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Abstract

Background: Mathematical modeling of cardiovascular magnetic resonance perfusion data allows absolute
quantification of myocardial blood flow. Saturation of left ventricle signal during standard contrast administration can
compromise the input function used when applying these models. This saturation effect is evident during application
of standard Fermi models in single bolus perfusion data. Dual bolus injection protocols have been suggested to
eliminate saturation but are much less practical in the clinical setting. The distributed parameter model can also
be used for absolute quantification but has not been applied in patients with coronary artery disease. We assessed
whether distributed parameter modeling might be less dependent on arterial input function saturation than Fermi
modeling in healthy volunteers. We validated the accuracy of each model in detecting reduced myocardial blood
flow in stenotic vessels versus gold-standard invasive methods.

Methods: Eight healthy subjects were scanned using a dual bolus cardiac perfusion protocol at 3T. We performed
both single and dual bolus analysis of these data using the distributed parameter and Fermi models. For the dual
bolus analysis, a scaled pre-bolus arterial input function was used. In single bolus analysis, the arterial input function
was extracted from the main bolus. We also performed analysis using both models of single bolus data obtained from
five patients with coronary artery disease and findings were compared against independent invasive coronary
angiography and fractional flow reserve. Statistical significance was defined as two-sided P value < 0.05.

Results: Fermi models overestimated myocardial blood flow in healthy volunteers due to arterial input function
saturation in single bolus analysis compared to dual bolus analysis (P < 0.05). No difference was observed in these
volunteers when applying distributed parameter-myocardial blood flow between single and dual bolus analysis. In
patients, distributed parameter modeling was able to detect reduced myocardial blood flow at stress (<2.5 mL/min/mL
of tissue) in all 12 stenotic vessels compared to only 9 for Fermi modeling.

Conclusions: Comparison of single bolus versus dual bolus values suggests that distributed parameter modeling
is less dependent on arterial input function saturation than Fermi modeling. Distributed parameter modeling
showed excellent accuracy in detecting reduced myocardial blood flow in all stenotic vessels.

Keywords: Cardiovascular magnetic resonance, Myocardial blood flow, Fermi modeling, Distributed parameter
modeling, Fractional flow reserve, Invasive coronary angiography
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Background
Mathematical modeling of cardiovascular magnetic
resonance perfusion (CMR) has the potential to allow
quantitative assessment of myocardial blood flow [1,2].
Establishing absolute quantification of blood flow could
have clinical benefits since it may lead to an improve-
ment in the diagnosis and prognostication of patients
with coronary artery disease [3-6].
Myocardial blood flow quantification using model-

dependent analysis is based on fitting the convolution
of a model with the arterial input function to the tissue
contrast agent concentration-time curve. The model
describes the passage of a contrast agent through the
myocardium whilst the arterial input function is the
observed contrast agent concentration-time curve derived
from the blood pool [3]. Fermi deconvolution model-
ing is a popular approach used to estimate myocardial
blood flow during the first-pass of gadolinium-based
extracellular contrast agents (CA) [3,7,8]. It is an
empirical-mathematical model, which is convolved
with the first-pass of the arterial input function [3].
The distributed parameter model assumes that the
extravascular-extracellular space exchanges CA with
nearby regions in the intravascular space, restricting axial
transport of CA inside the extravascular-extracellular
space [4]. In addition to myocardial blood flow, this
model can also be used to calculate other micro-
vascular characteristics including intravascular space,
extravascular-extracellular space, permeability surface
area product, extraction fraction and volume of dis-
tribution [9].
The high concentration of CA during bolus passage

leads to signal saturation and causes concentration
underestimation in the left ventricular cavity [10] (which
is used to generate an arterial input function for model
deconvolution analysis). This can degrade the accuracy
and reproducibility of myocardial blood flow quantifi-
cation using Fermi modeling, leading to systematic
myocardial blood flow overestimation [3]. The dual bolus
acquisition technique can eliminate signal saturation
allowing more reliable quantification of myocardial
blood flow in first-pass magnetic resonance perfusion
imaging. In the dual bolus technique, an initial injec-
tion of dilute CA is used to acquire a non-saturated
arterial input function before the main CA bolus. This
is commonly referred to as the “pre-bolus” [11,12].
However, compared to single bolus protocols [1-3,7-9],
dual bolus imaging protocols are characterized by
increased complexity both in image acquisition and
data analysis [3,10-12].
In the present study, we compared single and dual

bolus estimates of myocardial blood flow in healthy
volunteers using both distributed parameter and Fermi
models. We also assessed whether these models can
reliably detect areas with reduced myocardial blood
flow compared to a clinical gold standard of invasive
coronary angiography and fractional flow reserve in
patients with coronary artery disease.

Methods
Study population
Eight healthy volunteers with no previous history of
cardiovascular or renal disease, diabetes mellitus, asthma
or any other clinically significant illness and five patients
with suspected coronary artery disease were recruited
into the study. Exclusion criteria included severely
compromised renal function (estimated glomerular
filtration rate <30 mL/min) and contraindications to
magnetic resonance imaging. The study was performed
with the approval of the local research ethics commit-
tee, in accordance with the Declaration of Helsinki and
with the written informed consent of all subjects. Prior
to CMR perfusion, all subjects were asked to refrain
from caffeine for 12 hours.

Image acquisition
All data were acquired using a 3T Verio system (Siemens
AG, Healthcare Sector, Erlangen, Germany). Standard
cardiac imaging planes and a short axis stack of left
ventricular cine data were acquired using routine
steady state free precession (TrueFISP) acquisitions.
Native T1 relaxation rates (i.e. in the absence of CA)
were calculated using the modified Look-Locker inver-
sion (MOLLI) recovery technique [13]. Stress imaging
was performed by intravenous infusion of 140 μg/kg/
min of adenosine (Adenoscan, Sanofi Aventis). Fifty
dynamic perfusion images were obtained at diastole across
three short-axis view slices: basal, mid-ventricular and
apical slices according to the standard 16-segment heart
model [14]. Perfusion images were acquired using a
turbo-fast low angle shot (FLASH) saturation recovery
prepared single-shot gradient echo pulse sequence
(repetition time/ echo time 2.20 ms/1.07 ms, flip angle
12o, slice thickness 8 mm, preparation pulse delay (PD)
to central line of k-space 100 ms, matrix size 192 × 108
and FoV 330 mm × 440 mm). With the application of
GRAPPA (accelerator factor of 3) and partial Fourier
acquisition of 0.75, each dynamic frame consisted of
48-phase encoded lines. All CMR perfusion data were
acquired using electrocardiogram-gating.

Contrast agent bolus administration
In single bolus imaging, 0.05 mmol/kg of CA (Gadovist,
Bayer Healthcare) was injected intravenously after 4 min
of adenosine infusion, followed by 20 mL of 0.9% saline
(Medrad Spectris Solaris, Medrad, USA) at 4 mL/s [3].
All patients with coronary artery disease were imaged
using the single bolus protocol.
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In the healthy volunteer cohort, an additional pre-
bolus infusion was administered to allow dual bolus
modeling to be applied without the risk of signal satur-
ation in the arterial input function. In this dual bolus
protocol, the two boluses were injected in a pre-
determined concentration ratio (pre-bolus:main bolus,
1:5) with the pre-bolus diluted using 0.9% saline. After
3.5 min of adenosine infusion, the pre-bolus of 0.006
mmol/kg CA was injected and adenosine was contin-
ued until the main bolus of 0.03 mmol/kg had also
been administered. The pre-bolus allows determin-
ation of the arterial input function whilst the main
bolus allows measurement of myocardial CA concen-
tration curves [15]. To allow clearance of residual CA,
the rest perfusion imaging was performed 15 min after
the adenosine-stress scan with the same acquisition
protocol in all subjects [3,7,8,15].

Invasive coronary angiography and fractional flow
reserve
All five patients underwent invasive coronary angiog-
raphy at the Royal Infirmary of Edinburgh. Fractional
flow reserve was assessed for major epicardial vessels
and defined as the ratio between distal coronary pressure
and aortic pressure measured simultaneously at maximal
adenosine-induced (intravenous 140μg/kg/min) hyper-
aemia [16,17]. Haemodynamically significant coronary
artery disease was defined as luminal stenosis ≥70% on
invasive coronary angiography, or fractional flow reserve
< 0.80 and luminal stenosis ≥50 %. Outcomes from the
three main coronary vessels were classified into 3
groups: Group 1, no or minor coronary artery disease
with luminal stenosis <50%; Group 2, non-obstructive
coronary artery disease with luminal stenosis ≥50% and
fractional flow reserve > 0.80; and Group 3, obstructive
coronary artery disease with luminal stenosis of ≥70%
alone, or luminal stenosis ≥50% and fractional flow
reserve ≤ 0.80 [16,17].

Cardiac contouring
Endocardial and epicardial contours were manually de-
fined on the short axis magnetic resonance perfusion
imaging data using dedicated cardiac image analysis
software (QMass, Medis, The Netherlands) to generate
a standardised 16-segment model of the heart [14].
Myocardial blood flow analysis was performed per myo-
cardial segment. The signal intensity of the arterial in-
put function was extracted from the left ventricular
cavity excluding papillary muscles using customised
in-house software created in Matlab (MathWorks Inc.,
Natick, MA) [18].
All arterial input function curves were extracted

from the basal slice [3,7]. In single bolus analysis, the
arterial input function was extracted from the standard
(main bolus) CA dose component. For the dual bolus
analysis in healthy subjects, the pre-bolus arterial input
function was scaled and used for deconvolution ana-
lysis [3,11,15].

Image processing
To correct for signal saturation, myocardial and arter-
ial input function signal intensity-time curves were
converted to CA concentration-time curves using the
method of Larsson et al [19], as described previously
[3,7-9,11,12,19,20]. This method is based on the as-
sumption that in a region of interest, the longitudinal
relaxation rate R1 (1/T1) changes linearly as a function
of contrast agent concentration influx c(t) at time t
multiplied by its relaxivity r1 according to the follow-
ing equation:

1
T1 tð Þ−

1
T1 0ð Þ ¼ r1⋅ c tð Þ; ð1Þ

where T1(0) is the native longitudinal relaxation rate and
T1(t) is the longitudinal relaxation rate at time t of con-
trast enhancement. By substituting ΔR1

1
T1 tð Þ−

1
T1 0ð Þ ; equa-

tion (1) can be re-written as:

c tð Þ ¼ ΔR1

r1
ð2Þ

In the above set of equations, T1(t) is unknown and
can be calculated by adapting the MR signal equation
for the saturation recovery prepared single-shot FLASH
sequence as follows [3,7,19]:

SI ¼ ψ⋅ 1−e−PD⋅R1
� �

⋅an−1 þ b⋅
1−a
1−a

� �
ð3Þ

where SI is the signal intensity, Ψ is a calibration constant
dependent on receiver gain, instrumental conditions, pro-
ton density and α. PD is the pre-pulse delay which is the
time between saturation pulse and the central line of
k-space, a ¼ cos αð Þ⋅e−TR⋅R1 and b ¼ 1−e−TR⋅R1 . TR is
the time interval between repetitive α-radiofrequency
pulses. Ψ is assumed to be constant throughout the dy-
namic perfusion image acquisition [19] and was initially
calculated from equation (3) by using native T1 and
signal intensities derived from a region of interest (i.e.
myocardial segment, arterial input function) in the
absence of CA. T1(t) at time t of contrast enhancement
was then calculated from equation (3) using Ψ and
signal intensity values extracted from the same region
of interest in each of the dynamic perfusion images. CA
concentration-time curves were then calculated using
equation (2).
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Model equations
The model equations used for data fitting are summa-
rized in Table 1. These equations represent the tissue
impulse response R(t) the shape of which is determined
by the fitted parameters [3]. To quantify myocardial
blood flow and other parameters generated by the Fermi
and distributed parameter models, we used model-
constrained deconvolution [3,7,9]. The Fermi model was
fitted in the time domain whilst the distributed param-
eter model was fitted in the Laplace domain in order to
avoid discontinuities of the time step-function that can
be present when fitting the distributed parameter model
in the time domain [9,21]. We fitted the convolution of
the Fermi function with the first-pass of the arterial in-
put function, setting the end-point at the CA concentra-
tion minimum before the recirculation component
begins (this range varies from patient to patient but is
commonly in the range between 20-35 dynamic frames).
We also fitted the convolution of the distributed parameter
function with the entire CA concentration time course of
the arterial input function (i.e. 50 dynamic frames per
slice). To further investigate the behaviour of distributed
parameter modeling in single and dual bolus analysis, we
also fitted the convolution of the distributed parameter
model with the first-pass of the arterial input function
using the same number of time points as in Fermi model-
ing. All additional microvascular parameters were calcu-
lated using the relationships described in Table 2 [4,9].
A haematocrit value of 0.45 was assumed in order to

convert myocardial blood flow into plasma flow which
was used to calculate permeability surface area product,
extraction fraction, extravascular-extracellular space and
volume of distribution. Both models were fitted using a
constrained nonlinear optimization (fmincon) in Matlab
[22]. Myocardial perfusion reserve (myocardial blood
flow at stress/ myocardial blood flow at rest) was calcu-
lated for all healthy volunteer data. Consistent with pre-
vious cardiac perfusion studies, vessel territories in
patients with hyperaemic myocardial blood flow values
less than 2.5 mL/min/mL of tissue were considered as
regions with reduced myocardial blood flow [5,6].

Statistical analysis
The R software was used for statistical analysis (R Founda-
tion for statistical computing, Vienna, Austria). Identification
Table 1 Model equations

Model Fitted parameters

Distributed parameter Myocardial blood flow, T, Tc, Te

Fermi Myocardial blood flow, τ0, k

Fitted parameters for distributed parameter: myocardial blood flow, T is mean over
extravascular-extracellular) transit time. Where s = i ⋅ 2 ⋅ π ⋅ f and f is the frequency v
blood flow, τ0 characterized the width of the shoulder of the Fermi function and k
time variable.
of any systematic bias between dual bolus and single
bolus modeling estimates was performed using Bland
Altman plots for both models. Statistical differences
were investigated between Fermi and distributed par-
ameter modeling, between distributed parameter and
first-pass distributed parameter modeling, between
stress and rest modeling values as well as between dual
and single bolus analysis by implementing a paired t-test.
A Welch two sample t-test was used to investigate
statistical differences in myocardial blood flow values
between the different groups (Groups 1-3) classified at
the time of invasive coronary angiography.
Homogeneity of variances was verified using a Fisher’s

F-test. Comparison of mean myocardial blood flow and
physiological parameters estimates in vessel territories of
patients versus overall mean values in healthy volunteers
was investigated using one sample t-test. Statistical sig-
nificance was defined as two-sided P value < 0.05.

Results
The distributed parameter model was fitted in 8 healthy
volunteers and 5 patients with coronary artery disease.
Example images are shown in Figure 1. We generated
416 CA concentration-time curves in 13 subjects (16
myocardial segments per subject both at stress and rest).
Distributed parameter model fits were successful in 398
CA concentration-time curves and non-convergent in 7
myocardial segments of one volunteer at stress, in 5
myocardial segments of one volunteer at rest and in 6
segments of one patient at stress. The Fermi model suc-
cessfully fitted all CA concentration-time courses.

Comparison of Fermi and distributed parameter models
in healthy volunteers
We initially fitted the Fermi and distributed parameter
models to CA concentration-time curves for our healthy
volunteer population using arterial input functions de-
rived from the main bolus data. Examples of Fermi and
distributed parameter model fits at rest and stress are
presented in Figure 2. Examples of pre-bolus and main
bolus arterial input functions are shown in Figure 3.
Fermi-derived myocardial blood flow values were higher
than distributed parameter-derived myocardial blood flow
values for both stress and rest (P = 0.0005 and P = 0.007
respectively, Table 3).
Fitting domain Tissue impulse response R

Laplace R sð Þ ¼ 1− exp −s⋅ Tþs⋅Tc ⋅Teð Þ= 1þs⋅Teð Þ½ �
s

Time R tð Þ ¼ 1
exp t−τ0ð Þ⋅k½ �þ1

all transit time, Tc is mean capillary transit time, Te is mean interstitial (i.e.
ariable in the Fourier transformed data. Fitted parameters for Fermi: myocardial
determined the decay rate of R(t) due to contrast agent wash-out. t is the



Table 2 Microvascular characteristics

Microvascular characteristics Equation

vb vb =MBF ⋅ Tc

ve ve =MBF ⋅ (T − Tc)

vd vd =MBF ⋅ T

PS PS ¼ MBF⋅ T−Tcð Þ
Te

E E ¼ 1− exp − PS
MPF

� �
MPF MPF =MBF ⋅ (1 − hct)

Microvascular characteristics were calculated by incorporating the fitted
parameters of the distributed parameter model into the following relationships
(see reference [4]). Myocardial plasma flow (MPF) was used to calculate
extravascular-extracellular space (ve), distribution volume (vd), permeability surface
area product (PS) and extraction fraction (E) and myocardial blood flow (MBF) to
calculate intravascular space (vb). Hematocrit: hct.
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We subsequently fitted the Fermi and distributed par-
ameter models for our healthy volunteer population,
using scaled arterial input functions from their pre-
bolus data. Fermi-derived myocardial blood flow values
were again higher than distributed parameter-derived
myocardial blood flow values for both stress and rest
(P = 0.03 and P = 0.003 respectively, Table 3).
Mean distributed parameter model-derived myocardial

blood flow at stress was not different in dual bolus com-
pared to single bolus analysis (P = 0.22) whilst mean
Fermi model-derived myocardial blood flow at stress
was higher in single bolus versus dual bolus analysis
(P = 0.00003, Table 3).
Systematic bias of the above comparisons was investi-

gated using Bland Altman method. The average bias was
computed as the blood flow values at stress determined
in dual bolus minus the relative values determined in
the single bolus analysis. For the Fermi model, the aver-
age bias was -1.00 with 95% confidence intervals [-1.58,
-0.42] and for the distributed parameter model, the aver-
age bias value was -0.30 with 95% confidence intervals
[-1.61, 0.94].
Figure 1 Mid-ventricular dynamic CMR perfusion images are shown. C
with a perfusion abnormality in the infero-septal and inferior myocardial re
Mean Fermi and distributed parameter-derived myo-
cardial blood flow at rest did not significantly change be-
tween single and dual bolus analysis (P = 0.07 for both).
The additional distributed parameter estimates were not
significantly different in single bolus compared to dual
bolus analysis (see values in Additional file 1).
Mean myocardial blood flow was higher during

hyperaemia in all healthy volunteers for distributed
parameter-dual bolus (P = 0.00001), Fermi-dual bolus
(P = 0.0000001), distributed parameter-single bolus
(P = 0.0000005), and Fermi-single bolus analysis (P <
0.0000001). Mean (SD) myocardial perfusion reserve
values were: 2.59 (0.37) for distributed parameter-dual
bolus, 2.42 (0.30) for distributed parameter-single bolus,
2.51 (0.48) for Fermi-dual bolus and 2.96 (0.34) for
Fermi-single bolus analysis.
To investigate the lack of dependence of the distrib-

uted parameter model to arterial input function satur-
ation observed in single bolus data, we also performed
first-pass distributed parameter modeling. There was
no difference between distributed parameter and first
pass distributed parameter myocardial blood flow
values (P = 0.17 in dual bolus, P = 0.79 in single bolus
analysis, Table 3). No difference was observed in first-
pass distributed parameter-derived myocardial blood
flow values between single and dual bolus analysis, for
both stress (P = 0.31) and rest (P = 0.16) (Table 3).

Distributed parameter and Fermi analysis in patients with
coronary artery disease
Invasive coronary angiography and fractional flow
reserve identified 7 vessels with obstructive lesions
(Group 3), 5 vessels with non-obstructive lesions (Group
2) and 3 vessels with no or minor coronary artery
disease (Group 1).
Mean myocardial blood flow values were calculated in

vessel territories of the three main coronary arteries for
each patient using both models (Table 4, Figure 2e and f).
MR perfusion image from a) a healthy volunteer and b) a patient
gions (white arrows).



Figure 2 Examples of Fermi and distributed parameter model fits. Examples of model fits at rest (a, b) and at stress (c, d) from the same
volunteer (dual bolus analysis). Fermi (e) and distributed parameter (f) model fits during hyperemia of a pathological myocardial segment (single
bolus analysis). DP:distributed parameter model, Gd: gadolinium.
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The Fermi and distributed parameter models correctly
identified reduced myocardial blood flow in 6 and 7
of the 7 vessels in Group 3 respectively. In addition,
the Fermi and distributed parameter models correctly
identified reduced myocardial blood flow in 3 and 5 of
the 5 vessels in Group 2 respectively. Both models
estimated myocardial blood flow within normal range
in Group 1. A difference was observed in myocardial
blood flow at stress and in myocardial perfusion re-
serve between Group 1 versus Groups 2 and 3 for both
models (Figure 4, Table 4).
Mean physiological parameter values were also calcu-
lated using distributed parameter modeling in all vessel
territories for all patients (see Additional file 1).

Discussion
We have compared single and dual bolus estimates of
myocardial perfusion in healthy volunteers using both
Fermi and 2-region 1-barrier distributed parameter
models. We demonstrate no difference in myocardial
blood flow estimates using the distributed parameter
model between single and dual bolus analysis. In



Figure 3 Scaled pre-bolus arterial input function versus standard arterial input function from the same examination. In volunteer 1
(a) and volunteer 2 (b) scaled pre-bolus (blue) arterial input function and main bolus arterial input function (red) are shown. Gd: gadolinium.
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agreement with previous work, we demonstrate an
increase in stress myocardial blood flow estimates
with application of Fermi modeling using single bolus
data analysis compared to dual bolus data analysis.
For the first time, we have also successfully fitted the
distributed parameter model in patients with coronary
artery disease.

Model comparison in healthy volunteers
Using the distributed parameter model, we successfully
fitted 96% of our data (398 in 416 CA concentration-time
courses). Model comparison in 8 healthy volunteers
suggested that single bolus analysis of the distributed
parameter model shows no statistically significant dif-
ference compared to dual bolus analysis, indicating
that this model may be less dependent on arterial input
function saturation than the Fermi model. Further-
more, distributed parameter modeling using the first
pass only, showed no statistically significant difference
between single bolus and dual bolus analysis. This
shows that the lack of dependence on single or dual
bolus in the distributed parameter model using the full
curve is not due to the increased number of time
points used for fitting, compared to the first pass Fermi
model. Dual bolus [11,12,15,23] and dual sequence
[10,24] (which includes a low resolution dynamic
acquisition of the left ventricle to eliminate arterial in-
put function saturation), are the most widely suggested
techniques to solve the issue of arterial input function
saturation. However, both of these techniques involve
Table 3 Healthy volunteer mean (SD) myocardial blood flow v

Modeling values/Method Fermi Fermi

Dual bolus Single bolus

Myocardial blood flow-Stress (mL/min/mL) 3.57 (0.59)* 4.57 (0.62)*

Myocardial blood flow-Rest (mL/min/mL) 1.48 (0.40) 1.57 (0.33)

Statistical differences between single and dual bolus analysis are indicated with *.
increased complexity in image acquisition and data
analysis that have led to ongoing debate regarding
whether either method might replace standard single
bolus protocols for CMR perfusion and myocardial
blood flow quantification. Whilst single bolus proto-
cols are prone to arterial input function saturation,
they are still widely used in clinical imaging and are
suitable for qualitative assessment of myocardial perfu-
sion. Our analysis suggests that peak arterial input
function saturation may not be such a dominant factor
when quantifying myocardial blood flow in distributed
parameter modeling compared with Fermi modeling.
Our calculated myocardial blood flow and micro-

vascular characteristic parameter values generally agree
with a previous study that was the first to introduce the
two-region, one-barrier distributed parameter model in
cardiac data [9]. Broadbent et al fitted a distributed par-
ameter model in data acquired using a different proto-
col: short-axis view of the entire myocardial area across
one mid-ventricular slice acquired in systole at 1.5 T.
We applied the distributed parameter model using a
16-segment heart model across three mid-ventricular
slices acquired in diastole at 3T.

The impact of contrast agent dose
We validated the dependence of Fermi and distributed
parameter modeling in the presence of arterial input
function saturation in single bolus data, using a relatively
low CA dose (0.03 mmol/kg) in our healthy volunteer
cohort. The administration of the specific CA dose has
alues calculated using dual and single bolus analysis

DP DP DP-First pass DP-First pass

Dual bolus Single bolus Dual bolus Single bolus

3.16 (0.71) 3.45 (0.48) 3.39 (0.56) 3.47 (0.50)

1.23 (0.26) 1.46 (0.29) 1.18 (0.26) 1.34 (0.31)



Table 4 Invasive coronary angiography/fractional flow reserve classification and mean myocardial blood flow (SD) at
stress measured in mL/min/mL per vessel territories of the three main coronary arteries

Invasive coronary
angiography/Fractional
flow reserve

Distributed
parameter-Myocardial
blood flow

Fermi-Myocardial
blood flow

Distributed
parameter-Myocardial
perfusion reserve

Fermi-Myocardial
perfusion reserve

Patient 1 LAD 3 0.82 (0.28)* 1.68 (0.60)* 0.88 (0.29) 1.54 (0.47)

LCX 3 0.94 (0.20)* 1.99 (0.41)* 0.91 (0.16) 1.73 (0.44)

RCA 2 0.84 (0.17)* 1.77 (0.79)* 0.91 (0.24) 1.77 (0.44)

Patient 2 LAD 2 1.99 (0.30)* 3.37 (0.49) 1.68 (0.37) 2.15 (0.49)

LCX 2 1.98 (0.27)* 2.61 (0.41) 1.26 (0.30) 1.87 (0.80)

RCA 3 1.27 (0.27)* 1.80 (0.81)* 0.86 (0.30) 1.08 (0.33)

Patient 3 LAD 2 1.20 (0.10)* 1.19 (0.34)* 0.71 (0.11) 0.78 (0.44)

LCX 3 1.34 (0.13)* 1.84 (1.11)* 0.65 (0.30) 0.96 (0.26)

RCA 2 1.58 (0.31)* 1.18 (0.16)* 0.81 (0.20) 0.70 (0.12)

Patient 4 LAD 3 1.99 (0.31)* 3.02 (0.64) 1.21 (0.31) 1.22 (0.23)

LCX 3 1.61 (0.73)* 1.98 (0.58)* 0.90 (0.35) 1.05 (0.34)

RCA 3 0.75 (0.29)* 1.00 (0.44)* 0.58 (0.23) 0.65 (0.24)

Patient 5 LAD 1 2.86 (0.59) 3.26 (0.88) 3.26 (0.40) 3.37 (0.50)

LCX 1 2.54 (0.24) 2.79 (0.30) 3.01 (0.60) 2.91 (0.34)

RCA 1 2.60 (0.36) 2.88 (0.33) 2.68 (0.35) 3.04 (0.85)

LAD, LCX and RCA: left anterior descending, left circumflex and right coronary artery respectively. Vessels with reduced myocardial blood flow are indicated with *.
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possibly caused limited arterial input function saturation
at the peak of contrast enhancement [3,10] (as shown in
Figure 3), compared to higher CA doses. Our study
demonstrates that Fermi modeling is still sensitive to
any arterial input function saturation present in our
single bolus data. In contrast, distributed parameter
modeling is less dependent on any arterial input func-
tion saturation present in our data. Any increases in CA
dose (at 3T), can increase the degree of arterial input
function saturation in single bolus data of healthy volun-
teers, which would necessitate a de novo validation of
distributed parameter modeling in single against dual
bolus analysis.

Distributed parameter and Fermi analysis in patients
The distributed parameter model was capable of detect-
ing reduced myocardial blood flow in patients with
non-obstructive and obstructive coronary artery disease
(Groups 2 and 3 respectively). Distributed parameter
modeling correctly identified all 7 obstructive lesions and
all 5 non-obstructive lesions. Fermi modeling correctly
identified 6 out of 7 obstructive lesions and 3 out of 5
non-obstructive lesions. Both models showed decreased
myocardial blood flow values as a function of luminal
stenosis severity against invasive coronary angiography
and fractional flow reserve classification (Figure 4).

Study limitations
The number of subjects included in this study is small.
However, this is the first study demonstrating that a
1-barrier 2-region distributed parameter model approach
may be less dependent on arterial input function satur-
ation than Fermi modeling. Distributed parameter model-
ing needs to be applied in larger patient cohorts to further
validate its diagnostic accuracy. We have not validated
the behaviour of distributed parameter modeling in
higher CA doses. To reduce patient discomfort during
administration of adenosine, we did not implement a
dual bolus stress-rest protocol in our patient cohort. As
such, it was impossible to validate any systematic errors
that may have contaminated our patient myocardial
blood flow quantifications due to arterial input function
saturation. To overcome this limitation and to comple-
ment our model comparison, we further assessed the
ability of both models in detecting reduced myocardial
blood flow in stenotic vessels versus current invasive
gold standard methods. The CA dose used in patients
was higher than in healthy volunteers to increase the
signal-to-noise ratio due to an assumed reduction in
blood flow in our patient cohort as compared to our
healthy volunteer cohort. Although this higher dose in
patients has possibly caused some myocardial blood
flow overestimations in Fermi modeling (Table 4, in two
epicardial vessels in patient 2, and one epicardial vessel in
patient 4), the distributed parameter modeling showed
excellent accuracy in detecting reduced haemodynamics
at stress in all stenotic vessels compared to our invasive
gold standard. The vessels with non-obstructive disease
(Group 2) were all from patients who also had one or
two other vessels with obstructive disease (Group 3).



Figure 4 Mean Fermi-MBF (a), distributed parameter-MBF (b), Fermi-MPR (c), distributed parameter MPR (d) versus ICA/FFR classification.
MBF: myocardial blood flow, MPR: myocardial perfusion reserve, ICA: invasive coronary angiography, FFR: fractional flow reserve.
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The coincidental effect of microvascular dysfunction
could therefore explain the low myocardial blood flow
measurements in Group 2.

Conclusions
We implemented a two-region, one-barrier distributed
parameter model in healthy volunteers and patients with
coronary artery disease. Distributed parameter-derived
myocardial blood flow did not significantly change when
a single bolus arterial input function was used compared
to the dual bolus case. Fermi modelling of the same data
demonstrated significant overestimations in myocardial
blood flow in single bolus compared to dual bolus ana-
lysis. This suggests that the distributed parameter model
might be less dependent on arterial input function satur-
ation than Fermi modeling.
The distributed parameter model detected reduced

myocardial blood flow in all 7 vessels with obstructive
lesions and in all 5 vessels with non-obstructive lesions
as determined by invasive coronary angiography and
fractional flow reserve classification in a pilot cohort of
5 patients with coronary artery disease.

Additional file

Additional file 1: Mean microvascular characteristics (SD) estimates
for healthy volunteers and for all 3 invasive coronary angiography/
fractional flow reserve Groups.
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