidence consists of (i) her general knowledge of the setup, including
the fact that a coin with bias c is tossed at the first exit, and (ii) her observation that she
is still on the highway. (i) supports the hypothesis that the coin at the first exit lands
tails to degree c; it is neutral on Heads & Monday vs. Heads & Tuesday, and on Tails &
Monday vs. Tails & Tuesday; (ii) then rules out Heads & Tuesday as well as any further
possibilities. This leaves the two tails possibilities with probability c/(c + 1) each, and
the remaining heads possibility with (1− c)/(c + 1).10

Here I have assumed that the driver knows all along that the coin at the first exit has
bias c. But the arguments plausibly carry over to the driver’s conditional beliefs. Thus

P (Tails1/Bias1 =c) =

c on halfing
2c/(c + 1) on thirding.

(23)

I have added a subscript ‘1’ to ‘Tails’ because there might be a second coin toss at the
second exit, which doesn’t exist in the Sleeping Beauty story.
It is worth teasing out a few consequences of the two positions. Combined with

the symmetry assumption (that the driver assigns equal credence to being at the first
and being at the second exit conditional on reaching both), the halfer position entails
that P (First & Tails1/Bias1 = c) = c/2 and P (First & Heads1/Bias1 = c) = 1 − c;
by contrast, on the thirder position, P (First & Tails1/Bias1 = c) = c/(c + 1) and
P (First & Heads1/Bias1 =c) = (1− c)/(c + 1).11 Thus

P (First/Bias1 =c) =

1− c/2 on halfing
1/(c + 1) on thirding.

(24)

10 For another motivation of the thirder assignment, observe that if the experiment were repeated
indefinitely, the ratio of occasions where the driver finds herself at an exit and the (first) coin lands
tails to such occasions where the coin lands heads would converge to 2c : (1 − c).

11 In the case of Sleeping Beauty, the symmetry assumption is sometimes motivated by a stipulation
that Beauty’s two tails awakenings are “subjectively indistinguishable”. Symmetry is then supposed
to follow from a general principle of self-locating indifference. Halfers sometimes object to symmetry,
suggesting that Beauty ought to be certain on Monday that it is Monday and on Tuesday that it is
Tuesday; see e.g. [Hawley 2013]. This response gets less attractive if it is stipulated, as I have, that the
driver has the same beliefs at every exit. (Whether the two situations are otherwise indistinguishable
is to my mind irrelevant, but feel free to suppose so if you think it matters.)
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Knowing P (First & Tails1/Bias1 =c) and P (First1/Bias1 =c), we can compute their
ratio,

P (Tails1/First & Bias1 =c) =

c/(2− c) on halfing
c on thirding.

(25)

Unlike the first toss, the second toss (if it comes about) has no influence on how many
exits the driver will reach. From an epistemic perspective, it is an ordinary coin toss, so
halfers and thirders should agree that

P (Tails2/Tails1 & Bias2 =c) = P (Tails2/Tails1 & First & Bias2 =c) = c. (26)

I will call this the neutral assumption. (Conditioning on Tails1 here only serves to ensure
that the second coin toss actually takes place.)

Finally, let’s compute the driver’s attitude towards the proposition that the coin at the
present exit, whichever it may be, will land tails. That is, define Tails as (First & Tails1)∨
(Second & Tails2). Observe that Tails1 is equivalent to Tails ∨ (Second & Heads2). So
every coherent probability measure P must satisfy

P (Tails) = P (Tails1)− P (Second & Heads2). (27)

By the neutral assumption, P (Heads2/Second & Bias2 =c) = 1− c. Moreover, by (24),
P (Second/Bias1 =c) equals c/2 on halfing and c/(c+1) on thirding. Assuming uniformity,
it follows that P (Second & Heads2/Bias1 = c) and P (Second & Heads2/Bias2 = c) both
equal (1− c)(c/2) on halfing and (1− c)c/(c + 1) on thirding. Combined with (23) and
(27), this yields

P (Tails/Bias1 =c) = P (Tails/Bias2 =c) =

(c + c2)/2 on halfing,

c on thirding.
(28)

So if the driver is a halfer and tosses a coin with bias 2/3 towards tails (say), then
her credence in the hypothesis that the coin she tosses will land tails is not 2/3, but
5/9. This is certainly an unusual situation. The driver seems to violate a form of
the “Principal Principle” according to which one’s rational credence should match
the known objective chances (compare [Lewis 1980]).12 However, since P (Tails) =
P (Tails1)− P (Second & Heads2), some such violation is unavoidable: if the driver knows
that the objective chance of tails at every exit (and hence also at the present exit,
whichever it is) equals c, then P (Tails1) and P (Tails) cannot both equal c as long as the
driver is open-minded about her location and the outcome of the second toss. If one of
them matches the known chance, the other one doesn’t.
12 The driver does in fact not violate the Principle formulated in [Lewis 1980], since her credences aren’t

“initial”. One might also question whether there even is an objective chance for the centred proposition
Tails, as opposed to the uncentred Tails1 and Tails2.
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6 The puzzle resolved

In section 4, we calculated the optimal bias for the driver’s coin, getting 2/3 for causal
decision theory and around 0.53 for evidential decision theory. If you look back at
the calculations, you can see that we have unwittingly presupposed thirding. (To my
knowledge, this presupposition is universally shared in the literature on the absentminded
driver.) In particular, we assumed that P (First/Bias1 =c) = 1/(c + 1). This is in line
with thirding, but not with halfing. On the halfer account, P (First/Bias1 =c) = 1− c/2.

Another point where we presupposed thirding is in the calculation of the utilities. We
identified the utility of a lottery with the expectation of the utility of the outcomes
relative to their objective probability. For example, we assumed that

V (First & Bias2 =c & Bias1 =b) = 4b− 3bc.

The reasoning was that conditional on First & Bias1 = b & Bias2 = c, the driver’s
probability for reaching the desolate area is 1−b, for getting home b·(1−c), and for getting
to the motel b ·c; so the desirability of the lottery is (1−b) ·0+b(1−c) ·4+bc ·1 = 4b−3bc.
This assumes that the driver’s probability for Tails1, conditional on First & Bias1 =
b & Bias2 =c, equals b, which is a sign of thirding (compare equation (25) above). On
the halfer account, P (Tails1/First & Bias1 =b) = b/(2− b). If the driver obeys halfing,
her probability for reaching the desolate area conditional on First & Bias1 =b & Bias2 =c

is therefore not 1− b, but 1− b/(2− b). Similarly, the probability for getting home is
b/(2− b) · (1− c), and for reaching the motel b/(2− b) · c. The desirability of the lottery
is therefore b/(2− b) · (1− c) · 4 + b/(2− b) · c · 1 = (4b− 3bc)/(2− b).13

So the results in section 4 are correct only if we assume thirding: combined with thirding,
causal decision theory recommends a coin with bias 2/3, while evidential decision theory
recommends a coin with bias 0.53.
Let’s have another look at the conditional expected utilities that raised the puzzle

in section 4. Conditional on Bias=b, the uniformity assumption makes it certain that
Bias1 =Bias2 =b. So

CEU(Bias=b) = P (First/Bias1 =b)V (First & Bias1 =Bias2 =b)
+ P (Second/Bias1 =b)V (Second & Bias2 =b)

=

(1− b/2) · 4b−3b2

2−b + b/2 · (4− 3b) = 4b− 3b2 on halfing,
1

b+1 · (4b− 3b2) + b
b+1 · (4− 3b) = 8b−6b2

b+1 on thirding.

The thirder function, with its maximum at around 0.53, is what we found in section 4; the
halfer function is what we expected to find: it coincides exactly with our reasoning that the
13 For the second exit, we assumed that V (Second & Bias=b) = (1 − b)4 + b1 = 4 − 3b. This is correct

on both halfing and thirding, since on either account the probability of Tails, given Second & Bias=b,
is b.
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expected payoff from choosing bias b at every exit is (1−b)·0+b·(1−b)·4+b·b·1 = 4b−3b2,
which is maximal at b = 2/3. If the driver obeys halfing, her preferences therefore don’t
change between the start of the journey and the first exit. Accordingly, evidential decision
theory no longer tells her to use the sub-optimal bias 0.53. So the puzzle of section 4 is
raised by thirding; on the halfer perspective, it disappears.
Above I suggested that halfing and thirding may be regarded as consequences of two

more general attitudes towards rational belief: halfing is motivated by the idea that
rational agents should only revise their attitude towards a proposition if they receive
evidence they regard as relevant to that proposition (at least if the proposition is certain
not to change its truth-value over time); thirding, on the other hand, is motivated by the
idea that an agent’s degree of belief in a proposition should match the extent to which
the proposition is supported by their present evidence. In cases like the absentminded
driver, the two constraints pull in opposite directions.
To illustrate, suppose the driver is certain all along that she chooses a coin with bias

2/3. At the start of her journey, her degree of belief that she will get home is then
2/3 · 1/3 = 2/9. When she reaches the first exit, she does not receive any information
that would allow her to rule out previously open possibilities in which she doesn’t get
home. If she had known at the start of the journey exactly what she would later learn
at the first exit, her credence in getting home would still have been 2/9. This is why
halfing entails that her belief should remain unchanged. On the other hand, consider
the driver’s evidence when she has reached the first exit. The evidence tells her that she
is at one of the two exits, at each of which the chance of continuing is 2/3. Given that
information, how likely is it that the driver will get home? Well, if she is at the first exit,
the chance of getting home is 2/3 · 1/3 = 2/9; if she is at the second, the chance is 1/3.
Going only by the driver’s evidence, the net probability for getting home should therefore
be some mixture of 2/9 and 2/3. Thirding says that this should also be the driver’s
degree of belief. More precisely, it says that if the driver is certain that she tosses a coin
with bias b, then P (Home) = P (Home/First)P (First) + P (Home/Second)P (Second) =
b(1 − b) · 1/(b + 1) + (1 − b) · b/(b + 1) = 2(b − b2)/(b + 1), which is 4/15 for b = 2/3.
Relative to her previous beliefs, the driver did not gain any information that would lend
further support to getting home. Nevertheless, her new evidence, by itself, more strongly
suggests that she will get home than her evidence at the start of her journey.

If the driver’s beliefs change in accordance with thirding, it is also understandable why
she would suddenly be happy to learn that she uses a coin with bias 0.53 rather than
2/3. The hypothesis that she uses a coin with bias 0.53 makes it slightly more probable
that she is currently at the first exit and that she will reach the desolate area, but it also
makes it more probable that she will get home if she is at the second exit. The latter
effect outweighs the former, albeit not by very much.

It may help to imagine many repetitions of the driver’s situation, with different choices
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of the bias. If we look at all drivers who arrive at the first exit, those with bias 2/3
perform best. On the other hand, if we look at the drivers arriving at the second exit,
those with a lower bias do better. Theorists who endorse both thirding and evidential
decision theory therefore shouldn’t accept that their recommendation has a worse average
performance: that’s true if we look at drivers at the first exit, but it’s not true among
drivers at the second exit – and for all the driver knows, she might be one of those.
Why, then, does thirding combined with causal decision theory recommend the coin

with bias 2/3? Causal decision theory agrees that the optimal bias at the second exit is 0.
But it doesn’t agree that 2/3 would be optimal at the first exit. Since the driver’s choice
only controls her present action, the optimal bias at the first exit would be 1. The right
compromise between the two values, taking into account the driver’s ignorance about her
location, is not 0.53, but 2/3.
To sum up: If the driver is given an option to randomize her acts by flipping a coin,

then the answer to her decision problem depends not only on the choice of causal or
evidential decision theory, but also on the choice between halfing and thirding. Two
of the four combinations – evidential decision theory with thirding and causal decision
theory with halfing – recommend choosing the coin with bias 2/3. By contrast, evidential
decision theory with thirding recommends a bias of 0.53. While this answer may at first
appear wrong, I have argued that it is actually in line with the ahistorical perspective on
rational belief that motivates thirding.
The most curious of the four combinations is the last one: that of causal decision

theory with halfing. Working it out will be the topic of the next section. Before we turn
to that, I want to take another look at the coin-free scenario of sections 2 and 3. Recall
that when the driver’s only options where to continue or to leave, causal decision theory
recommended a state of indecision in which the driver is 2/3 inclined towards continuing.
The argument for the value 2/3 was analogous to the argument for choosing bias 2/3 in
section 3. In particular, we assumed (in equation (11)), that if the driver knows that she
will continue with probability c, then P (Continue1/F irst) = P (Continue) = c. Did we
presuppose thirding already in section 3? Interestingly, we did not. Let me explain.
We saw in section 3 that if the driver is in a state of indecision, then she should

treat her choice as if it were the outcome of a chance process, with probabilities set in
accordance with the her beliefs about what she will do. Let’s imagine for the sake of
vividness that in fact a little coin is tossed inside the driver’s head to determine what she
will do. As before let’s assume that tails means continue, heads leave. The coin’s bias c

towards tails is set to equal the driver’s equilibrium probability that she will continue:
P (Continue) = c.

Now assume the driver is aware of these facts. Then P (Continue) = P (Tails) = c. By
equation (28), this is a sign of thirding. Halfing would require that P (Tails1) = c, and as
we saw in section 5, P (Tails1) and P (Tails) can’t be equal unless P (Second & Heads2) = 0.
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So the driver can’t possibly be a halfer about the coin in her head!
From a halfer perspective, this is odd. Why should the driver obey thirding about the

coin in her head, but halfing about the coin in her hand? How could it make an epistemic
difference whether the coin is tossed inside or outside the driver’s head? But there really
is an important difference. The difference does not lie in the location of the coins, but in
the fact that the bias of the coin in the head is controlled by the driver’s beliefs.

Consider the evolution of the driver’s beliefs, assuming her only options are Continue
and Leave. We can imagine that the driver has already figured out at the start of
her journey that the deliberation equilibrium in the problem she will face at any exit
lies at P (Continue) = 2/3. Hence she knows that a coin with bias 2/3 will be tossed
in her head at the first exit, and again at the second exit if the first one lands tails.
So P (Tails1) = 2/3, and P (Bias1 = Bias2 = 2/3) = 1. Now she reaches the first
exit. If she obeys the principle of doxastic conservatism that motivates halfing, she
will then still be certain that a coin with bias 2/3 is tossed at any exit, and her
credence in Tails1 will still be 2/3. By the symmetry assumption, the probability
of Tails1 is evenly divided between First and Second. So P (First & Tails1) = 1/3.
Moreover, P (Tails2/Tails1) = 2/3, and so P (Second & Tails2) = 2/3 · 1/3. Since Tails
is equivalent to (First & Tails1) ∨ (Second & Tails2), it follows that P (Tails) = 5/9 – in
line with the halfer formula (28). But now the driver’s credence is not in equilibrium:
at P (Tails) = (Continue) = 5/9 and P (Continue2) = 2/3, continuing has a higher
expected utility than leaving. In the process of deliberation, the driver’s probability for
Continue will therefore increase. Deliberation will take her to the thirder function with
P (Continue) = 2/3. And so the coin with bias 2/3 will indeed be tossed, just as the
driver anticipated at the start of her journey.
Compare the situation where the driver can decide to toss a coin of any chosen bias.

Assume again that she has figured out in advance that she will decide to use the coin with
bias 2/3; that is, she has figured out that the equilibrium in her decision problem lies at
P (Bias=2/3) = 1. As before, upon reaching an exit, the conservative belief update will
result in a halfer function, with P (Continue) = 5/9. But Continue here doesn’t stand
for one of the driver’s options. Her options are given by the propositions Bias=b. To be
sure, one of her options, Bias=1, can be identified with the option to continue, but since
the driver is certain that she chooses bias 2/3, P (Bias=1) is 0, not 5/9. In fact, both
before and after the belief update, P (Bias = 2/3) = 1. So deliberation does not change
her beliefs, which will keep conforming to the halfer equations.
Here, then, we have a partial response to the charge, mentioned in section 3, that

allowing for states of indecision is in effect to allow for randomized options. From the
halfer perspective, the situation in which the driver has a stochastic tie-breaker to resolve
states of indecision is not at all the same as the situation in which she can actively choose
a randomized option.
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Something similar is true even from the thirder perspective. At the end of section 3, we
saw that the state of indecision with P (Continue) = 2/3 (and thirder attitudes towards
the internal coin) is also an equilibrium solution in evidential decision theory. But when
we gave the driver the option to choose a coin, evidential decision theory combined with
thirding recommended a coin with bias 0.53. The reason is that in the second case, the
driver’s beliefs about where she is and what she will do at the other exit are affected by
the hypothesis that she chooses a given bias; by contrast, in the state of indecision her
beliefs about these matters are independent of the hypothesis that she will continue.

7 Useless coins

Let’s return to the scenario where the driver can choose a coin. We know what she ought
to do on three of the four combinations of causal vs. evidential decision theory with
halfing vs. thirding. The remaining combination is that of causal decision theory and
halfing.

At the beginning of section 6, we already computed the utility of the relevant lotteries
from the halfer perspective:

V (First & Bias2 =c & Bias1 =b) = (4b− 3bc)/(2− b); (29)
V (Second & Bias=b) = 4− 3b. (30)

What is left is to compute the halfer probability of the states, that is, of Second and
states of the form First & Bias2 = c. Beginning with the latter, probability theory
says that P (First & Bias2 = c) = P (First/Bias2 = c)P (Bias2 = c). Halfing entails that
P (First/Bias1 = c) = 1 − c/2 (see equation (24)). By uniformity, we can infer that
P (First/Bias2 =c) = 1− c/2. So

P (First & Bias2 =c) = P (Bias2 =c)(1− c/2). (31)

As for P (Second), note that P (Second/Bias2 =c) = 1− P (First/Bias1 =c) = c/2; so

P (Second) =
∑
c∈B

P (Bias2 =c)c/2. (32)

The resulting expected utilities work out as follows:

EU(Bias=b) =
∑
c∈B

P (Bias2 =c)3bc2 + 3b2c− 20bc + 8c + 8b

4− 2b
. (33)

(The diagonal, with b=c, is again the CEU function 4b− 3b2.)
As in section 4, where we considered the thirder version of these formulas, what the

driver should do depends on what she believes about what she will do: the expected
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utility of Bias=b varies with the distribution over Bias2. However, this time Bias=2/3
is not a stable choice. If the driver is confident that Bias2 = 2/3, then the expected
utility of Bias = 2/3 is 4/3, while the expected utility of Bias = 1 is 5/3.

In general, the more the driver is certain that she chooses bias c, the more the expected
utility of choosing bias b converges to

3bc2 + 3b2c− 20bc + 8c + 8b

4− 2b
.

For c < 4/5, this function is maximal at b = 1; for c > 4/5, it is maximal at b = 0; and
for c = 4/5 it is maximal at both b = 1 and b = 0. That is, for every available coin, if
the driver is confident that she chooses that coin, then choosing either bias 1 or bias 0
(or both) has greater expected utility. And of course, if the driver is confident that she
chooses bias 1, then choosing bias 0 has greater expected utility, and vice versa. There is
no stable option: the driver should be undecided which coin to choose!

A well-known result in game theory states that every finite game has a Nash equilibrium
if the players are allowed to use randomized (“mixed”) strategies. By essentially the
same reasoning one can show that every finite decision problem has a stable solution
if randomisation is allowed.14 The proof assumes that the expected utility of a lottery
in a given state equals the corresponding mixture of the utility of the pure acts in that
state. For example, if an agent tosses a fair coin to decide between an act A whose payoff
in a given state of nature is a, and an act B with payoff b, then it is assumed that the
randomized strategy has expected payoff (a + b)/2 in that state. This assumption is false
if randomization is punished. It is also false in the present case of the absentminded
driver, although for a very different reason.
To understand the reason, note that the driver would like her coin at the first exit to

land tails, as heads leads to the worst possible outcome of spending the night in the car.
But if the driver follows halfing, then by (25), P (Tails1/First & Bias1 =b) = b/(2− b),
which is less than b whenever b is strictly between 0 and 1. For example, if b = 1/2,
then b/(2− b) = 1/3. So on the assumption that the driver is at the first exit, tossing
a fair coin gives her only a subjective probability of 1/3 for reaching the second exit.
It’s as if the driver had an unduly pessimistic attitude towards randomizing at the
first exit. By contrast, at the second exit, where leaving would be much better than
continuing, the driver’s credence in heads does not exceed the objective chance: by the
neutral assumption (26), P (Tails2/Tails1 & Bias2 = b) = b. So the “pessimism” about
randomizing at the first exit is not compensated by optimism about the second exit.
For a concrete illustration, imagine the driver is 4/5 confident that she will choose

Bias = 0 and 1/5 that she will choose Bias = 1. There are then only three states with

14 See [Harper 1986] and [Skyrms 1990] on the connection between Nash equilibria in game theory and
deliberation equilibria in causal decision theory.
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positive probability: First & Bias2 =1, First & Bias2 =0, and Second. Their probabilities
are 2/5, 1/5, and 2/5, respectively. Assuming First & Bias2 = 1, the expected utility
of choosing bias b equals the probability that this choice will make the driver continue,
which is b/(2− b). Similarly, the expected utility of Bias=b in the state First & Bias2 =0
is 4 · b/(2− b). In Second, it is b · 1 + (1− b) · 4 = 4− 3b. So the decision matrix for the
three options Bias = 1, Bias = 0, and Bias = 1/2 looks as follows.

First & Bias2 =1 First & Bias2 =0 Second
Bias=1 1 4 1
Bias=0 0 0 4

Bias=1/2 1/3 2/3 5/2

The first two options have equal expected utility, since (2/5) · 1 + (1/5) · 4 + (2/5) · 1 =
8/5 = (2/5) · 4. However, the third option only has expected utility (2/5) · (1/3) + (1/5) ·
(2/3) + (2/5) · (5/2) = 19/15. In general, every choice of bias other than 1 and 0 has an
expected utility less than 8/5.

Since non-trivial choices of a bias always look worse than either Bias=0 and Bias=1,
the driver’s deliberation dynamics will carry her to a state in which she is certain that
she will choose either bias 0 or bias 1. We’ve already found the equilibrium: it lies at
P (Bias=1) = 4/5 and P (Bias=0) = 1/5. Here all options with positive probability have
equal expected utility. Of course, tossing a coin with bias 0 or 1 is pointless: Bias = 1
means to continue, Bias = 0 to leave. In the equilibrium state, the driver therefore deems
her pure options to be equally good, while tossing a coin to choose between them is
strictly worse. In the end, she is torn only between continuing and leaving – exactly like
in section 3.
That the equilibrium inclination towards continuing is 4/5 rather than 2/3 is due to

the (revised) uniformity assumption that the driver is certain that she uses the same
bias at every exit. As before, the absence of a pure solution makes that assumption
implausible. If instead we assume that the driver treats different tie-breakings of her
state of indecision as independent, the equilibrium state lies at P (Bias=1) = 2/3 and
P (Bias=0) = 1/3.
Here is why. In equilibrium, the driver knows that if she is at the first exit and

ends up continuing, then she’ll arrive at the same state of indecision again, with the
same equilibrium probabilities P . Given independence of the tie-breakings, P (Bias =
b) = P (Bias1 = b/First) = P (Bias2 = b). By halfing, P (Tails1/First & Bias1 = b) =
b/(2 − b). So P (Continue1/First) =

∑
b∈W P (Bias = b)b/(2 − b). Let’s abbreviate

this quantity as t; that is, t =
∑

c∈B P (Bias1 = c)c/(2 − c). Now we argue as in
section 3. First divides into First & Continue1 and First & Leave1. By the symmetry
assumption, P (First & Continue1) = 1 − P (First). Moreover, P (First & Leave1) =
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P (Leave1/First)P (First) = (1 − P (Continue1/First))P (First) = (1 − t)P (First). So
P (First) = 1−P (First) + (1− t)P (First), which resolves to P (First) = 1/(t + 1). So the
equilibrium probabilities of the states are

P (First & Bias2 =c) = P (Bias=c)/(t + 1); (34)
P (Second) = t/(t + 1). (35)

And thus

EU(Bias=b) =
∑
c∈B

(
P (Bias=c)

t + 1 · 4b− 3bc

2− b

)
+ t

t + 1 · (4− 3b). (36)

In equilibrium, all options with positive probability must have maximal expected utility.
The only such equilibrium, as far as I can tell, is given by the probability function that
assigns 2/3 to Bias = 1 and 1/3 to Bias = 0.

So the driver should be 2/3 inclined towards continuing and 1/3 towards leaving, and
she should be certain that she won’t use any of her coins. Combined with halfing, causal
decision theory advises against randomization and in favour of indecision. Once again,
that indicates that indecision is not the same as randomization.

8 Conclusions

The puzzle of the absentminded driver is a treasure trove of interesting results. Let me
summarize our main observations.
In sections 2 and 3, we looked at the driver’s predicament assuming her only options

are Leave and Continue. By the lights of causal decision theory, neither choice is a stable
solution. The driver’s deliberation should end in a state of indecision where she is 2/3
inclined towards Continue and 1/3 towards Leave. In evidential decision theory, there are
two solutions to the driver’s problem: she can decide to continue, or she can be in a state
of indecision where she is 2/3 inclined towards Continue. The difference between halfing
and thirding does not matter here: even if the driver starts out with halfer attitudes
towards the resolutions of her indecision, the process of deliberation will turn them into
thirder attitudes, as explained in section 6.15

In sections 4 to 7, we assumed that the driver can make her decision by tossing a coin.
Here the answer depends not only on the choice between causal and evidential decision
theory, but also on that between halfing and thirding. Two of the four combinations

15 One noteworthy aspect of the puzzle that I have not discussed concerns the form of the deliberation
dynamics. In all versions of the puzzle, the dynamics can’t go by the simple models described in
[Skyrms 1990]. For example, these models would not preserve the symmetry assumption; they also
don’t take into account how the driver’s choices at the two exits can become decorrelated through the
process of deliberation.
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– thirding with causal decision theory and halfing with evidential decision theory –
recommend tossing a coin with bias 2/3. Since that is prima facie the optimal choice, this
result mirrors arguments in [Arntzenius 2002] and [Briggs 2010] to the effect that thirders
should be causal decision theorists and halfers evidential decision theorists. However,
I have argued that the other two combinations are perfectly acceptable as well. The
combination of halfing with causal decision theory recommends a state of indecision
whose expected payoff coincides with that of choosing a coin with bias 2/3 on the thirder
account. Thirding with evidential decision theory recommends a coin with bias 0.53. I
have argued that this is indeed the most desirable choice given the ahistorical perspective
on rationality that motivates thirding.
Along the way, we have encountered some other interesting facts. For example, we

saw that the driver’s rational degrees of belief about her coins cannot consistently match
the known objective chances: on every account, either P (Tails/Bias1 =Bias2 =c) , c or
P (Tails1/Bias1 =Bias2 =c) , c. As [Titelbaum 2012] points out, this casts doubt on the
so-called “double-halfer” solution to the Sleeping Beauty problem. It also raises problems
for Skyrms’s [1984] formulation of causal decision theory in terms of expected conditional
chance. On Skyrms’s account, the expected utility of an option A is defined as

EU(A) =
∑

S∈W

V (S)
∑

x

x · P (Ch(S/A)=x),

where W is a partition of possibilities whose members have uniform utility (meaning
that for any S ∈W and any proposition B compatible with S, V (S & B) = V (S)) and
Ch(S/A)=x is the proposition that the objective chance of S conditional on A equals
x.16 This is plausible as long as the agent satisfies a conditional version of the Principal
Principle, so that her credence in S given A, on the assumption that Ch(S/A)=x, equals
x. The absentminded driver who follows halfing does not satisfy that principle.

Another fact brought out by the absentminded driver is the difference between indecision
and randomization: if agents are equipped with a stochastic tie-breaker to resolve states
of rational indecision, their attitudes towards the outcomes can diverge from the attitudes
they would have towards the outcomes of an explicitly chosen randomisation device.
Relatedly, we saw that even if there is no punishment on randomization, allowing for
randomized strategies does not guarantee that one of the options is a rational choice –
or that every finite game has a Nash equilibrium. This supports the idea that mixed
strategies in game theory might be better understood not as choices of a randomized
option, but as states of indecision (compare [Aumann and Brandenburger 1995]).

16 Skyrms’s own formulation is superficially different: he defines EU(A) as∑
K

P (K)
∑

C
ChK(C/A)V (C), where K ranges over chance hypotheses, C over “consequences” and

ChK(C/A) is the conditional chance of C given A according to K.
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