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Van Kampen colimits as bicolimits in Span?

Tobias Heindel1 and Pawe l Sobociński2

1 Abt. für Informatik und angewandte kw, Universität Duisburg-Essen, Germany
2 ECS, University of Southampton, United Kingdom

Abstract. The exactness properties of coproducts in extensive categories
and pushouts along monos in adhesive categories have found various
applications in theoretical computer science, e.g. in program semantics,
data type theory and rewriting. We show that these properties can be
understood as a single universal property in the associated bicategory
of spans. To this end, we first provide a general notion of Van Kampen
cocone that specialises to the above colimits. The main result states that
Van Kampen cocones can be characterised as exactly those diagrams
in C that induce bicolimit diagrams in the bicategory of spans SpanC,
provided that C has pullbacks and enough colimits.

Introduction

The interplay between limits and colimits is a research topic with several applica-
tions in theoretical computer science, including the solution of recursive domain
equations, using the coincidence of limits and colimits. Research on this general
topic has identified several classes of categories in which limits and colimits relate
to each other in useful ways; extensive categories [5] and adhesive categories [21]
are two examples of such classes.

Extensive categories [5] have coproducts that are “well-behaved” with respect
to pullbacks; more concretely, they are disjoint and universal. Extensivity has
been used by mathematicians [4] and computer scientists [25] alike. In the presence
of products, extensive categories are distributive [5] and thus can be used, for
instance, to model circuits [28] or to give models of specifications [11]. Sets and
topological spaces inhabit extensive categories while quasitoposes are not, in
general, extensive [15].

Adhesive categories [20, 21] have pushouts along monos that are similarly
“well-behaved” with respect to pullbacks – they are instances of Van Kampen
squares. Adhesivity has been used as a categorical foundation for double-pushout
graph transformation [20, 7] and has found several related applications [8, 27].
Toposes are adhesive [22] but quasitoposes, in general, are not [14].

Independently of our work, Cockett and Guo proposed Van Kampen (vk)
colimits [6] as a generalisation of Van Kampen squares. The main examples of
vk-colimits include coproducts in extensive categories and pushouts along monos
in adhesive categories. Another example is a strict initial object; moreover, in a
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Barr-exact category, any regular epimorphism is a vk-coequaliser of its kernel
pair [12, Theorem 3.7(d)].

The definition of vk-colimits relies only on elementary notions of category
theory. This feature, while attractive, obscures their relationship with other
categorical concepts. More abstract characterisations exist for extensive and
adhesive categories. For instance, a category C is extensive if and only if the
functor + : C ↓A×C ↓B → C ↓A+B is an equivalence for any A,B ∈ C [23, 5];
adhesive categories can be characterised in a similar manner [21]. Our definition
of vk-cocone will be of the latter kind, i.e. in terms of an equivalence of categories.
We also provide an elementary characterisation in the spirit of Cockett and Guo.

This paper contains one central result: vk-cocones are those diagrams that
are bicolimit diagrams when embedded in the associated bicategory of spans.
This characterises “being Van Kampen” as a universal property. We believe
that this insight captures and explains the essence of the various aforementioned
well-behaved colimits studied in the literature.

Spans are known to theoretical computer scientists through the work of Katis,
Sabadini and Walters [16] who used them to model systems with boundary, see
also [10]. The bicategory of spans over C contains C via a canonical embedding
Γ : C→ SpanC, that is the identity on objects and takes each arrow C −f�D of
C to its graph C �id− C −f�D. Spans generalise partial maps [26]: those spans
that have a monomorphism as their left leg, as well as relations3. Bicolimits are
the canonical notion of colimit in a bicategory.

There is some interesting related recent work. Milius [25] showed that coprod-
ucts are preserved (as a lax-adjoint-cooplimit) in the 2-category of relations over
an extensive category C. Cockett and Guo [6] have investigated the general condi-
tions under which partial map categories are join-restriction categories: roughly,
certain colimits in the underlying category are required to be vk-cocones.

Structure of the paper. In §1 we isolate the relevant class of bicategories and
recall the related notions. We also describe the bicategory of spans SpanC. In §2
we give a definition of vk-cocones together with an elementary characterisation
and several examples. In §3 we recall the definition of bicolimits and prove several
technical lemmas that allow us to pass between related concepts in C and SpanC.
Our main characterisation theorem is proved in §4.

1 Preliminaries

Here we introduce background on bicategories [3] and some notational conventions.
For the basic notions of category, functor and natural transformation, the reader
is referred to [24]. Our focus is the bicategory of spans over a category C with a
choice of pullbacks (cf. Example 3). In order to avoid unnecessary book-keeping,
we only consider bicategories4 that strictly satisfy the identity axioms.
3 In the presence of a factorisation system in C.
4 We have found the bicategory of spans easier to work with than the biequivalent

2-category [19].
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Definition 1 (Strictly unitary bicategories). A strictly unitary (su) bicat-
egory B consists of:

– a collection ob B of objects;
– for A,B ∈ ob B a category B(A,B), the objects and arrows of which are

called, respectively, the arrows and the 2-cells of B. Composition is denoted
by ◦· and referred to as vertical composition. Given (f : A→ B) ∈ B(A,B),
its identity 2-cell will be denoted ιf : f → f . Each B(A,A) contains a special
object idA : A→ A, called the identity arrow ;

– for A,B,C ∈ ob B, a functor cA,B,C : B(A,B)×B(B,C)→ B(A,C) called
horizontal composition. On objects, cA,B,C〈f, g〉 is written g ◦ f , while on
arrows cA,B,C〈γ, δ〉 it is δ∗γ. For any f : A→ B we have idB ◦f = f = f ◦idA;

– for A,B,C,D ∈ ob B, arrows f : A → B, g : B → C and h : C → D an
associativity natural isomorphism αA,B,C,D(f, g, h) : h ◦ (g ◦ f)→ (h ◦ g) ◦ f .
It satisfies the coherence axioms: for any composable f, g, h, k, we have
αf,id,g = ιg◦f and also that the following 2-cells are equal:

E

C B

A

k◦h g f

D C
k h g◦f

Dk
h◦(g◦f)

α

α
= E

C B

A .

k◦h g
f

D
k

h◦g

D

(h◦g)◦f

k
h◦(g◦f)

α

α
α

Example 2. Any (ordinary) category C is an (su-)bicategory with trivial 2-cells.

Example 3 (Span bicategory [3]). Assume that C has a choice of pullbacks that
preserves identities: for any cospan X −f�Z�g−Y there exists an object X×Z Y
and span X �g′−X ×Z Y −f ′� Y that together with f and g form a pullback
square. Moreover if f is idX then X ×Z Y = Y and f ′ = idY .5 SpanC has:

– as objects, the objects of C, i.e. obSpanC = ob C;
– as arrows from A to B, the C-spans A�l− U −r�B. We shall usually write

(l, r) : A ⇀ B to denote such a span and refer to U as its carrier. When
l = id and r : A→ B we will write simply (, r) : A ⇀ B.
The composition with another span B�p−W −q�C is
obtained via the chosen pullback as illustrated to the
right; however this composition is only associative up
to canonical isomorphism. The identity on an object A
is the span A�id−A −id�A.

A U

B

·

W C
l

r p

q

π1 π2

(l,r) (p,q)

(p,q)◦(l,r)

– its 2-cells ξ : (l, r)→ (l′, r′) are C-arrows ξ : U → U ′ between the respective
carriers such that l′ ◦ ξ = l and r′ ◦ ξ = r.

For our purposes it suffices to consider strict homomorphisms between su-
bicategories.

5 Note that this is a harmless assumption since the choice of the particular pullback
diagram for any span is insignificant.
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Definition 4 (Strict homomorphisms [3]). Let A and B be su-bicategories.
A strict homomorphism F : A → B consists of a function F : ob A → ob B and
a family of functors F(A,B) : A (A,B)→ B(FA,FB) such that:

(i) for all A ∈ A , F(idA) = idFA;
(ii) for all f : A→ B, g : B → C in A , F(g ◦ f) = F(g) ◦ F(f);
(iii) FαA,B,C,D = αFA,FB,FC,FD.

Example 5. The following strict homomorphisms will be of interest to us:

– the covariant embedding Γ : C→ SpanC which acts as the identity on objects
and takes an arrow f : C → D to its graph (, f) : C ⇀ D;

– ΓF : J→ SpanC where F : J→ C is a functor;
– given an su-bicategory B and B ∈ ob B, we shall abuse notation and denote

the strict homomorphism from J to B which is constant at B by ∆JB, often
omitting the subscript J. Note that in the case of B = SpanC, “∆ = Γ∆”.

Definition 6 (Lax transformations). Given strict homomor-
phisms F ,G : A → B between su-bicategories, a (lax) transfor-
mation consists of arrows κA : FA→ GA for A ∈ A and 2-cells
κf : Gf ◦ κA ⇒ κB ◦ Ff for f : A→ B in A such that:

FA FB

GA GB
κA κB

Ff

Gf

κf

(i) κidA
= ικA

for each A ∈ A ;
(ii) for any f : A→ B, g : B → C in A , the following 2-cells are equal:

FA FB FCFf Fg

GA GB GCGf Gg

κA κC
κf

α κg =

FA FB FCFf Fg

GA GB GCGf Gg

κA κC
α

κg◦f α
.

A transformation is said to be strong when all the κf are invertible 2-cells. Given
B ∈ B and a homomorphism M : J → B, a pseudo-cocone λ : M → ∆B is a
synonym for a strong transformation λ : M→ ∆B.

Because bicategories have 2-cells, there are morphisms between transforma-
tions. They are called modifications and are defined as follows.

Definition 7 (Modifications [3, 18]).
Given natural transformations κ, λ
from F to G, a modification Ξ : κ→ λ
consists of 2-cells ΞA : κA → λA for
A ∈ A such that, for all f : A → B
in A , λf ◦· (ιGf ∗ΞA) = (ΞB ∗ιFf )◦· κf .

FA FB

GA GB
κA

λAΞA

λf

λB

Ff

Gf

=

FA FB

GA GB
κB

λB
ΞB

κf

κA

Ff

Gf

Composition is componentwise, the identity modification on κ is Iκ = {ικA
}A∈A .

Given su-bicategories A and B, let Homl [A ,B] denote the su-bicategory of
homomorphisms, lax transformations and modifications. Let Hom [A ,B] denote
the corresponding su-bicategory with arrows the strong transformations.
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2 Van Kampen cocones

Here we give the definition of Van Kampen cocones together with an elementary
characterisation. Let us consider coproducts as a motivating example. A coproduct
diagram A−i1�A+B�i2−B in a category C is a cocone of the two-object diagram
〈A,B〉. If C has pullbacks along coproduct injections then each x : X → A+B
gives rise to i1∗x : i1∗X → A and i2∗x : i2∗X → B by pulling back along i1 and i2,
respectively. Then x 7→ 〈i1∗x, i2∗x〉 defines the functor 〈i1∗ , i2∗ 〉 : (C ↓A+B)→
(C ↓A×C ↓B) on objects. The coproduct satisfies the properties expected in an
extensive category when this functor is an equivalence (see [5]).

The situation readily generalises as follows: replace 〈i1, i2〉 by any cocone
κ : D → ∆A from a functor D : J → C to an object A in a category C
with (enough) pullbacks. Any arrow x : X → A in-
duces a natural transformation ∆x : ∆X → ∆A and
since also κ : D → ∆A is a natural transformation,
the former can be pulled back along the latter in the
functor category [J,C] yielding a natural transforma-
tion κ∗(∆x) : κ∗(∆X)→ D.

A

X

x

∆A

∆X

∆x

D

κ∗(∆X)

κ∗(∆x)

κ

The described operation extends to a functor κ∗(∆ ) from C ↓A to (a full
subcategory of) [J,C] ↓D using the universal property of pullbacks; it maps
morphisms with codomain A to cartesian transformations with codomain D.

Definition 8 (Cartesian transformations). Let E ,D ∈ [J,C] be functors
and let τ : E → D be a natural transformation. Then τ is a cartesian (natural)
transformation if all naturality squares are pullback squares, i.e. if the pair
Ei �τi− Di −Du�Dj is a pullback of Ei −Eu� Ej �τj− Dj for all u : i→ j in J.

Ei EjEu

Di DjDu

τi τj

Let [J,C] ↓D be the slice category over D, which has natu-
ral transformations with codomain D as objects. Let [J,C]⇓D
denote the full subcategory of [J,C] ↓D with the cartesian trans-
formations as objects.

Definition 9 (Van Kampen cocones). Let C be any category, let D : J→ C
be a functor, and let κ : D → ∆JA be a cocone such that pullbacks along
each coprojection κi exist (i ∈ J). Then κ is Van Kampen (vk) if the functor
κ∗(∆J ) : C ↓A→ [J,C]⇓D is an equivalence of categories.

Extensive and adhesive categories have elementary characterisations that are
special cases of the following.

Proposition 10 (Elementary VK characterisation). Suppose that C has
pullbacks and J-colimits, D : J → C is a functor and κ : D → ∆JA a cocone
such that C has pullbacks along κi (i ∈ J). Then κ : D → ∆JA is Van Kampen
iff for every cartesian transformation τ : E → D, arrow x : X → A and cocone
β : E → ∆JX such that κ ◦ τ = ∆x ◦ β, the following are equivalent:

(i) β : E → ∆JX is a C-colimit;
(ii) Di �τi− Ei −βi�X is a pullback of Di −κi�A�x−X for all i ∈ J. ut
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Cockett and Guo’s [6] definition of Van Kampen colimits is the equivalence of
(i) and (ii) in our Proposition 10. The two definitions are thus very close and
coincide in the presence of the relevant pullbacks and colimits.

Remark 11. Under the assumptions of Proposition 10, any Van Kampen cocone
κ : D → ∆A is a colimit diagram of D in C (take τ = idD and x = idA).

Example 12. The following well-known concepts are examples of vk-cocones:

(i) a strict initial object is a vk-cocone for the functor from the empty category;
(ii) a coproduct diagram in an extensive category [5] is a vk-cocone for a functor

from the discrete two object category;

A vk-cocone from a span is what has been called a Van Kampen square [21].

B C

A

D

B′ C′

A′

D′

f m

a

b c

f ′ m′

n′

n

d

g′

g

⇒

0BBBBBBBBBB@ B C

A

D

B′ C′

A′

D′

f m

a

b c

f ′ m′

n′

n

d

g′

g

⇔

B C

A

D

B′ C′

A′

D′

f m

a

b c

f′ m′

n′

n

d

g′

g

1CCCCCCCCCCA
Fig. 1: Van Kampen square

Example 13 (Van Kampen square). A commutative square B �f− A −m� C,
B −n�D �g− C is Van Kampen when for each commutative cube as illustrated
in Figure 1 on the left that has pullback squares as rear faces, its top face is a
pushout square if and only if its front faces are pullback squares (cf. Figure 1).

In the left hand diagram in Figure 1, the two arrows B�f−A−m�C describe a
diagram from the three object category · ← · → ·, and the cospan B−n�D�g−C
gives a cocone for this diagram. That the back faces are pullback squares means
that we have a cartesian transformation from B′�f ′−A′−m′�C to B�f−A−m�C.

Adhesive categories are thus precisely categories with pullbacks in which pushouts
along monomorphisms exist and are vk-cocones.

3 Van Kampen cocones in a span bicategory

We begin the study of vk-cocones in the span bicategory by explaining roughly
how Van Kampen squares induce bipushout squares in the bicategory of spans
via the embedding Γ . An illustration of this is given in Figure 2.

At the base of Figure 2(a) is (the image of) a C-span B�f−A−m�C in SpanC,
i.e. a span of spans. Further, if two spans (b, b′) : B ⇀ E and (c, c′) : C ⇀ E are
a pseudo-cocone for B �(,f)−A −(,m)� C then taking pullbacks of b along f and
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B C

A

B′ C′
A′ A′′∼=

E

(,f)
(,m)

ab

ac

b c

f ′ m′
b′ c′

(b,b′) (c,c′)

(a) SpanC-cocone of the C-span
B �f−A −m� C

B C

A

B′ C′
A′ A′′∼=

E

(,f)
(,m)

ab

ac

b c

f′ m′
b′ c′

(d,d′)

D

D′

B′′
C′′

∼= ∼=

dn dg

g′′n′′

d

d′

(,n) (,g)

(b) Mediating SpanC-morphism from
the C-cocone B −n� D �g− C

Fig. 2: Cocones and mediating morphisms consisting of spans

c along m (in C) yields isomorphic objects over A, say ab and ac; as a result we
obtain two pullback squares that will be the back faces of a commutative cube.

Next, let the bottom of Figure 2(b) be (the image of) a commuting C-
square, thus yielding another pseudo-cocone of B ↼(,f)− A −(,m)⇀C, namely
B −(,n)⇀D↼(,g)−C. If there is a mediating morphism (d, d′) : D ⇀ E from the
latter cocone to the one of Figure 2(a) (B −(b,b′)⇀E ↼(c,c′)− E) then pulling
back d along n and g results in morphisms which are isomorphic to b and c,
respectively, say dn and dg; the resulting pullback squares provide the front faces
of a cube.

Now, if B−n�D�g−C is a vk-cocone of B�f−A−m�C then such a mediating
morphism can be constructed by taking D′ as the pushout of B′ and C ′ over
either one of A′ or A′′. The morphisms d : D′ → E and d′ : D′ → D arise from
the universal property of pushouts, everything commutes and the front faces are
pullback squares because of the vk-property. Further this mediating morphism is
essentially unique, which means that given any other span (e, e′) : D ⇀ E such
that both (b, b′) ∼= (e, e′) ◦ (, n) and (c, c′) ∼= (e, e′) ◦ (, g) hold, the two spans
(e, e′) and (d, d′) are isomorphic via a unique isomorphism.

Though this sketch lacks relevant technical details, it nevertheless may suffice
to convey the flavor of the diagrams that are involved in the proof of the fact
that Van Kampen squares in C induce bipushouts in SpanC. Moreover, also the
converse holds, i.e. if the image of a pushout is a bipushout in SpanC then it is a
Van Kampen square.

3.1 Span bicolimits

Clearly any diagram in SpanC can be “decomposed” into a diagram in C: each
arrow in SpanC gives two C-arrows from a carrier object; further a 2-cell in SpanC
is an C-arrow between the carriers satisfying certain commutativity requirements.

We shall start with further observations along these lines. Roughly we are
able to “drop a dimension” in the following sense. First, it is easy to see that
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[J,C] inherits a choice of pullbacks from C. In particular, it follows that Span [J,C]

is an su-bicategory. Now, given F ,G ∈ [J,C] we note that:

– spans of natural transformations from F to G correspond to lax transforma-
tions from ΓF to ΓG; and

– morphisms of such spans are the counterpart of modifications.

The following lemma makes this precise.

Lemma 14. There is a strict homomorphism

Γ : Span [J,C] → Homl [J,SpanC]

that takes F ∈ [J,C] to ΓF and is full and faithful on both arrows and 2-cells.

Proof (proof sketch). Here we only give the definition of Γ as checking the details
involves tedious calculations.

Fi FjFu

Hi

Hj

Gi GjGu

ψj

ϕj

κj

ψi

ϕi

·

π1

π2
κu

HuHuHu

A span of natural transformations (ϕ,ψ) : F ⇀ G with
carrier H is mapped to a lax transformation ΓF,G(ϕ,ψ)
as follows: for each i ∈ J, we put κi := (ϕi, ψi) : Fi ⇀ Gi,
and for each morphism u : i → j in J, we define a 2-cell
κu : (,Gu) ◦ κi → κj ◦ (,Fu) as sketched to the right. More
explicitly, using that Fu ◦ϕi = ϕj ◦Hu holds by naturality
of ϕ, the arrow κu : Hi → Fi ×Fj Hj is the unique one
satisfying ϕi = π1 ◦ κu and Hu = π2 ◦ κu. To check that
κu is a 2-cell it remains to check the equation ψj ◦ π2 ◦ κu = ψj ◦ Hu = Gu ◦ ψi,
which follows by the naturality of ψ.

Further, a 2-cell between spans (ϕ,ψ), (ϕ′, ψ′) : F ⇀ G with respective carriers
H,H′ is a natural transformation ξ : H → H′ satisfying both ϕ′ ◦· ξ = ϕ and
ψ′ ◦· ξ = ψ. This induces a modification {ξi}i∈J : Γ(ϕ,ψ)→ Γ(ϕ′, ψ′). ut

Corollary 15. For any functor F ∈ [J,C], the strict homomorphism Γ defines
a natural isomorphism between the following two functors of type [J,C]→ Cat:

Span [J,C](F , ) ∼= Homl [J,SpanC](ΓF , Γ ). ut

The above lemma and corollary can be adapted to talk about strong trans-
formations instead of lax ones (this will recur when we discuss bicolimits for-
mally). This restriction to strong transformations has a counterpart on the other
side of the isomorphism of Corollary 15: we need to restrict to those spans in
Span [J,C](F ,G) that have a cartesian transformation from the carrier to F .

Recall that a cartesian transformation between functors is a natural trans-
formation with all naturality squares pullbacks (cf. Definition 8). It is an easy
exercise to show that cartesian natural transformations include all natural iso-
morphisms and are closed under pullback. Hence – in a similar way as one can
restrict the span bicategory to all partial map spans, i.e. those with the left leg
monic – we let Span⇐[J,C] be the (non-full) sub-bicategory of Span [J,C] that has all
those spans (ϕ,ψ) : F ⇀ G in Span [J,C](F ,G) as arrows of which the left leg ϕ is
a cartesian transformation. Adapting the proof of Lemma 14, one obtains the
following proposition.

8



Proposition 16. There is a strict homomorphism Γ : Span⇐[J,C] → Hom [J,SpanC]
which is full and faithful on both arrows and 2-cells. For any functor F ∈ [J,C],
Γ defines a natural isomorphism between the following functors [J,C]→ Cat:

Span⇐[J,C](F , ) ∼= Hom [J,SpanC](ΓF , Γ ). �

The above lets us pass between diagrams in SpanC and C: for example the
strong transformations of homomorphisms to SpanC are those spans of natural
transformations of functors to C that have a cartesian first leg; the modifications
of the former are the morphisms of spans of the latter. This observation will
be useful when relating the notion of bicolimit in SpanC with the notion of
vk-cocone in C.

An elementary definition of bicolimits. For our purposes we need to recall only
the definition of (conical) bicolimits [17] for functors with an (ordinary) small
category J as domain. Given a homomorphism M : J → B, a bicolimit of M
is an object bicolM∈ B with a pseudo-cocone κ : M→ ∆(bicolM) such that
“pre-composition” with κ gives an equivalence of categories

B(bicolM, X) ' Hom [J,B](M,∆X) (1)

that is natural in X (i.e. the right hand side is essentially representable as a
functor λX.Hom [J,B](M,∆X) : B → Cat); the pair 〈bicolM, κ〉 is referred to
as the bicolimit of M. We will often speak of κ : M→ ∆bicolM as a bicolimit
without mentioning the pair 〈bicolM, κ〉 explicitly.

To make the connection with the elementary characterisation of Van Kampen
cocones in Proposition 10, we shall use the fact that equivalences of categories
can be characterised as full, faithful functors that are essentially surjective on
objects, and work with the following equivalent, elementary definition.

Definition 17 (Bicolimits). Given an su-bicategory B, a category J and a
strict homomorphism M : J→ B, a bicolimit for M consists of:

– an object bicolM∈ B;
– a pseudo-cocone κ : M→ ∆ bicolM: for each object i ∈ J

an arrow κi : Mi → bicolM, and for each u : i→ j in J
an invertible 2-cell κu : κi → κj◦Mu satisfying the axioms
required for κ to be a strong transformation.

Mi Mj
Mu

bicolM

κi
κj

κu

The bicolimit satisfies the following universal properties.

(i) essential surjectivity:
for any pseudo-cocone λ : M→ ∆X, there ex-
ists h : bicolM→ X in B and an invertible
modification Θ : λ→ ∆h ◦· κ; and

M

∆X

∆ bicolMλ

κ

∆h

Θ ∼=

(ii) fullness and faithfullness:
for any h, h′ : bicolM → X in B and each
modification Ξ : ∆h ◦· κ→ ∆h′ ◦· κ, there is a
unique 2-cell ξ : h→ h′ satisfying Ξ = ∆ξ∗Iκ
(and hence ξ is invertible iff Ξ is).

M

∆X

∆h◦·κ ∆h′◦·κ

Ξ

M

∆ bicolM=

∆X

κ

∆h ∆h′
∆ξ
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The pair 〈h,Θ〉 of Condition (i) is called a mediating cell from κ to λ.

Condition (ii) of this definition implies that mediating cells from a bicolimit to a
pseudo-cocone are essentially unique: any two such mediating cells 〈h,Θ〉 and
〈h′, Θ′〉 are isomorphic since Θ′ ◦· Θ−1 : ∆h ◦· κ→ ∆h′ ◦· κ corresponds to a unique
invertible 2-cell ζ : h→ h′ such that Θ′ ◦· Θ−1 = ∆ζ ∗ Iκ.

To relate the notion of bicolimit with the characterisation of vk-cocones of
Proposition 10, we shall reformulate the above elementary definition. Given a
pseudo-cocone κ : M → ∆C, a morphism h : C → D will be called universal
for κ or κ-universal if, given any other morphism h′ : C → D with a modification
Ξ : ∆h◦· κ→ ∆h′◦· κ, there exists a unique 2-cell ξ : h→ h′ satisfying Ξ = ∆ξ∗Iκ;
further, a mediating cell 〈h,Θ〉 is called universal, if the morphism h is universal.
The motivation behind this terminology and the slightly redundant statement of
the following proposition will become apparent in §4; its proof is straightforward.

Proposition 18. A pseudo-cocone κ : M→ ∆C from a diagram M to C is a
bicolimit iff both of the following hold:

(i) for any pseudo cocone λ : M → ∆D there is a universal mediating cell
〈h : C → D, Θ〉 from κ to λ;

(ii) all arrows h : C → D are universal for κ. ut

We are interested in bicolimits of strict homomorphisms of the form ΓF
where F : J → C is a functor and Γ : C → SpanC is the covariant embedding
of C. The defining equivalence of bicolimits in (1) specialises as follows:

SpanC(bicol ΓF , X) ' Hom [J,SpanC](ΓF ,∆X).

Using Proposition 16, this is equivalent to:

SpanC(bicol ΓF , X) ' Span⇐[J,C](F ,∆X).

We shall exploit working in Span⇐[J,C] in the following lemma which relates the
concepts involved in the elementary definition of bicolimits with diagrams in C.
It will serve as the technical backbone of our main theorem.

Lemma 19 (Mediating cells and universality for spans).

Let κ : F → ∆C be a cocone in C of a diagram
F ∈ [J,C], and let λ : ΓF → ∆D be a pseudo-
cocone in SpanC where λi = (ϕi, ψi) for all i ∈ J:

Fi FjFu

C

κi

κj

ΓFi ΓFj
ΓFu

D

λi

λj

λu

(i) to give a mediating cell

〈C h1←− H h2−→ D,Θ : λ→ ∆(h1, h2) ◦· Γκ〉

from Γκ to λ is to give a cocone ϑ : H → ∆H
where H is the carrier functor of the image of λ
in Span⇐[J,C](F ,∆D) (cf. Proposition 16) such
that the resulting three-dimensional diagram (†)
in C (to the right) commutes and its lateral
faces Hi

Fi

↑q→
→↑H

C are pullbacks;

Hi Hj

Fi Fj

Hu

Fu

ϕi ϕj

H

D

C

ϑj

κj

ϑi

κi

h2

h1

ψi
ψj

(†)
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(ii) to give a modification Ξ : ∆(h1, h2) ◦· Γκ → ∆(h′1, h
′
2) ◦· Γκ for a pair

of spans (h1, h2), (h′1, h
′
2) : C ⇀ D is to give a cartesian transformation

Ξ : F ×∆C ∆H → F ×∆C ∆H ′ such that the two equations π′1 ◦ Ξ = π1

and (∆h′2) ◦ π′2 ◦Ξ = (∆h2) ◦ π2 hold.

Fi ×C H Fj ×C H

Fi Fj

Fu×CH

Hu

π1i π1j

H

D

C

π2j

κj

π2i

κi

h2

h1

Fi

Fi ×C H Fi ×C H ′

H H ′
π2i π′2i

D

π1i π′1i

h2 h′2

Ξi

(‡)

Here F �π1−F ×∆C ∆H −π2�∆H is the pullback of F −κ�∆C�∆h1−∆H
as sketched in (‡) above and similarly for h′ : H ′ → C.
Further, to give a cell ξ : (h1, h2)→ (h′1, h

′
2)

that satisfies ∆ξ ∗ IΓκ = Ξ is to give a
C-arrow ξ : H → H ′ which satisfies the three
equations h′1 ◦ ξ = h1, h′2 ◦ ξ = h2 and
∆ξ ◦ π2 = π′2 ◦Ξ; Fi ×C H Fi ×C H ′

H H ′
π2i π′2i

D C
h2

h′2 h1

h′1

Ξi

ξ

(iii) given a span (h1, h2) : C ⇀ D, if the pullback of κ along h1 is a colimit, i.e.
if π2 : F ×∆C ∆H → ∆H is a colimit, then (h1, h2) is universal for Γκ;

(iv) conversely, if (h1, h2) is universal for Γκ, then π2 : F ×∆C ∆H → ∆H is
a colimit – provided that some colimit of F ×∆C ∆H exists in C.

Proof. Both (i) and (ii) are immediate consequences of Proposition 16.
As for (iii), we need to show that every modification Ξ : ∆(h1, h2) ◦· Γκ →

∆(h′1, h
′
2) ◦· Γκ is equal to ∆ξ ∗ IΓκ for a unique ξ : (h1, h2)→ (h′1, h

′
2). By (ii),

Ξ is a natural transformation Ξ : F×∆C∆H → F×∆C∆H ′. Then, by naturality
of Ξ, we have that π′2j ◦Ξj ◦ (Fu×∆C ∆H) = π′2i ◦Ξi holds for all u : i→ j in J,
and since π2 is a colimit we have a unique ξ : H → H ′ satisfying ξ ◦π2i = π′2i ◦Ξi
for all i ∈ J. The equations hi = h′i ◦ ξ follow from the universal property of π2

(and the properties of Ξ). To show uniqueness of ξ, let ζ : (h1, h2)→ (h′1, h
′
2) be

a 2-cell such that Ξ = ∆ζ ∗IΓκ ; then using the second statement of Lemma 19(ii),
∆ζ ◦ π2 = π′2 ◦Ξ; hence ζ = ξ follows since π2 is a colimit. In summary, (h1, h2)
is universal for Γκ.

To show (iv), let 〈H ′, ϑ〉 be a colimit of F ×∆C ∆H . Now, it suffices to show
that there is a C-morphism ξ : H → H ′ such that ϑ = ∆ξ ◦ π2.6 By the universal
property of ϑ, we obtain unique C-arrows h′1 : H ′ → C and h′2 : H ′ → D such
that ∆h′1 ◦ ϑ = κ ◦ π1 and ∆h′2 ◦ ϑ = ∆h2 ◦ π2. It also follows that the two
equations h1 ◦ k = h′1 and h2 ◦ k = h′2 hold. Pulling back κ along h′1 yields a
span F �π′1− F ×∆C ∆H ′ −π′2�∆H ′; we then obtain a natural transformation
Ξ : F ×∆C ∆H → F ×∆C ∆H ′ which satisfies π1 = π′1 ◦Ξ and ϑ = π′2 ◦Ξ, and
6 The reason is that once such a ξ is provided, there is a unique k : H ′ → H satisfying

∆k ◦ ϑ = π2, and thus ξ ◦ k = idH′ by the universal property of colimits; moreover
k ◦ ξ = idH must hold since (h1, h2) is universal for Γκ.
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hence also ∆h2 ◦π2 = ∆h′2 ◦ϑ = ∆h′2 ◦π′2 ◦Ξ. By (ii), this defines a modification
Ξ : ∆(h1, h2)◦·Γκ→ ∆(h′1, h

′
2)◦· κ. Using universality, we get a unique ξ : H → H ′

such that h′1 ◦ ξ = h1, h′2 ◦ ξ = h2 and ∆ξ ◦ π2 = π′2 ◦Ξ = ϑ. ut

4 Van Kampen cocones as span bicolimits

Here we prove the main result of this paper, Theorem 22. Roughly speaking, the
conclusion is that (under natural assumptions – existence of pullbacks and enough
colimits in C) to be vk in C is to be a bicolimit in SpanC. The consequence is
that “being vk” is a universal property; in SpanC rather than in C.

The proof relies on a correspondence between the elementary characterisation
of Van Kampen cocones in C of Proposition 10 and the universal properties
of pseudo-cocones in SpanC of Proposition 18. More precisely, given a colimit
κ : M→ ∆C in C, we shall show that:

– Γκ-universality of all spans (h1, h2) : C ⇀ D corresponds to the implication
(ii)⇒ (i) of Proposition 10, which is also known as pullback-stability or
universality of the colimit κ;

– existence of some universal mediating cell from Γκ to any λ : Γκ→ ∆D is
the counterpart of the implication (i)⇒ (ii) of Proposition 10, which – for
want of a better name – we here refer to as “converse universality” of κ;

– thus, Γκ is a bicolimit in SpanC if and only if the colimit κ is Van Kampen.

The first two points are made precise by the statements of the following two
lemmas. The third point is the statement of the main theorem.

Lemma 20 (Converse universality). Let F ∈ [J,C] where C has pullbacks
and for all (τ : E→F) ∈ [J,C]⇓F a colimit of E exists. Then κ : F → ∆JC
satisfies “converse universality” iff given any pseudo-cocone λ : ΓF → ∆D, there
exists a universal mediating cell 〈(h1, h2), Θ〉 from Γκ to λ in SpanC.

Proof. (⇒) Suppose that λ : ΓF → ∆D is a pseudo-cocone in SpanC.
For u : i→ j in J, we obtain a commutative diagram,
as illustrated (cf. Proposition 16). Let ϑ : H → ∆H
be the colimit of H; thus we obtain h1 : H → C and
h2 : H → D making diagram (†) commute. By converse
universality, the side faces Hi

Fi

↑q→
→↑H

C are pullback squares;
using Lemma 19(ii) we get an invertible modification
Θ : λ → ∆(h1, h2) ◦· Γκ. That (h1, h2) is universal fol-
lows from Lemma 19(iii) since ϑ is a colimit.

Hi Hj

Fi Fj

Hu

Fu

ϕi ϕj

D

C

κj

κi

ψi
ψj

(⇐) If in diagram (†) D = colH and 〈D,ψ〉 is the corre-
sponding colimit, we first use the assumption to obtain a
universal mediating cell 〈(h1, h2), Θ〉 from Γκ to λ(ϕ,ψ)

where λ(ϕ,ψ) is the pseudo-cocone corresponding to the
cartesian transformations ϕ : H → F and ψ : H → ∆D

such that λ(ϕ,ψ)
i = (ϕi, ψi) as in Lemma 19(i); the latter

also provides ϑ : H → ∆H such that h2 ◦ ϑi = ψi and
all Hi

Fi

↑q→
→↑H

C are pullback squares.

Hi Hj

Fi Fj

Hu

Fu

ϕi ϕj

H

D

C

ϑj

κj

ϑi

κi

h2

h1

ψi
ψj

(†)
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It suffices to show that h2 = idH . However, by the universal property of the
colimit 〈D,ψ〉, there is an arrow k : D → h such that k ◦ ψi = ϑi. The equation
h2 ◦ k = idD holds because 〈D,ψ〉 is a colimit in C, and k ◦ h2 = idH follows
since (h1, h2) is universal for Γκ. ut

Lemma 21 (Universality). Let F ∈ [J,C] where C has pullbacks such that
for all (τ : E→F) ∈ [J,C]⇓F , a colimit of E exists. Then κ : F → ∆C satisfies
universality iff every morphism (h1, h2) : C ⇀ D in SpanC is universal for Γκ.

Proof. (⇒) Any morphism (h1, h2) leads to a diagram (‡) where all the side-faces
are pullbacks. By universality of κ, the cocone π2 of the top face is a colimit;
thus (h1, h2) is universal for Γκ by Lemma 19(iii).
(⇐) Suppose that in diagram (‡) the side faces are all pullbacks. By assumption
(h1, h2) is universal for Γκ, thus 〈H,π2 : F ×∆C ∆H → ∆H〉 is a colimit by
Lemma 19(iv). ut

Finally, these two lemmas together with Proposition 18 imply our main result.

Theorem 22. Let F ∈ [J,C] where C has pullbacks and for all cartesian trans-
formations τ : E→F , a colimit of E exists. Then a cocone κ : F → ∆C is Van
Kampen iff Γκ : ΓF → ∆C is a bicolimit in SpanC. ut

5 Conclusion, related work and future work

We gave a general definition of Van Kampen cocone that captures several previ-
ously studied notions in computer science, topology, and related areas, showing
that they are instances of the same concept. Moreover, we have provided two
alternative characterisations: the first one is elementary, and involves only basic
category theoretic notions; the second one exhibits it as a universal property :
Van Kampen cocones are just those colimits that are preserved by the canonical
covariant embedding into the span bicategory.

Although this result is purely category theoretic, there exists closely related
work in theoretical computer science. Apart from the references already given
in the introduction, we mention the unfolding semantics of Petri nets in terms
of coreflections. The latter has been generalised to graph grammars in [1]. Us-
ing ω-adhesive categories, i.e. adhesive categories in which colimits of ω-chains
of monomorphisms are Van Kampen, it is possible to give such a coreflective
unfolding semantics for grammars which rewrite objects of an ω-adhesive cate-
gory [2]. Moreover, the morphisms between grammars in the latter work have a
direct relation to the span-bicategory since they are essentially (a 1-categorical
counterpart of) spans which preserve the structure of grammars.

Finally, the definition of Van Kampen cocone allows for several natural
variations. For example, one may replace the slice category over the object at the
“tip” of cocones by a (full) subcategory of it; this is exactly the step from global
descent to E-descent [13] and is closely related to the proposals in [7, 9] for a
weakening of the notion of adhesivity. Alternatively, one may start with cocones

13



or diagrams of a particular form. In this way quasi-adhesive categories [21] arise
as in the latter only pushouts along regular monos are required to be vk; another
example is the work of Cockett and Guo [6], where Van Kampen cocones exist
for a class of diagrams that naturally arises in their study of join restriction
categories. Thus, possibly combining the latter two ideas, several new forms of
Van Kampen cocones and diagrams arise as the subject for future research.

Acknowledgment. The authors thank the anonymous referees for their helpful
suggestions that have helped to significantly improve this article.
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14. P. Johnstone, S. Lack, and P. Sobociński. Quasitoposes, quasiadhesive categories
and Artin glueing. In Algebra and Coalgebra in Computer Science, Calco ’07,
volume 4626 of Lect. Notes Comput. Sc. Springer, August 2007.

15. P. T. Johnstone. Sketches of an Elephant: A topos theory compendium, vol 1.
Clarendon Press, 2002.

16. P. Katis, N. Sabadini, and R. F. C. Walters. Bicategories of processes. J. Pure
Appl. Algebra, 115:141–178, 1997.

17. G. M. Kelly. Elementary observations on 2-categorical limits. Bull. Austral. Math.
Soc., 39:301–317, 1989.

18. G. M. Kelly and R. H. Street. Review of the elements of 2-categories. Lect. Notes
Math., 420:75–103, 1974.

19. S. Lack. A 2-categories companion. arXiv:math/0702535v1 [math.CT] 19 Feb 2007.
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