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Abstract 

The Ideal Adsorbed Solution (IAS) theory has been shown to predict reliably multicomponent 

adsorption for both gas and liquid systems. There is a lack of understanding of the conditions which 

guarantee convergence for various algorithms used to solve the IAS theory equations and 

inconsistencies are present in the reported computational effort required for the different 

approaches. The original nested loop and the FastIAS technique are revisited. The resulting system 

of equations is highly nonlinear but both methods are shown to be robust if appropriate choices are 

made for the starting values of the unknown variables. New initial conditions are proposed and the 

resulting algorithms are compared in a consistent manner with the main methods available to solve 

the IAS theory equations. The algorithms are extended for the first time to all non-type I isotherms. 
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Introduction 

The Ideal Adsorbed Solution (IAS) theory  of Myers and Prausnitz1 has been shown to predict reliably 

multicomponent adsorption equilibrium for both gas and liquid systems. This is of major importance 

when modelling adsorption based separation processes, since the direct measurement of 

multicomponent isotherms is both challenging and very time consuming.2 While clearly not all 

adsorbed systems behave ideally, the solution of the IAS theory equations is also needed when 

extending the treatment to real adsorbed phases, as the IAS theory yields the reference state 

commonly used in the definition of the activity coefficients of the adsorbed mixtures.3  

In the original contribution, Myers and Prausnitz1 outlined the formulation of the problem, i.e. 

derived the set of equations to be solved, but did not provide details of a solution algorithm since for 

binary systems it is possible to construct a graphical solution. Even though several algorithms are 

available to solve the multicomponent equilibrium problem4-9 there appears to be a lack of 

understanding of the conditions which guarantee convergence to the physically correct solution. 

Furthermore, there are also inconsistencies in the reported computational effort required for the 

different approaches to solving the IAS theory equations. Part of the confusion stems from the fact 

that the various algorithms have often been developed based on specific isotherms and the general 

characteristics of the problem have become somewhat difficult to understand. For example the 

algorithms developed by Tien and coworkers5,9 are in fact small variants of the general method of 

Myers and Valenzuela6, which we will call the nested loop algorithm. Because all the early algorithms 

have been developed for and applied to type I isotherms, there seems to be also no clarity on how 

to extend them to non-type I isotherms 4 and whether they are robust. 

In this contribution the nested loop method and the more advanced FastIAS technique are revisited 

and expressed in terms of general adsorption isotherms. The criteria for convergence of the 

algorithms are investigated in detail for type I isotherms. Both approaches are then extended for the 

first time to all non-type I isotherms. 
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Proof of guaranteed convergence of the nested loop algorithm. 

The basic equations of the IAS are the analogue of Raoult’s law in vapour-liquid equilibrium1 

𝑃𝑦𝑖 = 𝑃𝑖
0(Π)𝑥𝑖                                                                𝑖 = 1, 2 … 𝑁𝑐    (1) 

where 𝑃𝑖
0 is the pressure at which each pure component is at the same reduced spreading pressure, 

, and temperature of the mixture. The reduced or modified spreading pressure is defined by the 

Gibbs adsorption isotherm 

Π =
𝐴𝜋

𝑅𝑇
= Π𝑖 = ∫

𝑞𝑖
0(𝑃)

𝑃
𝑑𝑃

𝑃𝑖
0

0
                                         𝑖 = 1, 2 … 𝑁𝑐    (2) 

We note that this is the equivalent of the reduced grand potential of Myers and Monson.3 While the 

reduced grand potential is a more appropriate name for this thermodynamic variable in the 

remainder of this paper we will use the conventional and widely used term of reduced spreading 

pressure without loss of clarity. For liquid systems the same set of equations applies with pressure 

replaced by concentration.10 For simplicity here we will refer always to pressure, with the 

understanding that all the results will apply to the corresponding liquid system. We note also that 

Eq. 2 implies the assumption of an ideal gas (for gases) or ideal liquid mixture (for liquids) and that 

fugacity should replace pressure in a rigorous extension to high pressure gas systems or non-ideal 

liquid mixtures, but this is beyond the scope of this contribution. 

To close the problem, the total number of adsorbed moles can be found assuming zero area (equally 

for mass or volume3) change upon adsorption 

1

𝑞𝑡
= ∑

𝑥𝑖

𝑞𝑖
0(𝑃𝑖

0)

𝑁𝑐
𝑖=1           (3) 

In order to calculate the equilibrium compositions one requires the knowledge of 𝑃𝑖
0 for all 

components. If the total pressure and gas phase composition are specified the simplest way to solve 
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the problem is by a nested solution of nonlinear equations.6 From Eq. 1 and the fact that the sum of 

the adsorbed phase mole fractions is unity we have 

𝑓(Π) = 1 − ∑
𝑃𝑦𝑖

𝑃𝑖
0(Π)

𝑁𝑐
𝑖=1 = 0               (4) 

Eq. 4 is solved using Newton’s method. Myers and Monson3 point out that “Numerical solution of 

this equation is problematic because of its high degree of nonlinearity”, but we will prove that an 

appropriate selection of the initial condition guarantees convergence. Before resolving this 

important issue, a point that is worth stating clearly is that while the calculation of the spreading 

pressure is made easier by the availability of an analytical expression for the integral in Eq. 2, in 

implementing Newton’s method one needs the derivatives of the spreading pressure and these can 

be calculated directly for any isotherm from 

𝑑Π𝑖

𝑑𝑃𝑖
0 =

𝑞𝑖
0(𝑃𝑖

0)

𝑃𝑖
0                                                             𝑖 = 1, 2 … 𝑁𝑐    (5) 

and 

𝑑𝑓

𝑑Π
= ∑

𝑃𝑦𝑖

𝑃𝑖
0𝑞𝑖

0(𝑃𝑖
0)

𝑁𝑐
𝑖=1                 (6) 

In the formulation of this algorithm by Tien and co-workers 5,9 Eq. 2 is rewritten so that it can be 

solved by successive substitutions and the derivative of the spreading pressure is approximated from 

the resulting expression.  In the formulation of the algorithm without approximations6 an isotherm 

with an explicit expression for pressure as a function of spreading pressure, 𝑃𝑖
0(Π), was used. In 

general this is not the case, so that at each iteration and for each component Eq. 2 has to be solved 

numerically using Newton’s method.11  

Since the numerical solution of the nonlinear problem requires initial guesses for  and 𝑃𝑖
0, one 

must ensure an appropriate selection in order to achieve a robust algorithm. This is seen as a key 

weakness of the original method and of the FastIAS algorithm.4 To our knowledge no formal proof of 
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convergence has been reported for the algorithm, so we proceed to demonstrate this and establish 

initial guesses that guarantee convergence. 

The integrand in Eq. 2 is always positive, since both P and the number of moles adsorbed are 

positive and in the limit of zero P for any thermodynamically consistent adsorption isotherm the 

integrand will become the Henry law constant, Ki. This means that the spreading pressure increases 

monotonically as a function of pressure. Therefore for all type I isotherms i [0, ∞) and one must 

ensure that  𝑃𝑖
0 is non-negative at each iteration. If we are solving in the inner loop 

𝑔𝑖(𝑃𝑖
0) = Π𝑖

0 − Π =  0                                                         𝑖 = 1, 2 … 𝑁𝑐   (7) 

and  

𝑑𝑔𝑖

𝑑𝑃𝑖
0 =

𝑞𝑖
0

𝑃𝑖
0                                                                                   𝑖 = 1, 2 … 𝑁𝑐   (8) 

𝑑2𝑔𝑖

𝑑𝑃𝑖
02 =

1

𝑃𝑖
0 (

𝑑𝑞𝑖
0

𝑑𝑃𝑖
0 −

𝑞𝑖
0

𝑃𝑖
0)                                                            𝑖 = 1, 2 … 𝑁𝑐   (9) 

If the initial guess is in the region [0, 𝑃𝑖
0(Π)] , Eq 7 is negative and monotonically increasing. 

Newton’s method is guaranteed to converge to a positive value if the second derivative is negative 

and does not change sign, i.e. there are no inflection points12. For a type I isotherm the slope of the 

secant of the isotherm between 0 and P is always greater than the slope of the tangent in P, and 

therefore the second derivative, Eq. 9, is always negative. One could choose 0 as the starting point, 

but in the limit of zero pressure  

Π𝑖
0 =  𝐾𝑖P𝑖

0                                                           𝑖 = 1, 2 … 𝑁𝑐    (8) 

therefore we can use 

P𝑖
0 =

Π

𝐾𝑖
                                                                  𝑖 = 1, 2 … 𝑁𝑐    (9) 

as this ensures that at the first iteration the value of g is negative for any type I isotherm. 
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We now turn to the analysis of Eq. 4. From the discussion above, it is also clear that all the 𝑃𝑖
0(Π) are 

monotonic and increase with . As a result f is monotonic and it increases with . The second 

derivative is given by: 

𝑑2𝑓

𝑑Π2 = − ∑
𝑃𝑦𝑖[

𝑞𝑖
0

𝑃𝑖
0+

𝑑𝑞𝑖
0

𝑑𝑃𝑖
0]

𝑞𝑖
03

𝑁𝑐
𝑖=1                (10) 

Since all the terms appearing in the summation are positive for any isotherm, there will be no 

inflection points – the second derivative is always negative – hence Newton’s method is again 

guaranteed to converge to a positive value if we determine an initial guess that ensures that f is 

initially negative. For  = 0 Eq. 4 yields ∞ therefore guaranteed convergence is ensured if one 

chooses any small initial value and this is true for any isotherm. More generally convergence is 

guaranteed for any value (0, *) as shown in Fig. 1, where 

𝑑𝑓

𝑑Π
|

Π∗
 Π∗ = 𝑓(Π∗)          (11) 

For initial values to the right of * the first iteration of Newton’s method would result in a negative 

spreading pressure for which the equations are obviously not defined. 

We observe that choosing a very small initial value 0 will result in slow convergence. This can be 

seen by noting that in the Henry law limit it is possible to use the analytical expression for the 

spreading pressure and 

P𝑖
0 =  

Π0

𝐾𝑖
                               𝑎𝑡 𝑙𝑜𝑤 𝑠𝑝𝑟𝑒𝑎𝑑𝑖𝑛𝑔 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒            (12) 

and combining this with Eq 4 

𝑓(Π0) = 1 −
𝑃

Π0 𝐾𝐴𝑣𝑒          𝐾𝐴𝑣𝑒 = ∑ 𝑦𝑖𝐾𝑖
𝑁𝑐
𝑖=1                (13) 

and 
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𝑑𝑓

𝑑Π
|

Π0
= ∑

𝑃𝑦𝑖

𝑃𝑖
0(Π)2

𝑑𝑃𝑖
0

𝑑Π
𝑁𝑐
𝑖=1 =

𝑃𝐾𝐴𝑣𝑒

Π02               (14) 

Therefore at the next iteration 

Π1 = Π0 (1 −
Π0−𝑃𝐾𝐴𝑣𝑒

𝑃𝐾𝐴𝑣𝑒
) < 2 Π0        (15) 

This clearly shows that a smaller initial guess will give rise to a slower progression towards the 

solution. By the same argument one should avoid a starting point close to Π∗ since at the second 

iteration one will be at a very small value of Π, as can be seen from Fig. 1. 

A better starting point, which still guarantees convergence, can be obtained using  

Π0 = min [Π𝑖 (
PK𝐴𝑣𝑒

𝐾𝑖
)]                                                               (16) 

or 

Π0 = min [Π𝑖(P)]                                                               (17) 

To prove that both eqs 16 and 17 are starting points that guarantee convergence we simply note 

that from Eq. 1, summing over all components, we can obtain 

𝑃 = ∑ 𝑃𝑖
0(Π)𝑥𝑖

𝑁𝑐
𝑖=1                                                         (18) 

and similarly 

𝑃𝐾𝐴𝑣𝑒 = ∑ 𝑃𝑖
0(Π)𝐾𝑖𝑥𝑖

𝑁𝑐
𝑖=1                                                        (19) 

From Eq. 18 and 19 we can see that P is an average of all 𝑃𝑖
0(Π) at the solution and PKAve is an 

average of all 𝑃𝑖
0𝐾𝑖. In a plot of Π𝑖 versus 𝑃𝑖

0𝐾𝑖, PKAve will correspond to a vertical line that intercepts 

the various curves corresponding to the spreading pressures. In this plot the solution that fulfils Eqs. 

1 and 2 will be a horizontal line which cuts all the spreading pressure curves between the minimum 

and the maximum of all 𝑃𝑖
0, so within this range it will also cut the vertical line. The horizontal line 
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must lie above at least one of the intersections of the vertical line due to the monotonicity of the 

spreading pressures. This proves the fact that at least one value of 𝑃𝑖
0𝐾𝑖 will be less than PKAve. In 

this plot the line  Π𝑖 = 𝑃𝑖
0𝐾𝑖 will be above all spreading pressures and as the pressure increases the 

difference between the various curves will increase. A similar approach can be applied to the plot of  

Π𝑖 versus 𝑃𝑖
0 and P will correspond to a vertical line which identifies Nc values of the spreading 

pressure. Similarly to the previous case, the minimum value will provide a starting point with 

guaranteed convergence.  For a binary system, this plot is the one used for the graphical solution of 

the IAS equations presented by Myers and Prausnitz1 and included in Fig. 3. Using the minimum 

value ensures that f is negative because the guess is lower than the solution and convergence to a 

positive value is guaranteed.  

One can argue that the minimum obtained from  𝑃𝑖
0 =

PK𝐴𝑣𝑒

𝐾𝑖
 is a better choice since this value 

corresponds to the exact solution in the limit of zero pressure and in general it is much closer to the 

solution. It is true though that by renormalizing all the curves so that they coincide at low pressure, 

there is an increase in the difference between the curves at high pressure. As we will see these 

considerations will be useful in the analysis of the robustness of the FastIAS algorithm where the 

current formulation will lead to a broader spread in the initial guesses of the spreading pressures. 

This is particularly true for the more weakly adsorbed component at high pressures. 

Myers and Valenzuela6 and Do11 used as their initial guess 

Π0 = ∑ y𝑖Π𝑖(P)𝑁𝑐
𝑖=1                                                                (20) 

This initial guess does not guarantee convergence strictly, i.e. f can be positive at the first iteration, 

but it reduces to the exact solution in the low pressure limit (as for Eq. 16). This is simply due to the 

fact that in the low pressure region the relationship between 𝑃𝑖
0 and  is linear. Therefore Eq. 20 

can also be used but a check to ensure that  remains positive at each iteration should be added to 

guarantee convergence. We also note that convergence may be slow when 0 is close to *. 
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It is important to note that the discussion on the convergence of Eq. 4 relies only on the assumption 

that the adsorption isotherms of pure components increase monotonically, therefore it is valid for 

any physically realistic isotherm. The nested loop algorithm for non-type I isotherms requires only a 

careful analysis of the convergence of Eq. 2. 

 

The FastIAS algorithm. 

O’Brien and Myers7 introduced the FastIAS algorithm based on their adsorption isotherm13 in order 

to improve the efficiency of the calculations for dynamic simulations of adsorption processes. They 

later reported8 an improved revised algorithm and mentioned that it could be applied to any 

isotherm for which an analytical expression for the spreading pressure was available. The examples 

discussed in the paper8 were based on an earlier contribution5 and focussed only on the O’Brien-

Myers isotherm13 and this may have left the reader with the impression that additional effort is 

required to derive the set of equations needed for other isotherms. For clarity the FastIAS algorithm 

is outlined here without any mention to a specific isotherm. 

The first step is to look at the isotherm equation and define a reduced pressure 

𝜂𝑖 = 𝐾𝑝𝑖𝑃𝑖
0                                                         𝑖 = 1, 2 … 𝑁𝑐     (21) 

For Langmuir type isotherms the Kpi are simply the ratio of the Henry law constant and the 

saturation capacity. 

The IAS equations are then recast as a function of the dimensionless pressures and rather than 

solving Eqs 2 and 4 as nested loops all the equations are solved simultaneously by defining the 

following system:   

𝑅𝑒𝑠𝑖 = Π𝑖(𝜂𝑖
0) − Π𝑁𝑐(𝜂𝑁𝑐

0 ) 𝑖 = 1,2 … 𝑁𝑐 − 1

𝑅𝑒𝑠𝑁𝑐 = 1 − ∑
𝐾𝑝𝑖𝑃𝑦𝑖

𝜂𝑖
0(Π)

     𝑁𝑐
𝑖=1

       (22) 
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What makes the numerical solution particularly fast is the structure of the corresponding Jacobian, 

which has non-zero elements only on the diagonal, the last column and the last row. Therefore the 

diagonal elements can be used to eliminate the elements of the last row and then all the solutions in 

the iteration are computed by back substitution from the resulting upper triangular matrix. The 

original algorithm of O’Brien and Myers7 is similar but equates the spreading pressures of successive 

components. This results in a Jacobian that has non-zero elements on the diagonal, the elements 

just above the diagonal and the last row. In the original formulation the algorithm did not use the 

structure of the matrix to improve the computational efficiency. If this is considered the number of 

computations is almost the same, there is only one extra multiplication and subtraction in the back-

substitution step, when there are more than two components, i.e. both versions are identical for a 

binary mixture. Since the coding is slightly more complicated for the original formulation, we will 

only consider the improved 1988 version in what follows and refer to it for simplicity as the FastIAS 

algorithm. The reader should understand that the improvements by a factor of 4 in computational 

effort reported by O’Brien and Myers8 for a 10 component system are almost exclusively due to the 

fact that the 1985 version used a dense matrix solver and the 1988 one explicitly used the sparse 

nature of the Jacobian.  

Contrary to what is stated in O’Brien and Myers8 the FastIAS algorithm can be used also when the 

residuals in Eq. 22 must be calculated by numerical integration since all the other terms needed are 

in analytical form. More generally if the nested loop algorithm is applicable, then the FastIAS is also 

applicable, a point not clearly stated in Landa et al.4. The last row of the Jacobian of the system of 

Eq. 22 is given by   

𝐽𝑎𝑐𝑁𝑐,𝑖 =
𝐾𝑝𝑖𝑃𝑦𝑖

𝜂𝑖
0(Π)2                            𝑖 = 1,2 … 𝑁𝑐                           (23) 

and the diagonal and last column elements of the Jacobian can be calculated directly from the 

isotherm. In fact there is no need to store the additional elements in the last column of the Jacobian 

since all the information can be stored in the following vector  
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𝐷𝑖𝑎𝑔𝑖 =
𝑞𝑖

0(𝜂𝑖
0)

𝜂𝑖
0                            𝑖 = 1,2 … 𝑁𝑐                            (24) 

At any iteration of the Newton method the linear system being solved is 

𝐽𝑎𝑐̿̿ ̿̿  𝛿̅ = −𝑅𝑒𝑠̅̅ ̅̅ ̅                                                     (25) 

Clearly in the elimination process only the last term in the last row of the Jacobian and the last 

element of the residual vector are modified 

𝐽𝑎𝑐𝑁𝑐,𝑁𝑐 =    
𝐾𝑝𝑁𝑐𝑃𝑦𝑁𝑐

𝜂𝑁𝑐
0 2 + 𝐷𝑖𝑎𝑔𝑁𝑐 ∑

𝐽𝑎𝑐𝑁𝑐,𝑖

𝐷𝑖𝑎𝑔𝑖

𝑁𝑐−1
𝑖=1                                                 (26) 

𝑅𝑒𝑠𝑁𝑐 =   1 − ∑
𝐾𝑝𝑖𝑃𝑦𝑖

𝜂𝑖
0

𝑁𝑐
𝑖=1 − ∑

𝐽𝑎𝑐𝑁𝑐,𝑖

 𝐷𝑖𝑎𝑔𝑖

𝑁𝑐−1
𝑖=1 𝑅𝑒𝑠𝑖                                           (27) 

The resulting system of equations with an upper triangular matrix can then be solved by direct back-

substitution. 

𝛿𝑁𝑐 =  −
𝑅𝑒𝑠𝑁𝑐

𝐽𝑎𝑐𝑁𝑐,𝑁𝑐
                                                  (28) 

and 

𝛿𝑖 =  
−𝑅𝑒𝑠𝑖+𝐷𝑖𝑎𝑔𝑁𝑐𝛿𝑁𝑐

𝐷𝑖𝑎𝑔𝑖
                        𝑖 = 1,2 … 𝑁𝑐 − 1                                 (29) 

We note from Eqs 24 and 26 that all the diagonal elements of the resulting upper triangular matrix 

are positive and the system is never singular. Therefore there is always a direction in which the 

overall residual decreases and the FastIAS algorithm or a backtracking variant14 will converge unless 

physically unrealistic (negative) values of the reduced pressures are obtained. This very important 

point shows that the FastIAS algorithm is intrinsically robust and appears to have been missed in 

previous studies. 

The iteration is then repeated with a new set of dimensionless pressures until convergence  

𝜂𝑖
〈𝑘+1〉 = 𝜂𝑖

〈𝑘〉 + 𝛿𝑖
〈𝑘〉              𝑖 = 1,2 … 𝑁𝑐                                  (30) 
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Given that this is now the solution of a system of equations, to have a robust algorithm the initial set 

of reduced pressures has to be defined and a check has to be included so that all the dimensionless 

pressures remain positive at each iteration. This last point is the key to ensuring convergence and 

O’Brien and Myers7,8 suggest to use 

𝜂𝑖
〈𝑘+1〉 =

𝜂𝑖
〈𝑘〉

2
                𝑖𝑓          𝜂𝑖

〈𝑘〉 + 𝛿𝑖
〈𝑘〉 < 0                                  (31) 

along with the following set of initial guesses 

𝜂𝑖
〈0〉 =

𝐾𝑝𝑖

𝐾𝑖
𝑃𝐾𝐴𝑣𝑒                             (32) 

The use of Eq. 31 does ensure convergence, but can reduce the order of convergence.  In most cases 

it is invoked at the first iteration, rarely at the second and higher iterations, normally for the more 

weakly adsorbed component and further away from the linear low pressure limit. This can be 

understood with reference to Fig. 2, since the spreading pressure calculated from the initial guess in 

Eq. 32 will be much higher than the solution and as a result the calculated step tends to move  to a 

negative value. Under certain conditions, Eq. 31 is not invoked since the calculated  remains 

positive but becomes very small. If this happens then qualitatively, for the same reasons for which 

convergence is slow for the nested loop algorithm, an increased number of iterations are needed to 

arrive at the solution. Having understood the criteria for rapid convergence of the nested-loop 

algorithm, it is therefore possible to identify an improved set of initial conditions valid when the 

pressure is high: 

𝜂𝑖
〈0〉 = 𝑚𝑖𝑛 (

𝐾𝑝𝑖

𝐾𝑖
𝑃𝐾𝐴𝑣𝑒; 𝑃𝐾𝑝𝑖)                           (33) 

While this condition does not guarantee strict convergence it resolves the issue related to the more 

weakly adsorbed component, i.e. avoids extrapolation to high spreading pressures, and combined 

with Eq. 31 results in an algorithm that is both robust and more efficient than the original FastIAS 

approach at high pressures. 
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The algorithm of Landa et al.4 

An alternative approach to solving the IAS theory equations has been presented recently by Landa et 

al.4. This method is based on converting the following equation 

Π1(𝑃1
0) = Π𝑖(𝑃𝑖

0)    →        
dΠ1(𝑃1

0)

𝑑𝑃1
0 =

𝑑Π𝑖(𝑃𝑖
0)

𝑑𝑃𝑖
0

𝑑𝑃𝑖
0

𝑑𝑃1
0       𝑖 = 1,2 … 𝑁𝑐       (34) 

into a non-autonomous initial value (NAIV-IAS) problem, i.e. the integration of a system of ODEs  

𝑑𝑃𝑖
0

𝑑𝑃1
0 =

𝑞1
0(𝑃1

0)

𝑃1
0

𝑃𝑖
0

𝑞𝑖
0(𝑃𝑖

0)
           𝑃𝑖

0(0) = 0        𝑖 = 1,2 … 𝑁𝑐                       (35) 

recognizing that Eq. 34 corresponds to fixed trajectories for all pure component pressures (or 

concentrations) that fulfil the condition that the spreading pressures remain the same. Clearly 

𝑑𝑃1
0

𝑑𝑃1
0 = 1                                             (36) 

The integration of the system of ODEs stops when the equilibrium condition given by Eq. 4 is 

achieved. The great advantage of this algorithm is its simplicity and robustness. The fact that it 

requires only the computation of the adsorption isotherm means that it is applicable to any 

isotherm, but for type II and type III isotherms a check needs to be included to guarantee that a 

feasible solution is possible. We will return to this point when we discuss the extension of the nested 

loop and FastIAS algorithms to non-type I isotherms. 

When this approach was presented, a comparison of the computational effort with respect to the 

FastIAS algorithm and the original nested loop approach was included. The conclusion 4 reached was 

that the NAIV-IAS algorithm was computationally comparable to the nested-loop algorithm and the 

FastIAS algorithm was approximately 20 times faster. O’Brien and Myers7 compared their algorithm 

to the original algorithm of Myers and Prausnitz1 and concluded that they improved the calculations 
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by a factor of 25, but they did not clarify what starting values they used for the original method thus 

making it impossible to check their comparison. Moon and Tien5 showed that their approach was in 

fact faster than the O’Brien and Myers7 FastIAS method by a factor of 3-4. This led O’Brien and 

Myers to produce the improved FastIAS algorithm which was optimized for multicomponent systems 

to take into account the structure of the Jacobian and was shown to be up to 2 times faster than the 

Moon and Tien5 method, which is a variant of the nested loop algorithm. There seems to be some 

confusion over the comparison of the computational speeds for the different algorithms and we will 

therefore address also this issue in detail. 

Considering that the solution of the ODE system in the NAIV-IAS approach corresponds to applying 

quadrature formulae to the integral that gives the spreading pressure (in fact the ratio of the 

integrands) and that the net gain is to reduce by one the number of integrals that need to be carried 

out, it would seem more likely that the nested loop should still be faster when an analytical 

expression for the spreading pressure is available, especially with a large number of components. In 

the section that follows we present a detailed comparison of the three algorithms, initially for a 

binary system, which allows a more in depth understanding of the issues which may slow down the 

convergence, and then for a 10 component system originally considered by Moon and Tien.5 

 

Results for type I isotherms 

As a test system we consider the binary adsorption for CO2-Propane on Norit activated carbon.15,16 

The isotherms of the pure components are shown in Fig. 4 along with the analytical isotherms fitted 

to the experimental data (parameters are listed in Table 1). This binary pair is an interesting test 

system since it is not possible to regress accurately the pure component data using the 

thermodynamically consistent equal saturation capacities in the multi-site Langmuir model.17-19 This 

implies that a generalised Langmuir isotherm for this system is not thermodynamically consistent 
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and the only way to predict binary adsorption equilibria reliably is through the IAS theory. The 

system also shows a case were the spreading pressures cross at high loadings, i.e. where selectivity 

reversal is present. 

To compare the execution times of the actual algorithm and not the time associated with the 

initialization of the code a loop is repeated 100 times for each calculation and the minimum time 

recorded was used as an indication of the actual execution time. This is an important aspect which 

when comparing the relative performance of the algorithms should eliminate any uncertainty 

associated with the choice of compiler or simulation environment and actual computer and may 

explain some of the results reported recently.4  With this regard we also note that, in writing the 

code for the nested loop and the FastIAS the expression of the isotherm and the spreading pressure 

can be either written as part of the main code or as an external function which is then called during 

the execution of the main code. Clearly the second solution allows to have a more flexible code 

which can be used for different isotherms without the need to modify the main part of the code. On 

the other hand this makes the execution of the code in Matlab slower. Generally we have noted that 

calling external functions for the isotherm and the spreading pressure makes the execution of the 

code about 2-3 times slower than having the isotherm and spreading pressure “embedded” in the 

main section. Figure 5 compares the execution times for the case in which the code is optimised for 

speed and the case in which external functions for the isotherm and the spreading pressure are 

used. In this example a dual-site isotherm is used and the molar fraction is varied from 0.01 to 0.99 

at a total pressure of 1000 kPa.  

The implementation of the NAIV-IAS method in Matlab requires a code structure in which the main 

code calls an external function for the ODE solver. For this reason it was decided that for the 

purpose of the comparison of the different methods external function calls would be used for all 

algorithms.  
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To explore a wide range of initial conditions three different cases have been considered.  

The first is to span the gas phase molar fraction from y1=0.01 to 0.99 in order to look at mixtures in 

the transition from being rich in the more strongly adsorbed component to being rich in the more 

weakly adsorbed component. This is carried out at 3 pressures 10, 100 and 1000 kPa, which 

correspond to low, intermediate and high pressure conditions where the isotherms are close to 

linear, in the transition region for the more weakly adsorbed component and nonlinear for both 

components, respectively.  

The second is to consider a single composition and span pressure, ie. similar to a pressurization step 

in a pressure swing adsorption simulator, in order to see the effect of increasing nonlinearity on 

execution times. 

The third is to consider the case where the concentration sweep, y1= 0.01 to 0.99 at 0.01 intervals, is 

replicated, but the solution from the previous step is used as the initial guess. This example is used 

to test the algorithms in a case similar to where one uses the IAS theory in a dynamic adsorption 

column simulator. In this case the comparisons of the execution times given by the previous two 

cases are only valid if the initial guess does not use the values at the previous time step. The 

requirement to adopt an even faster solution algorithm becomes increasingly important if the 

adsorption simulations are to be coupled with optimization tools. 

Figure 6 shows the execution time as function of the mole fraction of CO2, y1, for the original FastIAS 

and the new approach proposed here. Clearly both methods show very similar execution times at 

the different pressures, with the O’Brien method being slightly faster at the low and intermediate 

pressures and the new method being faster at the higher pressure. The execution time for the two 

methods is strictly related to the number of iterations required. Figure 7 shows the number of 

iterations required for each composition along with a flag that identifies if Eq. 31 is invoked. The flag 

is set to 0 if Eq. 31 is not used; 1 if it is invoked for component 1; 2 if it is invoked for component 2; 
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and 3 if it is invoked for both components. From the plot it can be seen that when using the initial 

guess strategy proposed here Eq. 31 is never invoked at 100 and 1000 kPa.     

Figure 8 shows a similar comparison for the nested loop algorithm with the different initial 

conditions, Eqs. 16 and 20. As it can be seen from the plot, the new initial strategy proposed using 

eq. 16 improves the performance of the original nested loop under all conditions. The improvement 

in the total execution time with the proposed new method is approximately 38, 36 and 19 % at 10, 

100 and 1000 kPa, respectively.      

Figure 9 shows the ratio of the execution times of the nested loop (initial guess Eq. 16) and NAIV-IAS 

algorithms compared to the FastIAS approach at different pressures.  From the plot it can be seen 

that the new nested loop approach is 2-3 times slower than the FastIAS algorithm, while the NAIV-

IAS method is about 20-30 times slower than the FastIAS at all the pressures.  

Figure 10 shows the comparison of the execution times for the FastIAS, with the two initial guess 

strategies, the nested loop and the NAIV-IAS methods. In this case the gas phase concentration is 

kept constant (y1 = 0.5) while the total pressure is increased from 10 to 1000 kPa. The plot shows 

how in the case of the FastIAS the algorithm may be further optimised by creating a routine that 

choses which initial guess strategy to use depending on the pressure range.  

Figure 11 shows the ratio of the execution times for the three algorithms compared to the FastIAS 

algorithm as a function of mole fraction (the average execution for the FastIAS is included in the 

legend), when the initial guess is taken from the previous step. The nested loop and the FastIAS 

algorithms, which are based on Newton methods, clearly improve their performance relative to the 

NAIV-IAS approach, becoming 50-100 times faster. This is due to the quadratic convergence rate 

when the initial guess is close to the solution. Clearly, an adsorption process simulator can be 

optimised to reduce execution time by adding a step which stores the solutions to the IAS theory 

equations when using the FastIAS of nested loop methods. 
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All the cases considered confirm that the FastIAS algorithm is to be considered the state-of-the-art 

approach, with the nested loop being a reasonably close second.  

 

Applying the FastIAS and nested loop algorithms to non-type I isotherms. 

For the FastIAS algorithm, no special issues arise for non-type I isotherms with the exception of 

those isotherms which are not defined above a maximum allowable pressure (i.e. where 

condensation occurs – type II and III18). It is not difficult to resolve this problem since one has to 

include a check so that the reduced pressure remains within the physically valid limits, including the 

initial guesses. This can be expressed as 

𝜂𝑖
〈𝑘+1〉 = 𝜂𝑖

〈𝑘〉 +
𝜂𝑖

𝑚𝑎𝑥−𝜂𝑖
〈𝑘〉

2
                𝑖𝑓          𝜂𝑖

〈𝑘〉 + 𝛿𝑖
〈𝑘〉 > 𝜂𝑖

𝑚𝑎𝑥                               (37) 

It is important to note that for type II and III isotherms there is also an upper limit on the pressure 

that can be set for the mixture. In the case that all components have a maximum allowable pressure, 

from Eq. 1  

1

𝑃𝑡𝑜𝑡
𝑚𝑎𝑥 = ∑

𝑦𝑖

𝑃𝑖
𝑚𝑎𝑥𝑖                     (38) 

This is an intrinsic requirement of the IAS theory and therefore applies to all algorithms. 

 In the nested loop algorithm attention is needed for the numerical solution of the inversion of the 

spreading pressure equation. Clearly if an analytical expression is available for 𝑃𝑖
0(Π) then there are 

no issues to consider as is the case for the anti-Langmuir isotherm (type III). In the general case 

though, from Eq. 9, one has to identify the point(s) P* where 

𝑑𝑞𝑖
0

𝑑𝑃𝑖
0 =

𝑞𝑖
0

𝑃𝑖
0                      (39) 
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which can be found easily by looking at the isotherm for each pure component. Convergence is 

guaranteed if the initial guess gives a value that has the same sign as the second derivative. 

We will outline the solution for a specific isotherm that belongs to each category of isotherms.  

For type II isotherms (BET) there will be only one inflection point in the spreading pressure.20 This 

can be identified easily as shown in Fig. 12 and given the pure component parameters all 𝑃𝑖
∗ can be 

defined before the numerical solution of the IAS theory equations. For a BET isotherm 

𝑞𝑖(𝑃𝑖
0) = 𝑞𝑆𝑖

𝑎𝑖𝑃𝑖
0

(1−𝑏𝑖𝑃𝑖
0)(1−𝑏𝑖𝑃𝑖

0+𝑎𝑖𝑃𝑖
0)

       (40) 

it is possible to derive the analytical solution and 

𝑃𝑖
∗ =

𝑎𝑖−2𝑏𝑖

2𝑎𝑖𝑏𝑖−2𝑏𝑖
2                     (41) 

Clearly for the BET isotherm  

𝑃𝑖
𝑚𝑎𝑥 =

1

𝑏𝑖
                     (42) 

If 𝑃𝑖
0 < 𝑃𝑖

∗ the same criteria for convergence as discussed for type I isotherms apply, while for 

𝑃𝑖
0 > 𝑃𝑖

∗ Newton’s method will converge if the initial guess corresponds to a value of 𝑔𝑖(𝑃𝑖
0) > 0. A 

simple search will suffice as one can start with  

𝑃𝑖
0 =

𝑃𝑖
∗+𝑃𝑖

𝑚𝑎𝑥

2
          (43) 

and if needed continue to halve the interval between 𝑃𝑖
0and 𝑃𝑖

𝑚𝑎𝑥 until the function becomes 

positive. 

For type III isotherms 𝑃𝑖
∗ = 0 and the same approach used for type II isotherms above the inflection 

point will guarantee convergence. 

When a quadratic isotherm is used4,21  
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𝑞𝑖(𝑃𝑖
0) = 𝑞𝑆𝑖

𝑎𝑖𝑃𝑖
0+2𝑏𝑖𝑃𝑖

02

1+𝑎𝑖𝑃𝑖
0+𝑏𝑖𝑃𝑖

02        (44) 

if all the coefficients are positive, it is possible to obtain either type I or type V isotherms. For type V 

isotherms we have again only one inflection point in the spreading pressure and Fig. 13 shows how 

to identify it directly on the plot of the isotherm.  

For the quadratic isotherm we can also find the analytical solution for Eq. 39 

𝑃𝑖
∗ =

−𝑎𝑖+√4𝑏𝑖−𝑎𝑖
2

2𝑏𝑖
         (45) 

If all the coefficients in the isotherm are positive, from this equation it is clear that the inflection 

point is present if 𝑎𝑖
2 < 2𝑏𝑖.  

If the spreading pressure is below the inflection point, the same approach as for type III isotherms 

applies. If we are above the inflection point, then one needs to search for an initial value so that 

𝑔𝑖(𝑃𝑖
0) < 0. One can simply start at double the inflection point pressure and if needed halve the 

interval between the guess and the inflection point until a negative value of the function is found. 

For type IV isotherms there will be two points where Eq. 39 is fulfilled, 𝑃1𝑖
∗   and 𝑃2𝑖

∗ , which again can 

be identified before solving the IAS theory equations. This is shown in Fig. 14. A type IV isotherm can 

be obtained from a quadratic plus Langmuir isotherm with certain ranges of the isotherm 

parameters. 

𝑞𝑖(𝑃𝑖
0) = 𝑞𝑆1𝑖

𝑎𝑖𝑃𝑖
0+2𝑏𝑖𝑃𝑖

02

1+𝑎𝑖𝑃𝑖
0+𝑏𝑖𝑃𝑖

02 + 𝑞𝑆2𝑖
𝑐𝑖𝑃𝑖

0

1+𝑐𝑖𝑃𝑖
0      (46) 

The analytical solution for Eq. 39 is in the form of a quartic polynomial 

𝑃𝑖
∗4

+ 𝐴𝑃𝑖
∗3

+ 𝐵𝑃𝑖
∗2

+ 𝐶𝑃𝑖
∗ + 𝐷 = 0        (47) 

where 
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𝐴 =
2𝑎𝑖𝑏𝑖𝑐𝑖

2(𝑞𝑆1𝑖+𝑞𝑆2𝑖)+4𝑏𝑖
2𝑐𝑖𝑞𝑆1𝑖

𝑏𝑖
2𝑐𝑖

2(2𝑞𝑆1𝑖+𝑞𝑆2𝑖)
 ;  𝐵 =

2𝑏𝑖𝑐𝑖
2(𝑞𝑆2𝑖−𝑞𝑆1𝑖)+4𝑎𝑖𝑏𝑖𝑐𝑖𝑞𝑆𝑖+𝑎𝑖

2𝑐𝑖
2𝑞𝑆2𝑖+2𝑏𝑖

2𝑞𝑆1𝑖

𝑏𝑖
2𝑐𝑖

2(2𝑞𝑆1𝑖+𝑞𝑆2𝑖)
   

  

𝐶 =
2𝑎𝑖𝑐𝑖

2𝑞𝑆2𝑖+2𝑎𝑖
2𝑐𝑖𝑞𝑆1𝑖+2𝑎𝑖𝑏𝑖𝑞𝑆1𝑖−4𝑏𝑖𝑐𝑖𝑞𝑆1𝑖

𝑏𝑖
2𝑐𝑖

2(2𝑞𝑆1𝑖+𝑞𝑆2𝑖)
 ; 𝐷 =

𝑎𝑖
2𝑞𝑆1𝑖+𝑐𝑖

2𝑞𝑆2𝑖−2𝑏𝑖𝑞𝑆1𝑖

𝑏𝑖
2𝑐𝑖

2(2𝑞𝑆1𝑖+𝑞𝑆2𝑖)
     

From the sign of the coefficients of the polynomial it is possible to find the number of positive roots 

(based on the number of sign changes22 there can be no roots = type I isotherm; one root = type V 

isotherm; two roots = type IV isotherm). For two roots it is necessary for B to be negative, hence a 

high ci combined with qS1i > qS2i is required. A solid with a small amount of micropores and a large 

surface, which behaves as a type V isotherm, will yield a type IV overall isotherm. In this case there 

are two inflection points, 𝑃1𝑖
∗  < 𝑃2𝑖

∗ . For 𝑃𝑖
0 < 𝑃1𝑖

∗  the system will be the same as for a type I isotherm, 

while for 𝑃𝑖
0 > 𝑃2𝑖

∗  we are in the same case as for a type V isotherm above the inflection point. In the 

intermediate region one can initiate the search for a positive initial value starting with the mean and 

then iterate by halving the interval between the initial guess and 𝑃2𝑖
∗  until the value of 𝑔𝑖 is positive.  

From the discussion in this section it should be clear that it is always possible to construct a robust 

algorithm for both the FastIAS and the nested loop approaches which guarantees convergence for 

any isotherm. Since this is achieved by pre-processing, i.e. analysing the shape of the isotherms 

before any calculation, the actual simulation times will be close to those of the simpler type I 

isotherms. The Supporting Information includes examples for the non-type I isotherms along with a 

detailed comparison of the simulation times, confirming that the general trends observed for type I 

isotherms are still valid. Given the significant difference in computational speeds with other 

algorithms, it is clearly worth the small additional effort especially if one has to simulate complex 

adsorption processes which may be embedded in an optimisation scheme. 

As a final comparison we also considered the 10 component problem which, according to O’Brien 

and Myers,8 fails to converge using the algorithm from Moon and Tien5 at the conditions specified in 

Table 2. As expected there are no convergence issues with the nested loop algorithm and the ratio 
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of the execution times are in line with the results obtained for the binary systems as shown in Table 

3. 

        

Conclusions. 

General robust algorithms have been developed for the solution of the Ideal Adsorbed Solution 

theory equations for any type of adsorption isotherm. A formal proof of convergence has been 

derived for the first time to demonstrate that the nested loop algorithm is guaranteed to converge 

provided that the initial guess for the equation used to solve for the spreading pressure yields a 

negative value for the function for any type of adsorption isotherm. A new starting point, consistent 

with the correct low pressure limit, results in a procedure that is on average twice as fast as the 

original approach of Myers and Valenzuela6 at higher pressures and has the further advantage of 

fulfilling the strict convergence criteria. 

The FastIAS algorithm has been reformulated in terms of a generic isotherm and has been shown to 

yield a Jacobian that is always positive definite for any type of adsorption isotherm. As a result either 

the original algorithm or a backtracking variant are guaranteed to converge and the only remaining 

issue that is easily dealt with is linked with having to impose additional conditions that ensure that 

the calculated pressures remain within the physically valid limits. 

The original nested loop and the FastIAS algorithms have been successfully extended to all non-type 

I adsorption isotherms. A simple procedure that requires pre-processing of the isotherm allows the 

selection of the conditions in which the nested loop algorithm is guaranteed to converge and the 

application has been demonstrated for type II-V isotherms. 

A detailed comparison of computational times for the different algorithms considered indicates that 

the FastIAS algorithm is the state-of-the-art approach to solving the IAS theory equations. The 



23 
 

nested loop algorithm is up to 2-3 times slower and the recent NAIV-IAS algorithm is typically 10-20 

times slower for all cases considered in Matlab.  
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Tables 

Table 1: Dual site Langmuir isotherm parameters  

Component CO2 Propane 

qs1  [mol/kg] 1.46836 2.58 

b1 [1/kPa] 0.0244 0.95254 

qs2 [mol/kg] 7.89083 2.9 

b2 [1/kPa] 0.00165 0.01316 
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Table 2: Parameters for the O’Brien and Myers isotherm for the 10 components problem4,8 

Component, i qi
sat (mol/kg) bi (kPa1) σi (-) yi 

1 5 0.01 1.2 0.1 

2 3 0.006 1.1 0.01 

3 4 0.0009 0.8 0.01 

4 2 0.01 1.2 0.05 

5 3.5 0.005 1 0.2 

6 4 0.001 1.1 0.2 

7 2 0.015 1.2 0.1 

8 2.5 0.001 1.15 0.2 

9 4 0.0001 1 0.02 

10 5.5 0.006 1 0.11 
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Table 3: Execution times for the 10 component case at P = 300 kPa   

Nested loop FastIAS NAIV-IAS 

2.2x10–3 s 5.6x10–4 s 6.2x10–3 s 
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Figure captions 

 

Figure 1: Qualitative shape of Eq. 4 and limit of guaranteed convergence. 

 

Figure 2: Graphical construction in terms of reduced spreading pressure vs KP. 

 

Figure 3: Graphical construction in terms of reduced spreading pressure vs P. 

 

Figure 4: Experimental isotherms for CO2 and Propane and analytical isotherms fitted using the dual 

site Langmuir model. 

 

Figure 5: Comparison of the execution time for the FastIAS and nested loop codes in the case in 

which codes are optimised for speed and when external functions for isotherm and spreading 

pressure are used. 

 

Figure 6: Execution times for the FastIAS method at different total pressures for different initial 

guesses. 

 

Figure 7: Total number of iteration for FastIAS at different pressures using Eq. 32 and Eq. 33. Flags 

indicating when Eq. 31 is invoked are also shown for both methods. 

 

Figure 8: Execution times for the nested loop method at different total pressures, using as initial 

guess Eq. 20 and Eq. 16. 

 

Figure 9: Ratio of execution times for the nested loop and the NAIV-IAS method compared to FastIAS 

(actual execution times are reported in the Supporting Information). 



30 
 

 

Figure 10: Execution times for the FastIAS, nested loop and NAIV-IAS algorithms at y1 = 0.5 and 

different total pressures. 

 

Figure 11: Ratio of the execution times for the FastIAS, the nested loop and the NAIV-IAS  algorithms 

at different pressure in the case in which the solution from the previous step is used as initial guess 

(actual execution times are reported in the Supporting Information).   

 

Figure 12: Graphical solution of Eq. 39 for a Type II isotherm. 

 

Figure 13: Graphical solution of Eq. 39 for a Type V isotherm. 

 

Figure 14: Graphical solution of Eq. 39 for a Type IV isotherm. 
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Figure 1: Qualitative shape of Eq. 4 and limit of guaranteed convergence. 
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Figure 2: Graphical construction in terms of reduced spreading pressure vs KP. 
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Figure 3: Graphical construction in terms of reduced spreading pressure vs P. 
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Figure 4: Experimental isotherms for CO2 and Propane and analytical isotherms fitted using the dual site 

Langmuir model.  
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Figure 5: Comparison of the execution time for the FastIAS and nested loop codes in the case in which codes 

are optimised for speed and when external functions for isotherm and spreading pressure are used.  
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Figure 6: Execution times for the FastIAS method at different total pressures for different initial guesses. 
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Figure 7: Total number of iteration for FastIAS at different pressures using Eq. 32 and Eq. 33. Flags indicating 

when Eq. 31 is invoked are also shown for both methods.  
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Figure 8: Execution times for the nested loop method at different total pressures, using as initial guess Eq. 20 

and Eq. 16. 
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Figure 9: Ratio of execution times for the nested loop and the NAIV-IAS method compared to FastIAS (actual 

execution times are reported in the Supporting Information). 
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Figure 10: Execution times for the FastIAS, nested loop and NAIV-IAS algorithms at y1 = 0.5 and different total 

pressures. 
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Figure 11: Ratio of the execution times for the FastIAS, the nested loop and the NAIV-IAS  algorithms at 

different pressure in the case in which the solution from the previous step is used as initial guess (actual 

execution times are reported in the Supporting Information).   
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Figure 12: Graphical solution of Eq. 39 for a Type II isotherm. 
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Figure 13: Graphical solution of Eq. 39 for a Type V isotherm. 
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Figure 14: Graphical solution of Eq. 39 for a Type IV isotherm. 

 


